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Abstract: Vision-language-action (VLA) models represent a promising direction for developing
general-purpose robotic systems, demonstrating the ability to combine visual understanding,
language comprehension, and action generation. However, systematic evaluation of these models
across diverse robotic tasks remains limited. In this work, we present a comprehensive evaluation
framework and benchmark suite for assessing VLA models. We profile three state-of-the-art VLM
and VLAs —GPT-40, OpenVLA, and JAT—across 20 diverse datasets from the Open-X-Embodiment
collection, evaluating their performance on various manipulation tasks. Our analysis reveals several
key insights: (1) current VLA models show significant variation in performance across different
tasks and robot platforms, with GPT-40 demonstrating the most consistent performance through
sophisticated prompt engineering, (2) all models struggle with complex manipulation tasks requiring
multi-step planning, and (3) model performance is notably sensitive to action space characteristics
and environmental factors. We release our evaluation framework and findings to facilitate systematic
assessment of future VLA models and identify critical areas for improvement in the development of
general-purpose robotic systems.

Keywords: benchmark; machine learning; vision language model; large language model; vision
language action; vla; robotic learning; offline RL; robotics; control

1. Introduction

The quest for robust, generalizable robotic systems continues to pose a fundamental challenge
in machine learning and robotics research. Despite significant progress in controlled environments,
current systems exhibit limited generalization beyond their training conditions. These limitations span
numerous dimensions: systems fail when encountering unfamiliar task descriptions [1,2], struggle
with spatial variations in object configurations [3], perform poorly under variable lighting or occlusion
[4], and show degraded performance when interacting with novel objects or in cluttered environments
[5,6]. These generalization challenges significantly hinder the deployment of learned robotic systems
in unconstrained environments.

Recent breakthroughs in foundation models, especially in vision and language processing,
suggest a promising path forward. These models, trained on web-scale datasets, have achieved
remarkable capabilities in visual understanding [7,8], sophisticated reasoning about interactions
between objects and agents [9-11], software development [12], and cross-modal comprehension. The
robust generalization exhibited by these models addresses precisely the challenges that have historically
limited robotics systems. Their advanced capabilities in semantic understanding, problem-solving,
and visual processing could revolutionize the development of versatile robots capable of handling
diverse tasks in dynamic environments.

This approach corresponds with a broader trend in machine learning toward unified neural
sequence architectures. These models demonstrate continued performance gains at the boundaries
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of data volume, computational resources, and model complexity [13,14]. This pattern aligns with
historical observations suggesting that general-purpose models efficiently utilizing computational
resources tend to outperform specialized solutions [15]. The advantages of unified sequence models
are multifaceted: they remove the requirement for custom policy architectures with domain-specific
assumptions, enable the use of diverse training data through sequence-based representation, and show
reliable improvements with increasing scale.

Nevertheless, adapting these models for robotics applications presents substantial challenges.
The vast scale of training data available for foundation models - billions of tokens and images from
the internet - far exceeds what is currently feasible to collect for robot interactions [16,17]. Moreover,
while foundation models excel at abstract reasoning and high-level comprehension, robotic control
requires precise, physically grounded actions, such as specific end-effector movements. Recent research
has explored integrating language models (LLMs) and vision-language models (VLMs) into robotics
frameworks (Ahn et al., 2022; Driess et al., 2023; Vemprala et al., 2023). However, many current
approaches limit foundation models to high-level planning roles, using them essentially as advanced
state machines that convert commands into basic actions, executed by separate low-level controllers
unable to access the models’ rich semantic understanding.

Current research initiatives have investigated leveraging pretrained language and vision-language
models to enhance robotic representations [18-20]. These components have also been integrated
into planning systems [10,21]. A particularly promising development has been the emergence of
vision-language-action models (VLAs), which extend foundation models for robotics through various
approaches including pretraining [3], cotraining [6], or fine-tuning [1,22,23]. These models have
shown encouraging results in transferring to novel tasks, marking an important advancement toward
developing generally capable robotic systems.

As these models continue to evolve, there is a critical need for systematic evaluation of their
capabilities across both their intended multimodal training domains and out-of-distribution scenarios.

Our primary contributions in this paper are:

®  Detailed profiling results for an initial set of VLM, VLA, and emerging "generalist" models,
providing insights into their capabilities and limitations

*  Analysis of generalization

* A systematic set of evaluation splits and metrics specifically designed for robotics learning tasks

in the widely-used OpenX Dataset

¢ A general framework for mapping VLMs to other modality classes, with particular emphasis on
action spaces

*  Open-source software infrastructure for downloading, managing, and utilizing the benchmark
data

Through this work, we aim to provide the robotics learning community with robust tools and
methodologies for assessing and comparing these emerging approaches, facilitating progress in
this rapidly evolving field and helping to bridge the gap between foundation models and practical
robotics applications. Importantly, this is the first foray into a new large scale generalist action model
benchmark, which we discuss in the context of Future Work.

2. Related Work

Recent years have seen a proliferation of benchmarks aimed at evaluating multimodal models
across different domains and capabilities. We organize our discussion of related work into three
categories: general multimodal benchmarks, robotics-specific benchmarks, and multimodal language
model evaluations.

General Multimodal Benchmarks

MultiBench [24] represents one of the first systematic attempts to evaluate multimodal learning
across diverse domains, spanning healthcare, robotics, affective computing, and finance. Similar to our
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work, MultiBench emphasizes the importance of evaluating multiple aspects of model performance,
including generalization, complexity, and robustness. However, while MultiBench covers a broad range
of domains, its robotics evaluation is limited in scope. MMMU [25]provides another comprehensive
benchmark focused on college-level multimodal understanding. The authors evaluate models across
technical disciplines like engineering and science through expert-level problems requiring nuanced
perception and domain-specific knowledge, but do not specifically address robotics control tasks.

Multimodal Language Model Evaluations

The evolution of multimodal evaluation has progressed from single-task benchmarks like VQA
[26], OK-VQA [27], MSCOCO [28], and GQA [29] to more comprehensive evaluation frameworks.
Recent benchmarks span various capabilities, from basic OCR to adversarial robustness and
hallucination detection (e.g., POPE [30] and HaELM [31]). More holistic evaluations have emerged
through benchmarks like LAMM [32], LVLM-eHub [33], SEED [34], MMBench [35], and MM-Vet [36].
Specialized benchmarks such as MathVista [37] focus on specific domains like mathematical reasoning,
while GAIA [38] tests fundamental abilities in reasoning and multimodality handling.

Robotics-Specific Benchmarks

The evolution of robotics datasets has demonstrated considerable diversity across various
dimensions, particularly with the advancement of imitation learning and behavior cloning (BC).
While many robotics benchmarks focus on evaluating model adaptability to new tasks, functionalities,
or environments, there remains a gap in systematically evaluating different BC models at scale in
both simulated and real-world settings. THE COLOSSEUM [39] addresses this gap by providing a
systematic evaluation framework focused on robotic manipulation, evaluating generalization across
14 different environmental perturbations. Similar efforts include FactorWorld [5], which examines
11 variation factors across 19 tasks, and KitchenShift [40], which evaluates zero-shot generalization
across 7 variation factors in kitchen environments.Several other specialized robotics benchmarks have
emerged: RLBench [41] offers a suite of 100 manipulation tasks in simulation; RAVENS [42] focuses on
vision-based manipulation; and FurnitureBench [43] provides reproducible real-world benchmarks
for long-horizon complex manipulation. LIBERO [44] offers benchmarks for knowledge transfer in
lifelong robot learning, while FMB [45] emphasizes generalizable robotic learning across complex tasks.
Recent work has also introduced DUDE [46] for robotic document manipulation and ProcTHOR[47]
for large-scale embodied Al using procedural generation.

Our work differs from these previous benchmarks in several key aspects. First, we focus
specifically on evaluating models’ ability to process and generate actions from real-world robotic
trajectories, rather than simulated environments or static vision-language tasks. Second, by leveraging
the OpenX dataset, we evaluate across a diverse range of robot platforms and tasks, providing
a more comprehensive view of model capabilities. Third, our evaluation framework specifically
measures models’ ability to perform zero-shot generalization across different action spaces and robot
morphologies, a crucial capability for general-purpose robotic systems.

3. Evaluating VLMs and VLAs

3.1. Data

Our evaluation framework leverages the Open X-Embodiment Dataset (OpenX), currently the
largest open-source repository of real robot trajectories. OpenX represents a significant collaborative
effort across 21 institutions, aggregating over 1 million real robot trajectories from 22 distinct robot
embodiments, ranging from single-arm manipulators to bi-manual systems and quadrupedal robots.
The dataset’s comprehensive nature makes it particularly suitable for evaluating generalist models, as
it spans a diverse range of manipulation and locomotion tasks, environmental conditions, and robot
configurations.
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The dataset utilizes the Reinforcement Learning Datasets (RLDS) format, storing data in serialized
tfrecord files. This standardized format efficiently accommodates the heterogeneous nature of robotics
data, handling varied action spaces and input modalities across different robot setups. For instance,
the format seamlessly integrates data from systems with different sensor configurations, including
varying numbers of RGB cameras, depth sensors, and point cloud generators.

For version 0.1 of our benchmark, we utilize 53 of the 72 available OpenX datasets, as detailed in
Figure [X]. We present results for 20 of these datasets for all 3 models, and have the full 53 for JAT.This
subset was selected to ensure comprehensive coverage across different task types, embodiments,
and environmental conditions while maintaining data quality and consistency. For datasets that
did not include pre-defined evaluation sets, we have created and provided new evaluation splits to
ensure robust assessment of model performance. The training splits of these 53 datasets comprise
approximately 32 terabytes of data.

This careful curation of the OpenX dataset provides several advantages for our evaluation
framework:

1. Scale and Diversity: The large number of trajectories and varied robot embodiments allows for

comprehensive assessment of model generalization capabilities.
2. Real-World Relevance: Being composed entirely of real robot data rather than simulated

interactions, the dataset better reflects the challenges of physical robot deployment.
3. Standardization: The consistent RLDS format facilitates systematic evaluation across different

robot platforms and task types.
4.  Cross-Domain Assessment: The inclusion of both manipulation and locomotion tasks enables

evaluation of model performance across fundamentally different types of robot control.

The complete list of included datasets and their characteristics is provided in the appendix, along
with details about our evaluation split creation methodology.

3.1.1. Dataset Curation

To ensure the quality and utility of our benchmark, we implemented a systematic curation process
for the OpenX datasets. This process was designed to maximize the diversity and relevance of the
included data while maintaining practical considerations for large-scale evaluation.

Our curation methodology consisted of several steps. First, we conducted a high-level review
of dataset quality and accessibility, which resulted in the exclusion of three datasets: Austin BUDS,
Austin Sailor, and Stanford Kuka Multimodal. For datasets that contained only training splits, we
performed a detailed comparative analysis based on the robot platform used for data collection. This
analysis considered multiple features: Robot model and morphology, Gripper specifications, Action
space characteristics, Sensor configuration (number and type of RGB cameras, depth cameras, and
wrist-mounted cameras), Presence of language annotations, Availability of camera calibration data,
Inclusion of proprioceptive information

When multiple datasets shared identical values across all these features for the same robot
platform, we retained only the dataset with the larger number of episodes. This decision was made to
minimize redundancy while maximizing the diversity of our evaluation set. This approach ensures
that each included dataset contributes unique information to the benchmark, either through different
robot configurations, sensor setups, or task specifications.

Several additional datasets were excluded from version 0.1 of our benchmark due to technical
limitations in their accessibility through the TensorFlow Datasets (TFDS) builder, which is the
recommended data loading mechanism for OpenX. These compatibility issues will be addressed
in future versions of the benchmark as the underlying infrastructure evolves. This careful curation
process results in a benchmark that balances comprehensive coverage with practical considerations,
ensuring that the included datasets provide meaningful evaluation scenarios while maintaining
manageable computational requirements. The complete list of included and excluded datasets, along
with the specific rationale for each curation decision, is provided in Appendix [X].


https://doi.org/10.20944/preprints202411.0494.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 November 2024 d0i:10.20944/preprints202411.0494.v1

50f19

3.2. Models

In our evaluation, we focus on three recent vision-language-action (VLA) models that represent
the current state-of-the-art in generalist robot learning: JAT (Jack of All Trades), GPT-40, and OpenVLA.
These models are particularly noteworthy for their ability to handle multiple modalities and their
demonstrated capabilities in robotic control tasks.

JAT [48] is a transformer-based model optimized for handling sequential decision-making tasks
and multi-modal data types. With 768-dimensional hidden states and 12 layers, JAT employs a dual
attention mechanism inspired by the Longformer architecture, combining global attention with a
512-token window and local attention with a 256-token window. The model was trained for 250,000
steps on a diverse dataset spanning robotics control, computer vision, and natural language processing
tasks. JAT’s architecture is specifically designed to provide wider attention windows for timesteps
compared to previous approaches, making it particularly suitable for long-horizon robotics tasks.

GPT-40 [49] represents a significant advancement in omni-modal modeling, accepting
combinations of text, audio, image, and video inputs while generating multi-modal outputs. The model
demonstrates strong performance in robotic manipulation tasks, particularly in scenarios requiring
generalization to novel objects and environments. GPT-40 incorporates advanced safety measures and
has been extensively evaluated across multiple risk categories, including cybersecurity, persuasion,
and model autonomy:.

OpenVLA, a 7B-parameter open-source vision-language-action model, was trained on 970,000
robot episodes from the Open X-Embodiment dataset. Its architecture combines a 600M-parameter
visual encoder (utilizing both SigLIP and DinoV2 models) with a 7B-parameter Llama 2 language
model backbone. OpenVLA is notable for its strong performance in generalist robot manipulation tasks,
outperforming larger models while using significantly fewer parameters. The model particularly excels
in multi-task environments involving multiple objects and demonstrates strong language grounding
abilities.

Each of these models represents different approaches to the challenge of generalist robot learning:

JAT emphasizes broad "generalist" multi-modal capabilities GPT-4o0 is a powerful VLM, and
allows for various approaches to map language output to action & control tasks. OpenVLA prioritizes
open-source accessibility while maintaining competitive performance with larger closed-source models

This diversity in approaches provides valuable insights into different architectural and training
strategies for generalist robot learning. The models also represent different points on the spectrum of
model size and computational requirements, allowing us to evaluate the relationship between model
scale and performance across various robotics tasks.

3.3. Evaluation Metrics

Mean Squared Error (MSE) serves as our primary metric for evaluating model performance
on offline robotics trajectories. In the context of offline reinforcement learning, MSE has proven to
be a reliable metric for estimating optimal value functions and has demonstrated strong empirical
performance. For our benchmark, MSE is particularly appropriate due to several key properties:

1. Non-Negativity: The metric remains non-negative, ensuring that errors are consistently accounted
for without potential cancellation effects from opposing signs.

2. Sensitivity to Large Errors: The squared term in MSE emphasizes larger deviations, providing
clear indication of significant prediction errors.

3. Bias-Variance Trade-off: MSE inherently captures both bias and variance components, offering a
comprehensive measure of prediction accuracy.

For a given prediction, MSE is calculated as:

14 R
MSE = — Y (yi — 9:)* 1)
i=1
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where y; represents the ground truth action, j; is the predicted action, and # is the number of
observations.

For our benchmark, we employ MSE to evaluate how accurately models predict actions given the
observation states, image observation, and language instruction at each timestep. Given the offline
nature of the OpenX dataset and the inability to evaluate models on physical robots, comparing
predicted and ground truth action tensors provides the most direct assessment of model performance.

We report several variations of MSE to provide comprehensive performance analysis:

1. Average MSE (AMSE): Computed as the mean MSE across all trajectories in a dataset, AMSE
enables direct comparison of model performance across different datasets and architectures.

2. Normalized AMSE (NAMSE): Calculated as (timestep_MSE — min_MSE)/(max_MSE —
min_MSE), this metric normalizes predictions to each model’s prediction range, facilitating
more equitable cross-dataset for a single model comparisons by accounting for different scales in
model outputs.

3. Completion Rate: We assess successful completion by comparing final predicted actions with
ground truth final actions. While this serves as an approximate measure of task completion, it
provides valuable insights into models’ ability to reach target states across trajectories.

The combination of these metrics allows us to evaluate both the fine-grained accuracy of action
predictions and the overall task completion capabilities of different models. This is particularly
important in offline robotics, where environments and rewards are not available for policy evaluation.

4. Experimental Setup

4.1. Profiling Configuration

We established specific configurations for each model to ensure consistent and fair evaluation
across the diverse OpenX datasets. Below, we detail the precise setup for each model, including
handling of inputs, processing decisions, and any necessary adaptations.

JAT Configuration

The JAT model was evaluated in a zero-shot setting, where predictions are made using only the
current timestep information without access to previous states. For each prediction, the model receives
the observation state, observation image, and language instruction. Several key preprocessing steps
were implemented:

*  Image Processing: JAT requires 4-channel images. For 3-channel RGB inputs, we create an RGBA
image by duplicating the red channel as the alpha channel. For 2-channel inputs, we duplicate
both channels to create a 4-channel representation.

*  Observation Processing: For dictionary-type observations, we concatenate all floating-point
observations (excluding image and language instruction embeddings) into a single tensor. In
cases where no floating-point observations exist, we pass a zero-filled dummy tensor.

*  Action Processing: Ground truth actions are processed by concatenating all floating-point actions
into a single tensor when the action space is represented as a dictionary.

¢  Multi-Image Handling: For timesteps with multiple available images, we select the primary
image (typically designated with the keyword ‘image’).

GPT Configuration

GPT was also evaluated in a zero-shot configuration, with several specific processing
requirements:

e  Prompt Construction: Each prediction is based on a comprehensive prompt including:


https://doi.org/10.20944/preprints202411.0494.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 November 2024 d0i:10.20944/preprints202411.0494.v1

7 of 19

- Floating-point observation states with their corresponding keys as descriptors for specific

datasets like Berkeley Autolab where there are such observation states available.
—  Primary image observation
— Natural language instruction
—  Verbal descriptions for each action space dimension
—  The official action space statistics if available or statistical information (min, max, mean) for

each action dimension.
-  Environmental and task descriptions when available

®  Output Processing: To handle GPT’s VLM-native outputs, which may be incompatible with the
required floating-point action tensor format, we implemented error handling:

—  For incompatible outputs (incorrect tensor sizes, string elements, mixed text-tensor outputs,
or non-scalar elements), we generate a random action tensor with values in [0.0,1.0) as a
fallback.

*  Multi-Image Processing: For timesteps with multiple available images, we select the primary
image (typically designated with the keyword ‘image’).

OpenVLA Configuration

OpenVLA’s configuration focused primarily on action space handling and gripper command
conversions:

*  Gripper Command Standardization: We implemented several conversion protocols:

- Binary discretization: For [0, 1] to {0, 1} conversion, we threshold at 0.5
- Ternary discretization: For [0,1] to {—1,0, 1} conversion, values < 0.05 map to —1 (closed),

> 0.95 to 1 (open), and [0.05,0.95] to 0 (no change)
- Continuous normalization: For [0,1] to [—1,1] conversion, we apply the formula: y =

2 (x — origow) / (0Tighigh — 07ig1ew) — 1. This was used by the authors in [22].

e  Special Cases:

—  For the UCSD pick-and-place dataset, we used dataset statistics to scale gripper commands
to the appropriate torque space

- For ETH agent affordances, we applied the transformation: wunnormalized = 0.5 -
(normalized 4+ 1) - (high — low) + low, where high and low are the 99th and 1st percentiles
respectively

*  Action Space Handling;:

—  For datasets using velocity, angular velocity, or torque-based action spaces (e.g., ETH agent
affordances and UCSD datasets), we note potential compatibility issues with OpenVLA’s

position-based predictions
- We exclude “Terminal’ tensors from action spaces, as OpenVLA predicts only XYZ, RPY, and

gripper commands

Additional Considerations

We encountered cases where image observations were unavailable due to non-standard image
key naming (e.g., ‘agentview_rgb’, “frontright_fisheye_image’) in some datasets. These were utilized
for OpenVLA, but not the other models, as OpenVLA requires an image as part of its input. This
specific case occured with 2 datasets in particular, conq_hose, and viola.

4.2. Inference Infrastructure

To facilitate reproducible evaluation of these models, we detail the infrastructure requirements
and setup for each model’s inference pipeline.
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JAT and GPT Infrastructure

For JAT evaluation and GPT API interfacing, we utilized a Google Cloud Platform (GCP)
e2-standard-8 instance with 8 vCPU (4 physical cores), 32 GB memory, and x86/64 architecture.
While this configuration exceeds the minimum requirements, the additional computational resources
enabled efficient parallelization of evaluation runs. For GPT specifically, as inference occurs through
API endpoints, the local infrastructure requirements are minimal. Storage was provided through
GCP’s standard persistent disk service.

OpenVLA Infrastructure

OpenVLA inference was conducted on a GCP g2-standard-8 instance equipped with a single
NVIDIA L4 GPU, 8 vCPU (4 physical cores), 32 GB system memory, and x86/64 architecture. The
NVIDIA L4 GPU, featuring the Ada Lovelace architecture, was specifically chosen for two key
advantages: compatibility with Flash Attention 2.x for efficient attention computation, and 24 GB of
GDDR6 memory, sufficient for full-model inference of OpenVLA without optimization. Storage was
similarly provided through GCP’s standard persistent disk service.

5. Results & Discussion

AMSE Comparison Across Datasets (dataset action space position in meters)
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Figure 1. AMSE Across All Datasets.
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Dataset Name

Registered Dataset Name

In Pretraining Action Space Type

Jaco Play jaco_play v 4D (1 grip, 3 pos)

Berkeley Cable Routing  berkeley_cable_routing v 7D (3 ang, 3 pos, 1 term)

NYU Door Opening nyu_door_opening_surprising_effectiveness 8D (1 grip, 3 ang, 3 pos, 1 term)
VIOLA viola ' 8D (1 grip, 3 ang, 3 pos, 1 term)
Berkeley Autolab UR5 berkeley_autolab_ur5 v 8D (1 grip, 3 ang, 3 pos, 1 term)
TOTO toto v 7D (3 ang, 3 pos, 1 term)
Columbia PushT columbia_cairlab_pusht_real 8D (1 grip, 3 ang, 3 pos, 1 term)
NYU ROT nyu_rot_dataset_converted_externally_to_rlds 7D (3 pos, 3 ang, 1 grip)
Stanford HYDRA stanford_hydra_dataset_converted_externally_to_rlds v 7D (3 pos, 3 ang, 1 grip)

UCSD Kitchen ucsd_kitchen_dataset_converted_externally_to_rlds v 8D (3 pos, 3 ang, 1 grip, 1 term)
UCSD Pick Place ucsd_pick_and_place_dataset_converted_externally_to_rlds 4D (3 vel, 1 grip torque)

USC Cloth Sim usc_cloth_sim_converted_externally_to_rlds 4D (3 pos, 1 grip)

Tokyo PR2 Fridge utokyo_pr2_opening_fridge_converted_externally_to_rlds 8D (3 pos, 3 ang, 1 grip, 1 term)
Tokyo PR2 Tabletop utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds 8D (3 pos, 3 ang, 1 grip, 1 term)
UTokyo xArm Pick-Place utokyo_xarm_pick_and_place_converted_externally_to_rlds 7D (3 pos, 3 ang, 1 grip)
Stanford MaskVIT stanford_mask_vit_converted_externally_to_rlds 5D (3 pos, 1 ang, 1 grip)

ETH Agent Affordances  eth_agent_affordances 6D (3 vel, 3 ang vel)

Imperial Sawyer imperialcollege_sawyer_wrist_cam 8D (3 pos, 3 ang, 1 grip, 1 term)
CongHose cong_hose_manipulation 7D (3 pos, 3 ang, 1 grip)

Plex RoboSuite plex_robosuite 7D (3 pos, 3 ang, 1 grip)

pos: position, orient: orientation, grip: gripper, term: terminate, vel: velocity, ang: angular

Table 2. Performance Metrics Comparison across Models

GPT OpenVLA JAT
Dataset Name AMSE NAMSE AMSE NAMSE AMSE NAMSE
Jaco Play 0.288 0.188 0.239 0.228 1.237 0.295
Berkeley Cable Routing 0.117 0.010 0.058 0.091 0.533 0.411
NYU Door Opening 0.094 0.046 0.121 0.304 0.008 0.061
VIOLA 0.355 0.134 0.061 0.072 0.997 0.331
Berkeley Autolab UR5 0.074 0.049 0.142 0.249 0.040 0.073
TOTO 0.361 0.069 0.006 0.004 1.335 0.238
Columbia PushT 0.030 0.046 0.118 0.820 0.242 0.347
NYU ROT 0.441 0.034 0.228 0.308 0.288 0.177
Stanford HYDRA 0.201 0.009 0.009 0.054 0.728 0.147
UCSD Kitchen 11580.963 0.207 5018.936 0.116 34890.635 0.353
UCSD Pick Place 0.650 0.086 0.535 0.175 0.614 0.210
USC Cloth Sim 0.223 0.260 0.234 0.305 0.109 0.375
Tokyo PR2 Fridge 16035.136 0.037 68433.175 0.159 221666.531 0.324
Tokyo PR2 Tabletop 2550.878 0.014 8728.959 0.116 117663.493 0.364
UTokyo xArm Pick-Place 0.505 0.088 1.471 0.252 2.623 0.254
Stanford MaskVIT 0.645 0.120 0.163 0.184 1.060 0.571
ETH Agent Affordances 1.168 0.057 0.114 0.139 1.073 0.290
Imperial Sawyer 0.073 0.183 0.075 0.517 0.118 0.356
ConqHose 0.127 0.024 0.084 0.264 1.373 0.178
Plex RoboSuite 0.471 0.067 0.280 0.206 0.950 0.142

AMSE: Average Mean Squared Error, NAMSE: Normalized Average Mean Squared Error. Large AMSE values (e.g.,
for Kitchen and PR?2 tasks) reflect different action space scales

5.1. Average Model Performance Analysis

Our evaluation reveals significant variations in performance across models and datasets. We
observe that while JAT consistently shows higher AMSE (indicating worse performance) across most
datasets, OpenVLA and GPT demonstrate more comparable performance levels, with AMSE typically
below 0.5 for most datasets.

Overall Performance Patterns

For OpenVLA, we observe generally consistent performance across most datasets with AMSE in
the 0.1-0.5 range, with best performance of all 3 models for tasks that fall within its training distribution,
with notable exceptions in complex manipulation tasks. GPT shows comparable or slightly better
performance on many datasets, particularly excelling in precise manipulation tasks. Both models
maintain relatively stable performance across similar task types, though with different error profiles.

GPT demonstrates strongest performance on:

. berkeley_autolab_ur5 (AMSE: 0.074)
. columbia_cairlab_pusht_real (AMSE: 0.030)
¢ imperialcollege_sawyer_wrist_cam (AMSE: 0.073)
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Common Challenges

Both models exhibit significant challenges with certain task types:

e  Complex manipulation tasks, particularly those involving large movements or multi-step
sequences like Kitchen manipulation tasks.

¢  Tasks requiring significant temporal reasoning or complex action sequences. This follows
naturally as the models were assessed in a zero shot fashion.

5.1.1. Model-Specific Analysis

The performance patterns we observe can may be attributable to several architectural and training
differences between the models:

OpenVLA

The combination of SigLIP and DinoV2 visual encoders appears to provide robust visual features,
contributing to consistent performance across tasks. However, this comes at the cost of absolute
precision in some cases. The model’s specific training on robotics data from OpenX likely contributes
to its stability across different task types, though it may not always achieve optimal performance on
any single task type.

GPT

GPT’s sophisticated prompt construction and ability to handle detailed statistical information
about action spaces appears to help in making more precise predictions for well-defined tasks. Its
strong performance on precise manipulation tasks suggests that its general-purpose capabilities
transfer well to robotics control in structured scenarios. However, it shows similar limitations to
OpenVLA in complex, multi-step tasks.

JAT

JAT’s significantly higher AMSE across datasets suggests that its architecture, while suitable for
general-purpose tasks, may not be optimized for precise robotics control.

5.1.2. Implications for Future Development

These results suggest several directions for improvement in VLA model development:

®  The variation in performance across robot platforms suggests that more work is needed in
developing platform-agnostic control capabilities

e  The superior performance of GPT and OpenVLA in their respective strengths suggests that
combining their approaches - sophisticated prompt engineering with robotics-specific training -
might yield better overall performance
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Figure 4. Normalized AMSE For OpenVLA
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5.2. Normalized Performance Analysis

While absolute performance metrics like AMSE provide insight into task-specific capabilities,
normalized average mean squared error (NAMSE) allows us to understand how each model performs
across different tasks relative to its own capabilities. NAMSE is particularly valuable for understanding
inherent task difficulty and model behavior patterns independent of action space scale.

5.2.1. Model-Specific Performance Patterns

GPT-40

GPT-40 demonstrates remarkably consistent normalized performance across datasets, with
NAMSE generally remaining below 0.2. This stability is particularly noteworthy given the diversity of
tasks in the benchmark. The model’s sophisticated prompt engineering approach appears to be a key
factor in this consistency, as it includes:

e Explicit action space statistics (min, max, mean) for each dimension
¢ Verbal descriptions for each action dimension
¢ Detailed environment and task descriptions when available

This comprehensive prompting strategy provides clear constraints and context for each prediction,
likely contributing to the model’s ability to maintain consistent relative performance across diverse
tasks.

OpenVLA

OpenVLA shows the most dramatic variation in normalized performance:

. Highest normalized error on columbia_cairlab_pusht_real (NAMSE: 0.82)
e Exceptionally strong performance on certain tasks (e.g., toto with NAMSE: 0.003)
®  Clear pattern of task-specific performance variations

This variation suggests that OpenVLA's architecture and training approach may lead to stronger task
specialization compared to other models.

JAT
JAT exhibits moderate variation across tasks, with NAMSE typically ranging from 0.2 to 0.4:

*  Notable performance spike on ucsd_kitchen_dataset (NAMSE ~0.57)
*  Relatively consistent performance band for similar task types
e  Higher baseline NAMSE compared to GPT-40 but more stable than OpenVLA

5.2.2. Cross-Model Insights
The normalized analysis reveals several key patterns about task difficulty and model architecture:

Task Difficulty Patterns

Certain tasks consistently show higher normalized error across all models, independent of
architecture:

¢  Kitchen manipulation tasks and complex multi-step operations consistently show higher NAMSE
*  Simple pick-and-place operations tend to show lower normalized error
*  Tasks requiring precise control generally result in higher normalized error
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Architectural Implications

The variation in normalized performance across models provides insights into their architectural
strengths:

e  GPT-40’s consistent normalized performance suggests its architecture and prompting strategy
create a more generally robust system

*  OpenVLA'’s high variation indicates stronger task specialization, possibly due to its training
approach and dual visual encoder

*  JAT’s moderate but consistent variation suggests a middle ground between specialization and
generalization

This normalized analysis reveals that while absolute performance varies significantly, there are
consistent patterns in what tasks are relatively more challenging for each model architecture. The
success of GPT-40’s prompt engineering approach, in particular, suggests that providing structured
context about action spaces and environmental constraints may be a key factor in achieving consistent
performance across diverse tasks. This observation could inform future development of VLA
models, suggesting that incorporating more explicit task and action space information could improve
robustness and generalization capabilities.

6. Future Work

While our current results provide valuable insights into the capabilities and limitations of these
models, we envision several important directions for expanding and enhancing this benchmark. We
present these as a subset of a larger benchmark we are developing, dubbed MultiNet. We contextualize
the opportunities ahead in the context of this benchmark below.

A critical question in the development of generalist models is whether the integration of control
capabilities comes at the cost of performance in other domains. To address this, future versions of
MultiNet will evaluate SOTA VLAs on pure vision-language and language tasks, allowing us to assess
whether fine-tuning or co-training on control tasks impacts their performance in these foundational
modalities. This analysis will help inform architectural and training strategies that maintain strong
performance across all modalities.

We also plan to expand beyond the OpenX dataset to evaluate these models on a broader range
of control tasks. This expansion will allow us to better understand how VLAs and generalist models
perform on completely out-of-distribution data, providing insights into their true generalization
capabilities. While our current evaluations focus on zero-shot performance, future work will investigate
few-shot learning and fine-tuning scenarios, offering a more complete picture of these models’
adaptability.

A particularly promising direction is the exploration of VLA transfer to non-robotic domains. We
are especially interested in investigating how these models can be fine-tuned for software environments,
potentially enabling the development of more capable digital agents. This research could reveal insights
about the generalization of embodied learning principles to virtual environments.

Additionally, we identify several novel directions for future investigation:

e  Compositional Generalization: Evaluating how well VLAs can combine learned primitives to
solve novel tasks, particularly in scenarios requiring multi-step reasoning or tool use.

*  Long Sequence Reliability: Developing metrics to assess the consistency of model behavior over
extended sequences, including the ability to maintain goals and adapt to changing conditions.

*  Cross-Embodiment Transfer: Further investigating how knowledge transfers between different
robot morphologies, potentially leading to more efficient training strategies for new platforms.

e  Memory and Long-Term Planning: Assessing models’ capabilities in tasks requiring long-term
memory and strategic planning, particularly in multi-phase manipulation tasks.

¢  Multi-Agent Interaction: Extending the benchmark to scenarios involving multiple agents,
evaluating coordination and collaborative manipulation capabilities.
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Finally, while MultiNet currently operates as an offline benchmark, we plan to develop online
evaluation capabilities. This expansion will include the integration of simulation environments for both
2D and 3D control tasks, enabling more dynamic and interactive assessment of model performance.
Such environments will allow for more comprehensive evaluation of model capabilities in real-time
decision-making scenarios.

Through these future developments, we aim to establish MultiNet as a comprehensive and
rigorous benchmark for assessing and advancing the field of vision-language-action models. This
expanded scope will provide researchers and practitioners with valuable tools for understanding and
improving these increasingly important models.

7. Conclusions

In this work, we presented a comprehensive evaluation framework for vision-language-action
models and conducted a systematic analysis of their performance across a diverse range of robotics
tasks. Our study reveals several important insights about the current state of VLA models and
highlights critical areas for future development.

We find that current VLA models demonstrate varying levels of capability across different
tasks, with notable strengths and limitations. GPT-40 shows remarkable consistency in normalized
performance across datasets, likely due to its sophisticated prompt engineering approach that provides
structured context about action spaces and environmental constraints. OpenVLA demonstrates
strong performance on certain tasks but shows higher variation across different scenarios, suggesting
task-specific specialization. JAT, while showing moderate consistency, generally achieves higher error
rates, indicating potential limitations in its architecture for precise control tasks.

Our analysis reveals several critical challenges that need to be addressed in future work. First,
all models struggle significantly with complex manipulation tasks. Second, the performance of these
models varies substantially across different robot platforms and action spaces, suggesting a need for
more robust architectures that can better handle diverse control scenarios. Third, the notable impact
of prompt engineering on performance, as demonstrated by GPT-4o, suggests that developing more
sophisticated ways to provide context and constraints to these models could be a promising direction
for improvement.

Looking forward, our results suggest several promising directions for future research. The
development of more robust architectures that can maintain consistent performance across diverse
tasks while handling complex, multi-step manipulations remains a key challenge. Additionally, the
integration of structured task representations and better handling of temporal dependencies could help
address the current limitations in complex manipulation tasks. Finally, our open-source evaluation
framework provides a foundation for systematic assessment of future VLA models, enabling more
rigorous comparison and benchmarking of new approaches. We are excited to engage with the broader
research community to extend these results and advance the emerging class of Multimodal VLA
models.
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Dataset Coverage, Completion Rate, and Additional AMSE Recordings

Table Al. Dataset Coverage and Action Space Types

DLR Sara Grid Clamp Dataset
DLR Sara Pour Dataset

DLR Wheelchair Shared Control
ASU TableTop Manipulationl
CMU Franka Pick-Insert Data
Austin Mutex

Stanford Robocook

CMU Play Fusion

CMU Stretch

RECON

CoryHall

SACSoN

DobbE

10-Al Office PicknPlace

dir_sara_grid_clamp_converted_externally_to_rlds
dir_sara_pour_converted_externally_to_rlds
dir_edan_shared_control_converted_externally_to_rlds
asu_table_top_converted_externally_to_rlds
jamlab_cmu_pickup_insert_converted_externally_to_tlds
utaustin_mutex
stanford_robocook_converted_externally_to_rlds
cmu_play_fusion

cmu_stretch

berkeley_gnm_recon

berkeley_gnm_cory_hall

berkeley_gnm_sac_son

dobbe

Dataset Name Registered Dataset Name JAT GPT  OpenVLA Action Space Type
RT-1 Robot Action fractal20220817_data v 10D (2 pos for base, 1 ang for base, 1 grip, 3 ang for arm, 3 pos for arm)
pt kuka v 10D (2 pos for base, 1 ang for base, 1 grip, 3 ang for arm, 3 pos for arm)

Berkeley Bridge bridge v 7D (3 pos, 3 ang,1 term)
Freiburg Franka Play taco_play v -
USC Jaco Play jaco_play v oo v 4D (1 grip, 3 pos)
Berkeley Cable Routing berkeley_cable_routing VS v 7D (3 ang, 3 pos, 1 term)
Roboturk roboturk v -
NYU VINN nyu_door_opening_surprising_effectiveness v oo v 8D (1 grip, 3 ang, 3 pos, 1 term)
Austin VIOLA viola v v v 8D (1 grip, 3 ang, 3 pos, 1 term)
Berkeley Autolab URS berkeley_autolab_ur5 v oo v 8D (1 grip, 3 ang, 3 pos, 1 term)
TOTO Benchmark toto VS v 7D'(3 ang, 3 pos, 1 term)
Language Table language_table v 2D
Columbia PushT columbia_cairlab_pusht_real v oo v 8D (1 grip, 3 ang, 3 pos, 1 term)
NYU ROT nyu_rot_dataset_converted_externally_to_rlds VR v 7D (3 pos, 3 ang, 1 grip)
Stanford HYDRA stanford_hydra_dataset_converted_externally_to_rlds v oo v 7D (3 pos, 3 ang, 1 grip)
NYU Franka Play nyu_franka_play_dataset_converted_externally_to_rlds v -
Maniskill maniskill_dataset_converted_externally_to_rlds v -
Furniture Bench furniture_bench_dataset_converted_externally_to_rlds v 8D (3 pos, 4 quat, 1 grip)
CMU Franka Exploration cmu_franka_exploration_dataset_converted_externally_to_tlds v -
UCSD Kitchen ucsd_kitchen_dataset_converted_externally_to_rlds v v v 8D (3 pos, 3 ang, 1 grip, 1 term)
UCSD Pick Place ucsd_pick_and_place_dataset_converted_externally_to_rlds v oo v 4D (3 vel, 1 grip torque)
Austin Sirius austin_sirius_dataset_converted_externally_to_rlds v Z
BC-Z be_z v 61D (30 pos, 30 ang, 1 grip)
USC Cloth Sim usc_cloth_sim_converted_externally_to_rlds VR v 4D (3 pos, 1 grip)
Tokyo PR Fridge utokyo_pr2_opening_fridge_converted_externally_to_rlds v v v 8D (3 pos, 3 ang, 1 grip, 1 term)
Tokyo PR2 Tabletop utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds v v v 8D (3 pos, 3 ang, 1 grip, 1 term)
Saytap utokyo_saytap_converted_externally_to_tlds v Z
UTokyo xArm PickPlace utokyo_xarm_pick_and_place_converted_externally_to_rlds v v v 7D (3 pos, 3 ang, 1 grip)
UTokyo xArm Bimanual utokyo_xarm_bimanual_converted_externally_to_rlds VR 14D (dual arm 7D control)
Berkeley MVP Data berkeley_mvp_converted_externally_to_tlds v -
Berkeley RPT Data berkeley_rpt_converted_externally_to_rlds v -
KAIST Nonprehensile kaist_nonprehensile_converted_externally_to_tlds VR 20D (3 pos, 3 ang, 7 gain coeff, 7 damping ratio coeff)
Stanford MaskVIT stanford_mask_vit_converted_externally_to_rlds v v v 5D (3 pos, 1 ang, 1 grip)
LSMO Dataset tokyo_u_lsmo_converted_externally_to_rlds v -
CongHose cong_hose_manipulation VR v 7D (3 pos, 3 ang, 1 grip)
ETH Agent Affordances eth_agent_affordances v oo v 6D (3 vel, 3 ang vel)
Imperial Wrist Cam imperialcollege_sawyer_wrist_cam v oo v 8D (3 pos, 3 ang, 1 grip, 1 term)
Plex RoboSuite plex_robosuite v v v 7D (6 pose, 1 grip)

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

RoboSet

io_ai_tech
robo_set

pos: position, orient: orientation, grip: gripper, term: terminate, vel: velocity, ang: angular, quat: quaternion. Some

datasets have been excluded due to space constraints or incomplete information

Table A2. Task Completion Rates Across Models and Datasets

Dataset Name GPT OpenVLA JAT

Jaco Play 0.917% 29.358% 0.000%
Berkeley Cable Routing 0.000% 0.000% 0.000%
NYU Door Opening 0.000% 0.000% 0.000%
VIOLA 0.000% 0.000% 0.000%
Berkeley Autolab UR5 1.923% 0.000% 0.000%
TOTO 0.000% 0.000% 0.000%
Columbia PushT 0.000% 0.000% 0.000%
NYU ROT 7.143% 0.000% 0.000%
Stanford HYDRA 0.833% 0.000% 0.000%
UCSD Kitchen 0.000% 0.000% 0.000%
UCSD Pick Place 0.000% 0.000% 0.000%
USC Cloth Sim 0.000% 0.000% 0.000%
Tokyo PR2 Fridge 0.000% 0.000% 0.000%
Tokyo PR2 Tabletop 0.000% 0.000% 0.000%
UTokyo xArm Pick-Place  0.000% 0.000% 0.000%
Stanford MaskVIT 0.000% 0.000% 0.000%
ETH Agent Affordances 0.000% 0.000% 0.000%
Imperial Sawyer 0.000% 0.000% 0.000%
ConqHose 0.000% 0.000% 0.000%
Plex RoboSuite 0.000% 0.000% 0.000%

Success rates reported as percentage of episodes where final action matched ground truth.
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