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Abstract

Anomalies in financial markets—characterized by sudden shifts in returns or volumes—can indicate
systemic risk, structural breakpoints, or market manipulation. Detecting such events is critical for
ensuring the resilience of trading systems, early-warning tools, and financial surveillance mechanisms.
However, the absence of labeled anomaly data and reliance on high-frequency datasets often limit
the practical deployment of sophisticated detection models. In this study, we present a novel hybrid
anomaly detection framework that operates effectively on widely available daily return and volume
data. Our approach integrates a Long Short-Term Memory (LSTM) Autoencoder with a Generative
Adversarial Network (GAN), capturing both temporal dependencies and distributional shifts in
financial time series. To enhance precision in latent anomaly identification, we incorporate a One-
Class SVM atop the LSTM-encoded representations. Additionally, we propose an artificial anomaly
injection mechanism that simulates realistic market irregularities—such as price shocks and volume
spikes—enabling quantitative evaluation in the absence of ground truth labels. We conduct extensive
experiments across six representative stock categories (e.g., indices, mega-cap, small-cap, high/low
volatility, and penny stocks) and multiple macroeconomic regimes—including the Global Financial
Crisis and the COVID-19 recovery. Our hybrid model consistently outperforms classical baselines
(e.g., GARCH, Z-Score, One-Class SVM) in recall and F4-score, demonstrating robustness under both
stable and turbulent conditions. Key contributions include: (i) a scalable, interpretable LSTM-GAN
hybrid framework tailored for anomaly detection on low-frequency financial data, (ii) a novel anomaly
injection protocol for model validation, and (iii) a systematic evaluation pipeline across diverse asset
types and historical market regimes. This work contributes a practical, generalizable, and rigorously
evaluated solution for anomaly detection in financial time series—bridging the gap between academic
modeling and real-world deployment in data-constrained environments.

Keywords: anomaly detection; financial time series; LSTM autoencoder; One-Class SVM; GAN; deep
learning; Financial regimes; market volatility

1. Introduction
1.1. Understanding Anomalies in Financial Markets

Anomalies in stock or financial data refer to rare, unexpected, or irregular patterns that signifi-
cantly deviate from historical or statistically expected behavior in key market variables such as price,
return, volume, or volatility [1,2]. These deviations often signal moments of structural change, hidden
risk, or behavioral irregularities, and are critical to understand in both academic research and practical
finance.

More formally, an anomaly in financial time series is a data point or sequence that:

• Breaks typical statistical expectations (e.g., returns several standard deviations from the mean),
• Occurs under abnormal market conditions (e.g., flash crashes or illiquidity events),
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• Violates known inter-variable relationships (e.g., price-volume decoupling),
• Indicates potential concerns such as fraud, algorithmic failure, or market manipulation [3].

From a machine learning perspective, we categorize anomalies along three main axes:

• Point Anomalies: Individual observations that sharply diverge from historical norms (e.g., an
isolated price spike). These are commonly detected using statistical models such as Z-score
thresholds.

• Contextual Anomalies: Data points that are only anomalous within a specific context (e.g., high
trading volume during a normally quiet period). Detection of these requires auxiliary variables
or temporal context.

• Collective Anomalies: Sequences of otherwise normal points that, taken together, form an
unusual pattern (e.g., a slow price buildup followed by a sharp reversal). These often imply
coordinated manipulation [15,17] or hidden buildup of risk.

In this study, we focus primarily on point and collective anomalies as they directly reflect both
isolated shocks and emerging structural risks in financial systems. Contextual anomalies, which
require additional external inputs (e.g., market sentiment, calendar indicators), are beyond the scope
of this work.

1.2. Why Anomalies Matter

Anomalies are not just noise—they are signals. They serve as early warning indicators of risk,
uncover fraudulent activity, and protect trading systems from breakdowns. Accurately detecting
anomalies in financial markets enables:

• Proactive risk mitigation during crises or regime shifts,
• Enhanced performance of algorithmic trading strategies,
• Smarter regulatory surveillance and compliance systems,
• Increased model robustness under high-stress or non-stationary market conditions.

Traditional methods often struggle with the complexity and rarity of these events. By leveraging
machine learning—especially sequence-based and generative models—we aim to build systems that
can learn what “normal” looks like, and alert decision-makers when it doesn’t.

Ultimately, this effort is about foresight. By detecting anomalies early, financial institutions
and regulators can respond with speed, adapt with resilience, and navigate volatility with greater
confidence.

2. Challenges in Financial Anomaly Detection
Anomaly detection in financial markets presents several practical and conceptual challenges that

complicate both model development and evaluation.

2.1. Lack of Labeled Data

One of the most fundamental obstacles is the scarcity of labeled anomalies. In real-world financial
datasets, explicit labels for abnormal behavior are rare or nonexistent. This makes supervised learning
approaches infeasible and shifts the focus to unsupervised methods, which require careful assumptions
about what constitutes "normal" versus "abnormal" behavior. Moreover, market dynamics evolve [13],
meaning definitions of normality can shift over time.

2.2. Data Accessibility Constraints

High-quality anomaly detection often requires fine-grained data such as Level 1 order-book
or tick-level feeds, which capture every quote and trade in real time. This type of data is ideal for
identifying micro-patterns such as spoofing or latency arbitrage. However, due to cost and access
restrictions, our study uses daily-level return and volume data from Yahoo Finance—freely available
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and more practical for academic and industry use. While sufficient for macro-patterns, this limits the
detection of short-lived or intraday anomalies.

2.3. Evaluation Under Uncertainty

Without ground truth labels, evaluating the performance of anomaly detection models becomes
inherently difficult. To address this, we adopt a semi-synthetic strategy: injecting artificial anoma-
lies into historical time series to serve as pseudo-ground-truth events. This allows us to compute
precision, recall, and F-scores under controlled conditions. While this method provides a structured
evaluation baseline, it still does not replace the robustness of validation against real, labeled anomaly
cases—highlighting a persistent challenge in financial anomaly research.

2.4. How can we uncover abnormal trading patterns before they lead to systemic disruptions? Can we design
intelligent systems to identify early warning signs in dynamic and volatile markets? What mechanisms allow us
to discern structural anomalies amidst noisy financial data?

The ability to detect anomalies in financial markets is vital for ensuring stability, guiding informed
investment decisions, and enhancing the integrity of algorithmic trading systems. Yet, this task remains
inherently challenging due to the absence of labeled data, the non-stationarity of financial time series,
and the increasing complexity of market behavior driven by automation and global interdependence.

In this study, we address the problem of unsupervised anomaly detection using freely available
daily return and volume data. We propose a dual-model framework that combines the strengths of
temporal sequence learning and generative modeling. Specifically, our approach integrates:

• A Long Short-Term Memory (LSTM) Autoencoder [10,11,16] coupled with a One-Class Support
Vector Machine (SVM), capable of identifying deviations in the latent temporal space.

• A Generative Adversarial Network (GAN) [12] that learns the underlying distribution of return-
volume dynamics and detects outliers via reconstruction errors.

The ability to detect anomalies in financial markets is vital for ensuring stability, guiding informed
investment decisions, and enhancing the integrity of algorithmic trading systems. Yet, this task remains
inherently challenging...

2.5. Why LSTM Autoencoders and GANs?

Anomalies in markets often signal risks or manipulation. Detecting them early is crucial. But
labels are scarce. Data is noisy and volatile. Traditional models fail to capture complex patterns.

LSTM Autoencoders learn sequences over time. They understand patterns in return and volume.
They flag deviations when these patterns break. Latent space helps filter noise. One-Class SVM then
defines what is "normal" in this space.

GANs are different. They learn the shape of normal data. If a new sample doesn’t fit, it is flagged.
They don’t need labels. They work well on noisy data. They are flexible across asset types [4,14,18].

We use both. LSTM-SVM is strong in timing patterns. GAN detects irregular distributions.
Together, they cover more anomalies. This makes detection robust and adaptive.

Key Contributions:

• We develop and evaluate a hybrid detection framework that captures both point-based and
collective anomalies.

• We design an artificial anomaly injection procedure for robust evaluation, enabling quantitative
benchmarking despite the absence of ground truth labels.

• We conduct comprehensive sensitivity testing across economic regimes, asset classes, and model
parameters to ensure reliability and interpretability.

• We demonstrate the practical utility of our models through consistent performance across volatile
periods, such as the Global Financial Crisis and the COVID-19 pandemic.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 June 2025 doi:10.20944/preprints202506.1907.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1907.v1
http://creativecommons.org/licenses/by/4.0/


4 of 15

By bridging traditional financial metrics with modern deep learning techniques, this research
contributes to the design of interpretable, adaptive, and effective anomaly detection systems tailored
for real-world financial environments.

3. Related Work
Detecting anomalies in financial time series has long been a central concern in quantitative finance.

Early approaches primarily relied on statistical models such as the Z-score method and GARCH
(Generalized Autoregressive Conditional Heteroskedasticity) [5]. These models are interpretable
and computationally efficient but often assume data stationarity and linearity, which limit their
responsiveness to structural or distributional changes.

The Z-score method identifies outliers based on deviations from a rolling mean, while GARCH
captures volatility clustering over time. Although widely adopted, both approaches fail to account for
complex sequential or multivariate relationships. A comparative summary of key methods is shown
in Table 1.

Table 1. Comparison of Anomaly Detection Methods

Method Sequential Unsupervised Used in Finance Captures Volatility Handles Dist. Shift Complexity

Z-Score No Yes Yes No No Low
GARCH Yes (volatility) Yes Yes Yes No Medium
One-Class SVM No Yes Yes No No Medium
LSTM Autoencoder Yes Yes Partial No Yes (latent space) High
GAN No Yes Partial No Yes High
Ours (LSTM + GAN) Yes Yes Yes Yes (via hybrid) Yes High

Machine learning-based anomaly detection has since gained traction, particularly through unsu-
pervised algorithms such as One-Class Support Vector Machines (SVM) [6] and Isolation Forests [7].
These models can detect outliers without labeled data but often disregard temporal dependencies—an
essential feature of financial data.

Recent advances in deep learning have led to the application of LSTM (Long Short-Term Memory)
networks for time series anomaly detection. Malhotra et al. [16] demonstrated the utility of LSTM au-
toencoders in capturing long-range dependencies within industrial time series. Meanwhile, Generative
Adversarial Networks (GANs) have been employed to model high-dimensional data distributions. Li
et al. [9] introduced MAD-GAN, a GAN-based framework capable of detecting multivariate anomalies
through reconstruction loss.

However, few studies address both sequential and distributional anomalies simultaneously.
Moreover, many existing models do not generalize well under conditions of distributional shift—a
common phenomenon in financial markets where data characteristics evolve due to policy changes,
crises, or shifts in market sentiment.

Our work builds upon and extends prior studies by combining an LSTM Autoencoder with a
One-Class SVM for sequence-level anomaly detection, alongside a GAN to capture distributional
irregularities. This dual-model framework is specifically tailored to handle the dynamic, volatile,
and often unstructured nature of financial data. The integration of both temporal and generative
models ensures robustness across different market regimes, particularly under distributional shifts
(see Figure 1).

Figure 1. Distributional shifts
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4. Methodology
This section outlines our anomaly detection framework in progressive stages, beginning with

traditional statistical baselines and advancing toward our proposed hybrid deep learning architecture.
The goal is to enhance detection robustness by integrating temporal modeling, latent feature extraction,
and generative learning.

4.1. Baseline Methods

We establish foundational comparisons using three commonly adopted unsupervised models:

• Z-Score: This simple statistical method flags extreme observations by identifying values that
deviate significantly from a rolling mean, based on standard deviation thresholds. Though
computationally efficient, it is sensitive to window size and assumes normality and stationarity,
limiting its utility in volatile markets.

• GARCH(1,1): The Generalized Autoregressive Conditional Heteroskedasticity model [5] captures
time-varying volatility, a key feature in financial returns. Anomalies are inferred from sudden
spikes in conditional variance. While GARCH is widely used in econometrics, it may overlook
non-volatility-driven anomalies.

• One-Class SVM on Raw Features: This model estimates the support of the input distribution
[6] using only raw return and volume data, without accounting for temporal dependencies.
It constructs a hyperplane to separate “normal” from “abnormal” points but lacks sequential
context.

4.2. Hybrid LSTM Autoencoder + One-Class SVM

To model the temporal structure in financial time series, we propose a hybrid framework that
integrates a Long Short-Term Memory (LSTM) Autoencoder with a One-Class Support Vector Machine
(SVM). This design leverages the strengths of sequence modeling and geometric classification to detect
subtle, unsupervised anomalies.

Algorithm 1 presents our two-stage hybrid anomaly detection framework. The process begins
with an LSTM Autoencoder that learns to reconstruct short sequences of return and volume data,
effectively capturing temporal dependencies and filtering out noise. Each sequence is transformed
into a low-dimensional latent representation that summarizes typical market behavior.

In the second stage, a One-Class Support Vector Machine (SVM) is trained on these latent vectors,
assuming that the training data reflects normal market conditions. The SVM models a boundary
around the normal region in latent space. At inference, new data is encoded and scored by the SVM;
points falling outside the learned boundary are flagged as anomalous.

This modular approach separates temporal modeling from anomaly classification, enhancing
robustness and interpretability. It is particularly well-suited for detecting structural or sequential
anomalies in financial time series that may not be apparent in the raw feature space.

The effectiveness of this hybrid method can be seen through its intermediate representations.
Figure 2 shows the norm of latent vectors over time. A noticeable spike during the anomaly window
reflects a clear shift in the underlying sequence, as captured by the LSTM encoder.

Algorithm 1 Hybrid LSTM-SVM Detection

1: Input: Time series X = {x1, ..., xT}
2: Segment X into overlapping windows Si = [xi, ..., xi+W ]
3: Train LSTM Autoencoder to minimize reconstruction loss
4: Extract latent vector zi from encoder
5: Train One-Class SVM on {zi} using hyperparameter ν
6: Compute decision score Score(z∗) for test input
7: Predict anomaly if Score(z∗) < τ
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Figure 2. Latent vector norm over time. A clear increase occurs during the anomaly window, indicating structural
change detected by the Autoencoder.

The latent vector norm measures the magnitude of the compressed representation. Sharp changes
in norm values often signal unusual behavior or market transitions. These shifts are frequently aligned
with known anomaly windows—periods of persistent abnormality rather than isolated events.

To further illustrate how anomalies are separated, Figure 3 presents the latent space decision
boundary learned by the One-Class SVM. Normal vectors cluster tightly in a well-defined region,
while anomalies appear outside the boundary, highlighting their deviation from expected patterns.

Figure 3. One-Class SVM decision boundary in latent space. Blue points indicate normal patterns; orange crosses
denote anomalies. The dashed contour encloses the learned normal region.

In summary, this hybrid model enables unsupervised, sequence-aware anomaly detection. The
LSTM Autoencoder captures temporal dependencies, while the One-Class SVM provides a robust
geometric separation in the learned feature space. Together, they offer interpretable and effective
detection of abnormal market behavior.

4.3. GAN-Based Anomaly Detection

To capture complex distributional shifts beyond temporal deviations, we adopt a Generative
Adversarial Network (GAN) as a complementary anomaly detection module. The GAN architecture
comprises a Generator G and a Discriminator D trained adversarially to model the joint distribution of
return-volume pairs observed under normal market conditions.

Once trained, the Generator attempts to reconstruct inputs by generating synthetic samples that
mimic normal data behavior. During inference, the anomaly score is defined as the reconstruction
error between the actual input and the generated output:

Score(x) = ∥x − G(z)∥2

A higher score implies that the sample deviates from the learned normal distribution, indicating
a potential anomaly. A threshold—empirically set at the 90th percentile of training reconstruction
errors—is used for classification.
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This method is especially effective in detecting anomalies that do not follow sequential irregulari-
ties but arise from abnormal distributions, such as regime shifts or outlier clusters. It complements our
LSTM-SVM model, offering broader coverage across different anomaly types.

The effectiveness of this approach is illustrated in Figure 4, where reconstruction errors from
anomalous samples are notably higher than those from normal data. The threshold (red dashed line)
separates the two distributions clearly, enabling reliable unsupervised detection.

Figure 4. Distribution of reconstruction errors from normal and anomalous samples. A clear separation emerges,
enabling threshold-based classification.

4.4. Robustness and Sensitivity Analysis

To ensure our framework performs reliably across diverse financial conditions, we conduct a
structured sensitivity analysis. These experiments are designed to assess the robustness of model
performance under varying hyperparameters and synthetic stress scenarios.

• Sequence Window Length (W): We explore the influence of different temporal contexts by setting
the LSTM window size to W ∈ {3, 5, 7}. Shorter windows emphasize local fluctuations, while
longer sequences provide a broader view of market behavior. The model performs consistently
across settings, highlighting its adaptability to varying temporal scales.

• SVM Regularization Parameter (ν): We vary ν ∈ {0.01, 0.05, 0.1} to examine how the One-Class
SVM balances model sensitivity and tolerance to noise. As expected, tighter margins (lower ν)
reduce false positives but may under-detect novel anomalies. Moderate values yield the best
trade-off between precision and recall.

• GAN Training Stability: To verify convergence and generalization, we train the GAN over a
range of epochs (50 to 200). The model stabilizes reliably by 100 epochs, with negligible variation
beyond. This confirms that the GAN learns a robust representation without overfitting.

• Anomaly Injection Thresholds: We inject synthetic anomalies by perturbing return-volume
sequences at controlled magnitudes (90th to 99th percentile). This benchmark allows us to
evaluate the model’s recall and F1 score under a spectrum of anomaly severities. Our method
maintains strong detection performance, even under extreme perturbations.

Overall, the proposed architecture demonstrates strong resilience across hyperparameter choices,
sequence lengths, and anomaly definitions. These findings support the robustness and real-world
applicability of our approach, especially in volatile and dynamic financial environments.

Algorithm 2 GAN-Based Anomaly Detection

1: Input: Return-volume pairs X = {x1, ..., xT}
2: Train G and D via adversarial loss over X
3: Sample latent noise z to generate x′ = G(z)
4: Compute anomaly score: ∥x − x′∥2
5: Flag anomaly if score exceeds 90th percentile threshold
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5. Experimental Setup
This section outlines the datasets, preprocessing pipeline, anomaly injection procedures, and

evaluation metrics used to assess the performance of our proposed framework. We aim to provide a
reproducible, fair, and realistic testing environment that reflects diverse financial scenarios.

6. Experimental Setup
This section details the dataset composition, stock selection strategy, anomaly injection method,

and evaluation metrics. Our goal is to ensure a fair, transparent, and reproducible framework for
testing anomaly detection models under realistic financial conditions.

6.1. Market Coverage and Dataset Composition

To evaluate the robustness and generalizability of our framework, we curated a dataset comprising
38 publicly traded instruments. These were carefully selected to span a diverse range of financial
behaviors across asset categories, volatility levels, and capitalization sizes. Our selection includes a
diverse set of stocks across asset categories, volatility levels, and market capitalizations.

• Equity Indices: Widely tracked benchmarks such as SPY and QQQ.
• Mega Cap Stocks: Large, well-established firms (e.g., AAPL, MSFT, AMZN).
• Small Cap Equities: Higher volatility firms with less liquidity (e.g., CHGG, PLUG).
• Penny Stocks: Low-priced, highly volatile stocks (e.g., SNDL, COSM).
• High/Low Volatility Stocks: To explore model behavior under different risk regimes.

This diverse sampling ensures our model is tested across different structural market characteris-
tics—from stable, low-risk environments to highly speculative and irregular trading patterns.

To visualize the category distribution, Figure 5 presents the number of stocks per group. This
chart reinforces the coverage breadth and ensures that anomaly detection performance is not biased
toward any single market segment.

Figure 5. Distribution of selected stocks by category. Balanced coverage enables fair testing across asset classes
and risk levels.

Table 2 lists the representative stock categories and example tickers selected for evaluation. This
classification ensures our models are tested across a broad spectrum of market behaviors—from
large-cap stability to penny stock volatility.
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Table 2. Stock Categories Used for Evaluation

Category Example Tickers

Indices SPY, QQQ, DIA, IWM, VTI
Mega Cap AAPL, MSFT, GOOG, AMZN, BRK-B,

TSLA, UBER, SNAP, PTON, LYFT
Small Cap ETSY, CHGG, PLNT, SFIX, RVLV,

PLUG, FCEL, SPCE, BYND, HCMC
High Volatil-
ity

AMD, NVDA, MRNA, ZM

Low Volatil-
ity

KO, JNJ, PG, PEP, MCD

Penny
Stocks

SNDL, ZOMDF, CTRM, COSM

6.2. Historical Coverage and Relevance

The time series spans several years of daily trading data, capturing both calm and crisis periods.
Notably, it includes events such as the 2008 Global Financial Crisis, the COVID-19 pandemic, and recent
market fluctuations in 2025. This historical diversity is essential for evaluating model performance
under varying economic regimes and structural shocks.

Overall, the setup ensures that our proposed models are not only effective under ideal conditions,
but also resilient in the face of real-world financial anomalies. This forms the foundation for a robust
and meaningful benchmark in market anomaly detection.

6.3. Preprocessing

We use daily closing prices and trading volumes. Returns are computed using logarithmic
differencing:

rt = log(Pt)− log(Pt−1)

All features are standardized to zero mean and unit variance within rolling windows to avoid forward-
looking bias. We also remove weekends and holidays to maintain consistent temporal spacing.

6.4. Artificial Anomaly Injection

To evaluate our model’s effectiveness in the absence of ground-truth labels, we design a controlled
anomaly injection framework. This procedure simulates realistic market irregularities by introducing
perturbations in both return and volume series.

Return Modifications:

• If the return is positive, it is increased by the 95th percentile of the absolute return distribution.
• If the return is negative, it is decreased by the 95th percentile of the absolute return distribution.

Volume Modifications:

• Trading volume is scaled by a factor up to ±2× the defined anomaly size.
• The direction of adjustment (increase or decrease) is randomly assigned.

These synthetic anomalies replicate sudden price movements and abnormal trading volumes
commonly observed during crises, earnings shocks, or algorithmic disruptions. The injection strategy
enables us to test the model’s sensitivity and robustness in detecting both subtle and extreme deviations
from normal behavior.

6.5. Training Protocol

• LSTM Autoencoder: Trained using mean squared error (MSE) loss over sliding sequences of
return-volume data.
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• One-Class SVM: Trained exclusively on latent vectors from presumed normal data.
• GAN: Trained in an unsupervised manner with alternating generator and discriminator updates,

using return-volume vectors.

Hyperparameters are selected via sensitivity testing and cross-validation on synthetic anomaly
injections.

6.6. Evaluation Metrics

Model performance is assessed using the following metrics:

• Precision: The proportion of predicted anomalies that are correct.
• Recall: The proportion of actual anomalies that are successfully detected.
• F1 Score: The harmonic mean of precision and recall.
• F4 Score: Weighted variant emphasizing recall, suitable for early warning systems.

To ensure fairness, we evaluate all models on the same injected anomaly sets and compare against
traditional baselines (Z-Score, GARCH, One-Class SVM on raw data).

6.7. Implementation Details

All models are implemented in Python using TensorFlow and scikit-learn. Experiments are run
on an Intel i7 CPU with 32GB RAM and NVIDIA RTX GPU for accelerated training. Each experiment
is repeated five times to account for stochastic variation, and we report the average scores.

7. Results and Discussion
This section presents the empirical findings of our proposed anomaly detection framework,

comparing its performance to established baseline methods. We analyze the effectiveness of each
model under varying market conditions and anomaly types, and interpret the results in the context of
financial robustness and practical deployment.

7.1. Model Performance Across Stock Categories and Market Regimes

Figure 6 presents radar plots comparing five anomaly detection models—LSTM Autoencoder,
GAN, One-Class SVM, GARCH(1,1), and Z-Score—across six stock categories (indices, mega-cap,
small-cap, high volatility, low volatility, penny stocks) and two economic regimes (training period:
2010–2022, and COVID-19 era: 2020–2025).

Figure 6. Average Performance of Each Model by Stock Category and Economic Regime

Across most configurations, our proposed hybrid models consistently outperform classical base-
lines in terms of recall and F4-score, especially during crisis periods. Notably, LSTM excels in capturing
temporal anomalies in stable periods, while GAN is more sensitive to distributional shifts observed
during COVID-induced volatility.

As shown in Table 3, deep models adapt more effectively to structural changes across both stable
and turbulent markets. Hybrid approaches—especially those combining LSTM and GAN—show
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Table 3. Model Performance Summary Across Scenarios

Model Strength Weakness Best Use Case

LSTM Au-
toencoder

High recall in structured
regimes

Struggles with sharp dis-
tributional shocks

Sequential anomalies in
mega/small caps

GAN (unsu-
pervised)

Sensitive to complex shifts May overfit small data Regime detection under
volatility (COVID)

One-Class
SVM

Simple, interpretable Poor performance in la-
tent space

Baseline detection on raw
features

GARCH(1,1) Captures volatility cluster-
ing

Misses collective anoma-
lies

Low-volatility indices
with smooth trends

Z-Score Fast, robust to noise Low recall, overly simplis-
tic

Only effective for extreme
spikes

potential in balancing detection accuracy with generalizability across asset types and macroeconomic
conditions.

7.2. Overall Detection Performance

To evaluate the effectiveness of our proposed framework, we conduct a comprehensive compar-
ison across multiple baseline and advanced anomaly detection models. Table 4 presents the results
using synthetic anomalies injected into real financial time series data.

Our hybrid model—combining the strengths of the LSTM Autoencoder and Generative Adver-
sarial Network (GAN)—achieves the highest performance across all major metrics. In particular, it
demonstrates superior recall and F4 scores, reflecting its ability to identify both subtle and severe
anomalies while maintaining resilience to false positives.

Table 4. Performance Comparison Across Models

Model Precision Recall F1 Score F4 Score

Z-Score 0.51 0.38 0.44 0.40
GARCH(1,1) 0.58 0.43 0.49 0.46
One-Class SVM (raw) 0.61 0.50 0.55 0.53
LSTM Autoencoder 0.64 0.71 0.67 0.69
GAN (unsupervised) 0.66 0.68 0.67 0.68
Ours (LSTM + GAN) 0.70 0.80 0.74 0.78

The LSTM Autoencoder effectively captures deviations in sequential patterns, while the GAN
excels at modeling underlying data distributions. Their combination yields comprehensive anomaly
coverage across temporal and structural dimensions.

To integrate both insights, we define a hybrid anomaly score:

HybridScore(x) = α · ReconstructionErrorLSTM+

β · AnomalyScoreGAN, where α + β = 1 (1)

In our main experiments, we adopt a balanced configuration: α = 0.5, β = 0.5. This equally
weights the temporal and distributional components, ensuring interpretability and fairness across
signal types. However, in practice, these weights can be fine-tuned to suit domain-specific priorities or
optimized using validation performance.

Table 5 outlines common configurations of α and β, highlighting how users may adapt the
framework based on their anomaly detection goals.
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Table 5. Recommended Settings for α and β in Hybrid Anomaly Scoring

Scenario α β Rationale

Balanced Im-
portance

0.5 0.5 Equal weight to LSTM and
GAN. A good default when
no prior preference exists.

Temporal
Emphasis

0.7 0.3 Highlights sequential anoma-
lies. Ideal when time-based
disruptions are more critical.

Distributional
Emphasis

0.3 0.7 Focuses on statistical irregu-
larities. Useful for detecting
regime shifts.

Adaptive
Tuning

CV
tuned

CV
tuned

Automatically selected based
on validation metrics (e.g.,
ROC-AUC or F1).

In summary, our unified architecture not only outperforms traditional benchmarks but also offers
flexibility and robustness across different market conditions. Its adaptability and interpretability make
it a valuable tool for financial anomaly detection and early warning systems.

7.3. Behavior During Crisis Periods

We further examine model behavior during historically turbulent periods such as the 2008 Global
Financial Crisis and the COVID-19 market shock. As illustrated in Figure 7, the anomaly frequency
detected by our model spikes sharply during these events, aligning closely with known disruptions in
market structure.

Figure 7. Comparison of anomaly detection between GAN and LSTM using a 5-day window.

This temporal alignment validates the model’s responsiveness to real-world risks and supports
its use as an early warning tool for financial surveillance systems.

7.4. Sensitivity to Hyperparameters

As detailed in Section 4.4, our architecture shows stable performance across a wide range of
hyperparameter values. The F1 and F4 scores decline gradually when the anomaly detection threshold
is tightened, indicating that the model degrades gracefully without abrupt failure.

7.5. Visualization of Detection Mechanics

To better understand how anomalies are detected, we visualize internal model signals. Figure 2
shows changes in latent vector norm over time—clear spikes correspond to anomaly windows. Simi-
larly, Figure 3 illustrates the One-Class SVM’s decision boundary, where abnormal latent vectors fall
outside the learned boundary.
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Additionally, Figure 4 presents the reconstruction error distribution used by the GAN to assign
anomaly scores. The histogram reveals a distinct separation between normal and anomalous samples,
supporting the use of a percentile-based threshold.

7.6. Discussion and Practical Implications

The hybrid architecture demonstrates several practical strengths:

• Unsupervised Learning: Requires no labeled data, making it broadly applicable in real-world
settings.

• Modular Design: LSTM handles temporal structure, while GAN captures statistical shifts—making
the system adaptive and interpretable.

• Resilience Across Market Regimes: Robust performance across bullish, bearish, and volatile
periods highlights the model’s generalization ability.

From a practitioner’s perspective, the model can be integrated into real-time monitoring systems
for portfolio risk management, algorithmic trading validation, or regulatory surveillance. Its ability to
highlight emerging patterns—before they escalate into full-blown crises—offers actionable value for
analysts and decision-makers.

8. Conclusions
This research presents a unified and interpretable framework for anomaly detection in financial

time series using only daily return and volume data—readily available to practitioners, researchers, and
policymakers. By integrating an LSTM Autoencoder with a One-Class SVM for capturing sequential
irregularities, and a GAN model for learning distributional shifts, we offer a hybrid system that
balances precision with flexibility.

Through rigorous testing across diverse market regimes—including crisis periods like the 2008
Global Financial Crisis and the post-COVID recovery—and across varied stock categories from indices
to penny stocks, the proposed models demonstrated strong recall and robustness. The LSTM-SVM
module proved especially sensitive to temporal deviations in volatile environments, while the GAN
component offered a stable lens for detecting broader structural abnormalities.

8.1. Reflections and Future Directions

While our approach yields encouraging results, we recognize its current limitations. The reliance
on daily-level data, though pragmatic and reproducible, constrains the model’s ability to capture
microstructure-level patterns such as spoofing or intraday manipulation. We acknowledge that true
financial anomalies often emerge at higher frequencies and under nuanced market conditions.

To address this, we plan to extend our framework to operate on minute- or tick-level data, and as-
pire to incorporate Level 1 order book features when available. This will enable more granular anomaly
detection and unlock new research on execution behavior and market microstructure dynamics.

Moreover, our current point-based detection scheme is being expanded to identify anomaly
periods—clusters of anomalous signals over time that correspond to real-world market regimes. Early
results suggest this transition adds interpretability and strategic relevance to the detection process. For
instance, both LSTM and GAN components have successfully flagged sustained stress signals during
historical crises.

Finally, we aim to incorporate external contextual signals, such as macroeconomic news or policy
announcements. This will help distinguish genuine market disruption from explainable events, further
reducing false positives and aligning the system with practitioner expectations.

8.2. Toward Practical Impact

Ultimately, the goal of this project is not only methodological innovation but practical utility.
Detecting financial anomalies is more than a data science problem—it is a cornerstone for resilient
trading systems, robust risk management, and informed financial oversight.
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We believe that by detecting both subtle and pronounced deviations in real time, this framework
can support regime-aware strategies, strengthen market surveillance, and contribute meaningfully to
the ongoing dialogue between finance, machine learning, and policy.
In a world where markets evolve faster than ever, our ability to detect and adapt to the unexpected defines our
resilience. This work is a small but hopeful step in that direction.
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