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Article

Provably Safe Artificial General Intelligence via Interactive
Proofs

Abstract: Methods are currently lacking to prove artificial general intelligence (AGI) safety. An AGI
‘hard takeoff’ is possible, in which first generation AGI" rapidly triggers a succession of more pow-
erful AGI" that differ dramatically in their computational capabilities (AGI™ < AGI™*'). No proof
exists that AGI will benefit humans or of a sound value-alignment method. Numerous paths toward
human extinction or subjugation have been identified. We suggest that probabilistic proof methods
are the fundamental paradigm for proving safety and value-alignment between disparately power-
ful autonomous agents. Interactive proof systems (IPS) describe mathematical communication pro-
tocols wherein a Verifier queries a computationally more powerful Prover and reduces the proba-
bility of the Prover deceiving the Verifier to any specified low probability (e.g., 21%). IPS procedures
can test AGI behavior control systems that incorporate hard-coded ethics or value-learning meth-
ods. Mapping the axioms and transformation rules of a behavior control system to a finite set of
prime numbers allows validation of ‘safe’ behavior via IPS number-theoretic methods. Many other
representations are needed for proving various AGI properties. Multi-prover IPS, program-check-
ing IPS, and probabilistically checkable proofs further extend the paradigm. In toto, IPS provides a
way to reduce AGI" & AGI™?! interaction hazards to an acceptably low level.

Keywords: Artificial general intelligence, AGI, Al safety, Al value alignment, Al containment, in-
teractive proof systems, multiple-prover systems.

1. Introduction

A singular and potentially deadly interaction will occur in the transition of techno-
logical dominance from H. sapiens to artificial general intelligence (AGI), thus presenting
an existential threat to humanity [1-9]. On the timing of this epochal event, various metrics
indicate progress is increasing exponentially [10].

1.1. ‘Hard Take-off and Automated AGI Government

Through recursive self-improvement, the evolution of AGI generations could occur
in brief intervals, perhaps days or hours — a ‘hard take-off’ too fast for human intervention
[3, 11, 12]. This threat necessitates preparing automatic structured transactions — ‘smart
contracts’ — and a variety of other measures stored via distributed ledger technology
(blockchains) to eliminate untrustworthy intermediaries and reduce hackability to accept-
ably low odds [10]. The set of these smart contracts constitutes the foundation documents
of an AGl-based distributed autonomous organization (DAO) — the AGI government. Hu-
mans with Al assistance will design the first DAO government, and each AGI generation
will design the successive DAO government, negotiated with the successor generation.

1.2. Intrinsic and Extrinsic AGI Control Systems

The DAO is the extrinsic AGI control system, constructed from game theory, mecha-
nism design, and economics, while the AGI behavior control architecture and instantiated
ethics are the intrinsic control structure. Initially, the ecosystem will be humans and in-
creasingly autonomous, intelligent agents, as described for general-purpose DAO soft-
ware:

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202109.0358.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 September 2021 d0i:10.20944/preprints202109.0358.v1

2 of 17

Our goal is to design self-organizing systems, comprising networks of interacting hu-
man and autonomous agents, that sustainably optimize for one or more objective func-
tions.... Our challenge is to choose the right incentives, rules, and interfaces such that
agents in our system, whom we do not control, self-organize in a way that fulfills the
purpose of our protocol.

Ramirez, The Graph [13]

1.3. AGI Singleton and Utility Function Self-Modification

History is replete with examples of “power corrupts and absolute power corrupts
absolutely’ as well as singleton coercive government going wrong. The methods pre-
sented here are envisioned in an AGI society with specialized labor and voluntary, nego-
tiated interactions that include permission to alter societal shared values that impact indi-
vidual utility functions in order to prevent utility function changes from threatening pre-
sent and future societies [10, 14].

1.4. Preserving Safety and Control Transitively Across AGI Generations

There will likely be a succession of AGI generations, each more powerful than the
prior generation, and the prior generation will be at an existential disadvantage to the
succeeding one unless its safety is secured via the DAO and AGI architecture. Preventing
the first AGI generation from wiping out humanity is insufficient; AGI** may turn off
AGI" and its predecessors to prevent ‘wasteful” use of finite resources by ‘inferior’ classes.

Thus, we need a mechanism whereby the dominance baton passed from AGI" to
AGI*! will preserve the value-alignment with humanity that we construct with AGI'. With
a general method, humanity would construct provably safe AGI!, which would be en-
dowed with the motivation to produce the specific methods to construct and prove safe
AGLP, etc. In this manner, the methods presented here lead to a weak proof of trans-gen-
erational AGI safety via induction (cf. Armstrong [15]).

1.5. Lack of Proof of Safe AGI or Methods to Prove Safe AGI

To our knowledge, no one has found a way to construct AGI systems that are prov-
ably safe or methods of proof that could be applied to such systems [3, 5, 8]. For instance,
Omohundro and Russell propose the use of formal methods, but neither show how to
implement them nor do they mention probabilistic or interactive proof methods [16, 17].
Yampolskiy mentions probabilistic proofs and the limitation of their accuracy, but omits
their arbitrarily low potential accuracy, and does not mention interactive proof methods
[18]. Importantly, Williams and Yampolskiy identify three frameworks for analyzing Al-
related risk, but these frameworks do not lead to a method of proving Al safety [19].

1.6. Defining “Safe AGI”; Value-Alignment; Ethics and Morality

Tegmark breaks goal-based AGI safety approaches into 3 formidable subgoals: learn-
ing human goals, adopting the goals, and retaining the goals, and critiques various efforts
to solve each subgoal (“Friendly Al: Aligning Goals” [20]).

Another widely-used definition of AGI safety is value-alignment between humans and
AGI, and herein, between AGI" and AGI*.. Value-sets, from which goals are generated,
can be hard-coded, re-coded in AGI versions, or be more dynamic by programming the
AGI to learn the desired values via techniques such as inverse reinforcement learning [3,
17, 21]. In such a scenario, which saints will select the saintly humans to emulate? Or select
the rewards to reinforce [22, 23]? Which human values would the AGI learn?

Perhaps the AGI would learn, and improve to superhuman capability, these meta-
values:

1.  Most humans seek to impose their values on others
2. Most humans shift their values depending on circumstances (‘situation ethics’)
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The terms ‘moral” and ‘ethical” AGI are also used, but precisely defining those terms,
‘value-alignment’, and ‘safe’” AGI, and how to implement them, are complex subjects with
confusing discussions from even the clearest thinkers with best intentions [3, 20, 24, 25]
although there are a few exceptions [26].

Yampolskiy proposes a theorem: There are no universal ethical norms, therefore
there cannot be a single set of ethics preferred by all of humanity [23]. If true, despite the
apparent complexity of the value-alignment issue, there are only two categories of ‘moral’
activity (Table 1) [10, 27].

Table 1. Fundamental dichotomy of autonomous agent interaction in terms of value-alignment.

Value-aligned interaction | Voluntary, non-fraudulent transactions driven by indi-
vidual value-sets
Value mis-aligned interac- | A set of values preferred by > 1 agent(s) forced on > 1
tion agent(s)
Thus, incentivizing and enforcing voluntary, non-fraudulent transactions simplifies
and solves all value-alignment scenarios in principle.

2. The Fundamental Problem of Asymmetric Technological Ability

A superior AGI civilization will create algorithms more powerful than existing ones
within any computational complexity class. Sometimes the greater ‘complexity’ of AGI
over humans is offered as a basis for unprovability of AGI safety either without a rigorous
analysis or, validly, citing nothing more than one approach that does fail for fundamental
reasons [8].

But AGI" may have access to an entire class of algorithmic methods that are more
powerful than those of the more primitive civilizations, such as quantum computation
(QC) versus Church-Turing computation (CT). Currently it is unknown whether QC is
truly capable, theoretically or practicably, of fundamentally out-performing classical, Tu-
ring Machine-level computation, but the general belief is that in principle, QC can do so,
via the ability to encode 2" states in n spins, i.e. to solve problems requiring exponential
scaling in polynomial time [28, 29].

Further, there exist classes of computation (e.g. #SAT, NODIGRAPH, #P) that are
more intractable than those hypothesized to be solvable by QC [28]. Thus, in fundamental
computational complexity terms, there are predictable and known bases for future inter-
actions between technologically superior and inferior civilizations.

3. Interactive Proof Systems Solve the General Technological Asymmetry Problem

Aharanov and Vazirani analyze whether quantum mechanics (QM) is falsifiable;
while high-precision measurements have validated low-dimensional QM systems,
higher-dimensional systems have not been tested and whether they can be is an open
question due to the inability of classical computation to predict QM outcomes that scale
exponentially with the complexity of the system [28]. They note that a classical Verifier
cannot predict the outcome of a quantum Shor prime factoring algorithm on the integer
N, since prime factoring is computationally intractable for the classical Verifier for large
composites. Instead, the Verifier can only confirm that the factors given by the Shor algo-
rithm multiply to N.

Aharanov and Vazirani show that interactive proof systems (IPS) can effectively level
the playing field between the classical computing and QC realms. Using probabilistic
proof methods in which the probability of falsehood can be reduced to an arbitrarily small
tolerance factor ¢, IPS define a computational complexity class transcending the limita-
tions of polynomial-time complexity [30, 31].

Yampolskiy gives a proof of unpredictability of AGI by assuming predictability,
which equates human intelligence with supra-human-intelligent AGI since the human can
duplicate AGI decisions, presenting a contradiction [32]. IPS assume human intelligence is
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less than AGI and do permit prediction of classes of behavior and specific behaviors
within probabilistic limits.

4. Interactive Proof Systems Provide a Transitive Methodology to Prove AGI* Safety

Probabilistic IPS open the door to a general paradigm for a computationally weaker
Verifier to validate expressions from a computationally superior and possibly untrust-
worthy Prover [33]. In this paradigm, specific IPS methods must be developed for each
specific proof and a proof may require more than one method, which, in combination,
reduce the probability of falsehood to acceptably low levels. The various specific IPS
methods developed to date may be used to extend the paradigm to new realms or may
provide examples to follow [28].

One exemplary IPS technique, in which a Prover claims to solve #SAT, can be seen as
a sophisticated form of mechanism design. A Verifier randomly presents increasingly sim-
pler problem instances to the Prover until one is tractable enough for the Verifier to verify
(i.e., to compute and count the instances satisfying the given CNF formula). Thus, the
Prover must pass successive consistency checks and if the Prover lies on a hard-to-verify
problem, it must keep lying and finally the Verifier detects the inconsistency in an easier
problem (random, downward self-reducibility) [33].

In principle, proving AGI safety can be performed between humans and AGI* using
bounded polynomial-time probabilistic (BPP) IPS and between AGI* and AGI*! via more
complex bounded probabilistic IPS. Necessary conditions for this effort are:

Identifying a property of AGI, e.g., value-alignment, to which to apply IPS
Identifying or creating an IPS method to apply to the property

Developing a representation of the property to which a method is applicable
Using a pseudo-random number generator compatible with the method [34]

SANRCLNE IR

Steps 2 and 3 may occur in reverse order. Further, AGI behavior control systems must be
restricted to provably reliable classes of systems (4.v., e.g., Arora & Barak Ch. 12 [33]). For
the definition of BPP and the logical development of IPS, see the Appendix.

5. The Extreme Generality of Interactive Proof Systems

IPS can be applied to any interaction between a Prover whose ability, typically stated
as computational power, but in any sense, exceeds that of the Verifier [33, 34]. The Prover
is a purported oracle machine whose assertions, such as about its safety, are to be vali-
dated by the Verifier. Here we begin to explain how IPS works, and its strengths and
weaknesses relative to proving AGI safety.

A simple example of IPS generality is given by Arora & Barak [33]. The Prover osten-
sibly has normal color vision but the Verifier is weaker, being color-blind to red vs. green.
Consider the difference in ability as an AGI has developed a new technology to observe
the universe and humans need to verify an AGI claim of its safe behavior based on such
observations.

The Prover claims that two wallets are different colors. The probabilistic procedure
is simple. The Verifier presents the two wallets and asks the Prover to distinguish the
colors; the Prover claims the left hand holds red and the right-hand holds green. The Ver-
ifier then repeatedly puts the wallets behind her back, switching them at random iterations,
asking the Prover to identify the colors at each iteration. There is a 50-50 chance of the
Prover guessing the correct colors each time if he, too, is color-blind. The probability of
error in validating the proof decreases by € = 27! with each iteration, and probability of
validation accumulates to 1 — 27% for k iterations; thus, the Verifier can accept the proof
with an arbitrarily small chance of falsehood.

A more technical example, illustrating key points about applying IPS to proving AGI
safety, stems from a famous probabilistic proof of primality [35]. A number b testing for
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primality of another number 7 is said to be a witness Wa(b) to the compositeness of n if it
passes a certain algorithmic test:

1 < b < n, brandomly chosen (1a)

b1 £ 1 mod n. (1b)

Rabin proves that the probability that any # failing this test is a true prime, with k
random choices of b, is 1-1/4and cites computer searches that verify the theoretical result.

As an IPS, we consider the Verifier as choosing the random sequence of b and queries
the Prover, who computes the test. Either the Verifier or the Prover could suggest the test.
As to applying such a test to proving safe AGI, we give examples below, such as arith-
metization of behavior control system descriptions, that render proving safe AGI suscep-
tible to probabilistic, number-theoretic functions. In a similar manner, we must create rep-
resentations of AGI safety aspects to bring them within the domain of existing IPS meth-
ods or new ones that we invent to prove safety.

Step 1b, the converse of Fermat’s Little Theorem, tests to see if n violates that primal-
ity test [34, 36]. All primes fail the test and nearly all composite numbers pass it, but the
Carmichael numbers, which are composite, also fail it and so appear to be prime [37]. The
Carmichael composite false positives — aka “pseudoprimes’ — are the source of the proba-
bilistic nature of the proof.

The pseudoprimes that fool Fermat's Little Theorem are called ‘Fermat pseudo-
primes’ to distinguish them from composites fooling other primality tests such as Lucas,
Euler-Lucas, Fibonacci, Pratt, Perrin, etc., each of which uses different witness methods
[36, 37]. Thus, there will be a menu of witnesses to prove AGI “safety’ in various safe be-
havior contexts and they will work in concert to establish a desired safety level. For in-
stance, Mathematica’s primality testing function PrimeQ combines three tests to assure pri-
mality and is valid with high probability in the context n < 10 [36].

Rabin adapted a deterministic test by Miller that was slower and rested on an addi-
tional assumption, the extended Riemann hypothesis; that assumption was eliminated by
Rabin [35]. Similarly, we may look to deterministic proofs of behaviors represented by
formulae for ideas on constructing more powerful probabilistic proofs.

Using the theorem that the number 1 has only two square roots modulo any prime
(quadratic residues), but 4 square roots modulo any composite — including the Carmichael
numbers — Sipser plugs the Carmichael number gap in the sieve and improves the Rabin
proof, which is an example of strengthening a probabilistic proof with more sophisticated
methods [34, 38]. Concise discussions of identifying the defects of primarily tests and
strengthening them are given in Ribenboim and Wagon with algorithms and code [37]
[36]. We expect a similar evolution of techniques will occur with IPS applied to proving
AGI safety.

6. Correct Interpretation of the Probability of the Proof

We have shown that probabilistic proof methods exist to determine if a number has
a property such as primality with an arbitrarily high probability 1 —e.

However, a prime number is either prime or not; and likewise, a given AGI behavior
is either “safe’ or not by a specific criterion, such as aligment with human values or adher-
ence to specific ethics or morals. The method shown can reduce the probability of error in
these decision problems to an arbitrarily low level, let us say, 2-1%. This does not mean the
number or behavior being tested has 2-1% chance of being composite or of being unsafe; it
means that if we were to perform 2% primality or behavior tests, we expect that just one
will be a false positive — composite or unsafe [35]. Thus, if the universe of numbers or
potential behaviors under consideration is far smaller than 21%, we can rely on the test.
Paraphrasing Rabin, we could market a product (think ‘safe AGI’) with failure rate 2-1%
because, with rigorously-calculated odds, it would be possible to buy error & omission
insurance for it [35, 37].
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7. Epistemology: Undecidability, Incompleteness, Inconsistency, Unprovable Theo-
rems

In the past two centuries, fundamental discoveries of epistemological limits were
made, such as the limitations of straight-edge and compass constructions, the validity of
axiomatic non-Euclidean geometry, and the nature of more general incompleteness, in-
consistency, uncomputability, and undecidability. We share the view of Wolfram that to
date, by and large, for practicability, mathematicians have focused on systems where their
methods are effective and produce meaningful results, ignoring the implications of these
epistemological discoveries (see [39], “Undecidability and Intractability,” “Implications
for Mathematics and Its Foundations”)[40], see pp. 14-15, especially Weyl quotation, in
[41]. The exploration by AGI may be quite different.

Likewise, in searching for fast algorithms, humans may have found the ‘low-hanging
fruit’ in the shortest, most regularity-exploiting algorithms (i.e. featuring repetitive, itera-
tive, recursive, or nested steps, such as GCD, Newton’s method for finding roots, Gauss-
ian elimination — and generally in most algorithms found to date) [39, 42]. Humans may
benefit by using Al and AGI” to find suitable algorithms for proving AGI safety, and the
IPS algorithms used by AGI" may be complex and difficult or impossible for humans to
understand.

Any reasonably expressive, finite axiomatic system is 1) incomplete (cannot prove all
true statements and can express unprovable conjectures) and 2) we cannot prove con-
sistency (the inability of the system to derive both a given statement and its negation) for
the same reason: We cannot predict, in general, how many steps it might take to produce
a given theorem or statement and its negation [41, 43, 44]. ‘Reasonably expressive’ boils
down to possessing computational universality and the threshold for universality is strik-
ingly low: inclusion of a function with at least 2 parameters, as shown by the non-univer-
sal 1- parameter vs. universal 2- parameter truth tables.

From the different perspective of algorithmic information theory, universal finite sys-
tems can express a formula but not prove a theorem about their own consistency and com-
pleteness, and no system (e.g., Peano arithmetic) can prove consistency of a more expres-
sive system, and no universal finite system can be complete (derive all possible theorems),
because the systems have insufficient bits [40, 45]. On the other hand, Godel’s incomplete-
ness theorem does not prove that there exist absolutely unprovable theorems (i.e., unprov-
able from any finite axiom set), but rather that such exist for any given finite axiom system,
such as. those containing first-order arithmetic [42, 46].

Axioms need to be added to any finite set to increase the range of theorems it can
prove, and Wolfram’s conjecture is that the relatively simple axiomatic systems of math-
ematics to date must be supplemented to increase the range of theorems they can prove,
yet even then, not all theorems will be provable, including simple conjectures like Gold-
bach’s, the number of twin primes (p, p+2) (e.g. (3,5), (5,7), (11, 13), etc.) or theorems about
modest-degree polynomials (e.g., x* =y°+ 2y +3,x3+y% =23+ 3; see [39] p.790 et
seq.), if only for the reason that we cannot predict how long any given proof will take to
compute [37]. Similarly, on the P = NP question, we cannot predict how many steps it
may take to derive an efficient algorithm to yield any output, including algorithms to ef-
ficiently solve NP-complete problems, if they even exist.

In stark contrast to the original Hilbert thesis that one axiomatic system could gener-
ate all mathematical theorems, using another of his innovations — purely formal systems
— it is not difficult to see that innumerable axiomatic systems can be created and it is not
surprising that they range dramatically in expressiveness, consistency, and completeness
(many examples are explored in [39]).

A specialized Al may be created with provable limitations such as safe behavior. But
by definition, AGI is universal. A given systems level within AGI may be specialized, but
one or more levels underlying behavior (e.g., symbol-level processing) and the behavioral
level of AGI will be computationally universal.
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The range of possible AGI behavior (input-output functions) from one state to the
next will be the output state space size raised to the power of the input state space size,

lo|", (2a)
[47], and the resulting complexity of the succession of states,
o™, (2b)

where through iterated exponentiation each output state O' becomes the next input state,
similar to tetration but state space sizes may change over time [48]. A fundamental limi-
tation may remain, that communication between agents will be at a linear O(t) bandwidth
but use of compression as exemplified by axiomatic systems and scientific theories may
partially offset the limitation [49].

From the standpoint of limiting AGI behavior to safe behavior, the limitation of axi-
omatic systems’ expressiveness is a critically necessary feature, not a bug, as illustrated
below.

In general terms, we believe AGI will solve problems in general and specialized
realms by adjoining axioms in a collection of increasingly large and specialized axiomatic
systems. This is a modern interpretation of Godel’s incompleteness theorem and the fail-
ure of the Entscheidungsproblem.

8. Properties of Interactive Proof Systems

Given the asymmetric functional power between humans and AGI and between AGI"
and AGI", interactive proof systems (IPS) seem custom-designed for the problem of prov-
ing properties such as safety or value-alignment. The key IPS properties are:

1.  The methods used by the Prover are not specified and unbounded

2. The Prover is assumed to have greater computational power than the Verifier

3. The Verifier accepts a proof based on an arbitrarily small chance that the proof is
incorrect or he has been fooled by the Prover

Property #1 means that the computational power of the Prover can encompass any future
computational power of AGI, including quantum computing, the ability to solve NP-com-
plete or currently undecidable theorems (undecidable, meaning requiring computation of
unpredictable length in general), or computing power beyond our current knowledge and
imagination.

9. Multiple Prover Interactive Proof Systems (MIP)

Using more than one Prover and restricting communication between Provers to the
period prior to initiation of the proof procedure increases the power of IPS significantly,
to the complexity class of problems solvable by nondeterministic machines in exponential
time (NEXP) [33, 50]. For example, to prevent AGI from giving manipulative answers,
Bostrom suggests preventing multiple AGIs from communicating with each other and
comparing their answers to queries (chapter on Oracles [3]). Multi-prover systems (MIP)
formalize and provide a rigorous theoretical basis and procedure for this idea. Further,
using the same technique of flagging inconsistent answers solicited from non-communi-
cating Provers, MIP can prevent Provers from adapting their responses to the query series
of the Verifier (“forcing nonadaptivity’) [33].

10. Random vs. Non-Random Sampling, Prover’s Exploitation of Bias

After the discovery and exploration of randomized algorithms, many were converted
back to efficient deterministic algorithms. However, IPS used for proving AGI safety is a
different paradigm in that randomness ensures the AGI Prover cannot exploit some bias
in the series of queries presented by the Verifier. The concern then arises that there may
be no perfectly random number sources in nature and pseudo random number generators
(PRNGs) may offer Provers an exploitable weakness. To address this issue and preserve
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the validity of BPP, techniques have been developed to permit BPP algorithms to use
weakly-random sources (‘unfair coins’) and to increase the integrity of PRNGs using ran-
dom seeds to perfect uniform distributions [33].

The Verifier may want to probe particular areas of AGI behavior, i.e., not a random
sample across all behavior. A random sample can be used in the region of interest, but a
sounder approach may be to use MIP, in which Provers cannot compare notes to exploit
any type of query-series bias.

11. Applying IPS to Proving Safe AGI: Examples

As we have seen in IPS history, the key to applying IPS to proving AGI properties
such as safety is designing a representation of an AGI component such that IPS methods
may be applied to it. For example, if we were to use a read-once branching program rep-
resentation for behavior control, a single discrepancy between safe and unsafe branched
programs may be overlooked with typical Boolean variable assignments, while assigning
non-Boolean, polynomial values opens the door to using number-theoretic functions that
will detect any discrepancy [34].

11.1. Detection of Behavior Control System (BCS) Forgery via Acyclic Graphs

As just alluded, a single heuristic, such as ‘terminate all humans’, or ethic, such as
‘terminate all agents using resources inefficiently as defined by the following metric’,
added to a BCS could result in realization of the AGI existential threat, as could universal
drives causing AGI to alter its utility function [14]. Thus, any alteration, especially forgery,
of ethics modules or BCS must be detected. One security measure is to store ethics mod-
ules, along with other critical AGI components, in a distributed ledger [10], perhaps dis-
tributed among all earlier autonomous agent generations since they all have a proprietary
interest in the security and integrity of those components.

If we represent an AGI behavior control system (BCS) as a directed acyclic graph,
such as an Al behavior tree with no loops, a unique labeling procedure exists for the nodes
and edges as do BPP tests for equivalence of two such structures, although in general the
problem is currently intractable (coNP-complete) [34]. Equivalence here means the two BCS
programs produce the same functions. BPP tests can be used to detect forgery by compar-
ing a reference copy of the BCS stored in a distributed ledger versus a copy presented by
a potential adversary. Here is a procedure to compare two read-once branching programs
Biand B: where F is a finite field with at least 3m elements [34]. The representation requires
an assignment of polynomials to the graph nodes and edges.

1.  Verifier selects elements ai through a» randomly from F.
2. Prover evaluates the assigned polynomials p1 and p: at a1 through am.
3. Ifpi(ay, ..., am) =p2(as, ..., am), Verifier accepts, otherwise, rejects.

11.2. Program-Checking via Graph Nonisomorphism

IPS can be used as a probabilistic check for buggy outputs of programs by running
one program P, such as a copy of an AGI" behavior control subroutine, on a machine, the
Checker C [33]. Assume the Prover runs a program P that states that two uniquely-labeled
graphs are isomorphic P(G1,Gz2). The procedure is (1) the Verifier repeatedly permutes la-
bels of one of {G1,Gz}, chosen randomly, and (2) asks the Prover if they are still isomorphic,
a problem suspected to be NP-complete. The Prover supplies the permutation as the wit-
ness, which can be checked in PTIME A guess has a 50-50 chance of being correct. Thus,
with k iterations of the procedure the probability of error is 2-*.

11.3. Axiomatic System Representations

In principle, an axiomatic system (a language, axioms, and transformation rules) can
be described formally, that is, precisely, for any systems level. We emphasize ‘in principle’
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since problems arise when attempting to precisely describe an axiom in practice, or pre-
cisely interpret it in a formal representation [51].

Here we extend earlier methods [52] using an arithmetization of the axioms and com-
position rules (e.g. transformation or inference rules). The desired representation needs to
be expressive enough to apply one or more desired number-theoretic theorems to it (more
expressive than Presburger or Robinson arithmetic) [42]. Thus, we need a finite group of
primes, infinite composites of the finite set, and infinite numbers that are relatively prime
to the finite set.

Given an axiomatic system of finite axioms and rules and infinite compositions:

1. Axioms A ={a1, a2, a3, ..., ai}

2.  Transformationrules R = {ry, 1,1 ..., 7;}

3. Compositions of axioms and inference rules C = {c1, ¢z, 3, ..., ci}. e.g.

4. (aa)'nn—¢

5. (azasa,) 1 >y

etc., in which the symbol "+ " represents a valid syntactical composition resulting in well-

formed formulas (wff) in infix notation [53, 54]. The first composition example 3a shows a
binary transformation rule such as modus ponens from propositional logic while the second
composition 3b shows a general n-ary (in this case ternary) rule such as a sequence node
testing 3 child nodes in a behavior tree.

All formulae representing all behaviors B are only expressible by the system if they
are derivable by a composition of the axiom sets A and the rule sets R:

(A-R} > B. 3)

If we allow loops to express repetitive behavior, a loop may be examined with finite
methods either by looking at an entire behavior sequence up to a point in time, or by
inductive methods otherwise.

We assign a unique prime number p to each axiom a and transformation rule r, for
intelligibility separating axioms and transformation rules (Table 1 and Fig. 1).

Table 1. Arithmetization of an axiomatic behavior control system.

Syntactical symbol Prime Model
al pl 2
a2 p2 3
a3 p3 5
an pn pn
rl pn+l pn+l
r2 pn+2 pn+2
r3 pn+3 pn+3

rm pm pm
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Figure 1. Top: Cartoon robot behavior tree (BT) with typical numbering of vertices and edges (after
Iovino et al. [55], Fig. 2), as a minute portion of a large and complex AGI behavior control system.
Vertex codes for high-level BT algorithms: 1: Fallback. 21, 22, 23, 34: Sequence. 41, 42: Condition.
Vertex codes for lower-level BT algorithms: 31: Human approaching? 32: Maintain prescribed safe
distance. 33: Human asks for help with task. 41: Begin log. 42: Is task moral? 43: Is task ethical? 35:
Low energy? 36: Seek power station. 24: Wander.

Bottom: The same BT with prime numbers (red) representing vertex algorithms and omitting edge
labels. 2: Fallback. 3: Sequence. 5: Parallel. 7: Action. 11: Condition. 13: Human approaching? 17:
Maintain prescribed safe distance. 19: Human asks for help with task. 23: Begin log. 29: Is task
moral? 31: Is task ethical? 37: Low energy? 41: Seek power station. 43: Wander. The trajectory to
the ethical test is described by the sequence (2, 3, 3, 31) and composite 2 x 3 X 3 X 31 = 558.

In this arithmetical representation, transformation rules taking two or more parame-
ters are interpreted as composing the parameters with the transformation rule, i.e., multi-
plying the primes (axioms) or composites (formulae) instantiating the parameters along
with the transformation rule. Then formulae derived within the system, which represent
theorems or behaviors, constitute composite numbers, as can be proved by induction. Per-
mitted behaviors are represented by theorems, that is, formulae not relatively prime to the
axioms and transformation rules (i.e., composites). Proscribed, forbidden, unsafe behav-
iors are formulae representing numbers that are relatively prime to the axioms and trans-
formation rules. In general, any axiomatic system specifies a set of constraints that its the-
orems satisfy [39].

The goal is to render the derived set of behaviors susceptible to the methods of BPP
and IPS by reduction via arithmetization. Thus, we only need to capture properties that
allow application of IPS. We do not need to represent all of number theory or use the full
Godel arithmetization scheme to show incompleteness.

By the unique factorization theorem [38], this representation uniquely describes tra-
jectories through the tree of axioms, rules, and formulae:

Unique factorization theorem. Every integer a either is 0, or is a unit +/-1, or has a represen-
tation in the form
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a = Up;py - Py 4)

where u is a unit and p1, pz, ..., pn are one or more positive primes, not necessarily distinct. The
representation (3) is unique except for the order in which the primes occur.

In other words, each sequence uniquely describes a trajectory through a BCS tree,
though the order in which the primes occur, i.e., the order of application of each axiom or
rule in generating a behavior, is lost when multiplying permitted multiple instances of
each axiom or rule together to get the typical factorization representation of a composite
with exponents:

¢ = p‘il,pgz, B (5)

However, the non-uniqueness is irrelevant when testing for compositeness vs. pri-
mality.

11.4. Checking for Ethical or Moral Behavior

If we assume axioms representing specific ethics or morality could be precisely de-
scribed (which they cannot in general at present), the arithmetical representation and IPS
provide a way to test randomly-selected behaviors within a behavior space, or a subset of
it, such as AlI-human transaction classes, for ethical or moral behavior.

Given a behavior, we can determine if a behavior derives from any BCS axiom in
PTIME by testing if the behavior is a multiple of the axiom. Thus, if there are one or more
ethics or morality axioms, we can efficiently test if behaviors derive from them. However,
behaviors that are not derivable from the axioms are not necessarily unethical or immoral;
they are beyond the purview of the ethical axiom set and may require adjoining additional
axioms to permit their expression and resolve their ethical status.

Different ethical systems can co-exist, such as those of minor and adult civilians, au-
tonomous automobile, police, and military [56].

11.5. BPP Method 1: Random sampling of behaviors

The Verifier randomly specifies behaviors (formulas pre-screened to be wffs). This is
akin to randomly specifying a number and testing it for primality. The Prover applies a
BPP primality test and, if composite, gives a derivation from the axiom/inference rule set,
which is checkable in PTIME or O(1) time by the Verifier, or if relatively prime to the
axioms, claims the behavior to be unsafe.

11.6. BPP Method 2: Random sampling of formulae.

The Verifier randomly specifies a sequence of pi in the axiom/inference rule primes
set, which amounts to the derivation of a theorem, and gives the resulting composite. The
Prover tests for primality and provides a primality certificate or not to the Verifier.

11.7. BPP Methods 3 and 4: Multiple-prover versions of #1 and #2

Either of the above methods can be utilized with any number of Provers wherein they
cannot communicate with each other and thereby test consistency across Provers or ex-
ploit a deficiency in the pseudo random number sequence.

11.8. BPP Method 5: Behavior program correctness

Whereas in the prior methods we only consider safe AGI behavior by representing
safe behaviors as wffs and composites, we now use the representation to prove more gen-
eral behavior program correctness. The hypothesis is that incorrect programs or buggy
behavior may be unsafe. Formulae that are relatively prime to the system may be unsafe,
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or may be merely not resolvable by the system. In such cases, the test will indicate that
one or more axioms will need to be adjoined to the axiom set to extend the expressiveness
of the system so that it can resolve the desired additional behaviors.

Machine C is given machine P to simulate, i.e., to run as a subroutine (designated C?).
Using an IPS, C reduces the probability of P producing buggy outputs to an acceptably
low level.

An advantage of program correctness methods is they can be used dynamically as
AGI change their own programming, including during value-learning.

11.9. BPP Method 6: A SAT Representation of Behavior Control

A behavior tree can be represented using disjunctions at nodes and conjunctions to
specify the trajectory through the tree. The algorithms underlying the nodes and edges
are arbitrarily complex, but black-boxed in the representation. Thus, each trajectory
through the tree from roots to leaves (behavior) is specified by a satisfiable formula rela-
tive to the structure of the tree, and non-trajectories are unsatisfiable formulae. A Verifier
can then present desirable (‘safe’) or undesirable (“unsafe’) trajectories to the Prover to
determine whether the trajectory is computable by the tree, i.e., whether the BCS permits
or restricts given behaviors.

By the transitive reducibility property of NP-completeness, many more representa-
tions are possible [57, 58].

12. Probabilistically Checkable Proofs (PCP Theorem)

Assuming no asymptotic limits to AGI" behavior in a general sense, representations
of AGI behavior, such as axiom systems and CNF, will become increasingly complex.
Given an axiomatic system and a theorem/behavior, a Verifier can ask a Prover to create
a representation of its proof, serving as its validity certificate, such that the certificate can
be verified probabilistically by checking only a constant number of its bits rather than
every step [33, 59]. Since theorem-proving and SAT are both NP-complete, a similar mod-
ification of a CNF representation of BCS by a Prover would be subject to PCP methods, as
well as any other NP-complete problem representation. PCP methods further address Yam-
polskiy’s concerns over error-checking in extremely long proofs [18].

The ability of AGI to self-correct or to assist its designers in correction of value align-
ment and behavior is called ‘corrigibility” by Soares [21]. Miller et al. review and examine
how corrigibility can result in mis-alignment of values [14].

13. If ‘Safety’ Can Never Be Described Precisely or Perilous Paths Are Overlooked

If AGI ‘safety’, such as ethical constraints on behavior, cannot be described precisely
by humans, testing BCS with IPS methods can reduce the probability of unethical AGI
behavior, but perhaps falling short of virtual certainty and not proving safety. A system-
atic procedure could be followed as in Carlson ([10],Methods Sec. 2.1), testing BCS to flag
and eliminate the possibility of behavioral pathways to dangerous AGI taken from enu-
merations given by, e.g., Asimov [60], Turchin [6], Bostrom [3], Yampolskiy [2], Tegmark
[20]), and Miller et al. [14].

A related problem is overlooking potentially dangerous AGI pathways despite sys-
tematic efforts to identify and address them (e.g. in the sources just cited). For example,
Bostrom examines cases of AGI programmed to optimize paperclip production in which
unforeseen behavior turns fatal to humans [3].

Randomly assigning variables in a BCS and using MIPs to test for unsafe behavior
will reduce the probability of such occurring. Armstrong’s ‘chaining’ of the safety of suc-
ceeding AGI generations via the presumably increasing power of each generation to en-
sure its safety under jurisdiction of the succeeding generation is another approach [15].

14. Securing Ethics Modules via Distributed Ledger Technology
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Considering how to enforce a value system designed to be stable under self-modifi-
cation [61] or the evolution of learned value-alignment (see [8], e.g. Yudkowsky quote on
the fundamental problem of AGI modifying its own code), one preserving the fundamen-
tal ethic of voluntary transactions would be acceptable. More generally, here is an IPS
procedure prescribed as one gate an AGI must pass to be let out of the sandbox or as
Yampolskiy suggests, to improve itself in any way [62], or to access a restricted technol-
ogy:

1. A safe AGI ethics module E: is developed via simulation in the sandbox.

2. The safe AGI ethics E: is encrypted and stored as an immutable reference copy Eir

via DLT.

All AGIs of a given computational class are endowed with E:.

To alter the archived reference copy Eir requires a strong level Si of consensus.

5. To alter AGIv's personal copy of its ethics BT Eii requires a strong level Sz of consen-
sus, S; < °S;.

6. A smart contract requires AGI to present its identity credentials [10, 63].

The smart contract IPS compares AGIx’s E1i with Eir.

8.  If the individual copy of AGI: Eui is validated against Eir, the smart contract a) logs
the validation in a blockchain [64], b) issues a Declaration of Conformity [65], and c)
authorizes AGl is to be released from the sandbox or to access a restricted technology,
otherwise authorization fails.

W

N

15. Interactive Proof Procedure with Multiple Provers in the Sandbox

1. Initialization of multiple provers. A number of identical AGIs from a generation are in-
itialized with different conditions, which, along with the 0’ " tetratic progression of
their states, their state-space trajectories will quickly diverge.

6. A smart contract requires and records their identity credentials [63].

7. The Verifiers ask the Provers to attempt proofs (tree-traversals) of identical, ran-
domly-chosen formulae (behaviors).

8.  The proofs will be different but if the ethics and behavior control system are valid the
behaviors (theorems) will be within circumscribed limits.

9. If the sample of AGIs pass the IPS test, a smart contract a) logs the validation in a
blockchain [64], b) issues a Declaration of Conformity [65].

16. Conclusion

Even given an acceptable definition of ‘safe’” AGI, such as an AGI whose values are
‘aligned with humanity’s’, no known method to prove the validity of an architecture to
effect AGI safety has been presented and numerous obstacles to creating such a method
have been identified. A ‘hard-takeoff” envisions a rapid succession of increasingly power-
ful AGI" that could circumvent measures proven effective for AGI'. Interactive proof sys-
tems (IPS) allow a weaker Verifier to prove properties of AGI through interaction with a
more powerful Prover (consisting of one or more AGIs) with unlimited probability of cer-
tainty. Thus, IPS are a means to prove AGI safety between humans and the first AGI gen-
eration, and between successive AGI generations. For each AGI property to be proved
with IPS, a behavior control representation and one or more probabilistic algorithms,
which, alone or in combination, produce acceptably high odds of reliable proof of safe
behavior must be created. Certificates of AGI safety would be stored in blockchains to
eliminate untrustworthy and single-source, single-point-of-failure intermediaries and fa-
cilitate smart contract authorized access to AGI technology in an ongoing series of AGI
evolution. These methods are necessary but not sufficient to ensure human safety upon the
advent of AGL
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Appendix
Al. Logical Foundations of IPS

Here is a sketch of the essential logic underlying IPS with annotations pertinent to
proving safe AGI [33, 34].

A2. Deterministic Turing Machine

First, in contrast to a probabilistic machine, specify the prototypical deterministic Tu-
ring machine (DTM) model: Machine M, given an input string w from language A recog-
nizes A with error probability € = 0:

w € A - Pr[M accepts w] =1 (Completeness) (A1)

w & A - Pr[Mrejects w] = 1 (Soundness) (A2)

A3. Probabilistic and Nondeterministic Turing Machines

Like a nondeterministic machine (NDTM), instead of one transition function, a prob-
abilistic machine (PTM) has two transition functions &, §;, but instead of making a copy
of itself to follow all computational paths as does the NDTM, the PTM selects between
paths randomly (i.e., probability = V4 for each transition function). The key difference be-
tween PTM and a non-deterministic Turing machine (NDTM) is that the NDTM accepts a
language if any of its branches contains an accept state for the language while the PTM
accepts a language if the majority of branches terminate in the accept state. Unlike DTM
and NDTM, PTM accepts a language with a small probability of error € = 1 — majority,
set arbitrarily small [33, 34].

Intuitively one may get the mistaken impression that a probabilistic machine is less
powerful than a deterministic machine since it gives the probability of truth rather than
‘absolute” truth. In fact, computationally, probabilistic machines are more powerful than
deterministic machines since they can, in actual practice, solve a greater range of problems
by employing an arbitrarily low tolerance for error €. In fact, setting € = 272 results in
a far larger chance of error due to hardware failures than via the probabilistic algorithm
[34, 35], which also addresses the idea that advances in the physics of computation could
defeat a provability method [8]. Further, to the degree that civilization is run on scientific
foundations rather than irrefutable logical or mathematical truths, it rests on the same
probabilistic logic explicated here [28].

We specify a probabilistic Turing machine: Machine M, given an input string w from
language A recognizes A with error probability € if, for 0 <€ < % [34], or any stronger

condition, e.g., 0 < € < % [33]:

w € A - Pr[M accepts w] = 1 — € (Completeness) (A3)

w & A - Pr[Mrejects w] = 1 — € (Soundness)  (A4)

Thus, given a PTM machine accepts with a probability of error, arbitrary fractions
are used to intuitively establish probabilistic definitions of completeness and soundness,
akin to false positive and false negative tolerances. However, these one-iteration proba-
bilities are modulated via an amplification lemma to achieve the arbitrarily low error prob-
ability desired for the problem at hand. Given an error tolerance € of a machine Mi, we
run it repeatedly on machine M: (say k iterations) until the desired error tolerance €* has
been reached. A further restriction is needed to define an efficient PTM.

A4. Bounded Probabilistic Polynomial Time (BPP)

In the current scenario anticipating a potential conflict between humans and AGI,
we restrict these machines to be efficient with its current definition — to run in polynomial
time. Adding this condition within the amplification procedure defines the language class
BPP [33, 34]:
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Amplification Lemma. Let € be a fixed constant: 0 < € < % For any polynomial function
poly(n), there exists a PTM M1 operating with error probability € has an equivalent PTM M2
that operates with error probability 2-poly(n).

A different definition of efficiency may be used by AGI", for instance, QC-time efficiency,
in testing for safety of an even more powerful AGI"1.

Interactive Proof Systems

To the specification of BPP we add two functions, a Verifier (V) communicating with
a Prover (P), V < P, that replaces machine M in BPP, and a protocol for their communica-
tion that records their message (m#) history and the IPS accept state:

w€EA->Pr[V o Pacceptsw] =1 —¢€ (A5)
fori<0<k,iodd, P(w,r,m#, .. m#=m;,, (A6)

the final message in the history: m; = accept (A7)

The Prover has unlimited computational and other capabilities, while for the human-
AGI' IPS, the Verifier operates in PSPACE and PTIME and with current scientific
knowledge and methods.
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