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Abstract: In scientific and engineering computations, the efficient solution of partial differential
equations (PDEs) is of great significance. This paper proposes an innovative method based on the
combination of the U-Net neural network and the Fourier neural operator, aiming to improve the
accuracy and efficiency of solving PDEs. The unique encoder-decoder structure and skip connections
of the U-Net neural network can effectively extract and integrate spatial domain features, accurately
depicting the spatial structure of PDEs. The Fourier neural operator, by means of the Fourier transform,
deeply explores and processes features in the frequency domain, capturing the frequency characteristics
of the solutions of PDEs. By organically combining the two, this method not only preserves spatial
details but also makes full use of frequency domain information. It significantly reduces the model’s
dependence on large scale data and enhances its generalization ability. Experimental results show that
compared with traditional methods, this method performs outstandingly in various complex partial
differential equation(PDE) solving tasks, achieving higher accuracy. It provides a new and highly
promising solution for the solution of PDEs and is expected to be widely applied in related fields.

Keywords: neural operator; Partial differential equation; U-Net; Fourier transform

1. Introduction

In fluid mechanics, geophysics, biology, and many other fields, the partial differential equation
(PDE) model serves as a crucial tool for characterizing various phenomena. Related problems encom-
pass physical model building, the solution of partial differential equations, and parameter inversion.
The process of solving a partial differential equation involves obtaining a spatially accurate solution or
a numerical solution under the known partial differential equation and other constraints [1-4].

Traditional numerical solution methods for partial differential equations rely on discrete scheme
based finite difference systems, commonly referred to as the computational fluid dynamics method
(CFD). Examples include the Runge-Kutta method, the prediction correction method, the finite element
method [5], the finite difference method [6], and the finite volume method [7], among others. In contrast
to traditional solving methods, neural networks exhibit distinct advantages in solving differential
equations. Neural networks possess a powerful data fitting capacity, and even a small scale neural
network can handle simple partial differential equations [8]. Employing the neural network approach
to solve differential equations effectively addresses issues such as poor adaptability and conditional
limitations of grid sections. Compared with traditional numerical methods, the neural network
method requires fewer sampling points to achieve higher accuracy. Moreover, once a neural network
model is trained, it can be directly utilized to calculate the numerical results at any point within
the obtained domain. Since the 1990s, some scholars have initiated research on the mathematical
foundations and methods of using neural networks to solve differential equations. In 1990, Hornik et
al. [9] demonstrated that under certain conditions, a multilayer neural network can approximate any
function and its derivative, even when the function only has a generalized derivative. This finding
laid the groundwork for neural network based solutions to partial differential equations. In 1998,
Lagaris and Likas [10] put forward a method for solving the first boundary value problem using an

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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artificial neural network (ANN). In 2011, Kumar and Yadav [11] investigated multilayer neural network
(MLP) and radial basis function neural network (RBF) models for solving differential equations, and
compared and summarized the applications of MLP and RBF in this regard. In 2018, Winovich et al.
[12] proposed a quantitative uncertainty convolutional neural network (ConvPDE-UQ) for the problem
of heterogeneous elliptic partial differential equations on different domains. Also in 2018, Long and
Dong et al. [13,14] introduced a novel feed forward neural network (PDE - Net). Its core concept is to
approximate the differential operator with a convolution kernel, construct a network to approximate
the nonlinear partial differential equation system, and achieve long term prediction of its solution.
A convolutional network is essentially an input to output mapping, capable of learning numerous
mapping relationships between input and output without the need for any precise mathematical
expressions between them. However, due to the increase in dimension, the solution accuracy of the
convolutional neural network model [15] is slightly diminished. Most of the above mentioned neural
network based methods for solving partial differential equations are focused on the initial boundary
value problem. The network takes space coordinates or time variables as inputs and outputs the
solution values in space. When constructing solutions by integrating partial differential equations with
neural networks, the optimization objectives typically consist of two parts: the errors at the initial -
solution and boundary value sampling points, and the errors at the sampling points within the domain
subject to the differential equation constraints.

In addition, when we need to rapidly obtain accurate solutions for a set of partial differential
equations, one approach we can adopt is the neuronal operator method. This method can be learned
based on the mapping from the source-term function to the solution function of the partial differential
equation set [16].

The Fourier transform holds a significant position in deep learning models. It aids in the proof
of the universal approximation theorem [17] and can also accelerate the training of convolutional
neural networks [18]. Keivan Alizadeh Vahid et al. [19] proposed extending the butterfly operation in
the traditional fast Fourier transform and applying it to the design of convolutional neural network
architectures. They demonstrated that the computational complexity of the alternative network layer
through butterfly transformation was reduced from N to N log N. Experiments also confirmed that the
proposed scheme effectively enhanced the model’s accuracy. Integrating the Fourier transform into the
neural network model can effectively decrease the model’s computational complexity. Moreover, the
physical trends in the data can be effectively captured through the Fourier transform, which offers great
advantages for solving partial differential equations. Li [20] proposed the neural operator method,
which can be evaluated at any point in time and in any space. Additionally, a general approximation
theorem for neural operators was summarized and proven. Li [21] put forward the Fourier neural
operator, where the integral operator operates directly in the Fourier space through parameterization.
Evidently, the neural operator approach is a fully data-driven method, necessitating a large number
of high-quality datasets. However, in the analysis of complex physical, biological, or engineering
systems, the cost of data acquisition is often prohibitively high. As a result, we inevitably encounter the
challenge of drawing long-term conclusions with partial information, making these methods inefficient.
Kushnure et al. [22] proposed an architecture named MS U-Net for multi-scale feature representation
and recalibration. This architecture uses the Res2Net module to retain the contextual information
of segmented objects, and it squeezes and motivates the network to recalibrate multi-scale feature
channels, thereby enhancing the network’s ability to describe high-level features. In the literature [23],
for the same data preprocessing, the feature representations of each modality learned by the network
are fused at later stages. In the last layer of convolution, a larger-scale feature map is connected to
achieve the communication of contextual information between feature maps of different sizes.

This integration of multi-scale feature representation and recalibration mechanisms allows the
network to better capture both local and global information, which is crucial for solving complex
partial differential equations. By leveraging these advanced techniques, the model can achieve higher
accuracy and efficiency in solving PDEs, even in scenarios where data is limited or incomplete.
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In summary, the combination of Fourier transforms, neural operators, and multi-scale feature
recalibration provides a powerful framework for solving partial differential equations. These methods
not only reduce computational complexity but also enhance the model'’s ability to capture physical
trends and high-level features, making them highly effective for a wide range of applications in science
and engineering.

The model extracts information features in the frequency domain through Fourier transform,
capturing the key information of the equations, and utilizes convolution neural networks to extract the
high-level internal features of the system. By employing a connection-based mechanism for reducing
the number of network layers, the model can efficiently solve partial differential equations (PDEs)
from both the global and internal characteristics of the system. U-Net extracts image features in the
form of convolution, whose essence lies in computing the derivatives of image pixels to capture the
variations in the image. On the other hand, the Fourier neural operator calculates derivatives in the
form of filter operators, enabling rapid computation through convolution functions.

Building on this foundation, this paper proposes a Fourier neural operator-based U-Net neural
network model. This model approximates higher-order differential operators using multiple low-
order constrained convolution kernels, thereby better characterizing the properties of the differential
equations. In the model design, the feed forward neural operator serves as the core component,
containing tunable parameters that can be continuously optimized through training. This design not
only enhances the model’s solving accuracy but also supports long-term stable numerical solutions, as
validated by experimental results.

2. Preliminaries
2.1. Parametric Partial Differential Equations
Let G be the nonlinear operator, general parametric PDEs can be expressed as: G(u,s) = 0.
Where u is the input function, and s is the solution to an unknown partial differential equation
(and also a function).
Our PDE solution operator will be G(u) = s.
We can express the general solution of our PDE as the operator G(u)(y) = s(y).
A common instantiation is the approximation of the second order elliptic PDE:

=V - (a(x)Vu(x))
u(x)

fx), xeD 1)
0, x € 0D (2)

Where u is our target solution object, f(x) is the right end term, which is regarded as a forcing term in
many physical equations, and this a(x) is the parameter, a € A, where A is the parameter space. If we
write it in the form of the operator, we express it in the following form

(Lau)(x) = f(x),x € D 3)
u(x) =0,x € 0D 4)
Where £, = —div(aV), the subscript 2 means the operator £ at the parameter a.

Under rather general conditions of £,;, we can define the Green function G : D X D — R as the
unique solution to the problem:
EuG(',x) :(Sx (5)

To be concrete we will consider infinite-dimensional spaces which are Banach spaces of real-
valued functions defined on a bounded open set in R?. We then consider mappings F' which take
input functions to a PDE and map them to solutions of the PDE, both input and solutions being
real-valued functions on R%.
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2.2. PDE Setting

Let A and U be separable Banach spaces and 7' : A — U a (typically) non-linear map.

For some bounded, open domain D € R and a fixed source function f. For a given function g, the
equation has a unique weak solution u, so we can define the solution operator F ' as the map a — u of
the function to the function.

Our goal is to learn an operator F to approximate F' by using a limited set of observed input-
output pairs {a;, uj}jli 1» where each a; and u; are a function on D.

We aim to build an approximation of 7 by constructing a parametric map
F:iAx0—-U (6)

for some finite-dimensional parameter space 6 and then choosing 6t € @ so that F(-,0") ~ FT.
So our optimization problem goal is the minimization problem of the loss function

1 N . 4
: + _ 2 i — (i) _ O
min Eq || (a) = Fo(a)| [ gg},Ni;Hu Foa )|l 7)

which directly parallels the classical finite-dimensional setting.

This is an example of a quote.

3. Algorithm
3.1. Setting of Input Signal and Function Space

The input signal u(x) serves as the key factor for a model to gather characteristic information,
and its quality sets the upper limit of the model’s achievable accuracy. In this paper, we primarily
consider two function spaces:

The Orthogonal (Chebyshev) Polynomial Component of the Gaussian Random Field (GRF) and
the Gaussian Random Field (GRF).

Typically, we employ a zero - mean Gaussian random field, expressed as:

u~G(0,ki(x1,x2)) (8)

where the covariance function is the Gaussian kernel given by:
ki(x1,x2) = exp(— a1 — xo|[2/21%) )

The length scale [ here is of great significance as it determines the smoothness of the sampling
function. When the value of / is large, the resulting u function will be smoother, which is of great
importance for studying phenomena at different scales.

After selecting the function space, sampling needs to be carried out from this space. The specific
approach is to scatter points within the specified region to obtain sample points. Subsequently, the
(u,x,y) is integrated, and the resulting value is used as the input data of the model. By constructing
the model in this way, an approximate solution y is obtained. To comprehensively evaluate the
performance of the model, multiple different test sets u are generated by randomly selecting data, so
as to examine the performance of the model under different data distributions.

Gaussian random field with the radial-basis function kernel:

Suppose there is a stochastic process X(t) that follows a specific Gaussian random field distribu-

tion, thatis:X(t) ~ G(0,exp(— Ix?zy\z ).
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Then, X () can be represented by the following integral from:
1 1 12w? 1 1 2w?
X(t) = V2(m)1 /+(z)z cos(wt) exp(——g—)dW (w) —V2(m)1 /+(1)z sin(wt) exp(——g—)dB(w),
R R
(10)

In the above expression, W and B are independent standard Brownian motions, which introduce
randomness to X(t). To further simplify the expression, a variable substitution is carried out, apply
the change of variable A = [w and. After the transformation, X(f) can be rewritten as:

2 1 A A2

+cos(&t) exp(—%)dW()&)—\fz(n)l/+sin(—t) exp(— 2 )dB(A). (1)

X = fz(")%/ ] RN 8

R
Applying a linear interpolation IT; on the interval [t;, t;,1], then

2

B[(X(1) - ThX()) = 200 [ ((1-T0) cos(%t))zexp(—%)d/\

R

1 Ao A2
+2(m)? [ (1 =TI sin( ) exp(~ 7 )dA
R+ l 4
1 A A? 12)
< (@}t —t)* [ (PFexp(=T)dr
(tip1 — 1)
= 247'[174,
where we recalled the error estimate of the linear interpolation on [4, b] (by Taylor’s expansion)
1
(I-TI)g(D)] = 5(b —a)?|f"()], (13)
where ¢ lies in between a and b. Then by the Borel-Cantelli lemma, we have
(tip1 —1:)*€
|X(t) —ILX(t)| <C €>0, (14)

12 ’

where C is an absolute value of a Gaussian random variable with a finite variance. Therefore,
taking a piecewise linear interpolation of X(t) with m points will lead to convergence with order
O(=17)-

m2]2

3.2. Structure Based on U - Net Neural Network and Fourier Neural Operator

The U-Net neural network, as a classic deep-learning architecture, has a unique structure. The
first half is mainly responsible for feature extraction, while the second half focuses on the up-sampling
operation. This structure is called the encoder-decoder structure. In this study, a Fourier neural
operator with adjustable parameters is introduced. By skillfully integrating the feature information
extracted by the U-Net neural network into the Fourier operator, the operational efficiency and solution
accuracy of the algorithm can be significantly improved.

Stepl: When constructing the algorithm framework, P and Q are defined to represent the left -
contracting path and the right-expanding path of the U-Net neural network respectively:

P:RY x @ — RY

(15)
(P)(x,0r) = P(u(x),0r)

Among them, df represents the number of channels used in the neural network. Usually, the value of
dy is greater than d; or dp. In the actual operation, the left - contracting path P of the U-Net is used to

d0i:10.20944/preprints202502.1895.v1
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lift the input data to a high-dimensional channel space, and then the right - expanding path Q is used
to project the data in the channel space to the final output space.

The left encoder network P has a structure similar to that of a convolutional neural network. For
a given input function a: a : D € R%4, its operation process includes two repeated 3 x 3 convolution
operations, a rectified linear unit (ReLU activation function), and a 2 x 2 max-pooling layer. When
performing the down-sampling operation, the algorithm step size is set to 2.

Convolutional layer:

Conv(a, W,b) =axW+b (16)

. Where * is convolution operation, W is convolution kernel and b is bias.
ReLU activation functions:

ReLU(z) = max(0,z) (17)

Pooling layer: The maximum pooling layer is usually used to reduce the spatial dimension and
help to obtain. Enter the features of the image:

MaxPool(a) = max (a) (18)

window

Input a into the encoder (left-contracting path P) of the U-net neural network. Through convolution,
ReLU activation function, and max-pooling layer operations, the input is lifted to the high dimensional
channel space R/,

Step2: Then we introduce the nonlinear integral Fourier operator (x(¢)v)(x) = F~1(R; - Foy)(x)

F;: {Z)t Dy — Rdvf} — {Z)t+1 Dy — Rdvf‘*'l },t S {0, 1,2,.., T} (19)

Apply four-layer integral operators and activation functions to the obtained feature v;:, and update it
specifically according to the formula

o1 (x) = o (Woy(x) + FH(Re(K) - For) (x)) (20)

Where ¢ is an activation function GELU, R; : Z@ toC4+1%4t ig a linear transformation. It can handle
lower Fourier patterns and filter out higher patterns, W inR'”"*" and ¢ into the nucleus xy : R2(d+1)
to R™*", this is all something to learn from the data. Step3: The resulting result v; is again input into
the U-Net neural network decoder Q, deconvolved, jump connections, and other operations, which
help to retain high-resolution details.

Q:RY x© — R%
(Q)(x,0g) = Q(u(x),6p)

Similar to the encoder, the decoder also applies the convolution and activation functions to handle the

(21)

feature graph.
Input the updated result into the decoder (right-expanding path Q) of the U-net neural network.
Process it through operations such as de-convolution and skip connection, and finally output u(x).
Step4: The final output results and the original sample to calculate the loss through the loss
function, and finally through the loss function to optimize the U-Net network and the Fourier operator
to obtain the optimal parameter value.

L = MSEr + /\MSEbc/initial- (22)
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Where
1= . = ,
MSEbc/initial:ﬁZ(V(tE)/xf))—}”E)) and MSEF = & (g 0) — Fola))  (23)
f Nf f Ny

Here, {tf), xé, aé, ué}fi 1 represents the initial and boundary training datasets. The loss term MSEj ipitial
corresponds to constraints imposed by the initial data and boundary data.

L = MSEg + \'MSE; (24)
1 Ny 1 Nr . .
MSE; = 3 16 ) Pan MSE = 53" F'(e) — Fofe). @)
i=

Here, the set {tj,, x}}f\i 1 represents the collocation points for f(t,x), with the loss function MSEy
enforcing the structural constraints imposed by equations.

Optimize the parameters of the U-Net network and the Fourier operator through the loss function
to obtain the best parameter values and minimize the loss.

o e

[-H

12
—
1 2
—
—

|
i

I:I*)‘Fnunsmayeﬂ ‘ﬁ ... —> | Fourier Layer 4 | wep [N wemp

=5 conv,Relu
Max pool
# up-conv
= skip connection

Fourier Layer

Figure 1. The architecture of the neural operators.

(a) The complete structure of the neural operator: The entire operation process of the neural
operator starts from the input a. First, the input data is upgraded to a high-dimensional channel space
through the U-Net encoder. Then, four layers of integral operators and activation functions are applied
to deeply process the data. After that, the processed data is sent to the target dimension through the
U-Net decoder, and finally, u is output.

(b) Fourier layer: The operation of the Fourier layer starts from the input v. First, the Fourier
transform F is applied to transform the data into the frequency domain. Then, a linear transformation
R is performed on the low-frequency signals to filter out the high-frequency signals. After that,
the inverse Fourier transform F~! is applied to transform the data back into the time domain. At
the bottom, a local linear transformation W is also applied to further process the data. vyq1(x) =
o(Wvi(x) + (k(a; @)ve) (x)

The above formula can be seen as a combination of a linear connection and a nonlinear transfor-
mation, and then through the activation function.

The nonlinear transformation « is implemented through a kernel integration operator: («(a; ¢)v¢)(x) =
Jox(x,y,a(x),a(y); p)vi(y)dy

The ch01ce kernel form is x¢(x,y,a(x),a(y)) = xp(x — y), the above operation is formally similar
to the convolution operation, so it can be expressed by the Fourier transform: (x(a;¢)v¢)(x) =

FH(F () F(vr)) (x)
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A parameter matrix Ry is introduced, which can transform the lower Fourier patterns and filter
out the higher patterns.The Fourier neural operator is finally expressed as follows: (k(a; ¢)v;)(x) =
FH(Ry)F(v1)) (%)

Where x € D, Fvi(x) € C%, Ry(x) € C%>*4v is both of A function space.

4. Experiment

This section mainly uses the UNO model to solve the 1-d Burgers’ equation, the 2-d Darcy Flow
equation and the 2-d Navier-Stokes equation. First, we introduce the experimental configuration
and the experimental parameter settings. Then explain the experimental effect section. Finally, solve
the partial differential equation according to the model framework introduced and proposed in this
chapter, comparing the merits of this model for solving partial differential equations, we get the
solution speed, the solution result, and the error with the real solution of the model in the three
equations.

4.1. Burgers

In this paper, we choose the 1-d Burgers equation, which is a nonlinear partial differential equation.
The equations considered in this paper are as follows, formally:

u Ju %u
g"’ua — ﬂﬁ,x E (0,1),t 6 (0,1],

u(x,t=0) =up(x),0 <x <1

Where u(x, t) is the unknown function, which depends on the time variable ¢ and the spatial variable
x, i € Ry is the viscosity coefficient, the initial condition is uy(x) € Lf,e,((o, 1);R), and the boundary
condition is the periodic boundary condition.

According to ug(x) randomly sampling ug ~ u, 4 = N(0,625(—A + 25I)~2), modes = 16, width
= 64, batch size=20. Forced term =0, viscosity coefficient u = 0.1, grid 2!3 = 8192, other grids directly
subsampled. Network input a(x) = u(x,t = 0) = up(x), output u(x,t = 1), we have 8192 a(x) in 2048
grid samples, here is the average sampling, neural network input dimension (20,128,2), input neural
operator dimension after dimension (20,128,64), the accuracy of the equation label determines the
model accuracy, if the label accuracy is poor, the model has no sense.

The approximate solution is u, and the true solution is uacc, with an error of O(hz), U — Ugee =
O(h?). The solver is GPU, the error is G(f, x,y) — u(x,y) = O(h?), G training label is approximate
solution.

G(f,%,y) = tace(x,y) = G(f,x,y) = u(x,y) + (%, y) = tace(x,y) = G(f, %,y) — acc(x,y) = O(H?)

It is expected that any f=net (x,y) has G (f, X, y) satisfying the solution constraint regularization of the
corresponding PDE.
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Figure 2. (a) 100 solutions visulization.(b) 1000 solutions visulization. (c¢) 2000 solutions visulization. (d) 8000

solutions visulization.

Figure 2 randomly intercepts several algorithm results from different periods, showing the error

between the prediction and the true value of the algorithm, without much change to the naked eye,

and the visualization effect is good.

d0i:10.20944/preprints202502.1895.v1
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Figure 3. (a) Epochs(b) Algorithm contrast.

Table 1. Experiment 1 results.

Network s=64 s=128 =256 s=512 s=1024 $=2048 s=4096 $=8192
MGKN 0.0187 0.0223 0.0243 0.0355 0.0374 0.0360 0.0364 0.0364
GKN 0.0392 0.0325 0.0573 0.0614 0.0644 0.0687 0.0693 0.0714
PCANN 0.042 0.0391 0.0398 0.0395 0.0391 0.0383 0.0392 0.0393
FCN 0.0827 0.0891 0.1158 0.1407 0.1877 0.2313 0.2855 0.3238
GCN 0.3211 0.3216 0.3359 0.3438 0.3476 0.3457 0.3491 0.3498
FENO 0.0024 0.0063 0.0063 0.0066 0.0048 0.0060 0.0069 0.0024
UNO 0.0021 0.0032 0.0020 0.0023 0.0045 0.0021 0.0060 0.0018

Figure 3 compares the errors as the number of iterations increases when the subsampling rate
varies. Moreover, we can see that when the subsampling rate is 3 and 5, the error is minimized and
the algorithm is better than other cases. It can be seen from the algorithm comparison diagram on
the right of Figure 3 that the different algorithms exhibit the ability to solve the partial differential
equations in the one-dimensional Burgs equation experiment. The UNO model uses convolution to
extract physical feature information. The jump connection reduces the information loss of the model.
The results are more accurate and smaller than other algorithms, which is better than other algorithms.

4.2. Darcy Flow

In this paper, we choose the steady-state 2-d Darcy flow equation for a second-order linear elliptic
partial differential equation.

=V - (a(x))Vu(x) = f(x),x € (0,1)?

u(x) =0,x € 9(0,1)?

Where the boundary condition is the Dirichlet boundary condition, a is the diffusion coefficient,
a(x) € L°((0,1)%R), u € H}((0,1)%R) is the solution, and the external force f(x) € H=1((0,1)%R).

We processed the dataset, first 4 = N (0,625(—A + 91)~2)) is a probability measure with zero
Neumann boundary conditions on LaPraaca, where Vx > 0, ¢(x) = 12and¥x < 0,¢(x) = 3. The
external force is fixed to be f(x) = 1. The coefficient a(x) was sampled from y, and the solution
u was obtained using the traditional finite element method on the 64 x 64 and 256 x 256 grids in
Matlab. Datasets with different resolutions can be generated by downsampling. We parameterize a
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two-dimensional Fourier neural operator consisting of four Fourier layers, with 20 frequencies per
channel, width = 64.
The loss function can be written in the following form:

MSEf =~V - (a(x))Vu(x) — f(x)

In the experimental section, the FNO model, ResNet model, TFNET model, and UNO model were
used to solve the 2-d Darcy flow equation.
The true and model solutions of the equations and their errors are shown in Figuer:

Ground Truth Approximation Error
0.0000
0.010 0.010
0.0000
0.005 0.005
0.0000
0.0000
Ground Truth Approximation Error
0.0000
0.010 0.010
0.0000
0.005 0.005
0.0000
Ground Truth Approximation Error
0.015 0.015 e
0.010 0.010 0.0000
0.005 0.005 0.00001
0.0000i
Ground Truth Approximation Error 1e—7
0.010 0.010 4
0.005 0.005 -
0
Ground Truth Approximation Error
0.010 0.010 0.00000
0.005 0.005 0.0000/
0.0000

Figure 4. Visualization error map

Figure 4 shows the contrast between the true and predicted values from 1s to 5s and the error
situation, which can be seen per second.
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Figure 5. (a) Fourier layer number analysis Fig.(b) Visualization error map.

Figure 5 left figure shows that the number of Fourier neural operator layers is different. When the
number of Fourier neural operator layers is 1, it takes the least time and the test error is the largest.
When the number of levels increases, the time-consuming number increases, but the test error becomes
smaller. According to the need, three or four and five layers are the most reasonable, depending
on the situation, here take four layer Fourier operator. The right image introduces the effect of the
different number of Fourier neural operator layers and the filtered models on the algorithm error as
the number of iterations increases. As the number of iterations increases, the error becomes smaller.
When the four-layer Fourier neural operator and the filtered out movies are 24, the effect is better and
the performance is better. Then the algorithm model selects the four-layer Fourier neural operator.

—8— NN
-8 FCN
—8— PCANN
—8— RBM
8- GNo
10-1 4 -8 MGNO
FNO
8- uNo

Test error

Resolutions s

Figure 6. The training error plots for each model.
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Table 2. Experiment 2 results.

Network s=85 s=141 s=211 s=421
NN 0.1716 0.1716 0.1716 0.1716
FCN 0.0253 0.0493 0.0727 0.1097
PCANN 0.0299 0.0298 0.0298 0.0299
RBM 0.0244 0.0251 0.0255 0.0259
GNO 0.0346 0.0332 0.0342 0.0369
MGNO 0.0416 0.0428 0.0428 0.0420
FNO 0.0122 0.0124 0.0125 0.0099
UNO 0.0108 0.0109 0.0109 0.0098

It can be seen from Figure 6 that when different algorithms contrast error maps at resolutions of
85 x 85,141 x 141, 211 x 211, 421 x 421, we can see that UNO has lower and more stable error loss
values. Compared than the most similar FNO algorithm.

4.3. Navier-Stokes

In this paper, the incompressible fluid equation of motion namely the two-dimensional Navier-
Stokes equation is chosen for experiments. The equation form used in this paper is as follows:

orw(x, t) +u(x, t)Vw(x, t) = vVw(x, t) + f(x),x € (0,1)%,t € [0, T]

Vu(x,t) =0,x € (0,1)%,t € [0, T]
w(x, t =0) =wp(x),x € Q.

Where u(x, t) shows the fluid velocity, V shows the gradient operator, uy(x) € L%er ((0,1); R)represents
the initial condition, namely, the initial vorticity, v € R4 represents the viscosity coefficient,and
f(x) € L%er((O, 1);R) for the external force acting on the fluid. This article sets the external force
tof (x) = 0.1(sin(27(x1 + x2)) + cos(m(x1 + x2))).

The experimental scenario is the vorticity form of the sticky non-compresdable NS equation in
2 dimensions. The vorticity field is simplified by directing on x and y to obtain the velocity field u
and v. Using the NS equation. Using the vorticity equation as the loss function, the output layer of
the neural network needs a neuron to represent w, and the automatic differentiation only needs to
guide this one variable, which is often less difficult to optimize. This scenario inputs the vorticity field
variable at time t at [0,10) to the FNO model, with a resolution of 64 x 64 and 256 x 256, that is, to
generate the dataset, the initial vorticity condition wy was sampled randomly from the distribution
wy ~ w,p = N(0,732(—A + 491)=25), with periodic boundary conditions. The input variable
dimension is [64,64,10]and[256,256,10]. It is hoped that the FNO model can output the value of the
vorticity field at time ¢ > 10, that is, learn the evolution relationship of the vorticity time series, and
realize a model similar to the time series prediction.

The loss functions are defined as follows:

MSEf = oqw(x, t) +u(x, t)Vw(x, t) —vVw(x,t) + f(x)

d0i:10.20944/preprints202502.1895.v1
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Figure 7. Visualization error map

Figure 7 shows the images of true and predicted values from 1 second to 10 seconds respectively
from top to bottom. As can be seen from the image comparison per second, the visualization results
are relatively consistent with small error.

— UuNO &~ TFNet

Test error

/

0.00
0 100 200 300 400 500 v=le3 v=le-4 v=le-4 v=le-5
T=50 T=30 T=30 T=20

Epochs N=1000 N=1000 N=10000 N=1000

Resolutions s
(a) (b)
Figure 8. (a) Epochs.(b)Resolutions.
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Table 3. Experiment 3 results

total number of each round of v=le-3  v=le-d v=le-4 v=le-5

Network . . . T=50 T=30 T=30 T=20
parameters training takes time N=1000 N=1000 N=10000 N=1000
UNO 414,517 38.99s 0.0128 0.1879 0.0834 0.1856
FNO 6,558,53 45.80s 0.0135 0.1551 0.0835 0.1524
ResNet 266,641 78.47s 0.1716 0.2871 0.2311 0.2753
TF-Net 7,451,724 47.21s 0.0225 0.2253 0.1168 0.2268

From Figure 8, FNO and UNO are found to have better results. By comparing time and data
points,suitable algorithms are selected. The error of UNO and FNO algorithm can continue to decrease
steadily with the number of iterations, which has great advantages compared with other models.
The error of UNO algorithm drops faster, with an obvious decrease process at 100, 200, 300 and 400,
showing a continuous jitter decreasing trend, and has obvious advantages in solving the equation.
The RENET and TENET models are less effective, and compared with UNO and FNO, the curves are
relatively smooth and the errors are larger during the iteration. Figure 8 also compares the experimental
error of UNO and FNO, RENET, and TFNET on the dataset. The figure shows the data points N=10000
and T=50. When the viscosity coefficient is 1¢ — 3, the UNO error is the smallest, and UNO has higher
accuracy. When the data point N=1000, UNO is worse than FNO, but when the data pont increases,
N=10000, the UNO error is always the smallest compared with other algorithm models.

5. Conclusions

This paper proposes an innovative method based on the combination of U-Net neural networks
and Fourier neural operators, aiming to improve the accuracy and efficiency of solving partial differen-
tial equations (PDEs). By integrating the unique encoder-decoder structure and skip connections of
U-Net with the deep feature processing capabilities of Fourier transforms in the frequency domain,
the method fully leverages the strengths of U-Net in spatial feature extraction and the capabilities of
Fourier transforms in frequency-domain feature processing. This combination not only preserves spa-
tial details but also captures both high-frequency and low-frequency characteristics of PDE solutions
through frequency-domain analysis, thereby significantly enhancing solving accuracy. Experimental
results demonstrate that, compared to traditional methods, this approach performs exceptionally well
in various complex PDE-solving tasks, achieving higher accuracy. While the method reduces reliance
on large-scale datasets, high-quality datasets remain crucial for training the model when dealing
with complex physical systems. Future research could explore ways to further improve the model’s
generalization ability in data-scarce scenarios.
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