
ON MAHLER EXPANSION OF p-ADIC GAMMA FUNCTION
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Abstract. In this paper, we investigate several relations for p-adic gamma function by means of their
Mahler expansion and fermionic p-adic q-integral on Zp. We also derive two fermionic p-adic q-integrals
of p-adic gamma function in terms of q-Boole polynomials and numbers. Moreover, we discover fermionic
p-adic q-integral of the derivative of p-adic gamma function. We acquire a representation for the p-adic
Euler constant by means of the q-Boole polynomials. We �nally develop a novel, explicit and interesting
representation for the p-adic Euler constant including Stirling numbers of the �rst kind.

1. Introduction

Let N := f1; 2; 3; � � � g and N0 = N[ f0g. Throughout this paper, Z denotes the set of integers, R denotes
the set of real numbers and C denotes the set of complex numbers. Let p be chosen as an odd �xed prime
number. The symbols Zp, Qp and Cp denote the ring of p-adic integers, the �eld of p-adic numbers and the
completion of an algebraic closure of Qp, respectively. The normalized absolute value according to the theory
of p-adic analysis is given by jpjp = p�1. The parameter q can be considered as an indeterminate, a complex
number q 2 C with jqj < 1, or a p-adic number q 2 Cp with jq � 1jp < p�

1
p�1 and qx = exp (x log q) for

jxjp � 1. The q-analogue of x is de�ned by [x]q = (1� qx) = (1� q). It is easy to show that limq!1 [x]q = x

for any x with jxjp � 1 in the p-adic case (for details, cf. [1-10]; see also the related references cited therein).
Let f be uniformly di¤erentiable function at a point a 2 Zp, denoted by f 2 UD (Zp). Kim [7] originally

introduced the fermionic q-Volkenborn integral (or fermionic p-adic q-integral on Zp) of a function f 2
UD (Zp), as follows:

I�q(f) =

Z
Zp
f (x) d��q (x) = lim

N!1

1

[pN ]�q

pN�1X
k=0

(�1)k f (k) qk. (1.1)

Note that taking q ! 1 yields the familiar p-adic fermionic integral given by
R
Zp f (x) d��1 (x) =

limN!1
1
pN

PpN�1
k=0 (�1)k f (k), see [3,7-9].

Let f1(x) = f(x+ 1). By (1.1), the following integral equation holds true, see [7]:

qI�q(f1) + I�q(f) = [2]q f (0) , (1.2)

which intensely preserves usability in introducing diverse generalizations of several special polynomials such
as Euler polynomials, Genocchi polynomials and Changhee polynomials. As a general case of (1.2), Kim [7],
Korean mathematician, gave the following integral equality for fn(x) = f(x+ n):

qnI�q(fn) + (�1)n�1 I�q(f) = [2]q
n�1X
r=0

(�1)n�r�1 qrf (r) .
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The usual Boole polynomials Bln(x) are de�ned by means of the following generating function (cf. [9]):
1X
n=0

Bln (x j! )
tn

n!
=

1

1 + (1 + t)
! (1 + t)

x
=

Z
Zp
(1 + t)

x+!y
d��1 (y) .

When ! = 1, we have Bln(x j1) := 2�1Chn(x) which are the familiar Changhee polynomials de�ned by the
following generating function to be (cf. [8])

1X
n=0

Chn(x)
tn

n!
=

2

2 + t
(1 + t)

x . (1.3)

In the case x = 0 in the (1.3), one can get Chn(0) := Chn standing for n-th Changhee number (cf. [3; 8]).
The q-Boole polynomials of the �rst kind are de�ned by means of the following fermionic q-Volkenborn

integral (cf. [8; 9]; see also the references cited in each of these earlier works):
1X
n=0

Bln;q (x j! )
tn

n!
=

1

1 + q

Z
Zp
(1 + t)

x+!y
d��q (y) =

1

1 + q (1 + t)
! (1 + t)

x . (1.4)

The q-Boole polynomials of the �rst kind can be represented by

Bln;q (x j! ) = [2]�1q
Z
Zp
(x+ !y)n d��q (y) , (1.5)

where (x)n be falling factorial given by (cf. [1-3; 8; 9])

(x)n = x (x� 1) (x� 2) � � � (x� n+ 1) . (1.6)

In the special case, Bln;q (0 j! ) := Bln;q (!) is called n-th q-Boole number.
Upon setting ! = 1, we have Bln;q(x j1) := [2]�1q Chn;q(x) which are de�ned by

Chn;q(x) =

Z
Zp
(x+ y)n d��q (y) .

Taking x = 0 into the (1.4) gives Chn;q(0) := Chn;q being called n-th q-Changhee number. It is obvious
that limq!1 Chn;q (x) := Chn (x), see [3].
The q-Boole polynomials of the second kind are de�ned by means of the following fermionic q-Volkenborn

integral, see [8]:
1X
n=0

cBln;q (x j! ) tn
n!
=

1

1 + q

Z
Zp
(1 + t)

x�!y
d��q (y) =

(1 + t)
!

q + (1 + t)
! (1 + t)

x . (1.7)

The q-Boole polynomials of the second kind can be represented bycBln;q (x j! ) = [2]�1q Z
Zp
(x� !y)n d��q (y) . (1.8)

When x = 0, we have cBln;q (0 j! ) := cBln;q (!) which is called the q-Boole numbers of the second kind.
In recent years, the Boole and the Changhee polynomials in conjunction with their many generalizations

studied and investigated by diverse mathematicians possess multifarious applications in p-adic analysis and
q-analysis, cf. [3; 8; 9] and references cited therein.
The formula (1.6) satis�es the following identity:

(x)n =
nX
k=0

S1 (n; k)x
k, (1.9)

where S1 (n; k) is Stirling number of the �rst kind (cf. [1-3; 8; 9]).
The following relation holds true for n � 0:Z

Zp

�
x+ !y

n

�
d��q (y) =

nX
m=0

!mS1 (n;m)Em;q

�x
!

�
, (1.10)
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where Em;q (x=!) is m-th q-Euler polynomials with the value x=! de�ned by (cf. [8])
1X
n=0

En;q (y)
tn

n!
=

Z
Zp
(x+ y)

n
d��q (x) =

1 + q

1 + qet
eyt:

Note that when y = 0, we have En;q (0) := En;q called n-th q-Euler number (see [8]).
In this paper, we investigate several relations for p-adic gamma function by means of their Mahler expan-

sion and fermionic p-adic q-integral on Zp. We also derived two fermionic p-adic q-integrals of p-adic gamma
function in terms of q-Boole polynomials and numbers. Moreover, we discover fermionic p-adic q-integral
of the derivative of p-adic gamma function. We acquire a representation for the p-adic Euler constant by
means of the q-Boole polynomials. We �nally develop a novel, explicit and interesting representation for the
p-adic Euler constant including Stirling numbers of the �rst kind.

2. The q-Boole Polynomials Associated with p-Adic Gamma Function

Throughout this paper, we suppose that t; q 2 Cp with jqjp < p
� 1
1�p and jtjp < p

� 1
1�p . In this chapter, we

perform to derive some relationships among the two types of q-Boole polynomials, p-adic gamma function
and p-adic Euler constant by making use of the Mahler expansion of the p-adic gamma function.
The p-adic gamma function (see [1-3; 5; 6; 10]) is de�ned as follows

�p (x) = lim
n!x

(�1)n
Y
j<n

(p;j)=1

j (x 2 Zp) , (2.1)

where n approaches x through positive integers.
The p-adic Euler constant 
p is de�ned by the following formula


p := �
�0p (1)

�p (0)
= �0p (1) = ��0p (0) . (2.2)

The p-adic gamma function in conjunction with its a great deal of extensions and p-adic Euler constant have
been developed by many physicists and mathematicians, cf. [1-3; 6; 10]; see also the references cited in each
of these earlier works.
For x 2 Zp, the symbol

�
x
n

�
is given by

�
x
0

�
= 1 and

�
x
n

�
= x(x�1)���(x�n+1)

n! (n 2 N).
Let x 2 Zp and n 2 N. The functions x!

�
x
n

�
form an orthonormal base of the space C (Zp ! Cp) with

respect to the Euclidean norm k�k1. The mentioned orthonormal base satisfy the following equality:�
x

n

�0
=

n�1X
j=0

(�1)n�j�1

n� j

�
x

j

�
(see [4] and [6]) . (2.3)

Mahler investigated a generalization for continuous maps of a p-adic variable utilizing the special polynomials
as binomial coe¢ cient polynomial [4] in 1958 as follows.

Theorem 1. [4]Every continuous function f : Zp ! Cp can be written in the form

f (x) =
1X
n=0

an

�
x

n

�
(2.4)

for all x 2 Zp, where an 2 Cp and an ! 0 as n!1.
The base

���
n

�
: n 2 N

	
is named as Mahler base of the space C (Zp ! Cp) ; and the components fan : n 2 Ng

in f (x) =
P1

n=0 an
�
x
n

�
are called Mahler coe¢ cients of f 2 C (Zp ! Cp). The Mahler expansion of the p-adic

gamma function �p and its Mahler coe¢ cients are discovered in [6] as follows.

Proposition 1. For x 2 Zp, let �p (x+ 1) =
P1

n=0 an
�
x
n

�
be Mahler series of �p. Then its coe¢ cients

satisfy the following identity: X
n=0

(�1)n+1 an
xn

n!
=
1� xp
1� x exp

�
x+

xp

p

�
. (2.5)
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The fermionic q-Volkenborn integral on Zp of the p-adic gamma function via Eq. (1.5) and Proposition 1
is as follows.

Theorem 2. The following identity holds true for n 2 N:Z
Zp
�p (!x+ 1) d��q (x) =

1X
n=0

an [2]q
n!

Bln;q (!) ,

where an is given by Proposition 1.

Proof. For x; ! 2 Zp, by Proposition 1, we getZ
Zp
�p (!x+ 1) d��q (x) =

1X
n=0

an

Z
Zp

�
!x

n

�
d��q (x)

and using the formula (1.5), we acquireZ
Zp
�p (!x+ 1) d��q (x) =

1X
n=0

an [2]q
n!

Bln;q (!) ;

which gives the asserted result. �

We here present one other fermionic p-adic q-integral of the p-adic gamma function related to the q-Boole
polynomials as follows.

Theorem 3. Let x; y; ! 2 Zp. We haveZ
Zp
�p (x+ !y + 1) d��q (y) =

1X
n=0

an [2]q
n!

Bln;q (x j! ) , (2.6)

where an is given by Proposition 1.

Proof. For x; y; ! 2 Zp, by the relation
�
x+!y
n

�
=

(x+!y)n
n! and Proposition 1, we getZ

Zp
�p (x+ !y + 1) d��q (y) =

Z
Zp

1X
n=0

an
(x+ !y)n

n!
d��q (y) =

1X
n=0

an
1

n!

Z
Zp
(x+ !y)n d��q (y) ;

which is the desired result (2.6) via (1.4). �

We state the following theorem including a relation between �p (x) and cBln;q (x j! ).
Theorem 4. For x; y; ! 2 Zp;we haveZ

Zp
�p (x� !y + 1) d��q (y) =

1X
n=0

an [2]q
cBln;q (x j! )

n!
;

where an is given by Proposition 1.

Proof. For x; y; ! 2 Zp, by the relation
��x�!y

n

�
=

(�x�!y)n
n! and Proposition 1, we getZ

Zp
�p (x� !y + 1) d��q (y) =

Z
Zp

1X
n=0

an
(x� !y)n

n!
d��q (y)

=
1X
n=0

an
1

n!

Z
Zp
(x� !y)n d��q (y) ;

which is the desired result thanks to (1.8). �

A consequence of Theorem 4 is given by the following corollary.
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Corollary 1. Upon setting x = 0 in Theorem 4 gives the following relation for �p and cBln;q (!):Z
Zp
�p (x� !y + 1) d��q (y) =

1X
n=0

an [2]q
cBln;q (!)
n!

,

where an is given by Proposition 1.

Here is the fermionic p-adic q-integral of the derivative of the p-adic gamma function.

Theorem 5. For x; y; ! 2 Zp; we haveZ
Zp
�0p (x+ !y + 1) d��q (y) =

1X
n=0

n�1X
j=0

an [2]q
(�1)n�j�1Blj;q (x j! )

(n� j) j! .

Proof. In view of Proposition 1, we obtainZ
Zp
�0p (x+ !y + 1) d��q (y) =

Z
Zp

1X
n=0

an

�
x+ !y

n

�0
d��q (y) =

1X
n=0

an

Z
Zp

�
x+ !y

n

�0
d��q (y)

and using (2.3), we deriveZ
Zp
�0p (x+ !y + 1) d��q (y) =

1X
n=0

n�1X
j=0

an
(�1)n�j�1

n� j

Z
Zp

�
x+ !y

j

�
d��q (y)

=
1X
n=0

n�1X
j=0

an [2]q
(�1)n�j�1

n� j
Blj;q (x j! )

j!
:

�

The immediate result of Theorem 5 is given as follows.

Corollary 2. For y 2 Zp; we haveZ
Zp
�0p (!y + 1) d��q (y) =

1X
n=0

n�1X
j=0

an [2]q
(�1)n�j�1Blj;q (!)

(n� j) j! . (2.7)

We now provide a new and interesting representation of the p-adic Euler constant by means of q-Boole
polynomials of the second kind.

Theorem 6. We have


p =
1X
n=0

n�1X
j=0

an (�1)n�j
qBlj;q (! � 1 j! )�Blj;q (�1 j! )

(n� j) j! . (2.8)

Proof. Taking f (y) = �0p (!y) in (1.2) yields the following result

q

Z
Zp
�0p (!y + ! � 1 + 1) d��q (y) +

Z
Zp
�0p (!y) d��q (y) = [2]q �

0
p (0) .

Using (2.2), (2.7) and Theorem 5 along with some basic calculations, we have

q

1X
n=0

n�1X
j=0

an [2]q
(�1)n�j�1Blj;q (! � 1 j! )

(n� j) j! +

1X
n=0

n�1X
j=0

an [2]q
(�1)n�j�1Blj;q (�1 j! )

(n� j) j! = �
p [2]q ,

which implies the asserted result. �

We give the following explicit formula for the p-adic Euler constant.
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Theorem 7. The following explicit formula is valid:


p =
1X
n=0

n�1X
j=0

an
(n� j) j!

1X
m=0

(�1)m+n�j q�m�1
nX
k=0

S1 (n; k)
�
q (�1� !m)k � (�1� ! � !m)k

�
.

Proof. By (1.4), we get
1X
n=0

cBln;q (x j! ) tn
n!

=
q�1

1 + (1+t)!

q

(1 + t)
x+!

=
1X
m=0

(�1)m q�m�1 (1 + t)x+!+!m

=
1X
m=0

(�1)m q�m�1 (1 + t)x+!+!m =
1X
m=0

(�1)m q�m�1
1X
n=0

�
x+ ! + !m

n

�
tn

=
1X
n=0

 1X
m=0

(�1)m q�m�1 (x+ ! + !m)n

!
tn

n!
;

which gives, from (1.9), that

cBln;q (x j! ) = 1X
m=0

(�1)m q�m�1
nX
k=0

S1 (n; k) (x+ ! + !m)
k .

In view of (1.4) and (1.7), we easily obtain thatcBln;q (x j! ) = Bln;q (x j�! ) .
So, we derive that

Bln;q (x j! ) =
1X
m=0

(�1)m q�m�1
nX
k=0

S1 (n; k) (x� ! � !m)k : (2.9)

Thus, we have

Bln;q (�1 j! ) =
1X
m=0

(�1)m q�m�1
nX
k=0

S1 (n; k) (�1� ! � !m)k (2.10)

and

Bln;q (! � 1 j! ) =
1X
m=0

(�1)m q�m�1
nX
k=0

S1 (n; k) (�1� !m)k : (2.11)

By combining (2.8), (2.10) and (2.11), we arrive at the desired result. �

3. Conclusions and Observations

In the present work, we �rst have considered multifarious relationships among the two types of q-Boole
polynomials and p-adic gamma function. Also, we have computed the fermionic p-adic q-integral of the
derivative of p-adic gamma function. Moreover, we have given a novel representation for the p-adic Euler
constant by means of the q-Boole polynomials of both sides. We have �nally provided a quirky explicit
formula for p-adic Euler constant.
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