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Abstract: Recent advances in natural language processing (NLP) have led to the development of large
language models (LLMs) and small language models (small LMs), which have revolutionized the field.
LLMs, such as GPT-3 and PaLM, are capable of performing a wide range of tasks with state-of-the-art
accuracy, thanks to their vast number of parameters and extensive training data. However, these mod-
els are resource-intensive, requiring significant computational power for both training and deployment.
In contrast, small LMs offer a more efficient alternative, with reduced computational requirements
and faster inference times, making them well-suited for resource-constrained environments such as
mobile devices and real-time applications. This survey explores the key differences between LLMs
and small LMs, focusing on aspects such as model size, computational efficiency, performance, and
deployment scenarios. We also discuss the trade-offs associated with selecting between the two, and
highlight techniques such as knowledge distillation and model pruning that are used to optimize
small LMs. Finally, we examine the future directions of language model research, including hybrid
approaches that combine the strengths of both LLMs and small LMs, and advancements aimed at
improving energy efficiency and sustainability. Our goal is to provide a comprehensive overview of
the current landscape of LLMs and small LMs, and to offer insights into the ongoing challenges and
opportunities in the field of NLP.
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1. Introduction

Large Language Models (LLMs) have emerged as one of the most transformative technologies in
the field of artificial intelligence (AI) and natural language processing (NLP). These models, exemplified
by architectures such as OpenAl’s GPT series, BERT, and T5, are capable of processing and generating
human-like text with remarkable accuracy and fluency. They have found applications in a wide range
of domains, from customer service chatbots and automated content generation to complex scientific
research and creative writing. The capabilities of LLMs are underpinned by their size, which often
involves billions, or even trillions, of parameters trained on extensive and diverse datasets. This scale
enables LLMs to capture intricate patterns in language, making them versatile tools for a variety of
tasks. However, the impressive performance of LLMs comes at a cost [1]. The computational resources
required to train, fine-tune, and deploy these models are immense, often necessitating specialized
hardware such as GPUs or TPUs, and significant energy consumption. For example, the training
process of models like GPT-3 involves several petaflop-days of compute, translating into substantial
financial and environmental costs. Moreover, the deployment of these models requires high memory
bandwidth and storage capacity, making them inaccessible for many researchers, developers, and
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organizations, particularly those operating in resource-constrained environments [2]. The reliance
on extensive computational resources has also raised ethical concerns, including the carbon footprint
of training large models and the equitable distribution of Al capabilities [3]. In addition to resource
concerns, LLMs face challenges related to latency and real-time performance [4]. Their size and
complexity often result in slower inference times, which can be a critical limitation in applications
requiring instant responses, such as voice assistants or real-time translation systems. Furthermore,
the dependency on high-end infrastructure restricts the use of LLMs in settings such as mobile
devices, edge computing environments, and low-power IoT devices, where computational and energy
efficiency are paramount [5]. The transition from Large Language Models (LLMs) to Small Language
Models (SLMs) represents a strategic response to these challenges. SLMs are designed to offer similar
capabilities to LLMs while being significantly more compact and efficient [6]. This is achieved through
a variety of techniques, including model compression, knowledge distillation, quantization, and
pruning. By leveraging these approaches, researchers aim to create models that retain the essential
functionalities of LLMs while being optimized for deployment in resource-constrained settings. The
shift towards SLMs is not merely a technical adjustment but also an enabler of broader access and
inclusivity in Al technologies [7]. Smaller models lower the barrier to entry for organizations and
individuals who may not have access to state-of-the-art infrastructure, democratizing the benefits
of NLP advancements. Moreover, SLMs are better suited for deployment in applications tailored to
specific domains or languages, particularly those underrepresented in mainstream Al research. For
example, SLMs can be fine-tuned and deployed for regional languages, enhancing their utility in
diverse cultural and linguistic contexts. This survey aims to provide a comprehensive overview of the
journey from LLMs to SLMs, exploring the motivations, techniques, and applications that define this
transition [8]. We begin by examining the foundational aspects of LLMs, including their architecture,
training paradigms, and performance characteristics. Next, we delve into the limitations of LLMs,
focusing on the computational, environmental, and accessibility challenges they present. Following
this, we explore the methodologies employed to create SLMs, highlighting key advances in model
compression, knowledge distillation, and related areas [9]. Finally, we discuss the practical implications
and future directions of SLM research, emphasizing their potential to redefine the landscape of NLP
and Al more broadly [10]. By addressing the transition from LLMs to SLMs, this survey seeks to
contribute to the ongoing dialogue on sustainable and inclusive Al development [11]. It is our hope
that this work will inspire further innovation and collaboration in the quest to make NLP technologies
more efficient, accessible, and impactful.

1.1. Scope and Objectives

The scope of this survey encompasses the transition from Large Language Models (LLMs) to
Small Language Models (SLMs), a field that addresses critical challenges in computational efficiency,
accessibility, and environmental sustainability within Al and NLP [12]. This work is intended to serve as
a foundational reference for researchers, practitioners, and decision-makers interested in understanding
and contributing to this rapidly evolving domain. The primary objectives of this survey are:

*  Toreview methods for compressing LLMs into SLMs, including state-of-the-art techniques such
as quantization, pruning, knowledge distillation, and low-rank factorization. By examining
these methods, we aim to provide a comprehensive understanding of how model compression is
achieved without compromising functionality.

¢ To evaluate trade-offs between model size and performance, focusing on critical metrics such
as accuracy, latency, memory usage, and energy efficiency. This evaluation includes an analysis
of the contexts in which these trade-offs are most significant, such as edge computing, mobile
devices, and domain-specific applications.

e  To discuss the practical deployment of SLMs in real-world scenarios, including their applica-
tion in under-resourced languages, low-power IoT environments, and industries with stringent
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computational constraints. This objective also encompasses an exploration of case studies where
SLMs have successfully addressed specific challenges.

e  Toidentify gaps and opportunities in current research, highlighting areas where further innovation
is needed. This includes the development of automated tools for transitioning LLMs to SLMs and
novel approaches to enhance the interpretability and fairness of smaller models.

e  To foster a dialogue on ethical considerations, such as the environmental impact of model training
and deployment, and the equitable distribution of Al technologies facilitated by SLMs [13]. By
addressing these issues, we aim to align the development of SLMs with broader societal goals [14].

In achieving these objectives, this survey seeks to bridge the gap between theoretical advance-
ments and practical implementations, promoting a holistic approach to the design and adoption of
Small Language Models.

2. Background

The evolution of natural language processing (NLP) has been a journey marked by continuous
improvements in machine learning techniques. From early symbolic models to the latest transformer-
based deep learning architectures, the development of language models has been driven by advances
in computational power, data availability, and algorithmic innovations [15]. This section provides an
overview of the key milestones in the development of language models, with a focus on the transition
from early statistical models to modern large and small language models (LLMs and small LMs).

2.1. Early Language Models and Statistical Approaches

The field of NLP began with rule-based systems and symbolic models, which relied on linguistic
rules and dictionaries to process text. These early systems, while effective in specific domains, struggled
with ambiguity and the complexity of natural language. In the 1980s and 1990s, researchers began
to explore statistical models that could learn patterns from data, paving the way for probabilistic
approaches to language processing. The most prominent of these early statistical models were n-gram
models, which estimated the probability of a word given the previous n — 1 words in a sequence. While
simple and effective for certain tasks such as speech recognition and machine translation, n-gram
models had limitations in capturing long-range dependencies and semantic relationships. They also
required large amounts of training data to achieve reliable performance. The introduction of machine
learning algorithms such as decision trees, support vector machines, and hidden Markov models
(HMMs) further advanced the field, allowing for more robust models capable of handling a variety of
NLP tasks, such as part-of-speech tagging and named entity recognition.

2.2. Neural Networks and Word Embeddings

In the 2000s, neural networks began to gain prominence in NLP. Early work focused on applying
deep learning techniques to tasks such as document classification and sentiment analysis. One of
the key breakthroughs during this period was the development of word embeddings, particularly
models like Word2Vec and GloVe, which represented words as dense vectors in a continuous vector
space. These embeddings allowed words with similar meanings to be mapped to nearby points in the
vector space, capturing semantic relationships like synonyms and analogies [16]. Word embeddings,
however, were limited in their ability to represent word meanings in context. They represented
words as static vectors, independent of the surrounding words or sentence structure. This limitation
prompted the development of more advanced models, such as recurrent neural networks (RNNs) and
Long Short-Term Memory (LSTM) networks, which were capable of processing sequences of words
and capturing context-sensitive word meanings.

2.3. The Rise of Transformer Models

The introduction of the Transformer architecture by Vaswani et al [17]. in 2017 marked a pivotal
moment in the field of NLP. The Transformer model eliminated the need for recurrence in sequence
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processing, instead using a self-attention mechanism to allow the model to attend to all words in
a sequence simultaneously. This innovation drastically improved the efficiency and scalability of
NLP models, as it allowed for parallelization during training and better handling of long-range
dependencies. The Transformer model was the foundation for many subsequent advancements in NLP.
It enabled the development of large-scale pre-trained language models, which could be fine-tuned for
a variety of downstream tasks. These models included OpenAl’s GPT series, Google’s BERT, and T5,
among others. By pre-training on massive amounts of text data and fine-tuning on specific tasks, these
models achieved state-of-the-art performance across a wide range of applications, including machine
translation, text generation, and question answering. The success of Transformer-based models also
sparked the development of even larger models, such as GPT-3, which contains 175 billion parameters
[18]. These models demonstrated impressive performance on tasks requiring deep reasoning, creativity,
and even understanding of context beyond the scope of traditional NLP systems.

2.4. The Emergence of Large Language Models (LLMSs)

Large language models (LLMs) represent the next step in the evolution of NLP. These models, with
their vast number of parameters, are able to generalize across a wide range of NLP tasks without task-
specific tuning. LLMs like GPT-3 and Google’s PaLM leverage their scale to capture nuanced patterns in
language and exhibit remarkable capabilities in areas such as text generation, summarization, question
answering, and even creative writing [19]. The primary strength of LLMs lies in their ability to learn
from vast corpora of text data and generalize to a variety of tasks without requiring explicit task-
specific training data [20]. This generalization is achieved through pre-training on massive datasets
followed by fine-tuning for specific tasks [21]. The advent of LLMs has led to significant advancements
in fields such as conversational Al, document generation, and automated content creation. However,
despite their impressive performance, LLMs are not without challenges [22]. They require substantial
computational resources to train, making them expensive to develop and deploy. The environmental
impact of training these models has also raised concerns, as the energy consumption associated with
training large models is substantial. Furthermore, LLMs tend to exhibit biases learned from the data
they were trained on, which can lead to undesirable outcomes when applied to real-world scenarios.

2.5. The Emergence of Small Language Models (Small LMs)

As the demand for more efficient models grew, researchers began to focus on creating smaller,
more computationally efficient language models that could deliver high performance without the
heavy resource requirements of LLMs [23]. Small language models (small LMs) are designed to
retain much of the power of large models while reducing their size and computational cost. The
development of small LMs has been facilitated by several key techniques, including knowledge
distillation, model pruning, and quantization [24]. Knowledge distillation, for example, involves
training a smaller model (the student) to mimic the behavior of a larger, pre-trained model (the
teacher) [25]. This allows the smaller model to approximate the performance of the larger model while
requiring fewer parameters and less computation. DistilBERT, a smaller version of BERT, is one such
example where knowledge distillation has been successfully applied. Other methods, such as pruning
and quantization, further reduce the size of language models by eliminating redundant weights or
representing model parameters with lower precision. These techniques have made it possible to deploy
powerful language models in environments with limited resources, such as mobile devices, embedded
systems, and real-time applications. Small LMs are particularly valuable in scenarios where real-time
inference is required, such as virtual assistants, chatbots, and speech recognition systems. They are
also more energy-efficient, which is critical for sustainable Al applications.

2.6. Challenges and Trade-Offs in Model Selection

While large language models offer state-of-the-art performance across a wide range of tasks,
they come with significant trade-offs in terms of computational cost, memory requirements, and
environmental impact [26]. In contrast, small language models offer efficiency and faster inference
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times but may not achieve the same level of performance on certain complex tasks [27]. The choice
between large and small language models depends on the specific requirements of the application,
such as the trade-off between accuracy and resource usage, as well as the deployment environment.
In some cases, hybrid approaches may be used, where a large model is used for initial processing
or generation, and a smaller model is deployed for specific tasks or real-time inference [28]. This
approach aims to combine the strengths of both large and small models, optimizing both performance
and efficiency [29].

2.7. Current Landscape and Future Directions

The landscape of language models is rapidly evolving, with ongoing research focused on improv-
ing both large and small models [30]. For large models, efforts are being made to improve training
efficiency, reduce energy consumption, and mitigate biases [31]. For small models, researchers are
exploring new methods for maintaining high performance while further reducing model size and
computational requirements. Recent trends include the development of domain-specific models that
are smaller but highly optimized for particular tasks or industries. Furthermore, there is growing
interest in multilingual models that can handle multiple languages without requiring separate models
for each language [32]. The future of language models is likely to see a balance between the develop-
ment of large-scale, general-purpose models and smaller, task-specific models [33]. Researchers are
also exploring the potential of "edge AL" where small models are deployed on devices such as smart-
phones, wearables, and IoT devices to process language data locally, reducing reliance on cloud-based
computation and improving privacy. In the next section, we will delve into the differences between
large language models and small language models, exploring their respective advantages, challenges,
and use cases in modern NLP applications [34].

3. Key Differences Between Large Language Models (LLMs) and Small Language
Models (Small LMs)

In this section, we explore the key differences between large language models (LLMs) and small
language models (small LMs) [35]. These differences stem from several factors, including model
size, computational requirements, training data, performance characteristics, and use cases [36].
Understanding these differences is essential for selecting the appropriate model for a given NLP task
or deployment scenario [37].

3.1. Model Size and Parameters

The most obvious difference between LLMs and small LMs is their size. LLMs, such as GPT-
3 and PalM, consist of billions or even trillions of parameters [38]. These models are trained on
massive datasets that span a wide variety of domains, allowing them to learn a diverse set of patterns
in language. The large number of parameters enables LLMs to capture complex relationships and
generate highly coherent, contextually relevant outputs across multiple tasks [39]. In contrast, small
LMs are designed with fewer parameters, typically ranging from a few million to a few hundred million.
By reducing the number of parameters, these models are less resource-intensive and more suitable for
environments with limited computational power, such as mobile devices or edge computing platforms
[40]. Despite their smaller size, small LMs often perform surprisingly well on specific tasks, especially
when fine-tuned on domain-specific datasets [41].

3.2. Computational Requirements

The computational requirements for training and deploying LLMs are significantly higher than
for small LMs. LLMs require specialized hardware, such as high-performance GPUs or TPUs, to
handle the vast amount of data and parameters during both training and inference [42]. Training an
LLM can take weeks or even months, depending on the scale of the model and the hardware resources
available. Additionally, inference with LLMs can be slow and resource-intensive, making them less
suitable for real-time applications where low latency is critical [43]. Small LMs, on the other hand, are
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optimized for efficiency [44]. They require less memory, computational power, and storage, which
makes them more feasible for deployment in resource-constrained environments. Training small
LMs is faster and less expensive, and their inference times are much quicker, making them ideal for
real-time applications such as chatbots, speech recognition, or text classification.

3.3. Training Data and Generalization

One of the key advantages of LLMs is their ability to generalize across a wide range of tasks
[45]. This generalization is made possible by the large amounts of diverse training data used to
pre-train LLMs. These models are typically trained on vast corpora of text data, including books,
articles, websites, and other publicly available documents. The broad coverage of topics and domains
enables LLMs to perform well on a variety of NLP tasks, including text generation, question answering,
summarization, and more, without the need for extensive task-specific training data. Small LMs,
by contrast, are often trained on smaller, more specialized datasets. This limitation can restrict their
ability to generalize across a wide range of tasks, but small LMs can still perform exceptionally well in
narrow, domain-specific areas. For example, small LMs may be fine-tuned for particular industries or
applications, such as legal document analysis or medical text processing, where they can outperform
larger models on specialized tasks despite their smaller size.

3.4. Performance and Accuracy

LLMs generally outperform small LMs in terms of raw performance across a variety of NLP
benchmarks [46]. The large number of parameters and the extensive training data enable LLMs to
capture nuanced patterns and relationships in language, which translates into higher accuracy on
complex tasks. LLMs also exhibit better generalization when faced with novel or unseen tasks, as they
can leverage their broad understanding of language. However, small LMs can still achieve competitive
performance on specific tasks, especially when they are fine-tuned for a particular application or
domain. In some cases, small LMs may even outperform larger models on certain tasks if they are
better optimized for those tasks or if they are trained on high-quality, domain-specific data [47]. Small
LMs tend to be more lightweight and faster at inference, which can be a crucial advantage in real-time
applications [48].

3.5. Energy Efficiency and Sustainability

The energy consumption of training and deploying large language models is a growing concern, as
the environmental impact of these models is significant [49]. LLMs require enormous amounts of energy
to train, and even after training, running them in production can consume substantial computational
resources. As a result, there is increasing pressure to make Al models more sustainable and energy-
efficient, which has led to the exploration of techniques like model pruning, distillation, and quantization.
Small LMs are far more energy-efficient than their larger counterparts. Because they are smaller in size
and require fewer parameters, small LMs consume less power both during training and inference [50].
This makes them more sustainable and suitable for deployment in scenarios where energy consumption
is a key concern, such as in mobile devices, [oT applications, or low-latency environments. By using less
power, small LMs can help reduce the carbon footprint of Al deployments [51].

3.6. Deployment Scenarios and Use Cases

The choice between LLMs and small LMs largely depends on the deployment scenario and the
specific requirements of the application. LLMs are best suited for large-scale applications where
high performance and versatility are required [52]. They are used in tasks that involve complex
language generation, such as content creation, chatbots, virtual assistants, and large-scale document
processing. Due to their ability to generalize across tasks, LLMs are also well-suited for tasks that
require reasoning, such as answering complex questions or engaging in long-form conversations
[53]. On the other hand, small LMs are ideal for resource-constrained environments where real-time
processing is necessary [54]. These models are commonly deployed in mobile applications, such as
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speech recognition on smartphones, real-time chatbots, or predictive text input [55]. Small LMs are
also deployed in embedded systems, where low latency and high efficiency are essential [56]. In
industries like healthcare, finance, and legal services, small LMs are fine-tuned for specific tasks, such
as medical diagnosis assistance, financial forecasting, or legal document analysis. Small LMs are also
becoming increasingly important in edge Al applications, where data is processed locally on devices
such as smart speakers, wearables, or autonomous vehicles. In these cases, small LMs can operate
in environments with limited bandwidth and computational resources, providing fast, on-device
responses while maintaining privacy and security by keeping data processing local.

3.7. Trade-Offs and Hybrid Approaches

When selecting between LLMs and small LMs, organizations must carefully consider the trade-
offs between performance, cost, and resource requirements. LLMs offer state-of-the-art performance
but come with high computational costs, long training times, and challenges related to deployment and
sustainability [57]. Small LMs, while more efficient, may not perform as well on complex or general
tasks but are highly suitable for domain-specific applications that require fast, efficient inference. In
many cases, hybrid approaches can be used to combine the strengths of both LLMs and small LMs.
For example, a large model might be used for pre-processing or initial generation, and then a smaller
model could be deployed for specific tasks or real-time responses [58]. This approach can help balance
the trade-offs between accuracy and efficiency, allowing for high-performance applications that are
also cost-effective and sustainable.

3.8. Future Directions and Ongoing Research

The future of language models lies in improving both large and small models. For LLMs,
research is focused on making these models more efficient by developing techniques to reduce their
computational cost, such as efficient transformers, multi-modal learning, and fine-tuning strategies.
For small LMs, ongoing work is focused on developing methods to improve their performance without
increasing their size, such as through task-specific fine-tuning, knowledge transfer, and domain
adaptation. There is also growing interest in multi-modal models that can handle both text and other
forms of data, such as images, audio, and video [59]. These models will require both large and small
LMs to work in tandem to process diverse types of information and perform more complex tasks [60].
As the field of NLP continues to advance, the development of more efficient and specialized models
will continue to push the boundaries of what is possible with language technology [61]. In the next
section, we will explore the advantages and challenges associated with both LLMs and small LMs in
more detail, examining how each model type is applied across various domains and use cases.

4. Conclusion

In this survey, we have explored the evolution and key characteristics of large language models
(LLMs) and small language models (small LMs), emphasizing the differences between them in terms of
size, computational requirements, training data, performance, and deployment scenarios. Both LLMs
and small LMs have their unique strengths and challenges, and the choice between them depends
largely on the specific needs of the task at hand. LLMs, with their vast number of parameters and exten-
sive training data, are capable of delivering state-of-the-art performance across a wide range of natural
language processing (NLP) tasks [62]. Their ability to generalize across multiple domains makes them
highly versatile, excelling in applications that require complex language understanding, reasoning, and
generation. However, their computational and memory requirements present significant challenges
in terms of both training and deployment, leading to concerns about resource consumption, energy
efficiency, and environmental sustainability [63]. On the other hand, small LMs offer a more efficient
alternative, with reduced computational overhead and faster inference times. These models are highly
suitable for resource-constrained environments such as mobile devices, edge computing, and real-time
applications where low latency is crucial. While they may not achieve the same level of performance
as LLMs in more complex tasks, small LMs can still perform exceptionally well when fine-tuned on


https://doi.org/10.20944/preprints202501.0502.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 January 2025 d0i:10.20944/preprints202501.0502.v1

8of11

domain-specific data. They are particularly valuable in scenarios where task specialization, energy
efficiency, and rapid response times are prioritized. The rapid advancement in techniques for model
compression, such as knowledge distillation, quantization, and pruning, has enabled the development
of small LMs that can approximate the performance of larger models while significantly reducing their
resource requirements. This has opened up new possibilities for deploying high-performance language
models in a variety of applications, from mobile applications to IoT devices, without compromising
on efficiency or speed. Looking forward, the future of language models is likely to involve a hybrid
approach, where large models and small models are used in tandem to leverage the strengths of both.
As research continues to advance, we expect to see further innovations that optimize the efficiency of
large models, improve the accuracy of small models, and explore new multi-modal applications that
combine language processing with other forms of data, such as images and audio. In conclusion, both
LLMs and small LMs play critical roles in the landscape of modern NLP, each serving distinct use cases
and deployment environments. As the field continues to evolve, researchers will need to carefully
balance the trade-offs between accuracy, efficiency, and sustainability, tailoring model selection to
the specific needs of each application [64]. The ongoing development of more efficient algorithms,
model architectures, and training techniques will be crucial in making these models more accessible,
affordable, and environmentally sustainable for a broader range of real-world applications [65].
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