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Simple Summary: Research has shown that that there are significant differences in neurotrans-

mission and immunity between normal humans and those with Parkinson’s disease. The num-

ber of people being diagnosed with Parkinson’s disease is rapidly increasing. At the same time, 

climate change is causing an increase in mosquito-borne infections that can damage the brain. 

We wondered if the brains of Parkinson’s patients could have differences in neurotransmission 

and immunity that relate to the antiviral response when compared with a normal brain. Human 

stem cells were used to generate miniature brains. We measured differences in neurotransmis-

sion and immunity. The data show that there are differences in gene expression that could con-

tribute to a dysfunctional antiviral response in the brains of Parkinson’s patients. The need for 

more investigation is highlighted. 

Abstract: The development of 3D cerebral brain organoids which accurately resemble aspects of 

the human brain permits a more accurate characterization of physiological processes and neuro-

logical diseases. Cerebral organoids can be grown from stem cell lines with various genetic back-

grounds allowing multiple neurodegenerative diseases to be modeled. While dysfunction in neu-

rotransmission of patients with neurodegenerative diseases is expected, the impact of chronic 

neurodegeneration on the response to viral infection of the CNS is poorly understood. For instance, 

several mosquito-borne viruses like Dengue virus and West Nile Virus cause post-viral parkin-

sonism. How CNS infection might impact a host with inherent CNS dysfunction such as Parkin-

son’s Disease in poorly understood. This preliminary, observational study aimed to understand 

dysfunction in intrinsic and innate expression of a patient with a neurodegenerative disease and a 

non-affected individual in relation to potential viral infection in the CNS. Cerebral organoids were 

generated from human induced pluripotent stem cells with a normal genetic background or with 

idiopathic Parkinson’s Disease. After differentiation and maturation, organoid size, gene expres-

sion and immunofluorescence were evaluated to assess neurotransmission and innate immunity. 

While there was no significant difference in size of the organoids with a normal or Parkinson’s 

genetic background, gene expression studies identified multiple differences in innate immunity 

and neurotransmission. Immunofluorescence also identified differences in protein expression re-

lated to neurotransmission and innate immunity. Of note, organoids derived from a Parkinson’s 

patient exhibited endogenous up-regulation of dopamine and muscarinic acetylcholine receptors, 

GABA, glycine, and glutamate targets, and the majority of cytokines. This expression pattern sug-

gests a chronic state of neuroexcitation and neuroinflammation in this population of organoids. 
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roimmunity, neuroinflammation, viral infection 
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1. Introduction 

The use of human induced pluripotent stem cells (hiPSC) in disease research is increasing, not only because 

relevant data can be generated, but because these cells can be differentiated systems that directly translate to 

a human model. The use of hiPSCs reduce the need for animal models, thereby reducing the costs to perform 

studies. Hundreds of hiPSC cell lines are available, originating from normal “disease free” patients or pa-

tients with various forms of disease. Research on different hiPSCs and organoids has shown that products 

derived from patients with a “disease” state exhibit different morphology and gene expression compared 

with products derived from a “normal” patient [1; 2; 3; 4].  This research has deepened the understanding of 

disease states and highlighted potential issues for diseased persons [4; 5; 6; 7]. 

Neuroinvasive infections and Parkinson’s Disease (PD) diagnoses are both increasing and the impact of viral 

infection in a compromised CNS is relatively unexplored. Thus, in light of recent genetic characterization of 

PD neuronal cell types (reviewed by Tran et al. 2020), it was hypothesized that endogenous differences in 

markers related to viral pathogenesis would exist between normal and diseased genotypes [8]. Studies have 

shown that neuronal hyperexcitability is found in organoids derived from patients with Alzheimer’s disease 

[9]. Unfortunately, most studies utilizing PD cerebral brain organoids evaluate morphology but not systemic 

differences in innate immunity and neurotransmission [10; 11]. Most organoid modeling of PD is based on 

midbrain organoids that recapitulate PD pathologies of the dopaminergic networks, neurite disfunction and 

abnormal localization of α-synuclein [11].  

For this preliminary, observational study, cerebral organoids were utilized because they have cortical neu-

rons that contain functional synapses that produce Ca+ surges with glutamate release which can be affected 

when virus is present [12]. Cerebral organoids were also chosen because they develop immunocompetent 

astrocytes that are key players in neuroinvasive disease response [13]. While mid-brain organoids are 

standard for PD research, they omit the cerebral cortex that is integral to viral pathogenesis in the human 

CNS [14]. Thus, the goal of this study was to define differences in cerebral organoids derived from an indi-

vidual with PD versus an individual without PD so that these model systems may be used to inform future 

studies of viral CNS infections. Significant differences were observed in neurotransmission and immunity 

even though the organoids were physically indistinguishable. This preliminary, observational study, shows 

the differences in gene and protein expression of a normal and PD IPSC derived cerebral organoids and 

discusses how dysregulation could impact viral infection in the brain. 

2. Methods  

2.1. Cell Culture 

Human Induced Pluripotent Stem Cells (hiPSC) (ATCC ACS-1019) and hiPSC with a genetic background of 

Parkinson’s Diseases (ATCC ACS-1013) were cultured in mTeSR1 media (StemCell Technologies) on plates 

coated with vitronectin XF (Stemcell Technologies) prior to organoid formation. The genotype for ACS-1013 

is unknown and for the purposes of this manuscript, it is  assumed that the patient had sporadic PD. 

2.2. Generation of Human Cerebral Organoids 

Cerebral organoids were formed from hiPSC ACS-Normal and hiPSC ACS-Parkinson’s using the StemDiff 

Cerebral Organoid Kit (StemCell Technologies Cat #08570) and StemDiff Cerebral Organoid Maturation Kit 

(Cat. #08571 StemCell Technologies) following the manufacturer's directions. This methodology has been 

used for exploring pathologies for Alzheimer’s disease [9] brain development [15] and a host of other ap-

plications [16]. Briefly, hiPSC were harvested with Gentle Cell Dissociation Reagent (StemCell Technologies 

Cat #07174) and the seeded into ultra-low attachment 96 well plates (Corning #7007) at a density of 9000 

cells/well. Cells were seeded in seeding media containing Y-27632. On days 2 and 4, 100ul of EB formation 

media was added to the wells. On day 5, EBs were observed to be rounded and tightly packed spheres about 

200nm in size. EBs were embedded in Matrigel and incubated at 37°C for 1 hour. Embedded EBs were then 

placed in a 6 well, ultra-low attachment plate (StemCell Technologies Cat #3471) containing organoid ex-

pansion media. After three days, media was changed to maturation media. Media changes then occurred 
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twice per week and cerebral organoids were matured for 53 days before data collection to allow for full 

maturation and to best resemble an adult brain [17; 18].  

2.3. Cerebral Organoid Size Measurements 

Organoids were imaged using ImageQuant LAS 4000 with the bright field filter under high-resolution with 

automatic exposure. Organoid size was determined by using ImageJ (National Institutes of Health). The 

scale of the program was set to 13.9327 pixels/mm, and the area of each organoid was recorded. Results are 

expressed as an average between at least 12 organoids per treatment.  

2.4. Cerebral Organoid mRNA Extraction and Gene Expression 

mRNA was extracted using Zymo Quick-RNA Kit (Zymo Research #R1052), and cDNA was generated using 

Applied Biosystems High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems #4368814). Gene 

expression studies were then conducted using TaqMan Array Human Neurotransmitters (Applied Biosys-

tems #4414094), TaqMan Array Human Immune Response (Applied Biosystems #4414204), and TaqMan 

Array Human Alzheimer’s Disease (Applied Biosystems #4414070) 

with Applied Biosystems TaqMan Gene Expression Master Mix (Ap-

plied Biosystems #4369016). The ∆CT was obtained for all targets using 

GUSB as the housekeeping gene.  Here CT values for GUSB was sub-

tracted from the CT value of each target. This provided a baseline ex-

pression for each organoid type. The ∆∆CT method was used to calcu-

late relative fold-difference in gene expression between PD and 

non-PD organoids. This allowed us to compare how much PD and 

non-PD organoids differed from each other for each target. 

2.5. Immunofluorescence 

Immunofluorescence was used to document morphology and validate 

gene expression. Organoids were fixed in 4% paraformaldehyde in PBS 

(ThermoScientific Cat# J19943-K2) overnight at 4˚C then cryoprotected 

in 30% sucrose prior to sectioning. After freezing samples at -80°C, 

organoid sections of 18 micrometers thick were produced using a 

cryomicrotome (CryoStar NX50, Thermo Fisher Scientific, Waltham, 

MA, USA). Afterwards organoid sections were blocked in 5% fetal 

sheep serum and primary staining was conducted overnight at 4°C 

(Table 1). Secondary staining was then conducted using fluorescent 

antibodies (Table 1) for 1 hour at 25°C. Slides were mounted with 

ProLong Gold Antifade Reagent with DAPI (Cell Signaling Technology 

#8961S). Organoids were imaged using an Olympus Fluoview 3000 

Confocal Laser Scanning Microscope (Olympus America Inc., Center 

Valley, PA, USA). All images were obtained using the same parameters 

including slices, gain, and offset. Individual tiles for all images can me 

found in the supplementary material. 

3. Results  

3.1. Size and morphology are similar between organoids from normal 

and diseased backgrounds 

Morphological differences between the organoids were not visually 

apparent. The size of organoids derived from PD and Non-PD was 

calculated using ImageJ.  The average size of a PD organoid was 4.33 

mm2 (±1.3 mm2) and the average size of a non-PD organoid was 5.1 mm2 (±2.0 mm2) Pairwise comparisons 

of the measurements using Student’s t-test produced a p-value >0.05.  
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Immunofluorescence for morphology markers showed that both PD and normal organoids expressed SOX2, 

Tuj1, neurofilament, and GFAP. SOX2 is expressed in proliferating neural progenitors and Tuj1 is a neu-

ron-specific β-Tubulin, as expected. Both of these markers had increased fluorescence on the outer margins 

of the organoids (Figure 1, S1, S2). Neurofilament is a component of mature neuronal cytoskeleton often 

found in high concentrations in axons. In growing or developing neurons, neurofilament may not be readily 

apparent since younger axons are much smaller than mature neurons [19].  GFAP or Glial fibrillary acidic 

protein is expressed by astrocytes and was found throughout both PD and normal organoids (Figure 1, S1, 

S2).  

3.2. Parkinson’s patients exhibit unique endogenous gene expres-

sion 

∆Ct analysis showed that of a total 276 genes, 171 were 

down-regulated in PD organoids comparison with non-PD organ-

oids (Figure 2), while 44 genes were up-regulated in PD organoids 

compared to non-PD organoids. The remaining 63 genes had no 

significant differences between PD and non-PD organoids (Figure 

2).  

3.3. Neurotransmission is significantly different between the organoids 

Expression of nicotinic and muscarinic receptors 

was down-regulated in both PD and non-PD de-

rived organoids in relation to the housekeeping gene 

(Figure 3). Parkinson’s organoids also exhibited de-

creased expression of nicotinic receptors, although 

the relative expression was significantly higher 

when compared with non-PD (Figure 3, Table S.1). 

∆∆Ct comparison, where ΔCt of PD organoids was 

subtracted from non-PD organoids, showed that 

relative expression of muscarinic receptors in PD 

organoids was up-regulated from 1.5-fold (CHRM3) 

to 22-fold (CHAT) (Table S.1). Expression of nico-

tinic receptors ranged from 0.69-fold (CHRNE) to 

37.37-fold (CHRNA4) (Table S.1).  

Expression of dopamine receptors (DRD2, DRD3, 

and PHOX2A) was down-regulated in both organ-

oids in relation to their housekeeping genes (Figure 

3). Here too, PD organoids exhibited increased ex-

pression of dopamine receptors in relation to 

non-PD organoids as determined by ∆∆Ct compari-

son as described above (Figure 3, Table S.1).  

Seventeen GABA receptors were evaluated for dif-

ferential expression. GABRD and GABRB2 dis-

played the same magnitude of expression for PD 

and non-PD organoids (Figure 3, Table S.1). All 

other genes except GABRP were up-regulated 

ranging from 3.99-fold (GABRE) to 150.08-fold 

(GABRA5) (Figure 3, Table S.1). GABRP was 

down-regulated in PD organoids 0.002-fold translating to an 8.43 

log decrease in expression compared to non-PD organoids (Figure 

3, Table S.1). Four glycine receptors (GLRA1, GLRA2, GLRA3, and 

GLRB) showed significantly less expression in non-PD organoids, 

both in relation to housekeeping gene and in relation to PD or-
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ganoids (Figure 3). Eight Glutamate receptors were evaluated and, as the trend suggests, PD organoids ex-

hibited increased expression of all targets over non-PD when comparing their ∆Ct values (Figure 3, Table 

S.1).  

Six genes associated with serotonin neurotransmission were examined. Both PD and non-PD organoids 

displayed decreased expression of HTR1B, HTR2A, HTR3A, HTR3B, and HTR7 when compared with their 

housekeeping genes.  However, Tryptophan hydroxylase 1 (THP1) was up-regulated 10-fold in non-PD 

organoids in relation to PD organoids (Figure 3, Table S.1). 

Thirty targets representing a spectrum of transporters involved in neurotransmission were examined. ∆Ct 

values showed that non-PD organoids exhibited reduced expression of all transporter genes except COMT, 

which was up-regulated (Figure 3, Table S.1).  Synaptophilin (SNPH) and Syntaxins (STX) 1A, 1B, and 3 

were significantly down-regulated in PD organoids compared with non-PD organoids by 4.87 to 11.38 logs 

as determined by ∆∆Ct analysis (Figure 3, Table S.1).  Synapsins SYN1 and SYN3 were up-regulated 5.21 

and 10.74-fold, respectively in PD organoids (Figure 3, Table S.1).  Synaptophysin (SYP) and Synaptotagmin 

(SYT1) were also up-regulated in PD organoids 16.32 and 4.05-fold, respectively (Figure 3, Table S.1).  

Immunofluorescence for neurotransmission markers of glutamate receptors NMDA1 and NMDAR2c were 

used to validate gene expression patterns and reflected gene expression data where PD organoids had 

greater fluorescence of both markers compared to non-PD organ-

oids (Figure 4, S2, S3). STX1 fluorescence mirrored gene expression 

data of decreased expression in PD organoids however STX3 ap-

peared to have increased fluorescence on PD organoids at 4X 

magnification. Increasing magnification to 60X showed that that 

fluorescence covered much less area than in non-PD organoids 

(Figure S4). PD organoids also had increased fluorescence of SYN1 

that was visible under 60X magnification (Figure S4).  

3.4. Alterations in Immune Regulation 

Eleven of 12 surface receptors important for antigen recognition, 

expression, or presentation exhibited decreased expression in PD 

organoids by ∆Ct analysis. CD68, a scavenger receptor, was 

up-regulated in PD organoids 2.75-fold over non-PD organoids. Six 

genes involved in cellular stress response were significantly dif-

ferent between PD and non-PD organoids with SELP, AGTR1, FN1, 

EDN1, C3, and BAX were all expressed at higher levels in non-PD 

organoids. Three genes encoding oxidoreductases were signifi-

cantly down-regulated in PD organoids as determined by ∆∆Ct 

analysis (Figure 3, S2, S3, S4, Table S.1).   

Seventeen cytokines exhibited differential expression between PD 

and non-PD organoids. Six cytokines were down-regulated in PD organoids including: CSF2, CSF3, CD80, 

SELE, FAS , and LIF (Figure 3, S3, S4, Table S.1).  Five chemokines exhibited differential expression between 

PD and non-PD organoids including: CCR7, PF4, CXCR3, CCL19 and CCL3 (Figure 3 S2, S3, S4, Table S.1). 

Six interleukins were down-regulated in PD organoids for both ∆Ct and ∆∆Ct analysis. However, IL-8 was 

up-regulated 5.48-fold in non-PD organoids (Figure 3, S3, S4, Table S.1).  

Immunofluorescence for immunological markers showed that ICAM was not detected by fluorescence in PD 

organoids even at 60X magnification (Figure 5, S3, S4,). CCR7, CYP46A1 and SELE had increased expression 

in non-PD organoids reflecting gene expression data (Figure 5, S3, S4,).  

3.5. Markers for Neurodegeneration were as expected 
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In contrast to the previous pattern of down-regulation of neurotransmitters and immune targets, PD organ-

oids exhibited an overall pattern of up-regulation of genes associated with APP, Tau, and other neurodisease 

markers, as reported in other research [2; 20; 21] (Figure 3).  

Twelve genes related to APP displayed differential expression both via ∆Ct and ∆∆Ct analysis. PSEN1 NAE1, 

PSENEN, NCSTN, BACE1 and BACE2 were up-regulated (Figure 3, Table S.1). In addition, APP, APH1A, 

APH1B, APLP1, APBA1, APBB1 and APBA2 were up-regulated in PD organoids (Figure 3, Table S.1).  

Up-regulation of Tau proteins were found for MAPK1, MAPK3, and MAPT with fold changes of 10.61, 8.88, 

and 349.57, respectively (Figure 3, Table S.1). 

Thirteen genes associated with neurodegenerative disorders were differentially expressed in both PD and 

non-PD cells via ∆Ct analysis. ∆∆Ct analysis showed that APH1A, CDK5R1, HSD17B10, IDE, SERPINA3, 

SNCA, VSNL1, CSNK1D, GAP43, CYP46A1, and UBQLN1 were upregulated in PD organoids while CTSD 

and CAPNS2 were down-regulated in PD organoids compared to non-PD organoids (Figure 3, Table S.1). 

4. Discussion 

Here, the endogenous expression pattern of cerebral organoids derived from a PD and a non-PD patient is 

described. The goal of this study was to characterize these model systems so that they can be used for future 

studies on viral infections. Vector-borne viruses of humans can be acquired all over the globe and many 

cause neurological symptoms and sequelae. For instance, West Nile virus causes encephalitis as well as long 

term neurological deficits [22; 23; 24; 25]. Equine Encephalitis viruses cause neuro-cognitive sequalae over 5 

years after infection [26; 27; 28]. Chikungunya virus causes persistent (and likely permanent) mood disorders 

including depression and anxiety [29; 30; 31]. Several arboviruses like Dengue virus and West Nile virus 

cause post-viral parkinsonism that are effectively treated with Parkinson’s Disease (PD) therapeutics [28; 32; 

33; 34; 35; 36]. 

While there are several animal models that recapitulate specific types of PD, there are none that replicate 

spontaneous or idiopathic PD [8]. Compounding that, there are no suitable models for studying viral en-

cephalitis or neurological sequalae in rodents [37; 38; 39; 40; 41]. Most rodents must be genetically modified 

to exhibit symptoms of infection, and usually die as a result of infection in a few days. Large animal 

(sheep[37], horse[42] and pig[43]) and primate models are costly and labor prohibitive. This has hindered the 

development of vaccines and therapeutics for viral infections in the CNS.   

The use of organoids for viral research is growing as a model for understanding viral pathogenesis. For any 

virus, a spectrum of disease ranging drastically from asymptomatic to death could present in infected indi-

viduals. Research has shown that this spectrum of response can reflect viral exposure history [44], age [45; 46] 

and environment [47; 48]. Recently, the role of chronic diseases on intrinsic and innate defense is emerging as 

a significant player in a patient’s ability to deal with viral infections [49; 50; 51; 52]. For neuroinvasive viruses, 

cerebral organoids have been used to study viral pathogenesis [53; 54] and microcephaly caused by Zika 

virus infection [55]. Cerebral organoids recapitulate the epigenetic signatures of the human brain [56] and 

have cortical neurons that produce Ca+ surges with glutamate release via functional synapses [12]. When 

mature, cerebral organoids develop immunocompetent astrocytes that are key players in neuroinvasive 

disease response [13]. While mid-brain organoids are available, their use for delineating viral pathogenesis is 

limited.    

The data support that cerebral organoids generated from PD patients exhibit significant dysregulation of 

neurotransmission and immune markers, which is expected for these patients in general, but this also high-

lights pathways that may negatively affect PD patients upon infection with neuroinvasive viruses. Multiple 

studies have provided evidence that PD patients have impaired neural function [57], oxidative stress re-

sponse [58], and neuroinflammation [59] at basal levels of expression. 

Data also reflects what has been reported in other research using human and animal models. For instance, 

PTSG2 has increased production in Alzheimer’s patients as it contributes to microglial dysfunction, amy-

loid-β plaque deposition, and cognitive impairment [60]. The data reflects this with the overall increase in 

amyloid-β expression in organoids derived from a PD patient. 
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Overall, PD organoids exhibited increased expression of neurotransmitters in comparison to non-PD organ-

oids. Studies have reported neurite alterations [58; 61] and impaired neurotransmitter regulation in sporadic 

and LRRK2 PD phenotypes at a basal level [58; 62; 63]. The increased expression of dopamine and musca-

rinic acetylcholine receptors reflects research on PD and suggests an intrinsic dysfunction of acetylcholine 

regulation [64; 65; 66]. Muscarinic acetylcholine receptors act specifically on dopaminergic neurotransmis-

sion such that increased expression of muscarinic acetylcholine receptors can cause either increases or de-

creases in dopamine transmission depending on which muscarinic acetylcholine receptor was activated. The 

data show that CHRM2 and CHRM4 were up-regulated over the non-PD organoids which has been shown 

to inhibit dopamine transmission in other research [67]. Additionally, CHRM1 expression is associated with 

long-term potentiation between synapses and cognition [65; 68]. Dysfunction of CRHM2 and CHRM3 are 

associated with movement disorders [65; 68]. CHRM4 has been shown to contribute to PD [69; 70; 71]. When 

it comes to viral infections, infection with Japanese encephalitis virus results in decreased expression of 

CHRM2 resulting in neurological sequalae of deficits in spatial memory and learning [72].  

The increased expression of GABA, glycine, and glutamate targets suggests that PD organoids exist in a state 

of increased neuroexcitation compared to non-PD organoids. Over time, neuroexcitation leads to loss of 

motor control, neuronal burn-out and cell death which contributes to the pathology of neurodegeneration 

[73]. Dysfunction on these targets has been shown to contribute to loss of neuronal plasticity [74; 75; 76] and 

to have detrimental effects on learning, memory, and cognitions [77]. Increased dopaminergic activity is also 

associated with neurological-viral infections that produce neurocognitive and degenerative syndromes [78]. 

Current data suggests infection induces a state of neuroexcitation through up-regulation of glutamate neu-

rotransmission [79; 80]. An individual with an intrinsic state of neuroexcitation could be vulnerable to exac-

erbated pathogenesis of over excitation of glutamate neurotransmission if infected with a mosquito-borne 

virus [79; 81]. It will be critical to understand how viral infection of the CNS affects PD patients since mos-

quito-borne viruses are endemic throughout the world. 

BAX, BCL2 and BCL2L1 are regulators of intrinsic apoptosis.  Normally, BCL2 and BCL2L1 function to in-

hibit the action of BAX which is to release calcium and activate caspase and other apoptotic proteins. Reports 

have shown that viral infection in the CNS causes up-regulation of BAX leading to brain injury [82; 83; 84]. 

The decreased expression of these proteins in PD organoids could render the intrinsic apoptotic pathway 

more vulnerable to apoptotic triggers from viral insult and unnecessary cell death. This agrees with other 

studies that report significant impairment of cellular waste recycling in PD patients at a basal level [8]. 

The data show that PD organoids have reduced expression of NFKB2, a transcription control protein that 

functions in the innate antiviral response [85].  In PD patients, NFKB is activated along with IL-17 when 

co-cultured with T-lymphocytes[86]. Under normal circumstances, activation of NFKB2 results in the pro-

duction of interferons which play a significant role in the innate antiviral response [85]. A down-regulation 

of proinflammatory cytokines in PD organoids when compared with non-PD organoids was observed.  IL-1, 

IL-12, TNF, CSF2, and CSF3 respond to infection by inducing inflammation and recruiting lymphocytes to 

the site of infection. Several viruses evade the innate immune response by blocking autophagy, thereby 

blocking monocyte differentiation and apoptosis [87; 88].  

Cytokines function as messengers that direct the innate immune response and play an important role in 

regulating the adaptive response. The expression of specific cytokines can serve as biomarkers for certain 

viral infections [89]. Our The data generated in this study supports that PD organoids do not differ from 

non-PD organoids in their expression of IL-4, IL-5, IL-6, and IL-10, indicating that there is no activation of a 

Th2 response.  However, IL-12 was significantly up-regulated in PD organoids, which would favor a 

cell-mediated inflammatory response to stress or infection, as well as the activation of cytotoxic T lympho-

cytes. Significant down regulation of IL-18 and IL-1B in PD organoids was also observed which catalyze the 

production of several proinflammatory cytokines and recruitment of immune cells to the site of microbial 

infections. Research supports that IL-12 promotes protective immunity to a variety of viruses and that IL-12 

and IL-18 work together during the antiviral response [90]. With expression of IL-18 and IL-1B 

down-regulated by 4-5 log-fold, PD organoids could be more vulnerable to infection than non-PD organoids. 

For instance, patients with endogenous down regulation of IL-1 and IL-10 can have exacerbated mental ill-

ness or psychotic episodes following infection with Chikungunya virus [29; 91; 92].  
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Chemokines are a subset of cytokines which specifically function in the innate immune response to tissue 

damage as well as foreign proteins and antigens. Chemokines also recruit and assist white blood cells in 

crossing the endothelial blood-vessel barrier into target tissues.  Overproduction of chemokines is associ-

ated with a variety of autoimmune diseases. The majority of chemokines examined in this study were ex-

pressed at greater levels in PD organoids than non-PD.  This suggests a chronic state of inflammation in this 

population of organoids, potentially causing complications for responding to viral infections. CCL19 is a 

chemokine that binds to the CCR7 receptor and acts to recruit dendritic cells. 

CCL19 was up-regulated 11.72-fold in PD organoids, but CCR7 was down-regulated 400.47-fold. This ex-

pression profile suggests potential compensation by CCL19 for CCR7 and reflects expression profiles doc-

umented from cerebrospinal fluid from patients infected with Varicella-Zoster virus [93]. Also, studies in 

CCR7 deficient mice reported increased death from West Nile virus infection via over-recruitment of leu-

kocytes and inflammation [94]. The reduced activity of CCR7 observed could make PD cells vulnerable to 

neuropathogens due to enhanced expression towards an inflammatory response.  

CCL3 interacts with CCR4 and CCR5 during the acute inflammatory response and functions to recruit mast 

cells, and other monocytes which can have an impact on the neuroimmune response. Increased expression of 

CCL3 and CCL5 occurs during infection with respiratory pathogens and is associated with severe manifes-

tations of disease [95]. Animal studies support that expression of CCR5 is up-regulated in CNS infections 

with Japanese Encephalitis Virus and positively correlated with increased pathogenesis [96]. The increased 

expression of these targets suggests that the PD organoids may exist in an inflammatory state, contributing 

to neuro-dysfunction over time.   

The complement system is a part of the innate immune response that can lyse cells, activate inflammation, 

target virus to phagocytic cells, and clear non-cytopathic viruses from the circulatory system. Here, the ex-

pression of C3 was evaluated as it functions in both classical and alternative complement activation path-

ways. Deficiency of C3 can make humans more susceptible to viral and bacterial infections [97; 98]. In this 

study, PD organoids had a 22.04-fold reduction in C3 expression compared with non-PD organoids sug-

gesting an innate impairment of the complement system. The down-regulation of C3 has been reported in 

patients with Hepatitis C infection [97]. Functional expression of C3 is necessary to neutralize West Nile and 

other flaviviruses which are causes of acute neurological infections and death [98; 99]. This poses an im-

portant question to be addressed in future research: could an endogenous reduction in C3 leave patients 

with PD disease primed for infection by a neuroinvasive virus? 

Oxidoreductases communicate ER stress to the immune system via multiple readouts: they determine MHC 

class I surface exposure, they influence the activation of inflammation, but they also signal the intracellular 

stress status to the immune system when found on the plasma membrane [100]. In particular, HMOX1 has 

antiviral activity with increased levels associated with clearance of infection [101; 102; 103].  PTGS2 (COX2) 

is an inflammatory marker and in non-PD patients, increased COX2 production is associated with the anti-

viral response [104; 105]. Studies have shown that oxidative stress response is impaired during both basal 

and stressed conditions in PD patients [106]. Data generated show that PD organoids had decreased expres-

sion of HMOX1 and PTGS2 (COX2). When present, HMOX1 interacts with IL-10 (also down-regulated) as an 

anti-inflammatory mechanism of the innate immune response [60]. Research has shown that Zika and 

Dengue viruses decrease host expression of HMOX1 as part of their antiviral response [101; 107]. The en-

dogenous deficit of COX2 and HMOX1 could render PD patients more vulnerable to viral infection. 

For this study, normal and diseased stem cells were utilized from ATCC which are readily available and 

require no IRB approval. The PD type of the diseased cells is not described and may not reflect the response 

of other PD types based on genetic mutations. The use of only 2 cell lines (1 non-PD, 1 PD) is a limitation of 

this study. The genetic variation of PD is staggering and there are nearly 400 hiPSC cell lines derived from 

PD patients available for research [8]. A recently published report showed that neuronal cell studies focused 

on disease use 5 cell lines per study (3 diseased, 2 control) however, the use in brain organoids was not dis-

cussed [8]. PD research utilizing organoids typically differentiate from 1 health and 1 diseased hiPSC line 

[11]. In depth analysis of preliminary concepts requires substantial resources and time that is not justifiable 

for pilot studies, especially when generating organoids [8]. Thus, preliminary data is often limited to 2 cell 
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lines (control and diseased) [108; 109; 110]. Regardless, the findings here need substantiation in organoids 

derived from additional cell lines.  

5. Conclusions 

What is known regarding neuropathogenesis of viral infections in the human CNS is limited. The impact of 

neuroinvasive infection in a host with a neurodegenerative background has not been explored. Alternative 

models for the study of neurological diseases and infection are critical to fully understand mechanisms of 

neuropathology that can’t be accurately recapitulated in animal models. The data from this study supports 

the use of organoid models for these studies, with evidence that the differential gene expression of cerebral 

organoids derived from a PD patient could contribute to a more severe disease in response to neurological 

assault from pathogens. There are significant discrepancies in the gene expression of neurotransmitters, 

immunity genes, and markers associated with neurodegenerative disorders. Many of these genes have been 

implicated in host antiviral response and viral countermeasures for evading host defense mechanisms. More 

work is needed to delineate the mechanisms of viral pathology in the human CNS and the impact of varia-

bility of endogenous gene expression in the neurodegenerative host. 
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1.1  Figures 

Figure 1. Immunofluorescence of selected targets to observe organoid morphology. Images of organoids were 

obtained at 4X and 60X magnification using an Olympus Fluoview3000 confocal microscope. Scale bar 

represents 500nm/20nm. Individual tiles can be found in the supplementary data. 

Figure 2. Venn diagram showing the overlap of differentially expressed genes between non-PD and 

Parkinson’s. Number of genes up- or down-regulated by at least 2-fold in relation to the housekeeping gene 

(GUSB) are presented in the Venn diagram. Data represents 12 pooled organoids from each cell line. 

 

Figure 3. Differential expression of PD and non-PD derived organoids. Heatmap and density color code of the 

genes showing differential expression for PD and non-PD cerebral organoids. Genes are grouped according to 

function in the human brain. ∆Ct for each cell line was calculated using GUSB housekeeping gene. Data 

represents Ct from 12 pooled organoids from each cell line.  

 

Figure 4. Immunofluorescence of neurotransmission targets in PD and non-PD organoids at 4X magnification. 

Images were obtained to validate gene expression data. Images of organoids were obtained at 4X magnification 

using an Olympus Fluoview3000 confocal microscope. Scale bar represents 500nm. Individual tiles along with 

images obtained at 60X magnification of these targets can be found in the supplementary data. 

 

Figure 5. Immunofluorescence of immunological targets in PD and non-PD organoids at 4X magnification.  

Images were obtained to validate gene expression data. Images of organoids were obtained at 4X magnification 

using an Olympus Fluoview3000 confocal microscope. Scale bar represents 500nm. Individual tiles along with 

images at 60X magnification of these targets can be found in the supplementary data. 
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1.2 Tables 

Table 1. Antibodies used to visualize production of proteins associated with neurotransmission and innate 

immunity. 
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Antibody Host Type Source Dilution 

Primary Antibodies 

Syntaxin 1A Mouse Monoclonal Novus Biologicals 1:1000 

Syntaxin 3 Rabbit Polyclonal Novus Biologicals 1:500 

CCR7 Mouse Monoclonal Novus Biologicals 1:1000 

NMDAR2C Rabbit Polyclonal Novus Biologicals 1:1000 

MAP2 Chicken Polyclonal Novus Biologicals 1:5000 

NMDAR1 Mouse Monoclonal Novus Biologicals 1:1000 

Synapsin 1 Rabbit Polyclonal Invitrogen  1:1000 

SOX2 Mouse Polyclonal EMD Millipore 1:1000 

Tuj1 Rabbit Monoclonal EMD Millipore 1:1000 

Neurofilament Mouse Monoclonal EMD Millipore 1:1000 

GFAP Rabbit Polyclonal Novus Biologicals 1:1000 

CD62/SELE Mouse Monoclonal R&D Systems 1:1000 

CYP46A1 Rabbit Polyclonal Invitrogen 1:500 

ICAM1 Mouse Monoclonal R&D Systems 1:1000 

Secondary Antibodies 

Anti-Chicken Goat Alexaflour 488 Novus Biologicals 1:3000 

Anti-Rabbit Goat Alexaflour 594 Novus Biologicals 1:1000 

Anti-Mouse Goat Alexaflour 647 Novus Biologicals 1:2000 
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2. Supplementary Material 

Table S1. Gene expression data of PD and non-PD organoids. 

Figure S1. 4X split channel magnification of morphological markers. Scale bar represents 500nm. 

Figure S2. 60X split channel magnification of morphological markers. Scale bar represents 20nm. 

Figure S3. 4X split channel magnification of neurological and immunological markers. Scale bar represents 

500nm. 

Figure S4. 60X split channel magnification of neurological and immunological markers. Scale bar represents 

20nm 
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