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Abstract: The reactive nature of traditional frequency stability methods can lead to delayed corrective 1

actions and unnecessary loss-of-load. This work presents a distributed model predictive control 2

method for proactive power system frequency stability. Dynamic state estimation model is derived 3

through a particle filter. By being able to estimate the future state of frequency, corrective actions 4

can be taken before the system reaches a critical condition. Proactive approach makes it possible to 5

optimize the response to a disturbance, which results in a decrease of the amount of compensation 6

utilized. The method is tested via Matlab simulations based on Kundur’s Two-Area System, and the 7

IEEE 14-Bus system. Performance metrics are provided and evaluated against other contemporary 8

solutions found in literature. Easy-to-derive model, without hard-to-design parameters, indicate 9

potential towards real-life applications. 10

Keywords: Frequency Control, Model Predictive Control, Particle Filter, Phasor Measurement Units, 11

Power Systems. 12

1. Introduction and Motivation 13

Traditional frequency stability methods are inherently reactive, and do not have 14

the ability to adapt to the dynamic behavior of the modern grid. Islands and frequency 15

thresholds are currently identified via simulations [1]. This means that contingency plans 16

are created for only a finite number of scenarios [2]. This leads to undesirable results 17

including delayed response, overshedding, and uncoordinated response [3]. In this work, 18

the term traditional frequency stability methods, refers to those requiring human interaction, 19

and those based on fixed thresholds derived from simulations. Given their reactive nature, 20

these methods take corrective actions once the system is in a critical state [4]. 21

Many formal mathematical modeling [7] and integrated machine learning methods 22

have otherwise been proposed for prediction. Integrated variational modal decomposi- 23

tion(VMD), particle filter (PF) and Gaussian process regression (GPR) [8], integrated long 24

short-term memory neural network (LSTM NN) and broad learning systems (BLS) [9], 25

and integrated particle swarm optimization (PSO) and BLS [10] are some included in the 26

relevant literature. 27

Leveraging on the core idea of prediction through integrated models, this work 28

presents a proactive distributed model predictive control (MPC) method for power systems 29

frequency stability. The method considers Phasor Measurement Units (PMUs) observations 30

and the particle filter (PF) for uncertainty quantification. This solution eliminates the need 31

for simulations, utilizes adaptive parameters, and is able to optimize corrective actions. 32

The concept and its steps are summarized as follows: 33

1. Disturbances are detected using the rate of change of frequency (RoCoF). 34

2. The state of frequency is predicted one to three seconds into the future. 35

3. A load excess factor is determined using the predicted state of frequency. 36
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4. Using loading data collected at the feeder level, the method finds a suitable combina- 37

tion of load (feeders) that will be dropped in stages to meet the excess load factor and 38

regain load-generation balance. 39

Further, state estimation model is adapted based on PMU observations and a frequency 40

target of 60 Hz is used for reference. Future states are controlled by either actuating 41

Distributed Energy Resources (DERs) or shedding load. These control actions are optimized 42

and executed iteratively. 43

The rest of this paper is organized as follows: Section 2 provides a brief overview of 44

related techniques found in literature. Theoretical background is presented in Section 3. An 45

overview of the proposed solution along with an illustrative example are given in Section 4. 46

Comparative case studies are found in Section 5. Finally, concluding remarks are given in 47

Section 6. 48

2. State-of-the-Art 49

A solution that predicts the final state of frequency after a disturbance is presented 50

in [5]. This method derives an approximate model from PMU readings, and when a 51

disturbance is detected it predicts a new steady state operating point. With the predicted 52

value at hand, the amount of load to be shed which will bring the system back to normal 53

operating conditions is calculated. Some of the highlights of this technique are that very 54

few assumptions are made in the context of inertia and generator governors. However, 55

the performance of [5] is highly dependent on the system being observable, and the time 56

needed for the predicted frequency to converge will vary. In some cases it can take up to 57

two seconds for the algorithm to provide a load excess factor. This uncertainty in regards to 58

processing time is a important limitation. For this reason this solution is suited for systems 59

with high inertia where processing time requirements are not as stringent. 60

In [6] curves are projected a few seconds into the future to estimate the future state 61

of frequency. Polynomial curve fitting is used to produce these predictions. One of the 62

main appeals of this technique is its simplicity, however, perhaps to due to this such, the 63

technique has several limitations. First, high PMU sampling rates are used. This is a 64

critical parameter that determines the feasibility of the technique, as higher sampling rates 65

place a significant burden on communication systems [11]. Second, in [6] the algorithm 66

alternates between first and second degree polynomials based on assumptions and without 67

feedback. Finally, the authors assume that deviations will follow a mostly linear pattern. 68

These limitations put a constraint on the type of systems where this technique can be 69

implemented. 70

Power measurements and power injections have also been proposed as a means of 71

monitoring and controlling power system stability. In [12] DERs are actuated to compensate 72

generation-load imbalances. The method uses the Extended Kalman filter to drive DERs in 73

real-time. A frequency stability solution based on monitoring the active power injections 74

of Synchronous Condensers (SCs) is presented in [13]. A novel aspect of this method is 75

that it offers an alternative to RoCoF detection. The premise of this method is that valuable 76

information such as the loss of a generating unit can be retrieved from the change in the 77

active power injection of an SC. It is suggested that disturbances that can be detected earlier 78

by monitoring power injections of SCs compared to RoCoF based methods. In [14], a 79

predictive transient stability monitoring method was presented. After a disturbance occurs, 80

the center of oscillations (CoO) triggered by the disturbance is located. This is achieved 81

by relating the frequencies at two ends of a line. Once the location of the CoO has been 82

identified, a simplified equivalent model of the generator affected by the disturbance is 83

created. By monitoring the potential energy of the system simultaneously with the total 84

energy (the sum of potential and kinetic energies), the generator can be seen drifting into 85

instability before any thresholds are surpassed. 86

The method developed in this work aims to deliver a performance comparable to that 87

of [5], [6], and [12] while making the following contributions to the state-of-the-art: 88

• The development of a distributed MPC method for frequency control. 89
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• The use of adaptive thresholds and feedback. 90

• Optimizing corrective actions via simple optimization routines. 91

• Addressing concerns related to PMU sampling rates, communication delays, and 92

processing times. 93

3. Theoretical Background 94

3.1. Particle Filter 95

In recent years Bayesian estimators have gained momentum in applications related 96

to power systems. A prominent Bayesian estimator, the Kalman filter (KF), has provided 97

encouraging results, particularly in the area of state estimation [15]. Despite the posi- 98

tive results, some limitations of the KF are becoming evident. Chief among them is the 99

assumption that data processed by the filter always follows a Gaussian distribution. It 100

has been suggested that this assumption is often inadequate as data can follow a variety 101

of probability distributions [16]. A different type of filter, the particle filter (PF), offers 102

a solution to this problem by estimating probability distributions via particles. The PF 103

complements those statistical models with data produced by an underlying system model 104

[17]. At each time step, predictions and corrections are made similar to the Kalman filtering 105

process. An overview of the probability estimation process conducted by the PF is shown 106

in Figure 1. 107

Figure 1. PDF Estimation via Particles [18].

In terms of mathematical formal models, the PF combines elements from the Monte 108

Carlo method and Bayesian estimation. The estimated state along with uncertainties is 109

calculated from probability density functions (PDFs) as described in equation 1 [19]: 110

p(xk|u1:k, z1:k) (1)

Here p is the posterior obtained from a PDF with inputs u1:k, and measurements z1:k. 111

Each time step produces a new estimate p. Taking the sequence of probabilities produced 112

by 1 and modeling it as a Markov chain, leads to an interesting and useful result in 2: 113

p(xk|x1:k−1, z1:k−1) = p(xk|xk−1), p(zk|x1:k) = p(zk|xk) (2)

Equation 2 suggests that the trajectory of the state from time step k − 1 to k, can 114

be obtained with reasonable accuracy by simply processing inputs, measurements, and 115

probabilities obtained during the previous time step. The process so far can be summarized 116

using Bayes’ theorem: 117

posterior =
likelihood · prior

marginallikelihood
(3)
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In equation 3, the likelihood comes from a statistical model, while the prior comes from 118

a process model. In the denominator, marginallikelihood, is used to normalize the posterior 119

depending on the nature of the measurements. 120

The process model mentioned above provides an estimate of how states evolve over 121

time. It can also include noise and other uncertainties. This can be defined as: 122

xk = fk(xx−1, uk, vk−1) (4)

Where f combines noise vk−1, inputs uk, and the previous state xx−1 to provide an updated 123

state x, at time step k. 124

Being a Bayesian filter, the PF updates its prior and posterior at each time step. Given 125

a process model, the prior can be updated using the following equation: 126

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxx−1 (5)

This prior is a guess based on information received up to time step k − 1. With this prior,
Bayes’ theorem can be utilized to obtain the new posterior as:

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(6)

Similarly, at each time step, the normalizing constant is updated per 7 below:

p(zk|z1:k−1) =
∫

p(zk|xk)p(xk|z1:k−1)dxx (7)

The steps described so far are very similar to the steps involved in Kalman filtering. A
key feature that differentiates the PF from the KF, is the PF’s use of the Monte Carlo method.
When searching for an optimal Bayesian solution, the PF evaluates a sum of weighted
samples, known as particles:

p(x0:k|z1:k) ≈ ΣNs
i=1wi

kδ(x0:k − xi
0:k) (8)

In equation 8, Ns represents the number of samples in a set. δ(·) refers to the Dirac delta 127

function. wi
k represents the weight of each particle xi

0:k. wi
k is computed as: 128

wi
k α wi

k−1
p(zz|xi

k)p(xi
k|x

i
k−1)

q(xi|xi
k−1, zk)

(9)

Subsequent mathematical manipulations of equations 8 and 9, yield equation 10:

p(xk|z1:k) ≈ ΣNs
i=1wi

kδ(xk − xi
k) (10)

An important principle of the PF can be observed through 10, which is that the solution 129

approaches the real values as the number of particles is increased [19]. 130

Another pivotal element of the PF process is the concept of resampling. Resampling 131

in the PF is analogous to the correction step in the KF. The PF resamples with the goal 132

of correcting imbalances in particle weights [17]. A pseudo-code of the particle filtering 133

process is presented in the following: 134
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Algorithm 1 Particle filter with resampling

Input {xi
k−1, wi

k−1}
Ns
i=1, zk

Output {xi
k, wi

k}
Ns
i=1

wsum=0
1: for i = 1, ..., Ns do
2: draw sample xi

k ≈ q(xi
k|x

i
k−1, zk)

assign weight wi
k using (2)

wsum = wsum + wi
k

3: end for
4: for i = 1, ..., Ns do
5: wi

k = wi/wsum
6: end for
7: Resample Ns particles with replacement
8: for i = 1, ..., Ns do
9: wi

k = 1/Ns
10: end for

The system model used in this work is a simple sinusoidal. This underlying model 135

was chosen because it is consistent with the oscillatory behavior of power system frequency. 136

In conclusion, the PF can be considered an extension of the KF. An extension capable 137

of processing probabilities derived from multiple probability distributions (in Monte Carlo 138

fashion), while adjusting its parameters at each time step, as it is done in Kalman filtering. 139

Overall the trade-off for this increase in flexibility is a modest increase in complexity. For 140

this reason, conservative processing delays of one second (1s) are included in the case 141

studies presented in Section 5. For the interested reader, an in-depth look at the theory 142

behind the PF, and its mathematical formulation are provided in [19]. Furthermore, multiple 143

variations of Bayesian filters, including the PF are compared in [20]. 144

3.2. Synchrophasors 145

Synchrophasors are electrical measurements sharing a common reference. These 146

measurements are commonly synchronized via GPS clocks. Figure 2 offers a basic depiction 147

of the framework. 148

Figure 2. Overview of the architecture.

Devices that support synchrophasors are referred to as phasor measurement units or 149

PMUs. PMUs have relatively high sampling rates, in some cases up to 120 frames per second 150

(fps) [21]. These sampling rates combined with the synchronization of measurements, make 151

it possible to derive input-output pairs that can be used to build mathematical models [22]. 152

One common assumption made by PMU-based solutions is that high PMU sampling 153

rates will be viable. Sampling rate limitations are in part driven by the capacity of communi- 154
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cation networks. High PMU sampling rates could overwhelm communication networks in 155

terms of data transfer and data storage [11,22]. With these limitations in mind, 30 fps seems 156

to offer a balance between practicality, and estimation accuracy. Estimation across multiple 157

sampling rates are performed in [23], with 30 fps delivering an acceptable performance 158

relative to higher sampling rates. Moreover, high frequency signals are not typically studied 159

in frequency stability applications. 160

3.3. Disturbance Detection 161

Techniques that utilize derivatives or rate of change, to detect frequency disturbances 162

are referred to as semi-adaptive techniques [24]. Semi-adaptive techniques offer a good 163

balance between security and dependability [25]. In this work, the frequency rate of change 164

R, is used as the primary means of disturbance detection. R can be computed as: 165

R =
f2 − f1

dt
(11)

In equation 11, f1 refers to the frequency at the start of the measurement period, and 166

f2 is frequency at the end of the period. dt represents the duration of period in seconds. 167

One of the benefits of semi-adaptive detection is that it allows for intentional delays to be 168

part of the scheme. These delays give the system a brief opportunity to self-correct issues 169

before further action is taken. The duration of these delays is inversely proportional to R. 170

In this work, the thresholds and their respective delays were taken from [26], and they are 171

as follows: 172

Table 1. Frequency Rate of Change and corresponding delays.

Frequency Rate of Change (Hz/sec) Time Window (Cycles)

15.00-2.33 3
2.32-1.17 6
1.16-0.78 9
0.77-0.58 12
0.57-0.47 15
0.46-0.38 18
0.37-0.33 21
0.32-0.29 24
0.28-0.26 27

<0.25 30

3.4. Prediction 173

This work introduces a simple, yet effective way to predict the future state of frequency
using the particle filter. By default the PF will make predictions, however, these predictions
extend only k + 1 time steps into the future [19]. The time horizon of these predictions
can be extended without significant modifications to the PF algorithm if measurements
are augmented with artificial data points. The idea here is to use measurements to derive
artificial data points, which are then processed by the PF. The output of the PF are estimates
based on historical data, the underlying system model, and artificial data. From the
perspective of the user, since these estimates are in the future, they can be considered a
prediction. The artificial data points (ADPs) are computed as follows:

ADPi = ADPi−1 + ts f ′ + t2
s f ′′ (12)

Where ADPi−1, is the previous ADP, or the last measurement when i = 1. f ′ and f ′′ are 174

the first and second frequency derivatives respectively. ts represents the time window of 175

the derivatives. These derivatives play a key role in determining the degree of influence 176

system dynamics have on the ADPs. Derivatives calculated using only a few measurements 177

leads to a set of ADPs that is very dynamic (sensitive to changes), which can be useful in 178

some situations, this is explored in the case studies. The number of measurements used 179
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in the derivation of the ADPs can be adjusted to increase (or decrease) the sensitivity of 180

the algorithm to system dynamics as desired. This is similar to the tuning of Q and R 181

parameters in the KF. These parameters are tuned to find a balance between new and 182

historical data [15]. A compromise was found by averaging the change of the last ten 183

measurements and then dividing this value by ts. One can think of this as an average 184

derivative. ADP computation is a sequential process that starts with the last measurement 185

received. The derivatives are then used to adjust the previous ADP to produce the next 186

one. The result is a vector containing the ADPs that will be the basis of predictions. 187

The time horizon of the prediction can be adjusted based on the number of ADPs used.
For a desired time horizon, tp, the desired number of ADPs can be found per:

NADP =
tp

fs
(13)

The number of ADPs, NADP, is a function of the sampling rate fs, and the time horizon 188

of the prediction, tp, which is measured in seconds. The process of ADP generation is 189

summarized as follows: 190

Algorithm 2 ADP Generation

Initialisation:
ADPi−1 = Last measurement
f ′ = Average first derivative in last 10 measurements
f ′′ = Average second derivative in last 10 measurements
NADP = Number of ADPs required

1: for i = 1 to NADP do
2: ADPi = ADPi−1 + ts f ′

f ′ = f ′ + ts f ′′

3: end for

In this work, after an initial prediction is made, subsequent predictions are made 191

with an emphasis on new data. Before a follow-up load shedding stage is executed, 192

synchronisation between the machines is considered. Surprisingly, synchronisation is 193

often overlooked in frequency stability solutions in literature [22]. In this work, machine 194

rotor angles are assumed to be tracked via relays at the same sampling rate used for 195

frequency, and the difference between the rotor angles, ∆θ, together with the predicted 196

state of frequency, are used to determine the need for follow-up load shedding stages. This 197

aspect of the solution will explored in the case studies presented in Section 5. 198

3.5. Excess Loading Equations 199

After a prediction indicating the need for corrective action is made, predicted frequency 200

values are used to calculate the corresponding load excess L. Load excess can be calculated 201

via the following expression, which is itself derived from the swing equation [27]: 202

L =
RH(1 − f 2

2
f 2
1
)

p( f2 − f 1)
(14)

Here parameter f refers to frequency measurements. f1 is the frequency at the begin- 203

ning, while f2 is the frequency at the end of the measurement period. R is the frequency 204

rate of change, found via equation equation 11 . p is the power factor, and the inertia 205

coefficient is represented by H. When L is calculated using predicted values, a modified 206

version of equation 14 is used to calculate the corresponding predicted load excess Lp: 207

Lp =
Rp Hest(1 −

f 2
p

f 2
1
)

p( fp − f1)
(15)
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In equation 15, fp is the predicted frequency. Rp is still the frequency rate of change, 208

but now this parameter is calculated as the change from f1, to the predicted frequency fp, 209

over the prediction period. Power factor p is calculated the same before, meanwhile Hest, is 210

now an estimated coefficient of inertia. The process of obtaining Hest is described in the 211

next section. 212

3.6. Online H Estimation 213

A common challenge encountered by power system stability solutions is the lack 214

of reliable inertia (H) information [28]. Historically, these calculations have taken place 215

during outages, by injecting test signals into the system and then analysing the response 216

[29]. This approach proved to be reliable for decades, but now as the complexity of the 217

grid continues to increase, inertia is evolving into a more dynamic parameter. Loads and 218

renewable sources such as wind and solar, all have temporal characteristics that impact 219

the inertia of the system [30,31]. Other events such tie lines closing can also lead to drastic 220

changes in inertia [29]. 221

With these challenges in mind, it becomes evident that a new approach to inertia 222

estimation is needed. The sampling rates and synchronisation of PMUs make it possible 223

to utilize system identification algorithms to estimate power system parameters [22]. One 224

such approach, subspace estimation, has delivered encouraging results in power systems 225

applications [23,32,33]. This work adopts an H estimation approach presented in [34], 226

where H is estimated online from frequency and power measurements. As presented in 227

[34], the online H estimation algorithm is not compatible with the framework developed in 228

this paper. The original formulation utilizes high PMU sampling rates (100 fps), and the 229

necessary data is collected over long time windows. Therefore, two simple modifications 230

are made: 231

1. The sampling rate is decreased to 30 fps, a much more manageable data transfer rate 232

[11,35]. 233

2. Estimation of H is carried out periodically as opposed to in real-time. Historical 234

data and forecasts can be used to reduce the number of times H is estimated. This 235

work uses dynamic loading (modeled from real life data available at [36]), and the 236

procedure is run the equivalent of six times per day. In the case studies presented in 237

Section 5, H is assumed to have been estimated roughly two hours before the events 238

take place. 239

3.7. Optimizing the Response 240

Mixed Integer Linear Programming (MILP) is used to optimize the corrective actions 241

of the method. An objective function is minimized subject to a set of constraints. The 242

algorithm then iterates and finds an optimal solution. 243

In terms of cost, in this work, DERs are given the lowest penalty among the three 244

sources of compensation. This is followed by non-critical loads (i.e., residential loads). 245

Sensitive loads carry the highest cost as these represent industrial operations where an 246

outage can lead to significant losses in revenue or equipment damage. Critical or life-safety 247

loads were not considered in this work as these are usually not intentionally dropped [27]. 248
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Figure 3. Compensation agent selection via optimization.

When deciding which agents to use, in addition to cost, the algorithm also considers 249

factors such as distance from the disturbance, and the number of customers affected. For 250

instance, it might be more desirable to drop one large industrial load instead of a large 251

number of residential customers. Additional parameters can be added as required, and all 252

parameters can be modified to meet a desired operational standard. 253

The information fed to the algorithm (capacity and loading information), is already 254

collected at the substation level and transmitted to control centers [40]. This step would not 255

place a significant burden on communication networks since all it requires is a periodical 256

loading and capacity update. The task of optimizing load excess compensation can be 257

summarised as follows: 258

Algorithm 3 Load Balance Optimization

Initialisation:
A = DER capacity available
B = Sensitive loads available to be shed (feeder level)
C = Non-critical loads available to be shed (feeder level)
cT

1 = Cost of DER actuation
cT

2 = Cost of shedding sensitive loads
cT

3 = Cost of shedding non-critical loads
b = Calculated load excess

1: Minimize J = ct
1x + ct

2y + ct
3z

s.t. Ax + By + Cz ≥ b
2: Return Selected agents in A, B, and C

As previously stated, the optimization routine can be easily modified to include 259

additional agent types, costs, or constraints. After the optimal combination of DERs and 260

loads for compensation have been identified, a trip signal is sent to the selected feeder 261

breakers. 262

4. Distributed MPC Method Overview 263

This method is intended to operate as a distributed solution overseeing the frequency 264

stability of an area of the grid. PMUs at the edge of an area share information with selected 265

PMUs at neighboring areas, as depicted in Figure 4. 266
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Figure 4. Overview of the architecture in distributed form.

When a disturbance is detected, the future state of frequency is predicted. Using 267

the predicted value, a load excess is estimated. An optimization routine then evaluates 268

the sources available for compensation such as DERs or load shedding, and identifies an 269

optimal combination of agents to be actuated to regain generation-load balance. Figure 5 270

shows the modules that make up this proposed solution. 271

Figure 5. Overview of the algorithm and its modules.

Related techniques in literature assume a processing time of roughly 500 ms. In this 272

context, computation time is assumed to be 400 ms (including communication delays), 273

another 100 ms is added to account for relay processing time and breakers delays [5,6]. In 274

this work a conservative delay of one full second is used. 275

Many of the operating parameters of this scheme are customizable, facilitating compli- 276

ance with industry standards such as NERC PRC-006 [1]. Some of the ways this framework 277

follows PRC-006 guidance include among others: 278

• Adjustable frequency thresholds. 279

• Adjustable number of load-shedding stages. 280

• Customizable islands (based on PMU availability). 281
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• Additional parameters such as voltage levels, frequency overshoot, rotor angles, 282

breaker status, and loading of power lines can be integrated as constraints as long as 283

the networks can support it. 284

• This method eliminates the need for simulations to establish underfrequency load- 285

shedding (UFLS) contingencies. 286

A data flow diagram of the method is presented in Figure 6. 287

Figure 6. Data flow diagram of the method.

5. Case Studies 288

This section contains three case studies that showcase the advantages of the presented 289

method under different operating conditions and constraints. Each case study includes 290

key performance metrics as well as comparisons with other methods found in literature. 291

Before proceeding to the test cases an illustrative example is presented. The purpose of the 292

example is to summarize the topics and steps discussed in the previous sections. 293

5.1. Illustrative Example 294

Figure 7 illustrates the complete response of a four-machine system after a disturbance 295

is introduced and mitigated using the scheme presented in this work. 296

Figure 7. Multi-Stage compensation based on predictions.

The disturbance starts at 0.5s, and it is detected via the RoCoF from equation 11. At 1s, 297

a prediction is made as shown in Figure 8. 298
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Figure 8. First particle filter prediction.

The method estimates the state of the system frequency one second into the future. 299

These estimates are then used to calculate the loading excess via equation 15, which is then 300

followed by a compensation stage at 2s, as seen in Figure 7. A second prediction is made 301

immediately after the first stage of compensation, this is shown in Figure 9. 302

Figure 9. Second particle filter prediction.

Based on this new prediction, a second stage of compensation is executed at 3s, which 303

then followed by a third prediction, illustrated in Figure 10. 304

Figure 10. Third particle filter prediction.

The third prediction shows that the frequency is trending back into stability. Since 305

frequency is expected to return to its normal range, a third stage of compensation is not 306

executed. In this case the system regains stability with minimal overshoot as seen in Figure 307

11. 308

Figure 11. Complete response estimated by the particle filter.

Subsequent stages of compensation are not executed when three conditions are met: 309

1. The PF predicts a rise in frequency. 310

2. The RoCoF is positive. 311

3. Machine synchronization is stable. The goal of the method is to first stop the decay 312

in frequency, and second, to send it back to a range where generator governors can 313

stabilize it. 314

5.2. Case Study I 315

This case study contains four scenarios and it is based on Kundur’s Two-Area System. 316

This model can be found at [41]. The locations where excess loads are introduced to the 317
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system are numbered (1 through 4) in Figure 12. Loading, capacity and other operational 318

data are presented in Tables 2 and 3, and also in Table A1 in the Appendix section. To account 319

for processing and communication delays, corrective actions are taken a full second after a 320

prediction is made. Gaussian noise with a variance of 0.025 is added to the measurements. 321

Figure 12. One line diagram of Case Study I.

Table 2. Load Flow Data

Bus V PG PL QL QC

1 1.03 615 - - -

2 1.01 700 - - -

3 1.03 719 - - -

4 1.01 700 - - -

7 - - 967 100 200

9 - - 1767 100 350

Table 3. Generator Dynamic Data

Generator Rating (MVA) Xd X′
d X′′

d T′
d0 T′′

d0 X′
q X′′

q T′
q0 T′′

q0 H

G1 900 1.8 0.3 0.25 8 0.03 1.7 0.25 0.4 0.05 6.5

G2 900 1.8 0.3 0.25 8 0.03 1.7 0.25 0.4 0.05 6.5

G3 900 1.8 0.3 0.25 8 0.03 1.7 0.25 0.4 0.05 6.175

G4 900 1.8 0.3 0.25 8 0.03 1.7 0.25 0.4 0.05 6.175

The scenario where the load excess is placed at bus 1 in Figure 12, is run twice. First, a 322

fixed three stage compensation procedure is used. The first compensation stage is set at 50% 323

of the calculated load excess. Stages 2 and 3 each compensate 25% of the load excess, for a 324

total of 100%, similar to the approach used by [6]. For the second round, adjustable stages 325

of compensation are used. The load imbalance starts at 0.5 seconds, and each compensation 326

stage is marked by vertical dashed lines in Figure 13. 327
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Figure 13. Case Study I, scenario 1 results.

In this case the system was successful in first, arresting the frequency decline, and 328

second, in providing a smooth transition to steady state. Three predictions were made by 329

the particle filter, they are shown below: 330

Figure 14. First prediction.

Figure 15. Second prediction.

Figure 16. Third prediction.

This same scenario was performed using a version of the algorithm referred to as 331

adaptive compensation. Adaptive compensation works as follows: The initial stage com- 332

pensates for 50% of the estimated excess load factor. After the first stage is executed, the 333

number of samples used in obtaining the derivatives in equation 12 is decreased, making 334

the particle filter more receptive to system dynamics. Compensation with variable stages is 335

illustrated in Figure 17. 336
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Figure 17. Scenario 1, PF compensation with adaptive stages.

In this case, the PF predicts that frequency will be returning to levels close to the 337

reference after only one stage of compensation. This is shown in Figure 18. 338

Figure 18. PF prediction after the first stage.

With frequency expected to return to its normal range, and ∆θ not trending towards 339

loss of synchronism, further compensation stages are avoided. Being able to restore 340

frequency stability while compensating only a portion of the calculated load excess happens 341

for two reasons: First, being able to take corrective actions early, means that compensation 342

can begin before the system reaches a critical state. Second, generator governors and other 343

controllers are not considered during compensation calculations, and while this might lead 344

to some inaccuracies, it also gives the scheme a safety margin, which translates into a lower 345

amount of load shed. Realistically, a highly accurate load compensation value is difficult 346

to obtain given the time constraints and the dynamics of both the loads and the sources. 347

Moreover, it has been suggested that in the context of stability, early action trumps accuracy 348

[6]. 349

This scenario is performed once again with the adaptive compensation procedure, but 350

this time, polynomial curve fitting (PCF) as presented in [6], is used to obtain predictions 351

instead of the PF. After the first stage of compensation has been executed, a follow up 352

prediction is made as illustrated by Figure 19. 353

Figure 19. Prediction using PCF.

The prediction obtained via polynomial curve fitting is unable to leverage the dynam- 354

ics of the system the way the PF can, leading to further stages of compensation. 355
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Three more disturbances are introduced, and both the PF based method and the PCF 356

technique are used to mitigate them. A performance comparison is presented in Table 4. 357

Table 4. Key Metrics for Case Study I.

Fault Location Method Number of Stages % of Load Excess
Compensated

1 PF 1 50%
PCF 3 100%

2 PF 2 75%
PCF 3 100%

3 PF 2 75%
PCF 3 100%

4 PF 1 50%
PCF 3 100%

For the four scenarios presented in Table 4, the method presented in this paper was 358

able to bring the system back into stability while shedding 25% to 50% less load. This is, as 359

previously discussed, due to the ability of the prediction model to leverage the dynamics 360

of the system as frequency begins to revert back into stability. 361

Performance metrics are examined in Table 5, where frequency overshoot during 362

recovery is measured. 363

Table 5. Overshoot values for Case Study I.

Fault Location Number of Stages Overshoot

1 1 -0.83%

2 2 1.13%

3 2 0.91 %

4 1 2.1%

As expected, more stages leads to a smoother transition back into steady state. It is 364

worth noting that even when only one compensation stage was used, the overshoot was 365

still fairly low. 366

5.3. Case Study II 367

A second case study was conducted in the IEEE 14 Bus System. Following the same 368

process as the first case study, four scenarios are presented. The locations where the load 369

excess is introduced during each scenario are presented in Figure 20. Loading, capacity 370

and other operational data is presented in Table A2 in the Appendix section. 371
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Figure 20. IEEE 14 Bus System used in Case Study II.

Once again, each scenario is ran twice, one time using PCF to build a base line and 372

then using the PF. Key metrics are presented in Table 6. 373

Table 6. Key Metrics for Case Study II.

Fault Location Method Number of Stages % of Load Excess
Compensated

1 PF 1 50%
PCF 3 100%

2 PF 2 75%
PCF 3 100%

3 PF 1 50%
PCF 3 100%

4 PF 1 50%
PCF 3 100%

The results of this case study are consistent with the first one, and they show that the 374

PF based method facilitates the recovery of frequency while greatly decreasing the amount 375

of compensation used. Overshoot is also used as a performance metric for this case study, 376

and the results are presented in Table 7. 377

Table 7. Overshoot values for Case Study II.

Fault Location Number of Stages Overshoot

1 1 2.3%

2 2 0.84%

3 1 -1.72 %

4 1 1.93%

The observed overshoot in this scenario is again fairly low, which is consistent with 378

the results obtained in the first case study. 379
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5.4. Case Study III 380

The goal of this final test case is to highlight the flexibility of the method and use 381

it to drive Distributed Energy Resources (DERs) in real-time. This test was run under a 382

similar set of assumptions as those made in [12], where a KF-based compensation method 383

is presented. In order to test the algorithm under demanding conditions, faster frequency 384

deviations than those seen in [12] were generated. Most importantly, the total delay time 385

involved in the processing of data and actuation of DERs was increased to 500ms; up from 386

the 40ms time delay used in [12]. That’s a response time over ten times slower. 387

Frequency deviations start at 1s, with a significant loss in generation at 1.5s. As 388

illustrated in Figure 21, DER actuation takes place 0.5s after the frequency deviations. 389

Figure 21. Real-Time mitigation via DERs.

As before, measurements are made via PMUs at 30 fps. The power mismatch is 390

calculated continuously in this test case per equations 11 and 15 in the form of a controller. 391

As shown in Figure 21 above, the frequency and power mismatch follow virtually the 392

same trend but in opposite directions. When frequency deviates from the 60 Hz reference, 393

a corresponding current output is seen from the DERs. The compensation is based on 394

the power mismatch calculated by the controller. Despite a 0.5 second delay, the system 395

successfully mitigates the frequency deviations. 396

6. Conclusions 397

This work presented a distributed MPC method for frequency stability of power 398

systems. The method considers PMU observations and the particle filter. By being able to 399

estimate the future state of frequency, corrective actions can be taken before the system 400

reaches a critical condition. This proactive approach makes it possible to optimize the 401

response to a disturbance thereby reducing the amount of compensation utilized. The 402

method was tested via simulations based on Kundur’s Two-Area System, and the IEEE 14- 403

Bus system. The results were promising and outperformed other contemporary solutions by 404

drastically reducing the mount of load dropped during compensation. As with essentially 405

all PMU based solutions, limitations in communication networks drive the feasibility of the 406

solution. Future work will focus on streamlining the solution by reducing requirements in 407

terms of data and the number of PMUs utilized. Alternative optimization methods as well 408

as improving the robustness of the particle filter will also be investigated. 409
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Abbreviations 421

422

DER Distributed Energy Resource
KF Kalman Filter
MILP Mixed Integer Linear Programming
MPC Model Predictive Control
PMU Phasor Measurement Unit
PF Particle Filter
RoCoF Rate of Change of Frequency
UFLS Underfrequency Load-Shedding

423

Appendix A 424

The tables below present the loading conditions for each case study. Total DER 425

Capacity refers to the total additional power DERs can supply (rated power minus power 426

supplied). This number is given as a percentage of the total rated power of the generators. 427

Excess loading is also given as a percentage of the total rated power of the generators. 428

Actual values for the first case study can be found at [41]. For the second case study, the 429

IEEE 14 Bus System was used with default parameters. In both cases the loading was 430

divided into groups so the algorithm described in Section 3.7 could be used. 431

Table A1. System loading and capacity for Case Study I.

Fault Location Total DER Capacity Excess Loading

1 5% 18%

2 3% 21%

3 6% 20%

4 8% 22%
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Table A2. System loading and capacity for Case Study II.

Fault Location Machine Loading % Total DER
Capacity Excess Loading

1

1 80%

5% 17%2 85%
3 88%
4 90%
5 85%

2

1 80%

4% 21%2 90%
3 85%
4 85%
5 80%

3

1 90%

5% 19%2 88%
3 80%
4 80%
5 85%

4

1 85%

2% 20%2 85%
3 85%
4 85%
5 85%
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