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Abstract: With such illegal land use activities as gradually increasing within the restricted protected 

areas of the United States, it is urgent to carry out the efficient monitoring and management support 

for encroachment through remote sensing images and intelligent analysis. In this work, we develop 

a Semi-supervised Enhanced U-Net (SS-EU-Net) for remote sensing images in this article, with an 

ability to identify land encroachment areas, as well as to visualize spatially and analyze its time 

evolution behavior by means of the geographic information system (GIS). Inherited from the 

conventional U-Net, the model introduces two critical improvements: first, the method integrates 

self-supervised pre-training scheme and pseudo-label generation mechanism to improve the feature 

learning capability of the model on the unlabeled satellite images. Multi-scale attention fusion 

module was proposed to greatly enhance the segmentation performance on complex edge of ground 

objects. The model takes a remote sensing image with geographical coordinates as an input and then 

generates a pixel-level mask of encroachment based on GIS layer through coordinate registration, 

which accomplishes the refined monitoring for the temporal and spatial variations of encroachment 

as well as helps for the decision support. Experimental results demonstrate that SS-EU-Net enhances 

the IoU and F1 by 5.3% and 4.7% in remote sensing image data set of typical protected areas in USA 

than existing methods. 

Keywords: remote sensing imagery; semi-supervised learning; U-Net; GIS integration; land 

encroachment detection 

 

1. Introduction 

In recent years, threats to global ecotypes have become more and more severe, in particular, 

influenced by climate change and urban expansion, many of the society’s “restricted development” 

and “ecological redline” have been pillaged or destroyed. In the United States, extensive acreages of 

federal, state, and local woodlands, wetlands, and national parks are often threatened by invasive 

agriculture, road-building and development, and unlawful residential habitation. Such 

encroachment frequently happens in ecologically fragile margin zones, which can severely destruct 

the original habitat connections and hinder the migration course of wild animals and plants, thus 

significantly posing a threat to local ecological security, species diversity conservation, etc [1]. 

Specifically, in 2021, illegal encroachment into a number of the western US nature reserves 

elevated the danger of wildfire propagation, generating general public concern over our capacity to 

manage ecosystems [2]. Thus, the development of an automatic scheme to support remote sensing 

observation, spatial analysis and smart identification in order to realize the real-time and high-

precision monitoring of illegal encroachments in protected areas becomes very appealing at this time. 

As an Non-contact observation method, the remote sensing technique has played a significant 

role in monitoring the earth surface dynamic change. Remote sensing can obtain large-scale, time-

series stable land surface image data by using multispectral or high-resolution sensors on board 

satellites or aerial platforms, which is extensively employed in land use classification, vegetation 
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change detection, water monitoring and other applications [3]. When it comes to surveillance of 

protected areas, the advantage of remote sensing is that remote, manual or difficult-to-inspect areas 

are integrated and that the development of encroachment is available over various timespans. 

There are also some open remote sensing image platforms in the United States such as Landsat, 

Sentinel, NAIP and so on supply covering multi-temporal observation data for decades, which have 

already been an important data data sources for the analysis of dynamic change and for the 

identification of ecological disturbance in protected areas [4]. In this context, remote sensing offers a 

cost-effective and high-frequency means to map micro-scale and incremental encroachment 

processes. 

Geographic information system (GIS) provides a unified processing, analysis and expression 

platform for multi-source spatial data, which can integrate and manage heterogeneous information, 

such as remote sensing image, geographical boundary, geomorphology, policy partition. In the 

intrusion monitoring of protection area, GIS system is allowed not only to map the pixel-level 

intrusion mask generated by the model on space and finish the pre-design under the coordinate of 

geographic, but also, supported by GIS, to various more complicated space-time operations such as 

buffer analysis, neighborhood statistics and change trend analysis [5]. 

By superimposing and measuring the government’s protection red lines or historical 

management red lines, GIS can accurately identify spatial attribution and management degree for 

encroachment as well as the management authorities in charge [6]. Meanwhile, GIS visualization 

tools can also be applied to the evident demonstration of public opinion, ecological compensation 

evolution and policy optimization recommendation, which is a powerful means to support 

ecological intelligent governance. 

2. Related Work 

Gunawansa et al. [7] employed Sentinel-2 data and GIS technology in a protected region in Sri 

Lanka to reliably identify human-elephant conflict hotspots, primarily in the margins between forest 

and farmland through the NDVI time series analysis, kernel density estimation (KDE) of conflict 

incidents and the multi-factor overlay. Sharma et al. [8] analyzed the use cases of remote sensing and 

GIS tools or platforms (e.g., including GEE, ENVI, ERDAS, QGIS, etc.) in the management of natural 

resources and highlighted the importance of ground-based in-situ data on the validation and 

performance improvement of remote sensing/GIS model. 

Mangewa et al. [9] used ground survey high-resolution images as training samples in Tanzania 

reserves, and used random forest and other algorithms to classify land cover on Sentinel-2 images, 

and obtained an Overall Accuracy of 94% and Kappa 0.92, which was better than the traditional 

Sentinel-2 classification. Wang et al. [10] constructed a combined GIS + UAV approach, first using 

GIS network analysis to evaluate cotton transportation pathways and environmental factors, and 

identified high-risk areas for volunteer cotton growth in 31 counties in southern Texas. 

Lv et al. [11] constructed an efficient multi-source remote sensing forest swamp classification 

method for the Changbai Mountain Ecological Function Reserve, and designed a two-stage 

classification framework by integrating Sentinel-1/2, ALOS-2/PALSAR, Landsat-8, and 

environmental covariates such as topography and land surface temperature. Firstly, 94% of the 

artificial surface disturbances were eliminated by using the NDBI threshold, and then the optimized 

random forest classifierwas used to combine 42 features and generate a forest swamp map at 10 m 

resolution through ten-fold cross-validation. Nguyen et al. [12] used natural zoning information and 

remote sensing-GIS data to identify land use dynamics, and then realized short-term prediction 

through CA-Markov, and captured the nonlinear relationship between environmental and 

socioeconomic factors through the MOLUSCE module, which significantly improved the accuracy of 

future forest cover change simulation. 
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3. Methodologies 

3.1. Semi-supervised pseudo-label optimization mechanism 

In order to make full use of the large number of unlabeled samples in remote sensing images, 

we propose a semi-supervised training strategy based on pseudo-label generation and consistency 

constraints. The mechanism consists of three key steps: pseudo-label generation, consensus 

regularization, and finally joint optimization of the objective function. 

Above all, the current model is used to predict the unlabeled sample 𝑋𝑢 to obtain the prediction 

probability graph 𝑌̂𝑢 , and then the pseudo-label is generated based on confidence threshold, as 

Equation 1: 

𝑌̃𝑢
(𝑖,𝑗)

= {

1, 𝑌̂𝑢
(𝑖,𝑗)

> 𝜏 

0, 𝑌̂𝑢
(𝑖,𝑗)

< 1 − 𝜏

𝑖𝑔𝑛𝑜𝑟𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (1) 

where 𝑌̂𝑢
(𝑖,𝑗)

 represents the prediction probability of the model at pixels (𝑖, 𝑗), 𝜏 is the confidence 

threshold (e.g., 0.9), and the region below this threshold will be treated as an uncertainty region and 

ignored. 

This pseudo-labeling strategy ensures that only high-confidence regions are used for semi-

supervised training, avoiding pseudo-label propagation noise. The pseudo-label region is trained 

using the standard cross-entropy loss function ℒ𝑝𝑠𝑒𝑢𝑑𝑜, as shown in Equation 2: 

ℒ𝑝𝑠𝑒𝑢𝑑𝑜 = − ∑ [𝑦̃𝑖,𝑗𝑙𝑜𝑔𝑦̂𝑖,𝑗 + (1 − 𝑦̃𝑖,𝑗)log (1 − 𝑦̂𝑖,𝑗)]
(𝑖,𝑗)∈Ω𝑝

, (2)
 

where Ω𝑝 represents the trusted region of the pseudo-label, 𝑦̃𝑖,𝑗 is the pseudo-label value, and 𝑦̂𝑖,𝑗 

is the corresponding predicted value. 

In order to further enhance the robustness of the model, a consistency loss term is introduced to 

constrain the prediction results of the model to be consistent before and after image perturbation, as 

shown in Equation 3: 

ℒ𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = 𝔼𝑋𝑢
[∥ 𝑌̂𝑢 − 𝑌̂𝑢

𝒯 ∥2
2]. (3) 

where𝒯(∙) Represents image perturbation operations, such as random flipping, rotation, or color 

perturbations. Structured similarity masks are further introduced, emphasizing consistency in the 

edge region, as shown in Equation 4: 

ℒ𝑠𝑖𝑚 = ∑ 𝑀𝑖,𝑗 ∙

𝑖,𝑗

∥ 𝑦̂𝑖,𝑗 − 𝑦̂𝑖,𝑗
𝒯 ∥2

2, (4) 

where 𝑀𝑖,𝑗 represents the weight of the edge structure (e.g., generated by the Sobel operator), which 

can enhance the consistent learning of the model at the edge position. Overall loss function integrates 

monitoring mechanisms, as Equation 5: 

ℒ = ℒ𝑠𝑢𝑝 + 𝜆1ℒ𝑝𝑠𝑒𝑢𝑑𝑜 + 𝜆2ℒ𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 + 𝜆3ℒ𝑠𝑖𝑚, (5) 

where ℒ𝑠𝑢𝑝  is the supervised loss of the labeled image, and 𝜆1 , 𝜆2 , 𝜆3  are the weighted 

hyperparameters of three regular terms. 

3.2. Multi-scale attention fusion module 

In order to improve the traditional U-Net recognition ability of complex ground object edges in 

remote sensing images, a multi-scale dilated convolution and spatial attention fusion module is 

introduced to enhance the segmentation ability from two aspects: feature diversity and spatial 

saliency. Dilated convolutions with different expansion rates are used to extract multi-scale context 

information, as Equation 6: 
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𝐹𝑚𝑢𝑙𝑡𝑖 = ∑ 𝑤𝑘 ∙ 𝐶𝑜𝑛𝑣𝑟𝑘
(𝐹)

𝐾

𝑘=1

, (6) 

where 𝐶𝑜𝑛𝑣𝑟𝑘
 denotes the dilated convolution with the expansion rate 𝑟𝑘 , 𝐹 is the input feature 

graph, 𝐾  is the number of scales, and 𝑤𝑘  is the learnable weight. Combined with global mean 

pooling and maximum pooling, the guided model focuses on the salient region, which is expressed 

as Equations 7 and 8: 

𝐴𝑠𝑝𝑎𝑡𝑖𝑎𝑙 = 𝜎 (𝐶𝑜𝑛𝑣1×1(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹) + 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹))) , (7) 

𝐹̃ = 𝐹 ∙ 𝐴𝑠𝑝𝑎𝑡𝑖𝑎𝑙 , (8) 

where 𝜎 represents sigmoid activation, and ∙ represents element-by-element multiplication. This 

mechanism effectively enhances the response of the model to edge and weak features, and improves 

the segmentation accuracy. 

The mask map of the final output of the model needs to be registered to the GIS spatial 

coordinate system for dynamic change analysis, as Equation 9: 

(𝑥𝑔, 𝑦𝑔) = 𝒯𝑔𝑒𝑜(𝑖, 𝑗) = (𝑥0 + 𝑗 ∙ 𝑟𝑥 , 𝑦0 − 𝑖 ∙ 𝑟𝑦), (9) 

where (𝑥0, 𝑦0) is the geographic coordinate of the upper left corner of the image, (𝑟𝑥 , 𝑟𝑦) is the image 

resolution (e.g., 30 meters per pixel), and (𝑖, 𝑗) is the pixel index. 

The Figure 1 shows the overall architecture of the semi-supervised enhanced U-Net (SS-EU-Net) 

model proposed in this paper, which mainly includes input remote sensing images, encoder module, 

self-supervised pre-training branch, multi-scale attention fusion module and decoder output. The 

input on the left side of model is a remote sensing image with geographic coordinates, and after 

multi-layer coding to extract features, enters module for scale fusion and saliency enhancement. 

 

Figure 1. Illustration of Proposed SS-EU-Net Model Framework. 

At the same time, the self-supervised branch at the top uses a convolutional neural network to 

model the structure information of the unlabeled image, and is used to generate pseudo-labels and 

consistency regularization loss, so as to enhance the stability of training. Finally, the decoder 

generates a pixel-level mask of the encroachment area, and improves the utilization rate of unlabeled 

data through the pseudo-label mechanism, so as to realize the automated. 
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4. Experiments 

4.1. Experimental setup 

In this section, we utilize Landsat 8 from USGS as the primary dataset to address the commonly 

ecological reserves in the United States. With a spatial resolution of 30m and abundant multispectral 

bands and multi-year time series information, the dataset can be used to monitor land cover change, 

illegal invasion, etc. According to the characteristics of different bands in remote sensing images, we 

conduct a systematic evaluation on the accuracy and robustness of the model for protected area 

encroachment detection by calculating the pixel-level masks of model output and the real labels 

visually. We selected four representative methods in the field of remote sensing semantic 

segmentation and semi-supervised learning as benchmarks: 

• U-Net is a classical fully convolutional neural network structure, which is widely used in 

semantic segmentation tasks. It adopts an “encoder-decoder” symmetrical structure, and uses 

skip-connection to fuse low-level details with high-level semantic information. 

• Mean Teacher is a mainstream semi-supervised learning framework, which constructs two 

structures: “student model” and “teacher model”, in which the parameters of the teacher model 

are the exponential moving average of the student model at different training stages. 

• DeepLabV3+ is an advanced semantic segmentation model that introduces Empty Space Pyramid 

Pooling (ASPP) and encoder-decoder architectures, and has strong multi-scale context modeling 

capabilities. 

• FixMatch combines a pseudo-labeling mechanism with a strong and weak data augmentation 

strategy. It uses weak enhancement to generate pseudo-labels, strongly enhances input images, 

and filters labels with confidence thresholds to guide network training. 

4.2. Experimental analysis 

Intersection over Union is used to measure the degree of overlap between the prediction mask 

and the true mask. 

The results of Figure 2 show that with the increase of the proportion of labeled data, the IoU of 

each method increases, SS-EU-Net always maintains the highest level, especially when the annotation 

ratio is less than 40%, and its IoU is about 3–5 percentage points higher than that of the second place 

FixMatch, showing the significant advantage of semi-supervised pre-training and multi-scale 

attention fusion in the few-shot scenario. At high annotation ratios (≥70%), the performance of all 

methods tends to be saturated, but SS-EU-Net still leads by about 2–3 percentage points, 

demonstrating that it can not only make effective use of limited labels, but also further improve 

segmentation accuracy under large-scale supervision. 

 

Figure 2. IoU Comparison Across Methods With Labeled Data Ratio. 
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Figure 3. ‘F1 Score Comparison Across Methods With Training Epochs. 

As can be seen in Figure 2, SS-EU-Net always maintained the highest level and converged the 

fastest throughout the training process. In the 30–50 rounds, the F1 value is already above 0.80, while 

other methods require a higher number of rounds to reach the same level. FixMatch came in second 

and also showed a strong semi-supervised advantage in the mid-to-low rounds; DeepLabV3+ and 

Mean Teacher gradually approached SS-EU-Net after a high number of rounds (≥70 rounds), but 

always lagged behind by about 0.02–0.03, while U-Net converged the slowest and had the lowest 

overall F1 value. 

As the cloud coverage gradually increases from 0% to 90%, Table 1 shows a clear downward 

trend in MCC for all methods, but SS-EU-Net has always maintained the highest level and the 

smallest decrease in all cloud occlusion conditions: SS-EU-Net reaches 0.88 when there is no cloud, 

while U-Net only reaches 0.82, and when cloud coverage increases to 90%, SS-EU-Net remains 

around 0.44, while U-Net has dropped to 0.35. 

Table 1. Matthews Correlation Coefficient Comparison. 

Cloud Cover (%) U-Net Mean Teacher DeepLabV3+ FixMatch SS-EU-Net 

10 0.78 0.8 0.79 0.82 0.85 

20 0.74 0.77 0.76 0.79 0.82 

30 0.69 0.73 0.71 0.75 0.78 

40 0.64 0.68 0.66 0.7 0.74 

5. Conclusion 

In conclusion, this paper proposes a semi-supervised enhanced U-Net (SS-EU-Net) model, 

which integrates self-supervised pre-training, pseudo-label optimization and multi-scale attention 

fusion modules to achieve efficient and accurate pixel-level intrusion area segmentation, and 

completes GIS layer overlay and spatiotemporal evolution monitoring through geographic 

coordinate registration. Large-scale experimental comparisons show that SS-EU-Net is significantly 

better than U-Net, Mean Teacher, DeepLabV3+ and FixMatch in IoU, F1, MCC and other indicators, 

and shows excellent robustness in the context of high cloud cover and low labeling. In the future, the 

work will be expanded to multi-phase and multi-source data fusion, and online incremental learning 

and lightweight deployment will be explored to further improve the model generalization capability 

and real-time monitoring efficiency, and help intelligent ecological protection and decision support. 
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