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Abstract: Backward electromagnetic waves are extraordinary waves with contra-directed phase1

velocity and energy flux. Unusual properties of the coherent nonlinear optical coupling of the2

phase-matched ordinary and backward electromagnetic waves with contra-directed energy fluxes3

are described which enable greatly-enhanced frequency and propagation direction conversion,4

parametrical amplification, as well as control of shape of the light pulses. Extraordinary transient5

processes that emerge in such metamaterials in pulsed regimes are described. The results of the6

numerical simulation of particular plasmonic metamaterials with hyperbolic dispersion are presented,7

which prove the possibility to match phases of such coupled guided ordinary and backward8

electromagnetic waves. Particular properties of the outlined processes in the proposed metamaterial9

are demonstrated through numerical simulations. Potential applications include ultra-miniature10

amplifiers, frequency changing reflectors, modulators, pulse shapers, and remotely actuated sensors.11

Keywords: optical metamaterials; fundamental concepts in photonics; light-matter interactions at the12

subwavelength and nanoscale; fundamental understanding of linear and nonlinear optical processes13

in novel metamaterials underpinning photonic devices and components; advancing the frontier14

of nanophotonics with the associated nanoscience and nanotechnology; nanostructures that can15

serve as building blocks for nano-optical systems; use of nanotechnology in photonics; nonlinear16

nanophotonics, plasmonics and excitonics; subwavelength components and negative index materials;17

slowing, store, and processing light pulses; materials with such capabilities that could be used for18

optical sensing, tunable optical delay lines, optical buffers, high extinction optical switches, novel19

image processing hardware, and highly-efficient wavelength converters.20

1. Introduction21

The concept of electromagnetic waves (EMWs) with co-directed phase velocity and energy flux is22

commonly accepted in optics and is true for natural isotropic materials. All optical devices, which we23

use in everyday life, exploit this concept. However, the advent of the nanotechnology has made possible24

the creation of metamaterials (MMs) [1] which enable the appearance of the electromagnetic waves with25

contra-directed energy flux (Poynting vector) and phase velocity (wave vector). They are referred to as26

backward electromagnetic waves (BEMWs). Such extraordinary properties have opened novel avenues27

in linear physical optics towards such exceptional (already realized) applications as the subwavelength28

resolution, clocking of objects, etc. Nonlinear optics (NLO) significantly extends the methods of29

manipulating light. Most important among them are the possibilities to convert light frequencies. Phase30

matching of coupled light waves, i.e., equality of their phase velocities, is a paramount requirement for31
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coherent, i.e., phase-dependent, NLO coupling of light waves, which paves a way to efficient frequency32

conversion and pulse shaping. However, phase matching imposes severe limitations on the choice33

of practical NLO materials. It has been shown that coherent coupling of normal, forward, EMWs34

(FEMWs) and BEMWs opens novel avenues for extraordinary NLO processes which hold promise35

for great benefits in manipulating light. For example, consider parametric amplification at ω2 in a36

transparent material slab of thickness L which originates from NLO three-wave mixing (TWM) and is37

accompanied by difference-frequency generation of the idler at ω1 (ω1 = ω3 −ω2). Then, exponential38

growth of the output amplitudes at ω1 and ω2, a1,2(L) ∼ exp(gL), inherent to common coupling39

geometry of co-propagating waves, would dramatically change to a1,2 ∼ 1/ cos(gL) for the case of a40

coupled normal signal wave a2 and contra-propagating BEMW a1 exiting the slab from the entrance41

edge in the reflection direction [2,3]. Here, the factor g is proportional to the product of nonlinear42

susceptibility and amplitude of the pump wave a3 at ω3. Further, propagation direction is direction of43

the energy flux and group velocity. The uncommon “geometrical,” i.e. slab thickness dependent, pump44

intensity resonance emerges at gL→ π/2, which allows for huge enhancements in the NLO coupling,45

for miniaturization of corresponding photonic devices and for exotic pulse regimes [4]. Four-wave46

mixing with BEMWs possesses similar extraordinary properties [5,6]. Second harmonic generation47

(SHG) with BEMWs also experiences significant changes, because the fundamental wave depletes48

and the generated second harmonic (SH) wave grows along the opposite directions [7–9]. Therefore,49

nonlinear energy exchange between the waves at different frequencies traveling with equal co-directed50

phase velocities, whereas their energy fluxes are contra-directed, offers unusual exciting possibilities in51

controlling and manipulating light waves. Basically, coherent NLO coupling and quasi-phase-matching52

of contra-propagating light waves can be achieved in crystals through periodically spatially modulated53

nonlinearity [10–15] where some of the extraordinary processes described below have been or can be54

realized. The studies are on the way. Discussion of advantages and disadvantages of these approaches55

is beyond the scope of this paper.56

Nonlinear optics deals with phenomena which qualitatively depend on the intensity of the light57

waves. Hence, qualitative changes occur in NLO processes with BEMs in pulse regimes, because58

intensities of the coupled fields vary both in space and in time. For example, unusual behavior can be59

foreseen when the intensity of the pump field varies in the vicinity of the above described “geometrical60

resonance.” Nonlinear optics with BEMWs holds the promise for the creation of a novel family of61

photonic devices with extraordinary operational properties and for their significant miniaturization.62

However, practically the most important is the use of pulsed laser sources of which light intensity varies63

in time and space. This gives rise to many questions to be answered in the outlined context. Coupling64

of ordinary and contra-propagating backward pulses is described by a set of coupled partial differential65

equations. In the case of BEMWs, unusual boundary conditions for amplitudes of the coupled modes66

must be applied. Numerical solutions of such equations are usually the only approach to the indicated67

challenging problem. A related research direction of the primary importance is the nanoengineering of68

the MMs that could support the coexistence of ordinary and BEMWS, which would satisfy the photon69

energy conservation requirement, travelling with equal co-directed phase velocities while having opposite70

group velocities. This presents another challenging problem. This paper addresses both outlined71

challenges of nanoengineering and nonlinear electrodynamics with BEMWs. Theoretical studies and72

numerical demonstrations are described towards merging nonlinear optics and metamaterials, which73

pave ways for extraordinary manipulation of light through coherent nonlinear coupling of light waves74

in deliberately engineered spatially dispersive metamaterials. The possibilities for nanoengineering of75

a family of novel NLO MMs, which would allow for phase matching of ordinary and backward light76

waves and for its tailoring to a broad range of frequencies, are demonstrated.77
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2. Hyperbolic Metamaterial Which Provides Phase Matching of Coupled Guided78

Contra-Propagating Electromagnetic Modes [16–21]79

A mainstream in the engineering of the MMs which can support BEMWs is grounded on the
relationship

S(r, t) = (c/4π)[E×H] = (c2k/4πωε)H2 = (c2k/4πωµ)E2. (1)

This suggests that simultaneously negative electric permittivity ε and magnetic permeability µ would80

result in the direction of the wave-vector k to appear against the energy flow (Poynting vector S) at81

the corresponding frequencies. Such MMs are commonly referred to as negative-index MMs (NIMs).82

Electromagnetic waves cannot propagate in the materials with ε < 0, µ > 0, such as metals. Hence,83

common major efforts are aimed at the creation of the MMs made of such nanoscopic LC circuits84

(plasmonic mesoatoms and mesomolecules) that could produce a significant phase delay in the85

response to the magnetic component of light which is equivalent to negative µ. Metallic inclusions86

provide for negative ε. Sometimes NIMs are referred to as the left-handed MMs as opposite to the87

normal right-handed orientation of vectors E, H and k in ordinary materials.88

Herewith, we describe a different approach to nonlinear photonics with BEMWs which does NOT
rely on optical magnetism. It is grounded on the more general relationship

S = vgU, vg = gradkω(k), (2)

where S, is a Poynting vector, U is the energy density, and vg is the group velocity of light waves.89

It is seen that the energy flux becomes directed against the wavevector if the directions of the phase90

and group velocities become opposite. Hence, negative dispersion ∂ω/∂k < 0 would give rise to the91

appearance of BEMW modes [22–24]. Equations (1) and (2) are valid for loss-free isotropic materials92

and used here to demonstrate the distinction between the two approaches. The latter one opens a novel93

avenue in nanoengineering the MMs that could support both BEMWs and ordinary FEMWs based on94

different spatial dispersion at different frequencies. The challenge is to choose such subwavelength
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Figure 1. Spatially dispersive metamaterials composed of the conducting nanorods and phase-matching
energy fluxes for second harmonic generation (a) and three-wave mixing (b).

95

building blocks of the MM and to space them in a way that their overall electromagnetic (EM) response96

would cause such significant phase shift of the propagating EMWs that the normal EM waves convert97

into backward EMWs (BEMWs). However, the indicated problem is not the sole nor the major one.98

In the context of the stated goal, most restrictive is the requirement to ensure a set of EMWs at99

different frequencies satisfying the photon energy conservation law (e.g., ω1 + ω2 = ω3) which are100

the mixture of normal and BEMWs travelling with one and the same phase velocity (phase matching).101

Proof-of-principle demonstration of such a possibility and of the flexibility of the proposed approach102

is presented below [16,19–21]. Figures 1 depict a “nanoforest,” the MM made of conducting nanorods103

of lengths h and of small diameter standing on a conducting surface at a subwavelength spacing104

and bounded by a dielectric with electric permittivity εs. The nanoforest is plunged in a dielectric105

with electric permittivity εh. The metaslab can be viewed as tampered waveguide. Its eigenmodes106

and losses depend both on the properties of the constituent materials and shapes of the nanoblocks,107
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Figure 2. (a) Dispersion of two lowest eigenmodes in the slabs of standing CNTs with open ends.
εh = εs = 1; h = 1.05 µm (solid lines) and h = 0.85 µm (dashed lines). (b) Attenuation factor k′′x for
the lower-frequency mode (the descending red plot) and for the higher-frequency second mode (the
ascending blue plot) at h = 1.05 µm. (c) Group velocity vs phase velocity for the same two modes. The
descending dotted red line in panel (a) shows one of the very lossy guided modes. The vertical lines in
all panels mark the waves travelling with equal phase velocities while satisfying the relation f2 = 2 f1.

as well as on the orientation of the electric and magnetic fields. Numerical demonstrations below108

refer to a particular case of “carbon nanoforest,” where the MM slab is made of carbon nanotubes109

(CNTs) of radius r = 0.82 nm spaced at d = 15 nm whereas εh = εh = 1 (air). The choice is motivated110

by the availability of extensive literature on EM properties of CNTs [25–28] (and references therein)111

and by useful THz frequencies of the metaslab’s EM eigenmodes. A carbon nanoforest possesses112

hyperbolic dispersion because only one component of electric permittivity, εzz, which is along the CNTs,113

is negative. A review on hyperbolic dispersion properties can be found, e.g., in [29–31].
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Figure 3. (a) Dispersion of the three lowest modes f (kx/k) at h = 3.5 µm, where k′x/k = c/vph, k is
wavevector in vacuum for the corresponding frequency f , and vph is the phase velocity. The vertical line
marks the waves travelling with the same phase velocity while satisfying the requirement f1 + f2 = f3.
The dashed line represents the sum of the two lowest modes. (b) Normalized attenuation constant
k′′x /k: the blue (solid) line corresponds to f1, the red (dashed) to f2, and the green (dash-dotted) to f3.
(c) Group velocity indices c/vgr for the respective modes.

114

Our studies have shown that the indicated guided eigenmodes peculiar to the given metaslab115

can be tailored by changing the length of the nanotubes, their spacing, and electrical properties of116

the bounding and the wafer materials. Most important is that the “nanoforest” can be tailored to117

achieve phase matching (i.e., equal phase velocities) for the FEMWs and BEMWs, which satisfy the118
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energy conservation law for a given frequency-conversion process over a broad frequency range.119

Particularly, the example depicted in Figure 2(a) proves the possibility of phase matching of normal120

fundamental waves at f1 [∂ f1/∂(c/vph) > 0] and backward waves at f2 = 2 f1 [∂ f2/∂(c/vph) < 0]121

for the marked frequencies [19,20] [see also Figure 2(c)]. Figure 3(a) proves the possibility of phase122

matching of a normal signal wave at f1 and two contra-propagating BEMWs [∂ f /∂(c/vph) < 0] at f2123

and f3 ( f1 + f2 = f3), which can be achieved through adjustment of lengths h of the carbon nanotubes.124

In the given examples, the matching frequencies fall in the THz and thermal IR frequency ranges. The125

losses inherent to the coupled guided waves may vary in a broad range and can be tailored as seen in126

Figures 2(b) and 3(b). Note, that group velocities of the matching modes may differ greatly and may127

include “stopped light” (vgr = 0) [Figures 2(c) and 3(c)], which paves the way to producing various128

coupling regimes and to controlling a variety of outcomes.129

3. Backward-Wave Second Harmonic Generation [2,7,9,19,20,32]130

3.1. Continuous Wave Phase-Matched SHG in a Loss-Free Medium: Forward and Backward Waves131

Major differences between the SHG in an ordinary NLO material and in a material which
supports BEMWs is explicitly seen in the ultimate case of phase-matched coupling of the continuous
fundamental and second-harmonic (SH) waves in a loss-free medium (Figures 4). Figures 4 (a) and
(b) depict a common case of coupling of ordinary, forward waves (FWs). Figures 4 (c) and (d) depict
coupling geometry and photon fluxes corresponding to the fundamental BW and ordinary (forward)
SH wave (FSHW). Figures 4 (c) and (d) schematically show photon fluxes across the NLO material slab
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Figure 4. Coupling geometry and energy fluxes in ordinary materials (a) and (b) and in backward-wave
materials (c) and (d).

reduced by the input magnitude for the fundamental wave, S2,1 ∝ |a2,1|2. a2,1 are reduced amplitudes
of the SH and fundamental waves which are described by the equations

s2da2/dz = −iga2
1, s1da1/dz = −i2g∗a∗1 a2. (3)

Here, g is the coupling parameter proportional to the SH NLO susceptibility, with the factors s2,1 = 1
for the co-directed fluxes and s2 = 1, s1 = −1 for the contra-directed fluxes. The Manley-Rove equation
(photon conservation law) derived from Equations (3) is

s2d|a2|2/dz + (1/2)s1d|a1|2/dz = 0. (4)

3.1.1. SHG in ordinary NLO medium132

For the case of both coupled waves to be FWs [Figures. 4 (a) and (b)], (s1 = s2 = 1 and a20 = 0),
one finds from Equation (4) with account for a10 = 1 that

2|a2|2 + |a1|2 = 1. (5)
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This states that sum of the pairs of he fundamental photons and of the generated SH photons is
conserved along the medium. The solution to Equations (3) is found as [33]

2|a2|2 = tanh2 (
√

2gz), |a1|2 = sech2 (
√

2gz). (6)

3.1.2. SHG: backward fundamental and forward SH waves133

In the case of backward fundamental and ordinary SH waves [Figures 4 (c) and (d)], factors
s1,2 take values s1 = −1, s2 = 1 and Equations (3) and (4) dictates fundamentally different behavior.
Equation (4) predicts

|a1|2 − 2|a2|2 = |B|2, (7)

where |B|2 is a constant which, however, depends on the slab thickness and on the strength of the
input fundamental field. Equations (3) reduce to

da2/dz = −iga2
1, da1/dz = i2g∗a∗1 a2. (8)

Besides the fact that the in this case the equations have different signs on the right sides, the boundary134

conditions for fundamental and SH waves must be applied to opposite edges of the slabs of thickness135

L: a10 = 1, a2L = 0. Indicated differences give rise to fundamental changes in the solution to the136

equations for the amplitudes of the coupled waves.137

3.1.3. Comparison of SHG for the cases of co-propagating and contra-propagating phase-matched138

waves139
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Figure 5. Differences between SHG in ordinary and BW settings. (a) Energy fluxes across the slab
for fundamental (descending dash-dotted blue line) and SH (ascending dotted blue line), where both
are ordinary forward waves; and for backward-wave fundamental (the descending solid red line) and
ordinary-wave SH (the descending dashed red line). gL = 1. (b) Output transmitted fundamental
(descending blue dash-dotted line) and SH (ascending blue dotted line) at z = L, where both are
ordinary forward waves; and transmitted backward-wave fundamental (descending solid red line)
flux at z = L and ordinary FWSH contra-propagating flux at z = 0 (the ascending dashed red line) vs
pump intensity gL.

Figure 5(a) illustrates unparalleled properties of SH generation with BWs as compared with its140

ordinary counterpart at similar other parameters for the particular example of gL = 1. As noted,141

the remarkable property in this case is the fact that SH propagates against the fundamental BW142

and, therefore, metaslab operates as frequency doubling metamirror with reflectivity controlled by the143

fundamental wave. Figure 5(b) compares the output intensity of the SH and transmitted fundamental144

wave for both coupling options. Major important conclusions are as follows. It appears that the145

efficiency of SHG in ordinary settings exceeds that in the BW, contra-propagating settings at equal all146
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other parameters. At that, the propagation properties of SH appear fundamentally different, which147

holds promise for extraordinary applications. The intensity of SH is less than that of the fundamental148

wave across the BW slab, although it can exceed that in the vicinity of the exit from an ordinary,149

FW slab [Figure 5(a)]. The quantum conversion grows sharper with an increase of intensity of the150

fundamental beam, and higher conversion at lower intensities occurs for the co-propagating coupling151

as compared with that for the counter-propagating coupling.152

3.2. Pulsed Regime153

In the general case of the pulsed regimes, phase mismatch, different group velocities and lossy154

medium, SHG is described by the following equations [9]:155

s2
∂a2

∂ξ
+

v1

v2

∂a2

∂τ
= −igla2

1 exp (−i∆k̃ξ)− α̃2

2d
a2, (9)

s1
∂a1

∂ξ
+

∂a1

∂τ
= −i2g∗la∗1 a2 exp (i∆k̃ξ)− α̃1

2d
a1. (10)

Here, the quantities |aj|2 are proportional to the time-dependent photon fluxes aj = ei/e10; ej =156 √
|εj|/k jEj; Ej0 = Ej(z = 0); a10 = 1; the coupling parameter g = æE10; æ =

√
k1k2/|ε1ε2|4πχ

(2)
eff ;157

χ
(2)
eff = χ

(2)
e,2 is the effective nonlinear susceptibility; the loss and phase mismatch parameters are158

α̃1,2 = α1,2L and ∆k̃ = ∆kl; ∆k = k2 − 2k1; vi are are moduli of group velocities and α1,2 are absorption159

indices at the corresponding frequencies; l = v1∆τ is the pump pulse length; ∆τ is duration of the160

input fundamental pulse; the normalized slub thickness is d = L/l and normalized position is ξ = z/l;161

the normalized time instant τ = t/∆τ. The parameters sj = 1 are sfor ordinary, and sj = −1 for162

backward waves.163

3.3. Comparison of FW and BW SHG in Short-Pulse Regimes164

Significant difference of properties of the SHG pulse regime properties in the FW and BW settings
are explicitly seen for the examples considered below, where the input pulse shape is chosen close to a
rectangular form:

F(τ) = 0.5
(

tanh
τ0 + 1− τ

δτ
− tanh

τ0 − τ

δτ

)
. (11)

Here, δτ is the duration of the pulse front and tail, and τ0 is the shift of the front relative to t = 0.165

The parameters δτ = 0.01 and τ0 = 0.1 have been selected for numerical simulations. Absorption is166

neglected (α1 = α2 = 0). The phase velocities are supposed equal (∆k = 0). The modules of the group167

velocities are also supposed equal (v1 = v2).168

Unusual properties of BWSHG in the pulsed regime stem from the fact that it occurs only inside169

the traveling pulse of fundamental radiation. Generation begins on its leading edge, grows towards its170

trailing edge, and then exits the fundamental pulse with no further changes. Since the fundamental171

pulse propagates across the slab, the duration of the SH pulse may be significantly longer than that172

of the fundamental one. Depletion of the fundamental radiation along the pulse and the overall173

conversion efficiency depend not only on the maximum intensity of the input pulse, on the matching174

of the phase and group velocities of the fundamental and second harmonic, but on the ratio of the175

fundamental pulse length and slab thickness. Such properties are in strict contrast with that of FWSHG176

as illustrated in Figures 6 and 7. The shape of the input fundamental pulse is given by the function177

T1 = |a1(τ, z = 0)|2/|a10|2 when its leading front enters the medium. The results of numerical178

simulations for the output fundamental pulse, when its tail reaches the slab’s boundary, are given by179

T1 = |a1(τ, z = L)|2/|a10|2. The shape of the output pulse of SH, when its tail passes the slab’s edge180

at z = 0, are given by the function η2 = |a2(τ, z = 0)|2/|a10|2. The pulse energies are represented181

by the time integrated pulse areas Sj which vary across the slab. As seen from Figures 6 (a) and (b),182

saturation is homogeneous across the FWSH pulse, and the shape of boththe fundamental and SH183
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Figure 6. Comparison of pulse shapes and energy conversion at forward-wave FWSHG and
backward-wave BWSH settings in a loss-free MM. The length of the input pulse at the fundamental
frequency is equal to the metaslab thickness. (a, b) Input rectangular T1 pulse shapes for the
fundamental radiation; η2 – for SH. (c, d) Change of the pulse energy at the corresponding frequencies
across the slab. Here, d = L/l, S1(z) and S10 = S1(z = 0) are fundamental pulse energy, 2S2/S10 is
energy (photon) conversion efficiency per pulse.
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Figure 7. Backward-wave second harmonic generation: effect of pulse width. Here, the input pulse
duration is decreased four times as compared with Figure 6 (a) at the same peak intensity. (a) T1 is
pulse shape for the fundamental radiation, η2 is for SH. (b) S1(z) and S10 = S1(z = 0) are fundamental
pulse energy, and 2S2/S10 is the energy (photon) conversion efficiency per pulse, d = L/l.

output pulses remain rectangular. On the contrary, the shapes of the output fundamental and FWSH184

pulses are different and change with a change of intensity of the input fundamental pulse. Moreover, it185
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appears that the shapes of the output pulses vary with a change of the input pulse length but at other186

parameters unchanged, as seen from Figure 7 (a). The basic properties of the FWSH and BWSH pulse187

energy conversion across the corresponding slabs qualitatively resemble those in the continuous-wave188

regime [Figsures 6 (c) and (d)]. The unparalleled property of BWSHG is the growth of pulse energy189

conversion with a shortening of the pulse length with constant instant intensity [cf. Figures 6 (c)190

and 7 (b)]. Figures 7(a) and (b) correspond to the fundamental pulse four times shorter than the slab191

thickness. They show an increase of the conversion efficiency with an increase of intensity of the input192

pulse. This is followed by the shortening of the SH pulse.193

Figures 6 (c), (d) and 7 (b) satisfy the conservation law in a loss-free metaslab: the number of194

annihilated pair of photons of fundamental radiation (S10 − S1L)/2 is equal to the number of output195

SH photons S20. Figures 6 (a), (b) and 7(a) prove that shapes and widths of the fundamental and196

generated SH pulses, as well as the energy conversion efficiency to the reflected pulses at doubled197

frequency, can be controlled by changing the intensity and ratio of the the input pulse length to the198

metamaterial thickness (parameter d).199

3.4. Backward-wave Second Harmonic Generation in the Carbon Nanoforest [16,19,20]200

For the particular model of the MM depicted in Figures 1(a) with the nanotubes of height201

h = 1.05 µm, the outcomes of the numerical simulation are as shown in Figures 8. The following202

values and estimates, which are relevant to the MM made of nanotubes of height h = 1.05 µm, are203

used for the numerical simulations. The spectrum bandwidth corresponding to the pulse of duration204

∆τ = 10 ps is on the order of ∆ f ≈ 1/∆τ = 0.1 THz. Hence, ∆ f / f ∝ 10−2÷ 10−3, and phase matching205

can be achieved for the whole frequency band. This becomes impossible at ∆τ = 10 fs because of206

∆ f / f ∝ 10 in this particular case. Phase matching occurs at k1 = 5.47× 105 m−1, k2 = 2k1 [Figure 2(a)].207

Corresponding attenuation factors are calculated as α1 = 2k
′′
1 = 2(9.3× 10−3)k1 = 1.02× 104 m−1,208

α2 = 2k
′′
2 = 2(2.72× 10−2)k2 = 5.96× 104 m−1. Since losses for the second mode are greater, the209

characteristic metaslab thickness corresponding to extinction exp(−α2L) = 0.1, i.e., to α2L = 2.4,210

α1L = 0.41, is estimated as L ≈ 40 µm. The pulse length for the first harmonic (FH) is estimated211

as l = ∆τv1 = ∆τc/ng,1 = 606 µm, which is 15 times greater than L. The latter indicates that212

the quasistationary process is established through almost the entire pulse duration, whereas some213

transients occur at the pulse forefront and tail. Note, that at ∆τ ≤ 10 ps, which is still acceptable, the214

effect of the transient processes significantly increases.215

Figures 8 presents the results of numerical simulations for the energy conversion efficiency216

at BWSHG with an account for the above-calculated losses and group velocities. Here, η2(x) =217

S2(x)/S10 =
∫

dt|a2(x, t)|2/
∫

dt|a10(t)|2 is the pulse energy (quantum) conversion efficiency, and the218

factor S1(x)/S10 presents depletion of energy of the FH pulse along the slab and at the corresponding219

exits: x = 0 for the SH and x = L for the FH. Two coupling parameters (gl = 5 and gl = 15) and220

two different input pulse lengths (L/l = 1/15, and L/l = 1) are chosen for the simulations. The221

coupling parameter gl is proportional to the total number of photons per input FH pulse. It can be also222

thoughts of as the ratio l/x0 of the input pulse length l and the characteristic slab thickness x0 required223

for the significant photon conversion from FH to SH for the given pulse intensity at its maximum.224

The interplay of several processes contributes to the outlined dependencies. Figures 8 shows that the225

conversion efficiency grows with an increase in the input pulse amplitude. However, the important226

unusual property of BWSHG, i.e., frequency-doubling nonlinear reflectivity, is that it rapidly saturates227

with an increase of the metaslab thickness. Such unusual behavior is due to the backwardness of SH228

which propagates against the FH beam and is predominantly generated in the area where both FH and229

SH are not yet significantly attenuated. It is seen that the overall nonlinear reflectivity provided by230

such a frequency-doubling meta-reflector can reach values on the order of ten percent for the selected231

values of the parameter gl. Calculations also show that the reflectivity in the pulse maximum for the232

same parameters appears two times greater than the time-integrated values.233
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Figure 8. Backward-wave SHG: dependence of the energy conversion efficiency on the metaslab
thickness, intensity and duration of the pump pulse. (a) and (b): gl = 5; (c) and (d): gl = 15. (a) and
(c): L/l = 1/15; (a) and (d) L/l = 1.

These dependencies are in stark contrast with SHG in ordinary materials, as seen from the234

comparison with Figures 9. These display corresponding dependencies in the case of ordinary materials235

with all other parameters the same as in Figs. 8. Here, both FH and SH exit the slab at x = L. It236

is seen that, in general, SH reaches its maximum inside the slab. This is due to the interplay of the237

nonlinear conversion and the attenuation processes. In order to maximize the SH output, the pump238

strength, its pulse duration, and the slab thickness must be carefully optimized, as shown in Figure 9239

(c). Investigations prove that the shape and the width of the output pulses in the cases of ordinary240

SHG and BWSHG also appear to be significantly different.241

4. Backward-Wave Three Wave Mixing: Parametric Amplification, Nonlinear Frequency-Shifting242

Reflectivity, Transients and Pulse Shaping [2–4,21,34,35]243

Three-wave mixing (TWM) with BEMws (BWTWM) also exhibits extraordinary properties.244

Normalized amplitudes of the waves are given by the following equations which account for the fact245

that the propagation direction of the BEMW at ω1 must be opposite to others in order to have all phase246

velocity co-directed and to achieve phase matching [Figure 1 (b)]247

(∂a1/∂ξ)− (v3/v1)(∂a1/∂τ) = −igla3a∗2 + (α̃1/2d)a1, (12)

(∂a2/∂ξ) + (v3/v2)(∂a2/∂τ) = igla3a∗1 − (α̃2/2d)a2, (13)

(∂a3/∂ξ) + (∂a3/∂τ) = ig∗la1a2 − (α̃3/2d)a3. (14)
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Here, ξ = x/l, l = v3∆τ, τ = t/∆τ, d = L/l, α̃i = ajL, and vi are modules of the group velocities248

and αi are attenuation indices at the corresponding frequencies, g = æE30, where Ei0 = Ei(x = 0),249

æ = 4π
√

k1k2χ
(2)
eff , and χ

(2)
eff is the effective nonlinear susceptibility, ai =

√
|εiε3|/kik3(Ei/E30). The250

quantities |ai|2 are proportional to the time-dependent photon fluxes. First, let us consider the ultimate251

case of continuous waves and neglected depletion of the pump field at ω3.252

4.1. Three-wave mixing of Continuous Electromagnetic Waves: Approximation of Neglected Depletion of Pump253

Wave254

In this case, equations for amplitudes of the coupled waves reduce to255

da1/dx = −iga∗2 exp(i∆kx) + (α1/2)a1, (15)

da2/dx = iga∗1 exp(i∆kx)− (α2/2)a2, (16)

where ∆k = k3 − k2 − k1. Here, the coupling model is simplified. The equations account for absorption256

of the incident and reflected coupled fields, whereas depletion of the control field is neglected.257

Three fundamental differences in Equations(15) and (16) distinguish them from their counterpart258

of FWTWM in ordinary materials. First, the signs with g in Equation (15) are opposite to that in259

Equation (16) because of the backwardness of this wave. Second, the opposite sign appears with α1260

because the energy flow S1 is against the x-axis. Third, the boundary conditions for the incident and261

generated waves must be defined at opposite sides of the sample (x = 0 and x = L) because the energy262

flows S1 and S2 are counter-directed. Consequently, the equations for a1 and a2 cease to be identical263

as they are in the case of co-propagating waves in ordinary NLO materials. As will be shown below,264
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Figure 9. Ordinary SHG at all other parameters the same as in Figures 8.
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this leads to dramatic changes in the solutions to the equations and in the general behavior of the265

generated waves.266

4.1.1. Tailored Transparency, Parametric Amplification and Compensating Optical Losses267

If a1 is a BW signal traveling against the pump wave [a1(x = L) = a1L] and a2 is a268

difference-frequency generated idler (ω2 = ω3−ω2) traveling against the signal [a2(x = 0) = a20 = 0],269

the slab serves as an optical parametric amplifier at ω1. The transparency/amplification factor T10 is270

given by the equation271

T10 =

∣∣∣∣ a1(0)
a1L

∣∣∣∣2 =

∣∣∣∣exp {− [(α1/2)− s] L}
cos RL + (s/R) sin RL

∣∣∣∣2 . (17)

This predicts behavior which is totally different from that in ordinary media. Most explicitly, it is seen
at αj = ∆k = 0. Then, the equation for transparency reduces to

T10 = 1/[cos(gL)]2, (18)

where R =
√

g2 − s2, s = [(α1 + α2)/4][−i∆k/2]. The equation shows that the output signal
experiences an extraordinary enhancement at gL → π/2 which can be controlled by adjusting the
intensity of the control field (factor g) and/or the slab thickness L. In the given approximation,
the equations also show other “geometrical” resonances at gL → (2j + 1)π/2, (j= 1, 2, ...). However,
they diminish if depletion of the pump field due to amplification of the signal is accounted for. As
gL → π/2, parametric amplification turns to parametric oscillations. Such behavior is in drastic
contrast with that in an ordinary FWTWM coupling, where in the ultimate case of αj = ∆k = 0, the
signal would grow exponentially as

T1 ∝ exp(2gL). (19)

The possibility of such extraordinary resonances was predicted for an exotic TWM phase-matching272

scheme [36] (and in some earlier proposals refereed therein), which has never been realized, and273

pointed out in a textbook [37]. As suggested in [36], all frequencies were to fall in the positive-index274

domain, whereas one beam with far infrared wavelength was proposed to be directed opposite275

to others so that anomalous dispersion could be used for phase matching. However, anomalous276

dispersion usually occurs in the vicinity of absorption resonances and is accompanied by strong losses.277

Backward-wave parametric oscillation without a resonator in the radio frequency range was reported278

in [38]. Coherent NLO coupling of ordinary contra-propagating light waves in the NLO crystals with279

spatially periodically modulated crystals have been realized in [10–15].280

4.1.2. Tailored Reflectivity and Nonlinear Optical Metamirror281

In the approximation of depletion of the pump being neglected, both coupled weak waves behave
in the similar way. So, in the opposite case of a1L = 0 (the idler with the energy flux against that of
the pump wave) and a2(x = 0) = a20 (the signal traveling along the pump wave), the slab serves
as an NLO mirror, which emits at ω1 against the pump flux . Ultimately, in the approximation of a
spatially homogeneous control field and real nonlinear susceptibility, the analytical solution to the
Equations (15)-(16) are found, and the reflectivity, R1 = |a1(0)/a∗20|2, is given by the equation

R1 =

∣∣∣∣ (g/R) sin RL
cos RL + (s/R) sin RL

∣∣∣∣2 . (20)

It is seen that the NLO frequency changing reflectivity also experiences extraordinary enhancement282

at gL → π/2. For the case of a loss-free slab and exact phase matching, the reflectivity is given by283

the equation R1 = tan2(gL) and tends to infinity at gL → π/2, which indicates the possibility of284
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mirrorless parametric self-oscillations. The reflected wave has a differen frequency and, basically, the285

reflectivity may significantly exceed 100%.286

Overall, the simulations show the possibility to tailor and switch the transparency and reflectivity of287

the metachip over a wide range by changing intensity of the control field. Giant enhancement of the288

NLO coupling in the vicinity of the geometrical resonance indicates that strong absorption of the BW289

and of the FW idler can be turned into transparency, amplification and even cavity-free self-oscillations.290

Self-oscillations would provide for the generation of entangled counter-propagating left-handed, h̄ω1, and291

right-handed, h̄ω2, photons without a cavity. Energy is taken from the control field. Each point of the292

slab emits contra-propagating photons, each of them stimulate emission of the counterpart. Maximum293

correlation is achieved when the condition gL = π/2 is satisfied. Extraordinary enhancement of the294

NLO (here TWM) coupling occurs due to the outlined distributed NLO feedback which is equivalent295

to greatly increasing effective coupling length. It is similar to the situation where a weakly amplifying296

medium is placed inside a high-quality cavity, which leads to lasing. The outlined features can be297

employed for the design of ultra-compact optical sensors, selective filters, amplifiers, and oscillators298

generating beams of counter-propagating entangled photons.299

4.2. Three Alternative Coupling Schemes – Three Sensing Options300

The outlined processes can be applied to all-optical sensing. The corresponding concepts of the301

prospective sensors are as follows. Figure 10 depicts three possible options for the phase-matched302

NLO coupling of the ordinary and backward waves. Consider the example depicted in panel (a).
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Figure 10. Three different options of the proposed NLO sensors. (a) S1,2 and k1,2 are energy fluxes and
wavevectors for the ordinary,forward-wave, signal and generated idler; S3 and k3 – backward-wave
control field. (b, c) Alternative prospective schemes. (b) The NLO sensor amplifies the backward-wave
signal S1 traveling against the control beam and frequency up-converts it to the beam S2 directed along
the control one. (c) The NLO sensor converts the signal wave S1 traveling along the control field to the
frequency-shifted backward-wave idler traveling in the reflection direction against the control beam.

303

Assume that the wave at ω1 with wave-vector k1 directed along the x-axis is a FW signal. Usually304

it experiences strong absorption caused by metal inclusions. The medium is supposed to possess a305

quadratic nonlinearity χ(2) and is illuminated by the strong higher frequency control field at ω3, which306

falls into the BW domain. Due to the TWM interaction, the control and the signal fields generate a307

difference-frequency idler at ω2 = ω3 − ω1, which is also assumed to be a FW wave. The idler, in308

cooperation with the control field, contributes back into the wave at ω1 through the same type of309

TWM interaction, and thus enables optical parametric amplification (OPA) at ω1 by converting the310

energy of the control fields into the signal. In order to ensure effective energy conversion, the induced311

traveling wave of nonlinear polarization of the medium and the coupled electromagnetic wave at the312
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same frequency must be phase-matched, i.e., must meet the requirement of ∆k = k3 − k2 − k1 = 0.313

Hence, all phase velocities (wave vectors) must be co-directed. Since the control field is a BW, i.e., its314

energy flow S3 appears directed against the x-axis, this allows to conveniently remotely interrogate the315

NLO microchip and to actuate frequency up-conversion and amplification of signal directed towards316

the remote detector by such a metamirror [39]. The signal can be, e.g., incoming far-infrared thermal317

radiation emitted by the object of interest, or a signal that carries important spectral information about318

the chemical composition of the environment. The research challenge is that such a unprecedented319

NLO coupling scheme leads to changes in the set of coupled nonlinear propagation equations and320

boundary conditions compared to the standard ones known from the literature. This, in turn, results in321

dramatic changes in their solutions and in multiparameter dependencies of the operational properties322

of the proposed sensor. Two other schemes depicted in Figures 10 (b,c) offer different advantages and323

operational properties for nonlinear optical sensing [34,40].324

4.3. Parametric Amplification and Nonlinear Reflectivity in the Vicinity of the Critical Pump Intensity:325

Extraordinary Transients326

As shown, BWTWM experiences extraordinary dependence on the strength of the pump control327

field. Therefore, extraordinary behavior can be anticipated in the pulse regime, as the pump intensity328

varies in time. Consider a coupling scheme where the pump at ω3 and signal at ω2 are co-propagating329

FWs, whereas the idler at ω1 is a BW. Basically, two different regimes are possible. In the first one,330

the input pump a30 is a semi-infinite rectangular pulse and the input signal is a CW (a20= const). In331

the opposite case, the pump is a CW and a20 is a semi-infinite rectangular pulse. First, consider the332

case of v3 = v2 = −v1 = v. The shape of a semi-infinite pulse with a sharp front edge travelling333

with group velocity v along the axis x is given by the function F(t) =
{

1− tanh
[
(x/v− t)/t f

]}
/2,334

where the parameter t f determines its edge steepness. In the following numerical simulation, it is335

taken as equal to t f = 0.05∆t, where ∆t = L/v3 is the travel time of the fundamental pulse front edge336

through the slab. In the first case, a30(t) = a30F(t), a20= const. In the second case, a20(t) = a20F(t),337

a30= const. Here, aj0 is a maximum pulse amplitude magnitude at the slab entrance. The solution to338

Equations (12)–(14) is obtained through numerical simulations.
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Figure 11. (a) Difference in transient processes under ordinary (solid lines) and BW (dashed lines)
settings. T2(t) = |a2L(t)/a20|2 is transmission (OPA) of the co-directed seeding signal at the forefront
area of the output signal pulse. (b) Difference between transient processes in T2(t) and in nonlinear
optical reflectivity R1(t) = |a10(t)/a20|2 (contra-propagating generated idler) for the case of the pulsed
input signal and CW pump. (a, b): −v1 = v2 = v3 = v, αj = 0, gL = 0.984π/2.

339

In Figure 11(a), the solid line depicts the output signal at the slab exit (x = L) for the case of340

co-propagating ordinary waves, and the dashed line for the case of a BW setting. It is seen that any341

changes in the output signal occur only after the travel period, both in the ordinary and BW regimes.342
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For the case of a pulsed input pump and CW input signal, the output signal experiences amplification343

when the forefront of the pump pulse reaches the exit. For the co-propagating settings, the shape of the344

signal pulse almost follows the shape of the pump pulse. However, in the BW setting, the pulse shape345

changes dramatically in the vicinity of the resonance intensity of the pump wave, which corresponds346

to gL = π/2. The signal growth is slower, and the output signal maximum is greater and is reached347

with significant delay. Figure 11(b) compares the transmitted signal at x = L and the idler at z = 0348

traveling in the reflection direction for the case of a pulsed input signal and CW pump. This is a travel349

time of ∆t for the signal pulse to appear at x = L, whereas the idler is generated immediately after the350

pulse enters the slab. Hence, unlike the transmittance, the transients in the reflectivity are the same351

for the pulsed signal and pulsed pump modes. Figures 11 (a) and (b) show differences in OPA for the352

cases of the pulsed signal and pulsed pump disappearing after a period of time about ∆t, whereas the353

reflectivity and OPA develop in a similar way after a period of time about 2∆t.
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Figure 12. Dependence of the transient OPA on the intensity of the pump field. The dashed line
corresponds to TWM of co-propagating waves. The points correspond to an ordinary signal and
contra-propagating idler. The solid lines depict an approximation of the transient OPA by the function
T2(t) = A{1− exp [−(t− ∆t)/τtr]}2. −v1 = v2 = v3 = v, αj = 0.

354

Figure 12 depicts a more extended period of time. It demonstrates that the rise time and the355

maximum of OPA increase when approaching the resonance strength of the pump field. It also356

demonstrates the fundamental difference between the rise periods and 4 orders of difference in the357

maxima achieved in the ordinary and BW TWM. It appears that calculated data can be approximated358

by the exponential dependence T2(t) = A(1− exp [−(t− ∆t)/τtr])2 (solid lines), where the rise time359

τ grows approximately as 1/ cos(gL) in the vicinity of the intensity resonance. For example, at360

gL = 0.996π/2, the fitting values are A = 2.99 · 104, τtr = 109.9∆t. The short initial period (Figures 11)361

is not resolved here. As outlined above, the transient processes in OPA and in the NLO reflectivity are362

similar through the given time period. Distributed NLO feedback gives rise to significant enhancement363

of the OPA and to depletion of the fundamental wave at gL > π/2. The latter leads to the stationary364

regime and to a decrease of the transient period (Figures 13). As seen from Figure 13(b), the delay of365

the output signal maximum relative to the pump maximum may reach impressive values on the order366

of hundreds of the travel periods ∆t. Maximum delay is reached at gL = π/2.367

Absorption causes change in the delay time. For the case of CW and neglected depletion of the368

pump, the parameter g must be replaced by ge f f =
√

g2 − (α1 + α2)2/16 [2,41]. Hence, losses shift369

the maximum delay to gL > π/2 as seen in Figures 14 and 15(a). The described dependencies can be370

summarized as follows. The opposite direction of phase velocity and energy flux in BEMWs gives371

rise to extraordinary transient processes, which cause a change in the output pulse shapes and a delay372

in the formation of their maximums. The closer maximum in the pump intensity approaches the373

resonance value, the longer becomes the transient period. The delay of the output maximum relative374

to the input one may occur up to several hundred times longer than the travel time through the metaslab375

of the forefront of the semi-infinite fundamental pulse. Similar transients emerge in the idler emitted376

in the opposite direction (in the frequency up- or down-shifted NLO reflectivity). Figures 15 (b) and 16377

demonstrate dependence of the transition processes on dispersion of the group velocities.378
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Figure 13. (a) Shape of the signal forefront in a transparent material at pump intensities above the
critical input value gL = π/2. (b) Dependence of the transient period τtr on the maximum intensity of
the pump field. −v1 = v2 = v3 = v, αj = 0.
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Figure 16. Dependence of the transient TWM on the forefront of the output pulses on the dispersion of
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Figure 17. The output normalized signal η1 = |a2L/a20|2 at x = L (dotted lines) co-directed with a
rectangular pump pulse and the output contra-directed idler T2 = |a10/a20|2 at x = 0 (the solid lines)
for different values of the pump amplitude gL. The input signal value is |a20/a30|2 = 10−8. ∆t is the
pump pulse travel time through the slab. (a) gL ≤ 0.83π/2. (b) 0.83π/2 < gL ≤ π/2. Inset: blow up
of the peak tip. The dashed lines mark the exit time for the signal pulse rear edge if the pump is not
turned on.

It appears, that changes in the output pulse shapes are strongly dependent on the ratio of the379

pump and signal pulse lengths, of the pulse lengths and the metaslab thickness, and on the ratio of the380

pulse group velocities. Figures 17 demonstrates one of the possible scenarios. Here, a continuous wave381

pump a3 travels through a loss-free slab. Input co-directed FW signal is a rectangular pulse which is382

approximately 5 times longer than the metaslab length L as shown in Figure17(a) (for gL = 0). Because383

the BW idler is first generated at the forefront of the signal pulse, their output maximums are shifted.384

At lower pump intensity, amplification of the rear edge of the signal is greater than the forefront385

one. As its intensity approaches the critical value gL = π/2, amplification grow, and enhanced idler386

contributes back to amplification of the signal tail, which leads to significant broadening of the pulses.387

4.4. Parametric Amplification and Frequency-Shifting Nonlinear Reflectivity in the Carbon Nanoforest [21]388

Consider the particular model of the metaslab depicted in Figure 1(b). Figure 3(a) presents a389

spectrum of the lowest eigen EM modes and their dispersion ω(k′x) calculated for h = 3.5 µm. For390

the sake of simplicity, we assume further that εh = εs = 1. The complex propagation constant is391

kx = k′x + ik′′x . The reduced wavevector k′x/k = c/vph represents the phase velocity vph. It proves392

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 February 2018                   doi:10.20944/preprints201802.0163.v1

Peer-reviewed version available at Photonics 2018, 5, 8; doi:10.3390/photonics5020008

http://dx.doi.org/10.20944/preprints201802.0163.v1
http://dx.doi.org/10.3390/photonics5020008


18 of 23

the possibility of the phase-matching for the three-wave mixing frequency down conversion process393

ω3 −ω2 = ω1 and OPA at ω2. The simulations also prove the possibility of the phase-matching for394

different sets of frequencies by adjusting the nanotube lengths h. For convenience, a sum of the mode395

frequencies ω1 + ω2 is shown by the dashed line. However, only its crossing with the third mode396

satisfies frequency mixing. Phase matching occurs at k
′
x/k = 1.447 (marked with the vertical line).397

Figure 3(c) shows group velocity indices for the respective modes. The split for the second mode398

indicates the slow-light regime vgr → 0. It is seen that in the vicinity of phase matching, the group399

velocities at f2 and f3 are directed against the phase velocity with the values significantly less than the400

speed of light. Alternatively, the group velocity for the first mode is of the opposite sign. Figure 3(b)

Table 1
Calculated Metaslab’s Eigenmodes Data

Mode f , THz k, 105 m−1 |k′′x/k|, 10−3 ng α = 2k
′′
x, 10−2µm−1 La, µm λvac, µm λmed, µm

1 10.43 2.186 2.26 1.45 0.988 2331 28.74 19.86
2 34.95 7.325 17.8 −7.71 2.61 88.2 8.58 5.93
3 45.38 9.511 15.46 −6.29 2.94 78.3 6.61 4.57

401

depicts attenuation of the respective modes. As seen, the attenuations may differ greatly despite402

the fact that the electron relaxation rate is the same. The difference is due to the nanowaveguide403

propagation regime.404

At the pump pulse duration ∆τ = 10 ps, the pulse spectrum bandwidth is ∆ f ≈ 1/∆τ = 0.1 THz405

or ∆ f / f ∝ 10−2 ÷ 10−3. Hence, the pump can be treated as quasi-monochromatic. Alternatively, for406

∆τ = 10 fs, ∆ f / f ∝ 10, the spectrum covers all modes. The data used for the simulations described407

below are summarized in Table 1. The values La indicate the metaslab length corresponding to408

attenuation Ii/Ii0 = exp(−αiLi) = 0.1, i.e., αiLi = 2.3 for the respective frequencies. A thickness409

L = L3 = 78.3 µm was chosen to satisfy α3L3 ≈ 2.3 for the mode with highest attenuation. For the410

same slab thickness, α2L3 = 2.04, and α1L3 = 0.077. Therefore, attenuation at the lowest frequency411

appears significantly less than for the two others which are comparable. The pump pulse length for412

∆τ = 10 ps is l = ∆τv3gr = ∆τ(c/n3gr) = 477 µm, i.e., about 6 times greater than L3. Hence, in this413

case, a quasi-stationary process is stabilized through the major part of the pulse. Transient processes at414

the forefront and at the tail of the pulse can be neglected.415

Consider the case where the input signal at f2 is a continuous wave with a20 = 10−5a30. Figures 18416

demonstrate the dependence of the output amplified signal at f2 and of the idler at f1 generated in the417

opposite direction on the intensity of the pump, as well as the effects of attenuation and the pump418

pulse duration on the outputs. Panels (a) and (b) depict the cases of a long pump pulse (quasi-CW419

regime). Here, T2,3(x = L) = |a2,3(L)/a30|2 are the transmission factors, and a30 is the input pump420

maximum. The value T2(L) represents OPA. The nonlinear optical reflectivity (NLOR) at f1 is given by421

the value R10 = |a1(x = 0)/a30|2. Panel (a), which corresponds to the attenuation-free regime, shows422

that a huge enhancement in the OPA and the NLOR occurs when the pump intensity reaches a certain423

threshold value. This is the effect specific to BW coupling, which originates from the appearance424

of the intensity-resonant distributed NLO coupling feedback addressed above. Here, the photon425

conversion efficiency reaches 100% at a relatively small increase of the pump above the threshold426

value. The attenuation significantly decreases OPA (panel (b)). Remarkably, NLOR does not experience427

such a significant decrease. This is because the reflected wave is predominantly generated near the428

MM entrance, where the pump and the signal are not yet significantly attenuated. Besides that, the429

attenuation for the f1 mode appears to be significantly less than the one for the two other modes.430

Panels (c) and (d) depict the case of a shorter pulse l = L. Here, the transmitted and reflected photon431

fluxes per pulse are given by the values Si(x)/S30 =
∫

dt|ai(x, t)|2/
∫

dt|a30(t)|2. It is seen that the432

dispersion and opposite signs of the group velocities cause a significant increase of the pump threshold433

and a decrease of the sharpness of the enhancement in the vicinity of the threshold.434
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Figure 18. Optical parametric amplification and frequency-shifting NLO reflectivity vs. intensity of
the pump.
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Figure 19. Fields distribution along the attenuation-free metaslab in the vicinity of the resonance pump
intensity.

The described dependencies are due to the unusual Manley-Rowe relationship. Here, a difference435

of the pump and of the contra-propagating idler photon numbers is a constant along the slab, whereas436

the sum of the pump and of the co-propagating signal photon numbers is a constant, as seen in Figures 19437

calculated for the ultimate case of the attenuation-free metaslab. The width of the gap between the438

pump and the idler curves represents a conversion rate. The gap sharply decreases, and the conversion439

rate increases in the vicinity of the threshold pump intensity.440
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Figure 20. Output fields vs intensity of the pump for the ordinary, co-propagating coupling scheme.
All other parameters are the same as in Figures 18 (a) and (b) respectively.

Figures 20 are calculated for the co-propagating coupling in an ordinary material with the same441

other parameters as in Figures 18 (a) and (b). It is seen that higher conversion efficiency at lower pump442

intensity is achieved in the first BEMW coupling case.443

5. Conclusions444

Coherent, i.e., phase-dependent nonlinear optical processes, such as harmonic generation and445

wave-mixing, play an important role in manipulating light waves by changing frequencies, propagation446

direction, pulse shapes, and creation of the entangled photons. Properties of such processes experience447

dramatic changes if some of the coupled waves become backward, while all waves travel with448

equal phase velocities. Backward electromagnetic waves, also referred to as left-handed waves, are449

extraordinary waves with contra-directed energy flux and phase velocity (contra-directed group and450

phase velocities).451

Extraordinary properties of the backward-wave second-harmonic generation, optical parametric452

amplification, and difference frequency generation in the reflection direction are described and453

contrasted by the comparing with their counterpart in ordinary nonlinear optical materials. Among454

the unparalleled properties is the appearance of the resonance value of the input pump intensity455

inherent to backward-wave three-wave mixing, which depends on the nonlinear susceptibility and456

the thickness of the metaslab. The indicated extraordinary resonance provides giant enhancement in457

the three-wave coupling. In the vicinity of the resonance intensity, extraordinary transient processes458

develop which cause a change in the output pulse shapes and a significant delay in formation of their459

maximums. The closer the maximum in the pump intensity approaches the resonance value, the longer460

becomes the transient period. The delay of the output maximum relative to the input one may occur461

up to several hundred times longer than the travel time through the metaslab of the forefront of the462

semi-infinite fundamental pulse. Great enhancement occurs both in optical parametric amplification463

of the signal and in the oppositely directed idler (in the frequency up- or down-shifted reflectivity).464

Such an effect does not exist in ordinary optical parametric amplification in the case of all co-directed465

energy fluxes, where the indicated frequency-changing nonlinear reflectivity does not exist either. The466

described processes hold promise for engineering of a family of miniature photonics devices with467

unparalleled operational properties. They can be also employed for coherent compensating losses of468

the backward waves to be used for the numerous extraordinary linear optical applications.469

Instead of the commonly accepted concept of the negative-index metamaterials, which can support470

backward electromagnetic waves, we describe an alternative approach which is grounded on a concept471

of negative dispersion, dω/dk < 0. Phase and group velocities become contra-directed if dispersion472

becomes negative. However, the key requirement in the outlined context is that the metamaterial slab473
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must not only support a set of electromagnetic waves, some of which are backward whereas others are474

normal, but their frequencies must combine in accordance with the particular process while all waves475

must travel with the same phase velocity.476

We offer a model of the metaslab that can satisfy the set of these requirements as described,477

which can be employed both for the phase-matched backward-wave second-harmonic generation478

and backward-wave three-wave mixing. Carbon nanotubes standing on the metal surface, plunged479

in a dielectric and bounded by a dielectric, are proposed as the building nanoblocks. This (“carbon480

nanoforest”) possesses hyperbolic dispersion. The corresponding frequencies fall in the THz through481

near-IR wavelength ranges. The corresponding electromagnetic modes can be viewed as guided482

modes in a tampered nanowaveguide. We demonstrated that the frequencies, phase and group483

velocities, as well as the losses inherent to the guided electromagnetic modes supported by the484

proposed metamaterial, can be tailored to maximize the conversion efficiency and to reverse the485

propagation direction of the generated entangled photons. This proves that the proposed approach can486

be generalized for other frequency ranges, and losses can be decreased by changing the constituent487

materials, size, shape and spacing of the nanoblocks. Among the prospective materials are refractory488

materials which can work at very high temperatures [42], transparent conducting ceramics [43],489

and plasmonic materials, where properties can be dynamically tuned [44]. Phase matching of490

contra-propagating fundamental and backward second harmonic wave in a plasmonic metamaterial is491

reported in [45].492

The anticipated properties of the backward-wave second-harmonic generation, parametric493

amplification, and induced frequency shifting reflectivity are numerically simulated as applied to the494

particular proposed nanoengineered metaslabs. The described outcomes of numerical simulations of495

properties of the aforementioned nonlinear optical processes have been presented in the particular496

proposed backward-wave metamaterials.497

Overall, the uncommon behavior of the outlined processes, both in the time and the space498

domains, for the proposed advanced metamaterials hold promise for the applications to microscopic499

nanophotonic device technologies, which employ novel principles of extraordinary parametric500

amplification, switching, and changing the propagation direction and frequencies of the entangled501

photons.502
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Abbreviations509

The following abbreviations are used in this manuscript:510

BW Backward wave
FW Forward wave
MM Metamaterial
FH First harmonic (fundamental wave)
SH Second harmonic
SHG Second harmonic generation
BWSH Backward wave second harmonic generation
TWM Three-wave mixing
BWTWM Backward-wave three-wave mixing
OPA Optical parametric amplification
CW Continuous wave

511
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