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Abstract

Cadherin-5 (CDHS5), also known as vascular endothelial cadherin (VE-cadherin), plays essential roles
in endothelial cell adhesion, vascular barrier function, and signaling. CDH5 coordinates endothelial
cell—cell junction during vascular remodeling, which is indispensable for both vascular homeostasis
and adaptive responses to pathological stimuli. Although anti-CDH5 monoclonal antibodies (mAbs)
can be used for individual applications including flow cytometry, western blotting, and
immunohistochemistry (IHC), highly sensitive and versatile anti-CDH5 mAbs for all applications
remain limited. Here, novel anti-human CDH5 mAbs, designated CasMabs, were developed using a
flow cytometry-based high-throughput screening. Among them, a clone CasMab-8 (IgGz, x)
recognized CDH5-overexpressed Chinese hamster ovary-K1 (CHO/CDHS5) cells in flow cytometry.
Furthermore, CasMab-8 also recognized endogenous CDH5-expressing human endothelial cell lines
(HUVEC/TERT2 and HDMVEC/TERT164-B) and a cervical cancer cell line (Hela). These reactivities
were superior to a commercially available anti-CDH5 mAb (clone BV9). The dissociation constant
value of CasMab-8 for CHO/CDHS5 was determined as 6.1 x 10 M. CasMab-8 can detect endogenous
CDHS5 in Western blotting. Moreover, CasMab-8, but not BV9, is available for IHC to detect
endothelial cells in formalin-fixed paraffin-embedded tissues. These results indicate that CasMab-8 is
versatile for research and are expected to contribute to clinical applications, such as tumor diagnosis
and therapy.

Keywords: VE-cadherin; CDHS5; Cell-Based Immunization and Screening; monoclonal antibody; flow
cytometry; immunohistochemistry

1. Introduction

Cadherin-5 (CDH5), also known as vascular endothelial cadherin (VE-cadherin) or CD144, is an
endothelial cell adhesion molecule that plays essential roles in the endothelial cell adhesion, vascular
barrier function, and signaling [1]. CDHS5 is a classical type II cadherin which is composed of five
extracellular cadherin (EC1~5) repeats, a transmembrane domain, and a cytoplasmic tail [2]. The
CDHS extracellular domain mediates calcium-dependent homophilic binding at adherens junctions
between endothelial cells [2]. The cytoplasmic domain interacts with a-catenin, -catenin, p120-
catenin, and plakoglobin, which link CDHS5 to the actin cytoskeleton [3,4]. Therefore, CDH5 is
essential for maintaining vascular integrity under both physiological and pathological conditions.

Major function of CDHS5 is the regulation of vascular permeability [5]. By forming the adherens
junctions, CDHS5 restricts paracellular flux of materials and cells across the endothelium [6].
Disruption of CDH5-mediated adherens junctions through the internalization, or proteolytic
cleavage leads to increased vascular permeability [7]. Inflammatory cytokines including tumor
necrosis factor-a and interleukin-13, or vascular endothelial growth factors (VEGFs) increase
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vascular permeability through modulation of CDH5 to facilitate immune cell extravasation and
leakage of materials [8-11].

CDHS also plays a pivotal role in vascular development and angiogenesis [12]. Loss of CDH5 in
mice results in embryonic lethality due to severe vascular defects, indicating the essential role in
blood vessel formation [13]. During angiogenesis, dynamic regulation of CDH5 allows endothelial
sprouting through transient loss of cell-cell contacts, increased cell motility, and re-establish stable
junctions mediate newly vessel formation [14]. Furthermore, CDH5 modulates signaling pathways
to promote endothelial proliferation and survival [15]. CDH5 forms complexes with VEGFR2, and
stimulates the downstream signaling, thereby coordinating endothelial cell responses [16,17].

In pathological condition, dysregulation of CDHS5 is implicated in various diseases such as
tumor, atherosclerosis, and inflammatory disorders [18,19]. In tumor angiogenesis, abnormal CDH5
distribution and function mediate leaky and disorganized vasculature [20]. Consequently, CDH5 has
emerged as a potential therapeutic target for diseases through regulation of angiogenesis [21] For
targeting CDH5, monoclonal antibody (mAb) is an important strategy to develop the various
therapeutic modalities.

Anti-CDH5 mAbs (clones Cad 5, BV6, BV9) against the extracellular domain were developed to
inhibit angiogenesis [22]. These mAbs could inhibit CDH5 reorganization, increase paracellular
permeability, induce endothelial cell apoptosis, and prevent angiogenesis in vitro [22]. Epitope
mapping analyses demonstrated that Cad 5, BV6, and BV9 interact with EC1, EC3, and EC3-EC4,
respectively, which affect CDH5 adhesion/clustering, alter endothelial cell permeability and vascular
tube formation [22]. In preclinical studies, an anti-mouse CDH5 mAb (clone BV13) was evaluated.
BV13 inhibited CDH5-mediated adherens junction formation, endothelial capillary formation, and
blocks angiogenesis in the mouse cornea in vivo [23,24]. Furthermore, administration of BV13
decreased the growth and metastasis of Lewis lung tumors [24]. However, anti-CDH5 mAb has not
been developed in clinical trials.

Anti-CDH5 mADbs have been developed for various applications. However, few mAbs have been
developed for both flow cytometry and immunohistochemistry (IHC). We previously established
anti-CDH1/E-Cadherin [25] and anti-CDH15/M-Cadherin [26] mAbs for flow cytometry, Western
blotting, and IHC using the Cell-Based Immunization and Screening (CBIS) method. The CBIS
method includes immunization of antigen-overexpressed cells and a high-throughput flow
cytometry—mediated screening. MAbs obtained by the CBIS method generally recognize
conformational epitopes, which allows the use for flow cytometry. A part of the mAbs has been
demonstrated to be suitable for Western blotting and IHC. In this study, we employed the CBIS
method to develop highly versatile anti-CDH5 mAbs.

2. Materials and Methods

2.1. Cell lines

Mouse myeloma P3X63Ag8U.1 (P3U1), Chinese hamster ovary (CHO)-K1, human glioblastoma
LN229, an hTERT-immortalized endothelial HUVEC/TERT?2, and human cervical cancer Hela cell
lines were obtained from American Type Culture Collection (ATCC, Manassas, VA, USA). Human
dermal microvascular endothelial cell line (lymphatic origin) HDMVEC/TERT164-B was obtained
from EVERCYTE (Vienna, Austria). CHO-K1, P3U1, LN229, and Hela were maintained as described
previously [25]. HUVEC/TERT2 was cultured in Vascular Cell Basal Medium and Vascular
Endothelial Cell Growth Kit-VEGF (ATCC). HDMVEC/TERT164-B was cultured in an Endopan MV
kit (PAN Biotech, Bayern, Germany) supplemented with G418. All the cells were cultured in a
humidified incubator at 37°C with 5% CO..

2.2. Plasmid construction and establishment of stable transfectants

Genes encoding CDH5 (NM_001795.5) were synthesized by Eurofins Genomics KK (Tokyo,
Japan). The CDH5 cDNA without pro-peptide was subcloned into the pCAG-Ble vector with an N-

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202512.2432.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 December 2025 d0i:10.20944/preprints202512.2432.v1

3 of 13

terminal PA16 tag [27]. Additionally, the CDH5 ¢cDNA with an N-terminal MAP16 tag [28] was
constructed. These plasmids were transfected into CHO-K1 or LN229 cells and stable transfectants
were sorted using anti-PA16 tag mAb (clone NZ-1) [27] or anti-MAP16 tag mAb (clone PMab-1) [28].
Finally, PAl6-CDH5-overexpressed CHO-K1 (CHO/CDH5) and MAP16-CDH5-overexpressed
LN229 (LN229/CDH5) were established.

We previously established the CDHs-overexpressed stable transfectants as described previously
[29]. To confirm the expression of CDHs in these transfectants, 1 pg/mL of an anti-CDH1 mAb (clone
CaiMab-3) [25], 1 ug/mL of an anti-CDH3 mAb (clone MMO0508-9V11, Abcam, Cambridge, UK), 1
pg/mL of an anti-CDH15 mAbD (clone CaisMab-1) [26], or 0.1 pug/mL of an anti-PA16 tag mAb, NZ-
33 [30] were used.

2.3. Production of hybridomas

Female BALB/cAJcl mice (CLEA Japan, Tokyo, Japan) were intraperitoneally immunized with
LN229/CDHS5 cells (1 x 108 cells/injection), and hybridomas were generated as previously described
[26]. Supernatants positive for CHO/CDHS5 and negative for CHO-K1 were screened using an SA3800
Cell Analyzer (Sony Corporation, Tokyo, Japan).

2.4. Flow cytometry

Cells harvested with 1 mM ethylenediaminetetraacetic acid were incubated with mAbs for 30
min at 4°C. Then, the cells were treated with Alexa Fluor 488-conjugated anti-mouse IgG (2,000-fold
dilution; Cell Signaling Technology, Danvers, MA, USA) for 30 min at 4°C. Flow cytometry were
performed as described previously [25].

2.5. Determination of dissociation constant values using flow cytometry

CHO/CDHS5 were treated with serially diluted CasMab-8 and BV9. Subsequently, the cells were
treated with anti-mouse IgG conjugated with Alexa Fluor 488 (200-fold dilution) for 30 minutes at
4°C. The dissociation constant (Kp) values were determined as described previously [25].

2.6. Western blotting
Western blotting was performed using 1 ug/mL of CasMab-8, 1 ug/mL of BV9, or 1 ug/mL of an
anti-isocitrate dehydrogenase 1 (IDH1) mAb (clone RcMab-1, rat IgGza) as described previously [26].

2.7. IHC using cell blocks

The formalin-fixed paraffin-embedded (FFPE) cell sections were prepared and stained with 0.5
pg/mL of CasMab-8 or 0.5 pug/mL of BV9 using BenchMark ULTRA PLUS with the ultraView Universal
DAB Detection Kit (Roche Diagnostics, Indianapolis, IN, USA).

2.8. IHC using a tissue array

The FFPE of liver tumor with a liver tissue array including pathology grade, TNM and clinical
stage (T032d) was purchased from TissueArray.Com LLC (Derwood, MD, USA). The sections were
stained with 2 pg/mL of CasMab-8 or 2 ug/mL of isotype control mouse IgGza mAb (MpMab-23,
http://www.med-tohoku-antibody.com/topics/001_paper_antibody_PDIS.htm) using BenchMark
ULTRA PLUS with the ultraView Universal DAB Detection Kit.

3. Results

3.1. Development of anti-CDH5 mAbs

An antigen LN229/CDHS5 was established as described in materials and methods. LN229/CDH5
(1 x 108 cells/mouse) was immunized for five times in two BALB/cAJcl mice (Fig. 1A). Then,
hybridomas were generated by fusing the splenocyte and P3U1 (Fig. 1B). The hybridoma
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supernatants were screened to identify supernatants that were positive for CHO/CDHS5 and negative
for CHO-K1 (Fig. 1C). As a result, 243 positive wells out of 958 wells (25.4%) were obtained.
Subsequently, limiting dilution was performed and anti-CDH5 mAb-producing hybridomas were
cloned (Fig. 1D). Finally, 14 clones were finally established (http://www.med-tohoku-
antibody.com/topics/001_paper_antibody_PDIS.htm#CDH5+).

A. Immunization of LN229/CDH5

i.p.
injection
LN229/CDH5 5 times/week BALB/cAJcl
B. Production of hybridomas G
& §
&~ —OF
Splenocytes
M{:;‘:,Tfs Fusion (B cells)
C. Screening of supernatants by flow cytometry
» A
>
R CHOICDH5

S

D. Cloning of hybridomas

IR

Anti-CDH5 mAb-
@D @D Ci) producing hybridomas

Figure 1. Schematic representation of anti-CDH5 mAbs production. (A) LN229/CDH5 was injected into
BALB/cAJcl mice intraperitoneally. (B) After five immunizations, spleen cells were fused with P3U1. (C) The
supernatants from hybridomas were screened by flow cytometry using CHO/CDHS5 and CHO-K1 cells. (D) Anti-
CDH5 mAb-producing hybridoma clones (CasMabs) were established through limiting dilution.

3.2. Flow cytometry using anti-CDH5 mAb against CDHb5-overexpressed CHO-K1

We next conducted the screening of applications including flow cytometry, western blotting,
and IHC using the supernatants of clones. As a result, CasMab-8 (IgGz, ) can be applied to the three
applications. We next prepared the purified mAbs from the supernatants and investigated the
properties of these mAbs. Fig. 2 showed flow cytometric analysis using these mAbs and a
commercially available anti-CDH5 mAb (clone BV9) against CHO/CDHS5 and CHO-K1 cells. CasMab-
8 and BV9 reacted with CHO/CDHS5 in a dose-dependent manner from 10 to 0.01 ug/mL (Fig. 2A).
Compared to BV9, CasMab-8 clearly showed a higher reactivity to CHO/CDHS. In contrast, CasMab-
8 and BV9 did not recognize CHO-K1 even at 10 pg/mL (Fig. 2B). The binding affinity of CasMab-8
and BV9 was measured using flow cytometry. Next, the fitting binding isotherms of CasMab-8 and
BV9 to CHO/CDHS were shown in Supplementary Fig. 1. The Ko values of CasMab-8 for CHO/CDH5
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was 6.1 x 10~ M. Although the Kb values of BV9 for CHO/CDHS5 was provisionally determined as 9.9
x 108 M, the fitting binding isotherms did not reach plateau. These results showed that CasMab-8
possesses superior binding affinity to CHO/CDH5 compared to BV9.
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Figure 2. Flow cytometric analysis of CasMab-8 and BA9 against CHO/CDH5 and CHO-K1. CHO/CDHS (A)
and CHO-K1 (B) were treated with CasMab-8 and BA9 at the indicated concentrations (red) or with blocking
buffer (black, negative control). The mAbs-treated cells were incubated with Alexa Fluor 488-conjugated anti-

mouse IgG.

3.3. Specificity of CasMab-8 to CDHs-overexpressed CHO-K1

We previously established CHO-K1 overexpressed type I CDHs (CDH1, CDH2, CDH3, CDH4,
and CDHI15) [25,26], type Il CDHs (CDH5, CDH6, CDH7, CDH8, CDH9, CDH10, CDH11, CDHI12,
CDH18, CDH19, CDH18, CDH20, and CDH22), 7D CDHs (CDH16 and CDH17), a truncated CDH
(CDH13), and an atypical CDH (CDH26) [29]. Therefore, the specificity of CasMabs to those CDHs
was determined. As shown in Fig. 3A, CasMab-8 reacted with CHO/CDHS5 but did not react with
other CDHs-overexpressed in CHO-K1. The cell surface expression of CDHs were confirmed in Fig.
3B. These results indicate that CasMab-8 is a specific mAb to CDH5 among those CDHs.
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Figure 3. Flow cytometry analysis of CasMab-8 in CDHs-overexpressed CHO-K1. (A) The type I CDHs (CDHI,
CDH2, CDH3, CDH4, and CDH15) type Il CDHs (CDH5, CDH6, CDH7, CDHS8, CDH9, CDH10, CDH11, CDH12,
CDH18, CDH19, CDH18, CDH20, and CDH22), 7D CDHs (CDH16 and CDH17), a truncated CDH (CDH13),
and an atypical CDH (CDH26)- overexpressed CHO-K1 were treated with 10 pg/mL of CasMab-8 (red) or with
control blocking buffer (black, negative control), followed by treatment with anti-mouse IgG conjugated with
Alexa Fluor 488. (B) Each CDH expression was confirmed by 1 ug/mL of an anti-CDH1 mAb (clone CaiMab-3),
1 pg/mL of an anti-CDH3 mAb (clone MMO0508-9V11), 1 pug/mL of an anti-CDH15 mAb (clone CaisMab-1), and
1 ug/mL of an anti-PA16-tag mAD (clone NZ-33) to detect other CDHs, followed by the treatment with Alexa
Fluor 488-conjugated secondary mAbs.

3.4. Flow cytometry using anti-CDH5 mAb against endogenous CDH5-expressing cells

CDHS expression is known to be detected in endothelial cells. CasMab-8 and BV9 recognized
vascular endothelial HUVEC/TERT2 and lymphatic endothelial HDMVEC/TERT164-B cell lines in
clow cytometry (Fig. 4A and B). CasMab-8 also showed a higher reactivity compared to BV9. Since
CDHS5 was detected in several cancer cell lines [31,32], we screened the reactivity of CasMab-8 to our
cancer cell line panel. As a result, CasMab-8 dose-dependently reacted with cervical cancer Hela cell
line but BV9 did not (Fig. 4C). These results indicate that CasMab-8 can be applied to flow cytometry
to detect endogenous CDHS.
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Figure 4. Flow cytometry analysis of CasMab-8 and BA9 against HUVEC/TERT2, HDMVEC/TERT164-B, and
Hela. HUVEC/TERT2 (A), HDMVEC/TERT164-B (B), and Hela (C) were treated with CasMab-8 and BA9 at the
indicated concentrations (red) or with blocking buffer (black, negative control). The mAbs-treated cells were

incubated with Alexa Fluor 488-conjugated anti-mouse IgG.

3.5. Western blotting using CasMab-8 and BV9

We next examined whether CasMab-8 is suitable for Western blotting. Whole-cell lysates of
CHO-K1, CHO/CDHS, and Hela were analyzed. CasMab-8 and BV9 detected clear bands from 100 to
130 kDa in CHO/CDHS and ~120 kDa band in Hela, but not in CHO-K1 (Fig. 5A and B). An anti-
IDH1 mAb (RcMab-1) served as an internal control (Fig. 5C). These results indicate that CasMab-8
and BV9 can detect exogenous and endogenous CDHS5 in Western blotting.
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Figure 5. Western blotting using CasMab-8 and BA9. The cell lysate (10 pg/lane) of CHO-K1, CHO/CDHS5, and
Hela were electrophoresed and transferred onto polyvinylidene difluoride membranes. The membranes were
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incubated with 1 ug/mL of CasMab-8 (A), 1 pg/mL of BA9 (B), and 1 pg/mL of RcMab-1 (an anti-IDH1 mAb) (C),
followed by the treatment with anti-mouse (CasMab-8 and BA9) or anti-rat IgG (RcMab-1)-conjugated with
horseradish peroxidase.

3.6. IHC using CasMab-8 in formalin-fixed paraffin-embedded cell blocks

We examined whether CasMab-8 is suitable for the IHC of FFPE sections of CHO-K1,
CHO/CDH5, HUVEC/TERT2, and HDMVEC/TERT164-B. Both intense cytoplasmic and
membranous staining by CasMab-8 were detected in CHO/CDHS5 but not in CHO-K1 (supplementary
Fig. 2). Furthermore, cytoplasmic and membranous staining by CasMab-8 were also observed in
HUVEC/TERT2, HDMVEC/TERT164-B, and Hela (Fig. 6). In contrast, BV9 cannot detect endogenous
CDHS in HUVEC/TERT2 and Hela in same experimental setting (supplementary Fig. 3). These results
indicate that CasMab-8 can detect exogenous and endogenous CDHS5 in IHC of FFPE sections of

cultured cells.
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Figure 6. Immunohistochemistry using CasMab-8 in formalin-fixed paraffin-embedded cell blocks.
HUVEC/TERT2 (A), HDMVEC/TERT164-B (B), and Hela (C) sections were treated with 0.5 pg/mL of CasMab-8

or control (without primary Ab). The staining was performed using BenchMark ULTRA PLUS with the ultraView
Universal DAB Detection Kit, Scale bar = 100 pum.

3.7. IHC using CasMab-8 in formalin-fixed paraffin-embedded tissues
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The FFPE liver cancer tissue array was stained with CasMab-8. CasMab-8 stained the vascular
structure in tumor stroma but an isotype control IgGza mAb did not (Fig. 7). In the tissue array,
CasMab-8 did not detect CDH5 in tumors. These results indicated that CasMab-8 is suitable for
detecting CDHS5 in FFPE sections.

Figure 7. Immunohistochemistry using CasMab-8 in formalin-fixed paraffin-embedded tissues. The sequential
sections of a FFPE liver cancer tissue array were treated with 2 pug/mL of CasMab-8 (A) and isotype control IgGza
(B). The staining was performed using BenchMark ULTRA PLUS with the ultraView Universal DAB Detection
Kit, Scale bar = 100 pum.

4. Discussion

This study demonstrated novel anti-CDH5 mAbs using the CBIS method (Fig. 1). Among them,
an anti-CDH5 mAb, CasMab-8 recognized both exogenous and endogenous CDHS5 in flow cytometry
with high reactivity compared to commercially available anti-CDH5 mAbs (BV9) (Fig. 2 and Fig. 4)
and a superior affinity (supplementary Fig. 1). CasMab-8 showed the specificity among CDHs (Fig.
3). Furthermore, CasMab-8 are suitable for Western blotting (Fig. 5), IHC using cell block (Fig. 6), and
detection of blood vessels in FFPE tissues (Fig. 7). Since IHC were performed using an automated
slide staining system, it is possible to standardize the staining conditions. Therefore, CasMab-8 is highly
versatile for basic research in vascular biology and diagnosis.

Tumor cells evolve within a complex tumor microenvironment composed of diverse stromal
and immune cell populations [33]. Among these components, endothelial cells play a central role in
tumor angiogenesis, a key process driving tumor growth, progression, and metastasis [34].
Endothelial cells also contribute to tumor progression and metastasis by undergoing reprogramming
into mesenchymal-like cells termed endothelial-to-mesenchymal transition (EndoMT) [35]. This
endothelial plasticity is regulated by a broad spectrum of cytokines such as transforming growth
factor-p [35]. EndoMT participates in multiple stages of tumor progression, including pathological
angiogenesis, cancer cell intravasation and extravasation, generation of cancer-associated fibroblasts,
and resistance to therapies [35]. During EndoMT, endothelial cells lose their barrier functions through
downregulation of endothelial markers including CDHS5, Claudin-5, and Tie2 [36]. Since CasMab-8 is
highly versatile, it would contribute to the molecular analyses in cultured endothelial cells and
pathological analyses using tissue sections.

Several mAbs such as Cad 5, BV6, and BV9 possess the biological functions to inhibit CDH5
reorganization and formation of adherens junctions [22]. The epitopes of Cad 5, BV6, and BV9 were
identified within EC1, EC3, and EC3-EC4, respectively [22]. Peptide scanning and the competition
analyses revealed that Cad 5 recognizes KVFRVDAETGDVFAI on EC1 and BV6 recognizes TIDLRY
located EC3. In contrast, detailed epitope of BV9 was not determined [22]. Therefore, validation of
the epitopes and biological functions of CasMab-8 are essential to apply the therapeutic uses.

An anti-mouse CDH5 mAb (BV13) showed in vitro biological effects and in vivo antitumor
efficacy in preclinical models [24]. However, BV13 inhibited not only vascular tube formation during
tumor angiogenesis but also disrupted adherens junctions of normal vasculature with an increased
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vascular permeability, which lead to pulmonary edema and death [37]. Another anti-mouse CDH5
mADb (clone E4G10) was developed to inhibit CDH5 function during angiogenesis without disrupting
adherens junctions on normal vasculature [38]. E4G10 exhibited the comparable antitumor effects to
BV13 with lower side effects in lung [38]. However, the strategy has not been applied in clinic.

CDHS has been reported to be expressed in non-endothelial cells such as tumor cells. As shown
in Fig. 4C, CasMab-8, but not BV-9, recognized Hela in flow cytometry. Glioblastoma (GBM) is a
highly angiogenic and the most aggressive of human cancers [39]. GBMs exhibit extensive network
of abnormal vasculature [40]. A subset of the CD133*/CDH5* stem-like progenitor from GBM was
reported to have the capacity to differentiate into both tumor and tumor endothelium [41]. This result
indicates that GBM-derived endothelial progenitors contribute the tumor angiogenesis [42]. In mouse
models with human GBM stem cell-derived tumors, 70% of the CD31* cells in the tumor core were
GBM-derived, while almost all CD31* cells in the periphery were host-derived [43]. During the initial
phase of endothelial commitment, GBM stem cells upregulate CDH5, which is subsequently
downregulated in a maturation phase [42]. Therefore, anti-CDH5 mAbs including CasMabs have
potential for the development of antitumor agent against GBM. CasMab-8 recognized both tumor and
endothelial CDH5 (Fig. 4), suggesting that CasMab-8 can target tumor-derived and preexisting
endothelium. Further investigations are essential to select CDH5-positive GBM cells and appropriate
in vivo tumor models. Additionally, we have developed cancer-specific mAbs (CasMabs) against
HER?2 [44,45], one of which has been evaluated in a phase I clinical trial (NCT06241456) [46]. The anti-
HER2 CasMabs recognized HER2-positive breast cancer cells, but not normal epithelial cells. We will
generate more CasMab clones from resting positive-wells and investigate the reactivity to tumor cells
and normal endothelial cells.

We previously cloned the cDNA of mAbs and produced recombinant mouse IgGza mAbs to
confer antibody-dependent cellular cytotoxicity (ADCC). These mouse IgGza mAbs have been
evaluated the antitumor efficacies in human tumor xenograft models [47,48]. Since we have cloned
the cDNA of CasMab-8, recombinant CasMab-8 will be produced and evaluated in vitro ADCC
activity and antitumor efficacy in mouse GBM xenograft models. Additionally, we should investigate
the antiangiogenic effect of CasMab-8 in vitro and in vivo.
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