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Abstract 

The global population surge and continuously rising energy demand led to the rapid depletion of 
fossil fuel reserves. Over-exploitation of non-renewable fuels is responsible for the emission of 
greenhouse gases, air pollution, and global warming, which causes serious health issues and 
ecological imbalance. The present study focuses on the potential of algae-based biofuel as an 
alternative energy source to fossil fuels. Algal biofuels are more environmentally friendly and 
economically reasonable to produce in pilot scale over the lignocellulosic derived biofuels. Algae can 
be cultivated in closed, open, and hybrid photobioreactors. The algal strain along with various factors 
such as light, temperature, nutrients, carbon dioxide, and pH is responsible for the growth of biomass 
and biofuel production. Algal-based biofuels offer numerous benefits in terms of socio-economic 
growth. This review highlights the basic cultivation, dewatering, and processing of algae to produce 
biofuels using various methods. We also conferred various advantages of an integrated biorefinery 
system and current technological advancements for algal biofuel production. In addition to this, 
policies, and market regulations are discussed in brief. At the end, critical challenges and future 
perspectives of algal biorefineries are reviewed. The algal biofuels are environment friendly as well 
as economically sustainable and usually offer more benefits compared to fossil fuels.  
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1. Introduction 
The rising global population and continuously increasing energy demand result in the rapid 

depletion of fossil fuels. The over-consumption of fossil fuels adversely impacts the environment by 
the emission of greenhouse gases (GHG), specifically CO2 [1]. Alternatively, renewable energy 
sources like algal biofuels are more appealing due to their high capacity for carbon capture and 
storage [2]. Algae are a group of unicellular and multicellular photosynthetic autotrophs living in 
aquatic environments [3]. Algae are classified into two categories: microalgae and macroalgae based 
on their size and morphological characteristics. Based on visible pigments they are further classified 
into red, green, and brown algae, that can be easily grown in nutrient rich wastewater [4]. Algae is a 
low-cost feedstock to produce biofuels and bio-based products. Algal biomasses are rich in lipids, 
carbohydrates, and proteins, making it suitable to produce biodiesel, bioethanol, hydrogen, and 
syngas. Among various species brown algae are exploited more to produce biofuels [5]. Algal biofuel 
production is more economically reliable due to the low space requirement for their growth, and high 
capacity to reduce carbon dioxide. Cultivation of microalgae requires light, water, carbon dioxide, 
and nutrients for their growth. Algal biomasses can grow 20-20 times more efficiently than nutritional 
crops, and their lipid content is approximately 30 times more than the lignocellulosic feedstocks. The 
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metabolic engineering techniques further enable algae to produce more lipids and carbohydrates in 
the biomass [2].  

To produce algal biofuels various catalytic steps are important in the biorefinery system. For 
example, the transesterification process is required to convert algal lipids (oils) into biodiesel by 
breaking ester bonds with catalysts such as sodium hydroxide (NaOH) or potassium 
hydroxide (KOH). Similarly, the hydrothermal liquefaction technique is used to produce valuable 
biocrude oil by processing algal biomass at high temperature [6]. Moreover, syngas obtained from 
algal biomass through the gasification can be further converted into liquid biofuels or valuable 
chemicals [7]. The role of the catalyst is important during gasification process to facilitate the efficient 
conversion of algal biomass into biofuels for various applications, including transportation, industry, 
and power generation [8,9]. 

However, efficient and scalable technology enabling the conversion of algae into biofuels 
remains challenging due to high input energy cost and variability of lipid composition in biomass 
samples. Biofuels derived from algal biomass might be a viable solution for long-term climate change 
mitigation and energy sourcing [10]1 Life cycle assessments and techno-economic analyses may 
further support the feasibility of an algal biorefinery system. Furthermore, interdisciplinary research 
collaboration, public-private partnerships, and supportive government policies are essential for 
unlocking the potential of algae-based biofuels [11,12]. Algal biorefinery integrated with wastewater 
bioremediation and a combined CO2 sequestration approach offer more carbon credits to biofuels 
[13]. Nevertheless, numerous obstacles need to be overcome for the large-scale production and 
commercialization of biofuels from algal biomass to fulfill the world’s energy needs. The focus of this 
review is to discuss algal cultivation, harvesting, and processing to produce biofuels using various 
catalytic strategies. Additionally, technological advancements in algal biofuel production, 
government policies, key regulatory issues, challenges, and future perspectives for sustainable 
biofuel production are reviewed. 

2. Algal Biomass: Composition and Biofuel Potential 
2.1. Types of Algae 

Algae is a diverse group of photosynthetic organisms, representing a promising feedstock for 
biofuel production due to their rapid growth rates, minimal land use, and ability to thrive in various 
aquatic environments [14]. Algae can be classified into two main categories based on size and cellular 
organization. Microalgae are microscopic, predominantly unicellular organisms, meanwhile 
macroalgae are multicellular organisms which are commonly known as seaweeds. Each category 
possesses distinct biological and chemical characteristics that influence their suitability and methods 
used for biofuel conversion. Understanding the inherent differences between microalgae and 
macroalgae is critical for optimizing algae-based biofuel processes and improving their economic 
viability. Microalgae are microscopic, unicellular or colonial organisms primarily found suspended 
in water. They are photosynthetic organisms that efficiently convert sunlight, CO2, and nutrients into 
biomass. It includes green algae (Chlorophyceae), diatoms (Bacillariophyceae), blue-green algae 
(cyanobacteria), and other groups distinguished by pigment composition [15]. In contrast, 
macroalgae are multicellular marine algae (seaweeds) such as brown algae (Phaeophyceae), red algae 
(Rhodophyceae), and green seaweeds (Chlorophyceae macroforms), which can often be seen with 
the naked eye [15,16]. Algal biomass is mainly composed of lipids, proteins, and carbohydrates, but 
the proportion of these components varies between different algae taxa and growth conditions 
[17,18]. Microalgae are especially variable in composition as certain strains are protein-rich (up to 
70% protein), whereas others can accumulate large quantities of lipids (7-65% of dry weight) [19,20]. 
For nitrogen starvation or other stresses can divert microalgal metabolism, resulting in lipid 
accumulation with reduced protein content [21]. On the other hand, some microalgae store 
carbohydrates like starch or β-glucans where typical biochemical composition of algae species 
showed 10% lipids, 25% carbohydrates, and 40% proteins when cultivated under full medium as well 
as 1.7 to 24.2% β-glucans based on dry weight [22]. In all cases, microalgae lack the hard 
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lignocellulosic structures found in land plants with the cell wall made of polysaccharides and 
glycoproteins, which aids in downstream processing for fuels. 

Macroalgae exhibits a different compositional profile. They are generally rich in carbohydrates 
(32-60% dry weight) and contain moderate protein levels (7-31% dry weight), but relatively low lipid 
content (2-13% dry weight) [23]. The predominant carbohydrates differ by algal group as brown algae 
synthesize polysaccharides like alginate, laminarin and mannitol, red algae produce galactans such 
as agar and carrageenan, and green seaweeds contain ulvan and other glucans. These 
polysaccharides serve as energy reserves or structural components and are readily convertible to 
fermentable sugars. Notably, macroalgae are essentially free of lignin, a polymer that confers 
recalcitrance in terrestrial biomass [24]. The minimal presence of lignin in macroalgae makes it easier 
to hydrolyze for biofuel production compared to woody or grass feedstocks. Meanwhile, the high 
potassium or other extractive content in macroalgae requires alternative refinery procedure than 
lignocellulosic biomass. Although macroalgae contain less lipids than microalgae, certain red and 
brown algae have beneficial long-chain fatty acids such as eicosapentaenoic (EPA), decosahexaenoic 
(DHA), and alpha-linolenic (ALA) in low proportions [20]. In addition, the high carbohydrate content 
of macroalgae and lack of lignin make them attractive for bioconversion to biofuels via fermentation 
or anaerobic digestion.  

2.2. Advantages over Other Biomass Sources 

Algae-based feedstocks offer several distinct advantages over traditional terrestrial biomass for 
biofuel production. Especially microalgae can achieve remarkably high areal productivity compared 
to land plants, where microalgae cultivation required1.2×106 ha of pastureland to produce 41.5×109 

Lyr-1 of biofuels while terrestrial biomass required 14.0×106 ha [25,26]. Many microalgae can double 
their biomass in a matter of hours under optimal conditions, enabling multiple harvests in a single 
week. This superior productivity means that algae require much less cultivation area to produce the 
same amount of biofuel, making it attractive for scaling up bioenergy without straining land 
resources. Moreover, biomass production can be continuous and is not tied to seasonal harvest cycles, 
further enhancing annual yields. In addition, unlike first-generation biofuel feedstocks such as corn, 
sugarcane, and palm oil, algae do not compete directly with food crops for arable land or freshwater. 
Algae can be grown on non-arable land, including deserts, saltwater coastlines, or even in contained 
photobioreactors on marginal sites [27]. This means biofuel algae cultivation avoids displacing food 
production or driving up food prices [26]. In addition, many algae utilize waste resources, where 
growing in nutrient-rich wastewater or using CO2 from industrial flue gases can further reduce 
competition with agricultural inputs [27,28]. By not requiring fertile soil or edible feedstocks, algal 
biofuels offer a path to sustainable energy that sidesteps dilemma between food and fuel that plagues 
crop-based biofuels. 

Algae not only serves as biomass feedstock but also as a tool for carbon capture. Through 
photosynthesis, algae efficiently fix carbon dioxide into organic biomass. In fact, microalgae can fix 
CO2 10-50 times faster than terrestrial plants on an area basis. Especially, microalgae showed superior 
sequestration ability where 1kg of dry microalgae can capture1.3-2.4 kg CO2 [29]. This high carbon 
sequestration efficiency means that large scale algal cultivation could be coupled with industrial CO2 
sources to biologically capture and recycle carbon [30]. The captured CO2 is converted into algal 
biomass, which can then be converted to biofuel, closing the loop in a carbon-neutral or even carbon-
negative cycle [31]. Implementing algae for biofuels therefore has the dual benefit of producing 
renewable energy while actively removing CO2 from the atmosphere or industrial flue gas streams. 
This contrasts with terrestrial biomass which grows slower and often cannot be situated adjacent to 
point sources of CO2. Algal systems can be collocated with factories to uptake CO2 which contributes 
to greenhouse gas mitigation in addition to displacing fossil fuels. In summary, algal biomass offers 
superior productivity, sustainability, and integrative environmental benefits compared to 
conventional biomass sources. Algae can yield more fuel per area without impinging on food 
resources and help capture CO2 from the atmosphere. These advantages underscore why algae are 
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widely regarded as one of the most promising resources for next-generation biofuels and a 
cornerstone of future bioenergy strategies [29,31]. 

3. Cultivation and Harvesting of Algae 

Table 1 summarizes the major cultivation approaches used to produce algal biomass. Cultivation and harvesting 
are critical steps in producing biofuels from algae. The cultivation stage determines the quantity and 
composition of biomass available while harvesting and dewatering techniques greatly influence downstream 
processing efficiency. This section reviews major cultivation approaches, including the key environmental and 
nutritional parameters for algal growth, and the strategies for harvesting and dewatering algal biomass [32]. 

Table 1. A comparison of common cultivation systems used to produce algae. 

Cultivation 
System  

Biomass 
productivity 

(gL-1day-1)  
Advantage  Disadvantage  References 

Open Raceway 
Ponds  

0.01-0.12  Low capital and 
operating costs  

High risk of 
contamination  

Large land footprint 
[32–34]  

Closed 
Photobioreactors 

1.5-1.6  

Higher productivity 
and better control of 
contamination and 

condition  

High installation and 
maintenance cost  

[33,35,36]  

Wastewater based 
cultivation  0.03-0.05  

Utilization of waste 
nutrients  

Lower control 
overgrowth 
conditions  

[34,37]  

3.1. Cultivation Systems 

3.1.1. Open Raceway Ponds 

Open race way ponds are shallow, oval-shaped basins where algae are grown in water mixed 
by a paddlewheel [32]. They are one of the most economical options for large-scale microalgae 
cultivation due to low construction and operating costs. Raceway ponds typically operate at a water 
depth of 0.35-0.80 m and rely on natural sunlight and ambient conditions [32,38]. The advantages 
include simple design, low energy input, and the capacity to culture large volumes of algae with 
minimal infrastructure. However, open ponds have notable limitations as light utilization is often 
inefficient in deeper layer, leading to lower biomass productivity than closed reactors [34]. The 
typical volumetric productivities in raceway ponds are 0.01-0.12 gL-1day-1, which is lower than those 
achieved in optimized photobioreactors [33]. In addition to the low productivity, the following 
challenge with open pond cultivation is the CO2 outgassing due to change in pH of water [39]. On 
the other hand, the studies report that significant nitrogen can be lost as ammonia in open ponds up 
to 73% of supplied N2 due to stripping under high pH and temperature. Despite these issues, open 
raceway ponds remain widely used for microalgae, especially in warm climates because their low 
capital and maintenance costs enable economical biomass production at scale [34,40]. 

3.1.2. Closed Photobioreactors 

Photobioreactors (PBRs) are enclosed with cultivation systems that provide a controlled 
environment for algal growth. PBR comes in various designs, including tabular reactors, flat-panel 
reactors, columns, and even novel geometries, intended to maximize light capture and growth 
surface area [35]. In closed PBRs, parameters such as light, temperature, and gas exchange can be 
tightly regulated, enabling higher cell densities and productivities than open ponds. The flat-panel 
and tubular PBRs sustain volumetric biomass productivities of 1.5-1.6 gL-1day-1 under optimal 
conditions, which exceeds the typical open-pond yields [33]. The controlled conditions also reduce 
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contamination risk and allow cultivation of monocultures for extended durations [34]. PBR systems 
have demonstrated superior photosynthetic efficiency and nutrient uptake rates, which is beneficial 
for applications like biofuel feedstock or wastewater remediation. However, these advantages come 
at significantly higher cost since close PBRs require cost for building infrastructures and higher 
energy inputs for pumping, mixing, and cooling, leading to high capital and operating expenditures 
[36]. Fouling of reactor surfaces by biofilm buildup and oxygen accumulation are additional 
operational challenges that can reduce efficiency over time. In recent years, numerous advancements 
have been made to improve PBR performance and scalability. Innovative configurations include 
rotating or inclined PBRs for better light exposure, membrane-based PBRs that grow algae as 
biofilms, and internally illuminated or thin-layer BPR designs to overcome light limitation in dense 
cultures. For instance, researchers have developed PBRs with rotating membrane surfaces and spiral-
flow or air-lift mechanisms to enhance mixing and CO2 mass transfer, Hybrid systems have also been 
explored, combining closed and open cultivation stages. One study showed that coupling a closed 
PBR with as wastewater-fed open pond helped boosting overall biomass production as it recorded 
46.3-74.3% improvement compared to open pond and 12.5% higher than PBRs. Such approaches seek 
to leverage the high productivity of PBRs with the low cost of open ponds [41]. In summary, closed 
PBRs are well-suited for high-value products and sensitive strains, and continued design 
improvements are making them more feasible for large-scale biofuel application, but cost-
effectiveness remains a key concern for commercial deployment. 

3.1.3. Wastewater-Based Cultivation 

An attractive strategy to reduce nutrient input costs is growing algae in nutrient-rich waste 
streams, such as municipal, agricultural, or industrial wastewater. Algal cultivation in wastewater is 
often performed in modified open pond systems, commonly high-rate algal pond (HRAP) designed 
for wastewater treatment. In these systems, microalgae typically grow in consortia with naturally 
occurring bacteria, simultaneously uptaking nitrogen and phosphorus from wastewater while the 
bacteria help decompose organic pollutants. This symbiotic setup provides dual benefits where it bio-
remediates wastewater and produces algal biomass that cultivation is cost-effective and sustainable 
because growth medium itself is a waste that would otherwise require treatment. The past decade 
has seen successful pilot and full-scale demonstrations of wastewater fed algal ponds achieving 
substantial nutrient removal with 62-65% removal of COD, and 25-49% of N and P [34]. However, 
operating algae systems on wastewater also presents challenges. Environmental factors and 
fluctuations in wastewater composition causes variability in algal productivity. Contamination 
control is difficult open wastewater ponds, so typically robust strains like Chlorella or Scenedesmus 
dominate, and invasive species may appear if conditions shift. Biomass yields in wastewater systems 
are generally lower than in refined media since HRAP treating primary sewage might reach biomass 
productivities on the order of 0.03-0.05 gL-1day-1, which is modest compared to optimized PBR 
systems [37]. Close PBRs can also be used for wastewater, offering better control and higher nutrient 
removal rates, but their expense often precludes use in routine water treatment. A compromise 
approach is to use wastewater after conventional primary treatment in a controlled PBR or to employ 
two stage system. An initial HRAP for bulk nutrient removal and algal growth that is followed by a 
smaller PBR polishing stage. Overall, wastewater-based cultivation has emerged as a globally 
relevant strategy to cut fertilizer costs and improve sustainability in algal biofuel production, 
especially when aligned with wastewater management goals [42]. 

3.2. Growth Conditions and Nutrient Requirements 

Algae have specific requirements for light, temperature, carbon dioxide, and nutrients to achieve 
optimal growth. Manipulating these growth conditions is essential to maximize biomass productivity 
for biofuel applications. As photosynthetic organisms, algae depend on sufficient light energy for 
growth. Light is often the limiting factor in dense cultures, and providing an optimal light intensity 
is crucial [43]. For microalgae, typical optimal irradiance levels range from about 37.5 to 2500 µmol 
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photons over m2s, depending on the species and acclimation state [44]. At low light, growth is light-
limited, while excessive light can cause photoinhibition and cellular damage. Most microalgae have 
a photosynthetic saturation point beyond which additional light does not increase net growth. Many 
chlorophyte microalgae lie in the range of a few hundred µmol/m2·s. Outdoor cultures receive 
fluctuating natural sunlight, therefore cells experience cycles of light and shade. This can be beneficial 
up to a point, as brief dark periods allow recovery from excess light [43,44].  

Temperature and light also interact as higher temperatures can raise the light saturation 
threshold by increasing enzyme activity, up to the species’ limit [45]. Most algal species used for 
biofuel are mesophilic, with optimal growth temperatures in the range of 20-25°C, whereas the 
growth rate tends to decrease after 25°C [46,47]. Temperature above the optimum lead to decreased 
growth due to enzyme denaturation and membrane damage, while temperatures significantly below 
optimum slow down enzymatic reactions and cell division rates. Diurnal and seasonal temperature 
fluctuations are important considerations, especially for outdoor cultivation. Open ponds experience 
daily temperature swings, thus high-density cultures can sometimes self-regulate to a degree, but 
extreme heat or cold will stress the algae. Closed PBRs can be equipped with temperature control to 
maintain near-optimal conditions, albeit at an energy cost [47]. 

In addition to light intensity and temperature control, CO2 and nutrients also affect algal growth. 
Inorganic carbon is the carbon source for photosynthetic algae, and its availability often limits 
growth, especially in dens cultures. Atmospheric CO2 at approximately 0.04% saturation can support 
only modest algal growth. Therefore, sparging cultures with concentrated CO2 is a common practice 
to enhance productivity. Typically, 20% CO2 v/v aeration gas is used in cultivation to achieve high 
biomass yields, and this also serves to control pH as CO2 dissolution counteracts the rise in pH from 
algal carbon uptake [48]. Efficient CO2 delivery systems including bubble diffusers and gas recycling 
loops have been developed to improve carbon fixation rates. Meanwhile, algae required 
macronutrients such as nitrogen (N) and phosphorus (P), in substantial amounts for growth, as these 
elements are building blocks of proteins, nucleic acids, and lipids. Typically, nitrogen is supplied as 
nitrate (NO3-) or ammonium (NH4+) salts, and phosphorus is supplied as phosphates. Many 
cultivation protocols maintain an excessive N and P to ensure none comes limiting during the growth 
phase [49]. If N or P is depleted, algae can experience nutrients stress. In nitrogen limitation, 
microalgae slow down the growth and diverts metabolism toward storage compounds like lipids or 
carbohydrates. Therefore, for maximal biomass production, nutrient sufficiency is maintained. 
Standard growth media such as BG-11 and Guillard’s f/2 medium provide a balanced supply of N, 
P, and trace nutrients. These defined media support high growth rates in laboratory culture [50]. 

3.3. Harvesting and Dewatering Techniques 

The overview of microalgae harvesting and dewatering techniques is shown in Figure 1. After 
cultivation, algae must be harvested and dewatered to obtain a concentrated biomass suitable for 
biofuel conversion. This step can be technically challenging and energy-intensive, especially for 
microalgae, which are typically unicellular and suspended at low concentrations in the culture broth. 
Efficient harvesting is crucial as it accounts for a large fraction of the total production cost and energy 
input in algal biofuel production. Numerous harvesting and dewatering methods have been 
developed in the past decade, ranging from traditional processes such as centrifugation and filtration 
to novel techniques like electrochemical flocculation and magnetic separation. The choice of method 
depends on the type of algae, the desired dryness of the output, cost constraints, and scale of 
operation [51]. 
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Figure 1. Overview of microalgae harvesting and dewatering techniques. 

3.3.1. Filtration 

Filtration involves passing the algal suspension through porous membrane or filter medium to 
separate cells from water. It is a widely used method to concentrate microalgae, particularly effective 
for larger cells or for obtaining a clear filtrate. Traditional filters can perform bulk harvesting, but 
modern systems employ membrane filtration that uses microfiltration or ultrafiltration membranes 
with pore sizes small enough to retain algal cells [52]. Membrane based harvesting has seen 
considerable research attention, focusing on mitigating membrane fouling which is a major hurdle. 
Strategies like using tangential filtration, vibrational membranes, or periodic back flushing have been 
developed to maintain flux and extend membrane life [53]. Forward osmosis has also been 
investigated, where a draw solution pulls water out of the algal culture through a semi-permeable 
membrane, thus concentrating the algae without heavy pumping requirements [54]. The advantage 
of filtration is that it can achieve a high concentration factor and even potentially recycle the purified 
water or media. Especially for commercial membranes such as polyvinylidene fluoride (PVDF), 
polyethersulfone (PES) have been used to harvest microalgae species Aurantiochytrium with 97.3 to 
99.9% harvesting efficiency in pilot tests. However, membrane costs and fouling remain concerns for 
very large-scale use. Recent advancements include developing antifouling coatings and employing 
dynamic membranes. Overall, filtration is often used in combination with other methods such as 
flocculation or centrifuge to balance efficiency and cost [55]. 

3.3.2. Centrifuge 

Centrifugal separation is a mechanical method that uses rotational force to accelerate the 
sedimentation of algal cells. It is a fast and effective technique to achieve high concentration factors. 
Disc-stack centrifuges and decanter centrifuges are commonly employed in algae harvesting [56]. The 
main drawback is the high energy consumption and operational cost of continuous centrifugation. 
As centrifuges are often reserved for higher-value products or as a final polishing step after a bulk 
harvesting method has preconcentrated the biomass. Research in the past decade has aimed at 
increasing the throughput and energy efficiency of centrifuges and on harvesting aids that make cells 
easier to centrifuge. Despite the cost, centrifugation remains a reliable harvesting method, yielding 
recovery efficiencies above 90% under low flow rate. It is particularly useful for sensitive products 
where chemical additives cannot be used [57]. 

3.3.3. Flocculation 
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Flocculation is the process of aggregating microalgal cells into larger clumps that can then be 
more easily removed by sedimentation, filtration, or flotation. By overcoming the cells’ natural 
tendency to stay suspended, flocculation facilitates bulk harvesting. Chemical flocculation involves 
adding coagulants or flocculants that neutralize charges or form bridging between cells. Common 
chemical flocculants include multivalent metal salts like aluminum sulfate or ferric chloride, and 
cationic polymers such as polyaluminum chloride or polyacrylamide. These substances have been 
shown to achieve high flocculation efficiencies with low dosages for many microalgae. For example, 
chitosan and cationic starch are popular green flocculants that can aggregate cells without heavy 
metals [58,59]. The downside of chemical flocculation is that the added chemicals may contaminate 
the biomass and may require removal or pH adjustment after use. An alternative is bioflocculation, 
where flocs form due to biological agents or conditions. Certain filamentous fungi or bacteria co-
culture with microalgae and induce natural flocculation where the reported harvest efficiency using 
fungi-algae was near 90% [60,61]. 

3.3.4. Flotation 

Flotation techniques harvest algae by introducing fine bubbles into the culture, which attach to 
algal cells and float them to the surface as foam or scum, which can then be skimmed off [62]. The 
most common is Dissolved Air Flotation (DAF), which is used in water treatment, where water is 
supersaturated with air at high pressure and then released to atmospheric pressure in a tank, forming 
a cloud of microbubbles that lift suspended particles [63]. In algal applications, DAF can achieve high 
separation efficiency near 87% which can further be improved when algae are first flocculated or 
conditioned with surfactants to promote bubble attachments. Flotation is attractive because it can 
process large volumes with relatively low energy compared to centrifugation. It works best at lower 
algal densities and for algae that readily adhere to bubbles. The past decade saw improvements in 
electro-flotation, an electrochemical method where bubbles of hydrogen and oxygen are generated 
in the culture by water electrolysis, carrying algae upward. Electroflotation units that are combined 
with electrocoagulation have been designed to harvest algae without chemical additives. Such 
methods show promises for low cost and continuous operation, thus the scale up and energy 
optimization are still being refined [63,64]. 

4. Conversion Pathways for Algal Biofuels 
Algal biomass can be converted into various biofuels through multiple pathways which can be 

categorized into lipid-based chemical conversion, thermochemical processes, and biochemical 
processes as shown in Figure 2. Each pathway targets different macromolecular fractions of algae 
and yields distinct fuel products. Microalgae are often rich in lipids and thus well-suited for biodiesel 
production via lipid extraction and transesterification. In contrast, macroalgae typically contain lower 
lipid content and higher carbohydrate fractions, making it more amenable to fermentation or direct 
thermochemical liquefaction rather than lipid extraction [65]. 
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Figure 2. Schematic flowchart of algal biomass conversion with branching pathways. 

4.1. Lipid Extraction and Transesterification 

Microalgal biodiesel production traditionally involves extracting lipids from algal cells followed 
by transesterification into fatty acid alkyl esters. Efficient lipid extraction from microalgae is 
challenging due to robust cell walls and high-water content. Therefore, a variety of extraction 
methods have been developed, including mechanical cell disruption, solvent extraction, and 
supercritical fluid techniques. Physical methods including milling, and sonication are used to rupture 
algal cell walls and facilitate lipid release. These techniques can significantly improve solvent 
penetration and lipid yield by overcoming the rigid microalgal cell wall [66]. Mechanical methods 
are relatively simple and scalable, but they often require high energy input and are typically 
combined with solvents to recover the released oils. Alternatively, solvent-based extraction is widely 
used which is using chemical solvents including methanol, chloroform, or NaCl to dissolve and 
extract lipids from dried algal biomass [67]. Solvent extraction achieves high recovery yields but must 
contend with solvent recycling, flammability, and potential toxicity issues. Lastly, supercritical fluid 
extraction utilizes supercritical state CO2 which is environmentally benign technique to extract lipids 
without organic solvents, using CO2 at high pressure and temperature to solubilize non-polar lipids 
[68]. Supercritical CO2 yields high quality oils and avoids solvent residues. However, it may require 
co-solvents or cell disruption pretreatments to achieve high recovery from the wet algal past. Its 
scalability is proven in other industries, but the high-pressure equipment leads to greater capital cost. 
Liquefied dimethyl ether (DME) has emerged as an alternative subcritical solvent that can extract 
lipids from wet algae efficiently due to its low boiling point and ability to penetrate water-rich 
biomass [69]. 

After extraction, the algal lipids are converted to biodiesel throughout transesterification. Non-
catalytic transesterification requires short chain alcohol such as methanol or ethanol to convert 
microalgae into fatty acid methyl ester (FAME) [70]. However, higher yield can be achieved when 
this reaction is catalyzed by acids, bases, or enzymes, which yields FAME or ethyl ester (FAEE) and 
glycerol as a co-product. Especially for base-catalyzed reaction, NaOH is commonly used for 
biodiesel due to their fast reaction kinetics [71]. In fact, base catalyzed transesterification can be 4000 
times faster than acid-catalyzed processes. However, base catalysts require feedstock oils with low 
free fatty acid (FFA) content [70,72]. If FFA is greater than 0.5% of oil weight, saponification will 
occur, which consumes catalyst and emulsifies the product which ultimately reduces biodiesel yield 
and complicating separation [73]. Thus, for refined algal oils with low FFA, base catalysts achieve 
high conversion and are economically attractive. In contrast, acid catalysts such as H2SO4, and HCl 
can simultaneously catalyze transesterification of triglycerides and esterification of FFAs to biodiesel, 
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making the process suitable for lower quality oils or wet algal biomass containing FFA [74]. 
Homogeneous acid catalysis is tolerant of high FFA and moisture which is often employed in a two-
step process for algal oils with significant FFA. However, acid catalysts are much slower and typically 
require higher temperatures at lower than 100°C and a large excess of methanol to drive the reaction. 
They also cause equipment corrosion and necessitate extensive product washing to remove the 
catalyst with waste production [73,74].  

Lipase enzymes offer a biocatalytic route to produce biodiesel under mild conditions. Enzymatic 
transesterification operates at 30-60°C and pH range of 3.0-9.0 for recovery and reusability of the 
enzymes [75,76]. Enzymes work with wet biomass or directly on algal paste, and immobilized lipases 
can be reused for multiple batches. These advantages such as no strong chemicals, lower energy 
input, and easier glycerol recovery have driven research interest. However, the challenges remain as 
the high cost of enzyme catalysts, and inhibition of activity by alcohol or impurities [77]. When 
enzymes are exposed to the media with high level of methanol concentration, the reaction times are 
longer, and incomplete conversions are common without process optimization [78].  

4.2. Thermochemical Conversion 

Thermochemical pathways convert algal biomass into energy dense fuels via heat, pressure, and 
catalysts rather than targeting only extracted lipids. These processes handle wet or dry biomass and 
are generally faster than biochemical conversions. The main thermochemical routes for algal biofuels 
are pyrolysis, gasification, and hydrothermal liquefaction (HTL). In pyrolysis, dried algal biomass is 
rapidly heated to 300-600°C in the absence of oxygen which causes thermal decomposition of 
biopolymers into vapors, gases, and char [79]. The condensable vapors are cooled to produce bio-oil 
while non-condensable gases such as CO, CO2, H2, and CH4 and solid biochar are co-products. Fast 
pyrolysis maximizes bio-oil yield, which exceeds 28-65% of dry algal biomass depending on algal 
species under optimized conditions [80]. Therefore, algae can yield bio-oil with energy content 
greater than 45 MJ/kg and is comparable to petroleum fuels. However, the bio-oils from algae are 
typically oxygen and nitrogen rich due to decomposition of carbohydrates and proteins that contain 
a complex mixture of hydrocarbons, phenolics, N-heterocyclic compounds, and other compounds 
[79]. Especially algae derived bio-oil often contains significant fractions of pyrroles, indoles, and other 
nitrogenated compounds from protein that cause NOx emissions if combusted directly [81]. To 
improve the bio-oil quality, catalytic pyrolysis was implemented which utilize solid catalyst during 
pyrolysis to crack heavy molecules and promote deoxygenation and denitrogenation reactions. 
Catalysts increase the higher heating value of algal bio-oil, although catalytically upgraded bio-oil 
still has lower quality than refined fossil fuels and requires further hydrotreatment. The solid biochar 
from pyrolysis retains inorganic content and carbon which can be utilized as a fertilizer or soil 
amendment or as a solid fuel or catalyst support. Overall, pyrolysis offers rapid ways to convert algae 
into liquid fuel and widely used in co-pyrolysis of microalgae [82]. 

In contrast, gasification involves partial oxidation of algal biomass at higher temperatures 
compared to pyrolysis to produce syngas which is a mixture of combustible gases mainly composed 
of H2 and CO along with CO2, CH4 [83]. In this process, a limited or no oxygen containing steam is 
introduced to react with the feedstock and convert nearly all the organic carbon into gas. Here, algae 
are gasified in the reactor with the high protein and ash content of algae influences the process [84]. 
Syngas composition from algal gasification can be H2 and CO rich where the reported dry syngas 
fractions were 52% H2, 42% CO when gasifying Chlorella vulgaris under optimized conditions with 
steam [85]. The presence of steam tends to shift the product toward more H2 at the expense of CO. In 
advance, the process involves supercritical water where the process operates beyond 374°C and 
22.1MPa that corresponds to supercritical point of water. In this process, algal slurries in water are 
gasified without drying, resulting in high conversion of algae to H2 and CH4 rich gas with the 
advantage of capturing nutrients in the aqueous effluent, though it requires expensive high-pressure 
systems. Overall. Gasification is attractive for macroalgae and low-lipid algae as high carbohydrate 
content favors gas production [86]. 
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Lastly, HTL is a wet conversion process that directly converts high moisture algal biomass into 
a crude liquid oil under pressurized hot water conditions [87]. Typically, a slurry of algal biomass is 
heated to 200-380°C at 5-28MPa in a reactor [88]. In hydrothermal conditions, water acts as both a 
solvent and reactant which is depolymerizing biopolymers in algae into oils, producing the HTL 
biocrude. The primary product is a viscous biocrude oil that can further be upgraded to fuels along 
with a nutrient rich aqueous phase, gas, and solid residue. A major advantage of HTL is that is does 
not require drying of the feedstock which is beneficial on utilization of wet algae by reducing energy 
costs in drying procedure. HTL is suitable for both microalgae and macroalgae since all 
carbohydrates, proteins, and lipids are liquefied to some extent. Typically, biocrude yields range from 
13wt.% up to 73wt.% of dry mass depending on the algae species, process, and conditions [89]. 
Biocrude has an energy density around 30 MJ/kg and is generally more stable and lower in oxygen 
than bio-oils from fast pyrolysis as water at high pressure facilitates deoxygenation. However, algal 
HTL oil contains a significant fraction of nitrogen and some oxygen due to the algal composition. 
This means the HTL biocrude requires upgrading before it can be used as fuel [90]. The most 
promising method is to use catalysts and co-solvents where alcohol such as methanol and ethanol or 
formic acid is added to HTL reactors to promote hydrolysis and decarboxylation which increases oil 
yields and reduce char formation. Additionally, heterogeneous catalysts such as zeolite can be 
introduced in the HTL step to initiate deoxygenation and denitrogenation where it significantly 
boosts biocrude yields. Thus, HTL has emerged as a promising pathway for an integrated algal 
biorefinery, especially for wet biomass. This combined approach can maximize liquid fuel yield from 
algae [87]. 

4.3. Biochemical Conversion 

Biochemical conversion pathways employ microbial processes to convert algal biomass into 
biofuels such as bioethanol, biobutanol, and biohydrogen. Compared to thermochemical routes, 
biochemical methods typically operate at lower temperatures and ambient pressures but often 
require more preprocessing and have slower reaction rates. For bioethanol fermentation process, 
algal carbohydrates are fermented by microbes to produce ethanol similar to conventional energy 
crops such as corn or sugarcane ethanol processes [91]. Microalgae species can accumulate significant 
starch under nutrient deprivation, and this starch can be saccharified into glucose for fermentation 
[92]. Macroalgae, particularly brown and green seaweeds, contain unique polysaccharides such as β-
glucan, mannitol, ulvan, and alginate which have no lignin and can be more easily hydrolyzed than 
lignocellulosic biomass. However, engineered microbes are needed to ferment some of these sugars. 
A crucial step is pretreatment and hydrolysis where algae need to be pretreated with dilute acid or 
enzymes to break down lignin to further convert polysaccharides into fermentable monosaccharides 
[93]. The optimization of pretreatment is essential to maximize sugar release while minimizing 
formation of inhibitors such as furfural and hydromethylfurfural (HMF) that could impair 
fermentation [94,95]. 

Anaerobic digestion (AD) is a biochemical process in which consortia of bacteria and archaea 
decompose organic matter in the absence of oxygen to produce biogas. AD can treat whole algal 
biomass or residual biomass and is considered a key step for integrating algal biofuel processes [96]. 
Microalgae have been widely tested in anaerobic digesters where it can yield methane, but the yields 
are limited by algae’s cell wall recalcitrance [97]. The high protein in many microalgae leads to 
ammonia release during AD, which at elevated concentrations can inhibit methanogenic archaea [98]. 
Strategies such as pretreatment and co-digestion are employed to address these issues where co-
digestion can improve stability, and methane yields by balancing the carbon/nitrogen ratio and 
diluting inhibitory compounds [99]. For example, blending microalgae with wastewater sludge 
significantly increased gas yields and process stability as the algae supplies nitrogen and trace 
nutrients while the co-substrate supplies extra carbon [98]( Typical methane yields from microalgae 
range from 24 to 800 mL per gram of volatile solids (VS), though yields on the higher end are 
achievable with pretreatment and appropriate loading rates. Macroalgae such as seaweed are easy to 
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digest since macroalgae contains high carbohydrates and low lipid content which tends to produce 
similar yield of biogas with a range of 24 to 505 ml CH4 per gram of VS [96]. However, the presence 
of sulfate in marine algae can cause competition from sulfate reducing bacteria instead of 
methanogenesis [100]. Importantly, AD is often integrated at the end of an algal biorefinery where 
after extracting lipids for biodiesel or fermenting sugars to ethanol, the leftover biomass can be 
anaerobically digested to capture remaining energy as biogas. This integrated approach not only 
improves total energy recovery but also produces a nutrient rich digestate that can be recycled as 
fertilizer for algae cultivation, closing the nutrient loop [101]. 

Dark fermentation refers to the anaerobic conversion of organic substrates to biohydrogen by 
fermentative bacteria as opposed to photofermentation which requires light. Certain anaerobic 
bacteria such as species of clostridia and Enterobacter can degrade carbohydrates and produce 
hydrogen and CO2 as part of their metabolism [102]. Algal biomass, especially carbohydrate rich 
microalgae or macroalgal hydrolysates can be used as feedstock for hydrogen fermentation. The lack 
of lignin and hemicellulose in algae and the high carbohydrate content are advantageous which 
allows milder pretreatments and higher H2 yields compared to conventional lignocellulosic biomass 
[102,103]. Nevertheless, effective pretreatment is still important to improve biodegradability where 
common methods such as dilute acid hydrolysis are implemented to break algal cells and release 
fermentable sugars. Dark fermentation of algae usually yields a mixture of H2 and CO2 in the gas and 
leaves a significant amount of energy in the form of residual organic acids or alcohols in the liquid 
effluent [103]. Thus, an attractive configuration is a two-stage process where the first stage dark 
fermentation produces hydrogen, and the effluent is then fed to a methanogenic digester to produce 
methane from the remaining volatile acids. These coupled technologies can recover energy as H2 and 
subsequently as CH4, maximizing overall bioenergy extraction from algae [102,103].  

5. Catalytic Strategies in Algal Biofuel Production 
The various catalytic strategies and conversion pathways used to produce biofuels using algae 

is summarized in Table 2. 

Table 2. Biofuel production relates to catalytic strategies and conversion pathways. 

Method  Strain  Catalyst  Biofuel  Condition Biofuel 
productivity  Ref  

HTL  
Nannochloropsis  Ni/TiO2  Biocrude  300°C  48.2 wt%  [104]  
Chlorella vulgaris  Co/TiO2  Biocrude  290°C  57.8 wt%  [105]  
Spirulina maxima  Zeolite  Biocrude  278°C  53.8 wt%  [105]  

Trans-
esterfication  

Chlorella vulgaris  CaO  Biocrude  
70°C, 180 

min  
92.0 wt%  [106]  

Chlorella vulgaris  NaOH  Biodiesel  
60°C,  

75 min  
77.6 wt%  [107]  

Chlorella pyrenoidosa H2SO4  Biodiesel  
120°C, 120 

min  
86.6 wt%  [108]  

Catalytic 
pyrolysis  

Chlorella vulgaris  HZSM-5  
Bio-oil, 

aromatic  
500°C  52.7 wt%  [109]  

Anaerobic  
digestion  

Chlorella vulgaris  
C. 

thermocellum 
Methane  52°C  403mLg-1VS  [110]  

5.1. Heterogeneous Catalysis 

Heterogeneous catalysts have gained prominence in microalgal biofuel production due to their 
reusability, selectivity, and ease of separation from products [111]. In transesterification of algal lipids 
to biodiesel, solid based catalysts such as calcium oxide (CaO), magnesium oxide (MgO), strontium 
oxide (SrO), supported alkali/alkaline earth metals, basic zeolites, and hydrotalcite clays have all been 
explored [65]. These catalysts achieved high conversion of microalgal oils into fatty acid methyl esters 
while avoiding many drawbacks of homogenous bases. In the findings of 92.03 wt%  biodiesel 
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production yield was achieved using CaO catalyst under 70°C with agitation. Additionally, solid 
catalysts allow continuous processing such as fixed bed reactors and simply product separation 
[106,112]. Unlike liquid alkali, solid base catalysts do not cause soap formation with free fatty acids 
and can even be paired with solid acids to simultaneously esterify free acids, allowing high-FFA algal 
oils to be converted without pretreatment [65]. Solid acid catalysts have also been used either alone 
or in dual catalyst systems to ensure both transesterification and esterification occur, which is 
especially beneficial for lower quality or high acidity algal feedstocks. Overall, heterogeneous 
transesterification offers superior catalyst recovery, lower energy and water usage, and the possibility 
of catalyst recycling, which is making the process more sustainable than traditional base-catalyzed 
methods [65,111]. 

Solid catalysts are equally important in thermochemical pathways such as pyrolysis, HTL, and 
biocrude upgrading. Catalytic pyrolysis of microalgae using acidic solids such as HZSM-5, zeolite, 
or modified alumina/titania has been shown to produce bio-oils with higher hydrocarbon and 
aromatic content and significantly lower oxygen content compared to non-catalytic pyrolysis [113]. 
The catalyst promotes cracking of heavy biomolecules and deoxygenation reactions, thereby 
improving the fuel properties of the oil. Similarly, in hydrothermal liquefaction, addition of 
heterogeneous catalysts can increase biocrude yield and quality. For example, alumina, titania, or 
zeolite supports modified with transition metals have demonstrated over 86% biodiesel under 
supercritical condition of alcohol (2500 psi and 300-450°C) while allowing reuse of the catalyst for 
multiple cycles [114]. After primary conversion, upgrading of algal biocrude to drop-in fuels usually 
employs solid hydrotreating catalysts to catalytically remove oxygen, nitrogen and sulfur 
heteroatoms via hydrogenation and deoxygenation (Santillan et al., 2019). In the findings of Bai et al. 
(2014), Ru/C+Raney nickel catalyst was highly active for denitrogenation/deoxygenation that 
successfully reduced 8.0 wt.% N and 2.1 wt.% O composition down to 2.0 wt.%. After the removal of 
oxygen and nitrogen content from biodiesel, the heating value reached 45 MJ/kg.  In summary, 
heterogenous catalysis spans multiple processes in algal biofuel production from solid base catalysts 
in biodiesel synthesis to acid/cracking catalysts in pyrolysis and metal catalysts in hydrotreating that 
offers advantages of selectivity and recyclability [115]. 

5.2. Homogeneous Catalysis 

Homogeneous catalysts have historically been used in lipid to biodiesel conversion, but they 
come with significant limitation, especially for algal feedstocks. Common base catalysts like sodium 
or potassium hydroxide offer fast reaction kinetics and are effective with refined oils and are still 
employed in some industrial biodiesel processes [116]. However, if microalgal oils contain more than 
a few percent free fatty acids or any moisture, alkaline catalysts induce saponification side reactions 
where fatty acids react to form soaps which hinder the separation and purification of biodiesel [117]. 
Soap formation not only consumes catalysts and reduces biodiesel yield, but it produces emulsions 
that complicate product recovery. Strong acid catalysts such as H2SO4 or HCl do not form soaps and 
can esterify FFA to biodiesel, making them more tolerant of low-grade oils. Additionally, Chamola 
et al. (2019) demonstrated that acid transesterification using H2SO4 can achieve maximum biodiesel 
yield in relatively shorter reaction time compared to NaOH catalyst [118]. Sulfuric acid 
transesterification took 60.443 min to achieve the maximum biodiesel yield while 73.637 min was 
consumed with NaOH. However, acids are highly corrosive to reactors and pipelines, raising 
material compatibility issues [117]. In general, all homogeneous catalysts are single use after reaction, 
the catalyst ends up in the glycerol-rich phase or spent washing water and cannot be economically 
recovered [111]. Additional neutralization and wastewater treatment are needed to remove these 
catalysts which are adding cost and environmental burden. For instance, alkaline transesterification 
of microalgal oil with NaOH might achieve high initial conversion, but if the algae oil has greater 
than 0.5% FFA or any water, the process demands feed pretreatment and generates substantial soap 
and waste salt. These drawbacks make homogeneous catalysis less attractive for algal biodiesel 
refining. Consequently, there is a shift toward solid acid/base catalysts or enzymatic catalysts in 
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research, aiming to eliminate the costly separation steps while still obtaining high methyl ester yields 
[117]. 

5.3. Emerging Trends 

5.3.1. Photocatalysis 

Photo catalytic strategies are being explored to leverage solar energy for algal biofuel 
conversion. In biodiesel production, semiconductor photocatalysts such as TiO2 or ZnO based 
materials can be activated by UV or visible light to drive transesterification, which potentially reduces 
the external heat or energy required for the reaction [119]. This solar-driven catalysis is an eco-
friendly concept in which sunlight facilitates the conversion of algal lipids to fatty acid esters. 
Another promising avenue is photocatalytic reforming of algae derived intermediates into hydrogen 
or other fuels. For example, glycerol, which is the main co-product of transesterification, can be 
photoreformed in water under solar irradiation to produce H2, using catalysts like doped TiO2 as a 
photoactive surface [120]. Recent studies demonstrate that titanium oxide nanotube photocatalysts 
under UV light can oxidize glycerol, yielding hydrogen gas as a renewable fuel. Such photocatalytic 
reforming not only generates clean hydrogen gas but also valorizes glycerol into a useful fuel [121]. 
Overall, photocatalysis introduces renewable energy into the conversion process, offering a route to 
solar-driven algal biorefineries that produce both liquid and gaseous biofuels. 

5.3.2. Electrocatalysis 

Electrocatalytic processes use electrical energy to drive chemical conversions of algal biomass 
fraction with help of specialized electrodes and catalysts. A key emerging application is the 
electrochemical upgrading of bio-oils into higher quality fuels. In conventional upgrading like 
hydrodeoxygenation (HDO), high pressure hydrogen and temperatures of 300 to 400°C are required 
to remove oxygenates. By contrast, electrochemical hydrogenation (ECH) can be performed at mild 
conditions with lower than 80°C with ambient pressure by supplying electrons to reduce bio-oil 
oxygenates into hydrocarbons [122]. This means acids, aldehydes, and other polar compounds in 
algal bio-oil can be electrochemically reduced to more stable alcohols or alkanes, thereby reducing 
the bio-oil’s acidity while increasing its stability and energy content [123]. Crucially, ECH does not 
require external H2 gas and can run on renewable electricity since hydrogen is generated in situ from 
water electrolysis [122]. Preliminary assessments indicate that integrating electrocatalytic upgrading 
could cut greenhouse emissions by up to three times compared to standard thermal upgrading with 
fossil hydrogen. Beyond bio-oil refining, electrocatalysis is being tested for reforming biomass 
derived streams. For instance, electrolysis cells that oxidize glycerol or organic acids at the anode 
while producing hydrogen at the cathode [124]. Such systems not only treat byproducts but also co-
generate fuel. Although electrocatalytic approaches are mostly at the lab scale, they hold promises 
for cleaner and electricity-driven conversion of algal feedstocks into fuels and chemicals. 

6. Integrated Algal Biorefineries 
As shown in figure 3, integrated algal biorefineries (IABR) are primarily designed for the 

maximum utilization of micro- and macroalgae biomass to produce biofuels, valuable biproducts and 
bioenergy. IABR model is designed to exploit the algal biomass and convert it into valuable 
compounds like lipids, carbohydrates, proteins, and pigments. This technology favors the principles 
of net-zero waste production and strong economic benefits for the society [125]. 
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Figure 3. Schematic representation of integrated algal biorefinery for biofuels and by-products. 

6.1. Concept and Design of Algal Biorefineries 

Algal biorefineries are comprised of multiple unit operations such as cultivation, pretreatment, 
and conversion process. These processes are modular, scalable, and tailored for a particular algal 
species, environment, and economic perspective [126]. In a typical upstream biorefinery, algae are 
cultivated in large photobioreactors under optimized conditions of nutrients, light, carbon dioxide, 
pH, and temperature. Afterwards, pretreatment stage consists of harvesting of algal biomass, 
dewatering, drying, hydrolysis, and extraction processes to obtain lipids and carbohydrates [127]. 
Thereafter, conversion step involves pyrolysis, hydrothermal liquefaction, transesterification, 
fermentation, and anaerobic digestion to produce biofuels, biodiesel, bioalcohols and biogas 
[128,129]. In addition to this, carbon capture and wastewater treatment facilities integrated with the 
algal biorefinery favours the environment sustainability and reduced input cost. Thus, the output 
efficiency of IABs can be enhanced by process integration and maximum resource utilization [130].  

6.2. Valorization of Co-Products (Proteins, Pigments, Fertilizers) 

Algal biomass is the main source of proteins, carbohydrates, and pigments that can be 
transformed into valuable co-products. Algal proteins are popular as nutraceuticals, aquaculture, and 
animal feed products due to their essential amino acid profile [131]. Pigments derived from algae 
such as chlorophyll, phycobiliproteins, and carotenoids have major applications in food, cosmetics, 
and pharmaceuticals industries. The leftover residue of algal biorefinery can be useful as biofertilizers 
for the soil enrichment with macronutrients such as nitrogen, phosphorus, and potassium. Thus, the 
biproducts of algal biorefineries are essential for the techno-economic balancing and perfectly aligned 
with the circular bioeconomy model like lignocellulosic system [132,133].  

6.3. Energy and Economic Optimization 

The sustainability of algal biorefinery depends on the energy efficiency. The algal biomass 
contains high amount of water which consume energy in dewatering and drying process [134]. 
Therefore, energy efficient harvesting technique such as electrocoagulation, flocculation, and 
membrane filtration were employed for these applications [135]. Integrated approach in biorefinery 
like coupling lipid extraction with anaerobic digestion can reduce the energy input and enhance the 
net energy returns in overall process [136]. Today, algal biorefinery and wastewater treatment plant 
are complemented to each other and capable to reduce the overall capital expenditure and can 
generate more revenue form the greater economic perspective. Techno-economic analysis evaluates 
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the economic viability of these integrated workflow system and optimize the process for further scale-
up [137].  

6.4. Life Cycle Assessment (LCA) and Sustainability Metrics 

Life cycle assessment (LCA) is a comprehensive approach and used to evaluate the 
environmental impact of algal biorefineries throughout its entire life cycle. Algae-based biofuel 
production has a significantly contribution towards carbon neutrality [138]. The LCA model 
suggested that actual environment sustainability outcomes are based on the factors like cultivation, 
energy source, and geographical location [139]. The LCA studies underlined important benefits such 
as reduced global warming potential and enhanced resource efficiency, whereas also found 
challenges like feedstock optimisation, technological integration, and economic feasibility. The 
GREET® (Greenhouse Gases, Regulated Emissions and Energy Use in Transportation) model was 
used to study the energy consumption, GHG emissions, and water requirements in production of 
renewable biodiesel from algae and palm oil feedstock [140]. Additionally, sustainability of algal 
biorefineries were determined using metrics such as global warming potential (GWP), eutrophication 
potential, and energy return on investment (EROI) in various study design [141]. 

7. Recent Advances in Sustainable Technologies 
Certainly, sustainability in an algal biorefinery system can be achieved by implementing 

improved catalytic processes, intensifying operations, and digital innovations (Figure 4). A circular 
bioeconomy model should be implemented in algal biorefineries to enhance the production of 
biofuels and other valuable compounds. The current advancements in algal biorefineries can 
overcome the problems of low productivity, high input cost, and poor economic performance by 
implementing conceptual designs in industrially viable settings [142]. 

 

Figure 4. Recent advancements in algal biorefineries to produce biofuels. 

7.1. Strain Improvement and Metabolic Engineering 

In a biorefinery system, microbial productivity is an important factor that affect the production 
of biofuels from algal biomass. Mutagenesis, adaptive laboratory evolution, and metabolic 
engineering techniques were used to increase the lipid concentration, carbon fixation rates, and 
tolerance to stress conditions of algal species [143]. Recently developed CRISPR/Cas9 and various 
other genome editing techniques have been used to enhance lipid biosynthesis, and pigment 
production in algal species such as Chlamydomonas reinhardtii, Nannochloropsis sp., and Phaeodactylum 
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tricornutum [144]. Synthetic biology approaches further enable the rational designing of algal strains 
to produce biofuels and valuable co-products [145,146]. 

7.2. Process Intensification Techniques 

To enhance biofuel production, process intensification is necessary for upgrading algal 
biochemical process by integrating unit operations and reducing energy cost, material input, and 
carbon footprint [147]. For example, photobioreactor, and hydrodynamic cavitation is a process 
intensification in algal biorefinery [148,149]. Similarly, coupling algal cultivation with lipid extraction 
and simultaneous hydrothermal treatment and gas upgrading techniques shorten the process chain 
and increase the output efficiency of a biorefinery system [150]. Supercritical CO2 and ionic liquids 
further enhance the process of lipid extraction from algae biomass with minimal environmental 
impact [151,152]6  

7.3. Wastewater-Based Cultivation and CO₂ Integration 

Coupling algal cultivation with wastewater and flue gas reduces overall operational costs and 
potentially offers benefits like waste remediation and CO2 sequestration. Wastewater cultivation 
systems can provide rich nutrients (N, P, and trace elements) and promote the growth of microalgae 
with high lipid production. Similarly, flue gases were used as an inexpensive carbon source [153].  
For example, consortia of Chlorella and Scenedesmus cultivated on textile wastewater, significantly 
remove nitrogen (70%) and phosphorus (95%). These types of coupling eventually provide huge 
benefits for algal growth and lower the environmental impact [154]. 

7.4. Digital Tools: Process Modeling and Artificial Intelligence 

Digital tools such as mechanistic modeling, machine learning (ML), and artificial intelligence 
(AI) are transforming design, operation, and scale-up of algal biorefineries. Thus, accurate forecast of 
algal growth, optimal harvest times, nutrient changes, and bioreactor performance are possible at 
various environmental conditions [155]. For example, artificial neural network (ANN) combined with 
genetic algorithm (GA) tools were used to optimize Scenedesmus sp. culture production in a 
photobioreactor using domestic wastewater as a medium and flue gas as a carbon source [156]. 

8. Policy, Regulation, and Market Outlook 
Indeed, the production of algal biofuel and other byproducts is dependent on current 

technological advancements, the circular bioeconomy approach, and the use of genetically modified 
algae. A flexible policy framework, regulations, and a favorable open market is also necessary to 
support the biorefinery's current operations and future sustainability [157,158].  

8.1. Global Policies Supporting Algal Biofuel Development 

To promote algal biofuel R&D, several nations and reginal territories are building strong 
policies. For example, department of energy (DOE) of United States is promoting Bioenergy 
Technologies Office (BETO) and the Algae Program, their goal is to reduce the cost of biofuel 
production (e.g., $3/gallon by 2030) and establishing new pilot projects. In California, Renewable Fuel 
Standard (RFS) and Low Carbon Fuel Standard (LCFS) further support algal biofuels by giving them 
Renewable Identification Numbers (RINs) and carbon intensity (CI) scores, respectively [159,160]. 
Similarly, European Union is building strong policy frameworks like Renewable Energy Directive 
(RED II) with a Mandat of increasing the share of advanced algal biofuel in transportation energy. 
The Horizon Europe has funded many projects related to algal biorefineries under the Bio-Based 
Industries Joint Undertaking (BBI JU) program [161]. In India, the National Bio-Energy Mission and 
SATAT (Sustainable Alternative Towards Affordable Transportation) programs offers huge 
incentives for algal biofuel projects, and institutions like DBT-ICGEB has algal research centre. 
However, specific policies for the algal based biofuel production are still underdeveloped [162,163].  
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8.2. Subsidies, Incentives, and Carbon Credits 

In USA, financial incentives were provided as tax exemption of 4 cent per gallon ethanol blended 
gasoline under Energy Tax Act (1978). The American Jobs Creation Act (2004), Energy Policy Act 2005 
and 2010 have been introduced to provide tax benefits as Ethanol Excise Tax Credit (VEETC). 
Similarly, Farm bill (2007) offers tax incentives of 51–45 cents/gallon for the first-generation ethanol 
and 1.01 $/gallon tax incentives for lignocellulosic ethanol [164]. Similar, Advanced Research Projects 
Agency–Energy (ARPA-E) program of Department of Energy (DOE) has invested more than $1.5 
billion and supported more that 500 projects related to boost the energy sector [165]. Moreover, 
carbon pricing and trading mechanisms offers benefits for algal biorefineries to monetize their CO2 
uptake. Algal biorefineries are capable to sequester 1.8-2.2 kg of CO₂ per kg of biomass which adds 
carbon credit in voluntary and compliance markets [166]. Algal cultivation has immense potential of 
carbon capture and utilization. Nevertheless, a transparent carbon accounting and MRV 
(Measurement, Reporting, Verification) system is required to achieve the carbon mitigation [167]. 

8.3. Market Trends and Commercialization Prospects 

The US government’s department of Energy’s Bioenergy Technologies Office (BETO) aims to 
produce 5 billion gallons of algal biofuel by 2030 [168]. Despite growing R&D, commercial market of 
algal biofuels is limited. In the beginning, algal biofuel was produced by companies such as Sapphire 
Energy, Solazyme (now TerraVia), Algenol, and Heliae. However, these companies faced various 
challenges to produce algal biofuel within the economical scale. Recently, the direction of 
biorefineries shifted towards producing valuable by-products (e.g., omega-3 fatty acids, astaxanthin, 
biofertilizers) alongside biofuels to gain more returns on their investments [169]. The bioplastics and 
sustainable aviation fuel (SAF) markets are also gaining popularity with algal biorefineries. Algal-
derived SAF has been used in airlines (Turkish Airlines) because of its low carbon emission. Thus, 
global market is shifting towards algal based solutions to reduce the carbon emissions and 
implementation of circular bioeconomy model [170].  

9. Challenges and Future Perspectives 
The commercialization of algal biofuels and co-products are limited due to some technological, 

economic and infrastructure related challenges. However, synthetic biology and integrated algal 
biorefineries offers substantial economic benefits by overcoming these roadblocks.  

9.1. Major Bottlenecks: Cost, Energy Input, and Scalability 

The commercialization of algal biofuel is restricted by its high production cost due to energy 
intensive nature of cultivation, harvesting, and downstream processing. Algal research estimated 
that harvesting and dewatering activities consume 30% of the energy input due to low biomass 
productivity of algal culture [136]. Inadequate supply of nutrients, nitrogen, phosphorus, and carbon 
dioxide further limit the cultivation of algae. The environmental stress conditions like pH, 
temperature, and light affect the performance of sensitive strain of algae. Furthermore, scalability of 
algal-based technology face challenges due to the requirement of adequate land, water and 
infrastructure development [171,172].  

9.2. Future R&D Directions: Synthetic Biology and Hybrid Technologies 

To overcome the major challenges, next-generation R&D strategies are now focusing on 
synthetic biology, metabolic engineering and genome editing techniques like CRISPR/Cas9 to 
enhance the algal growth, productivity and stress tolerance capability [173]. Also, the engineered 
microalgae are capable to produce value-added products like astaxanthin, phycocyanin alongside 
fuels to support the economic foundation of a biorefinery [174]. Similarly, integrated 
photobioreactors (PBRs) and open ponds can significantly reduce the cost and help in contamination 
check. Coupling algal system with municipal wastewater or industrial effluents offer bio-nutrients to 
promote bioremediation and ultimately reduces the carbon footprints. Moreover, algal cultivation 
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attached with biofilm reactor system reduces the harvesting and water consumption cost [175,176]. 
Advanced computing technologies like Artificial intelligence (AI) and machine learning (ML) are 
being employed to optimize the critical parameters such as nutrient supply, light intensity, and 
harvesting time to enhance the biomass productivity and lower the expenditure [177]. 

9.3. Roadmap for Commercialization 

The commercialization success of algal biofuels needs a critical roadmap that follow advanced 
technologies, supportive policies and investment by the stakeholders. For example, focusing on 
valorization of co-products alongside biofuels can reduce the production cost. Development of 
engineered strains with high productivity and promotion of pilot-scale operations that integrates CO₂ 
capture and wastewater treatment would benefit the environment [178]. To create awareness about 
the circular bioeconomy, algal bioeconomy hubs need to be established in the rural areas. Algal 
biorefineries should be integrated with national energy and climate goals to obtain more benefits 
from carbon credit schemes and green infrastructure investments. At the end, academia-industry 
partnership, international research collaboration, and long-term government support will be very 
important to convert the research idea into commercially viable settings [179,180].  

10. Concluding Remark  
Algal biofuel stands as the next generation of renewable energy, offering a sustainable solution 

to the decarbonization of transportation and chemical sectors. Advanced catalytic strategies such as 
thermochemical and biochemical methods are vital to improve the proficiency and viability of algal 
biomass conversion. Moreover, sustainable algal cultivation combined with process intensification 
and an integrated biorefinery model, further strengthens the economic and environmental aspects. 
Despite significant progress, up-scale production and commercialization are still limited due to 
competitiveness and navigating regulatory frameworks. Life cycle assessments and techno-economic 
analyses further guide the technical feasibility, environment and social responsibilities. 
Interdisciplinary collaborations, public-private partnerships, and supportive government policies are 
essential to promote algal biofuel as a valuable source of energy. Finally, innovations and strategic 
investment in algal biorefinery follow the resilient and circular bioeconomy model that offers the 
dual advantages of energy production and environmental protection.  
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