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Abstract: Traditional deep learning approaches for pork freshness grading require extensive datasets, 

posing significant challenges in practical applications where sample collection is costly and time-

consuming. To reduce the cost of image sample collection, this research aims to develop a few-shot 

learning method for accurate pork freshness classification with limited data. Utilizing microbial cell 

concentration as a parameter, a pork freshness grade dataset containing 600 images has been 

established through physical and chemical testing methods. We propose the BBSNet, a lightweight 

architecture that integrates BCN, a double attention mechanism (BiFormer), and ShuffleNetV2. The 

BCN layer enhances feature distinguishability by replacing traditional normalization methods, while 

the BiFormer module dynamically optimizes attention for fine-grained feature extraction. In the 5-

way 80-shot task (where 5 denotes the number of categories and 80 indicates the number of samples 

in the support set), the accuracies for average accuracy, sensitivity, specificity, and precision are 

96.36%, 78.85%, 85.71%, and 96.3%, respectively. These results demonstrate that BBSNet significantly 

reduces data dependency without compromising accuracy, providing a cost-effective solution for 

real-time pork quality monitoring. This work presents a novel framework for food freshness 

assessment under data-scarce conditions, bridging the gap between laboratory-based indicators and 

industrial applications. 

Keywords: Pork freshness; Few-shot learning; Biformer; Fine-tuning 

 

1. Introduction 

With rising living standards, consumers increasingly prioritize meat quality, particularly 

freshness. Current evaluations of pork freshness predominantly rely on physicochemical methods, 

such as microbial concentration[1], TVB-N detection[2], and pH measurement[3]. While these 

methods are accurate, they are also destructive, time-consuming, and unsuitable for rapid online 

detection[4]. Non-destructive alternatives utilizing spectral imaging and electronic nose technologies 

have emerged in food quality inspection.[5,6]Hyperspectral imaging (400–1000 nm) combined with 

least squares support vector machines has enabled effective TVB-N prediction[7], while fluorescence 

hyperspectral imaging has facilitated the assessment of frozen pork quality through partial least 

square regression[8]. However, spectral overlap and limited wavelength effectiveness constrain the 

accuracy of feature extraction. Similarly, electronic nose systems that employ linear discriminant 

analysis[9] or PCA sensor arrays [10] encounter challenges related to high costs and operational 

complexity, despite achieving high accuracy [11]. 

Multimodal approaches that integrate spectral imaging and electronic noses [12–14] enhance 

detection robustness; however, they necessitate dedicated hardware systems that are susceptible to 
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inherent time delays and data synchronization errors. In contrast, computer vision provides rapid, 

non-destructive alternatives, achieving an accuracy of 92.5% in grading pork color and marbling 

through support vector machines [15] and estimating intramuscular fat using gradient boosting 

machines [16]. Furthermore, advanced image processing techniques employing attention-enhanced 

U-Net models have optimized feature extraction [17]. Nonetheless, deep learning models require 

large datasets and significant computational resources, while data augmentation techniques are often 

insufficient for enhancing critical features such as color and texture [18–20].  

Few-shot learning effectively addresses these limitations by facilitating classification with 

minimal labeled data[21].Nie et al. (2024)[22] summarized the applications of few-shot learning in 

the field of intelligent agriculture. By leveraging few-shot learning, the reliance of intelligent 

agriculture on large datasets is expected to decrease, thereby further enhancing its level of 

intelligence.R-CNN-based strawberry disease detection achieved an accuracy of 96.67% with only 

550 samples [23], while FPGA-ARM embedded systems attained over 95% pest recognition using 350 

samples. Nie et al. (2023) [24] enhanced the accuracy and robustness of data-driven artificial neural 

networks by incorporating expert knowledge, which also reduced their data requirements.These 

methodologies reduce hardware dependency and improve field applicability, presenting promising 

solutions for resource-efficient monitoring of pork freshness. 

To the best of the authors' knowledge, no reports have been published regarding the application 

of few-shot learning techniques to the problem of pork freshness grading. Our contributions include: 

i)the development of BBSNet, a lightweight architecture that integrates dynamic attention 

mechanisms and channel normalization, achieving an accuracy of 96.36% in 5-way 80-shot tasks. This 

approach addresses the high data dependency characteristic of traditional deep learning methods in 

pork freshness detection.  

ii) The replacement of Batch Normalization in ShuffleNetV2 and Layer Normalization in 

BiFormer with BCN, which enhances feature stability and discriminability, resulting in a 6.27% 

improvement in 5-way 5-shot accuracy compared to baseline models.  

iii) The performance of BBSNet surpasses that of classic few-shot models (MAML, Prototypical 

Networks) and CNNs such as AlexNet and ResNet50 under conditions of limited data. BBSNet 

achieved accuracies of 59.72% (1-shot) and 78.84% (5-shot) in 5-way tasks, demonstrating its 

adaptability to scenarios with scarce labeled data.  

The remainder of the paper is structured as follows: Section 2 details the materials and methods, 

including dataset acquisition, the few-shot learning method based on BBSNet, model training, and 

evaluation metrics. Section 3 presents the results and discussions, comparing the performance of 

various models and analyzing the impacts of the BCN layer, the BiFormer attention mechanism, and 

the number of support set samples. Section 4 summarizes the findings of the entire paper and 

provides an outlook on future work. 

2. Materials and Methods 

2.1 Data Set Acquisition 

2.1.1 Pork Freshness Grading Criteria 

Total colony count is a critical indicator of meat spoilage, serving as a determinant for the 

continued consumption of pork. Additionally, positive correlations have been observed among pork 

color, luster, and other quality attributes [25]. Consequently, microbial colony concentration was 

utilized as a measure of pork freshness. 

Pork samples were obtained from the Jiangsu Taizhou RT-Mart Supermarket. The hind leg meat 

was cut into pieces measuring approximately 50 mm×80 mm with a thickness of 10 mm, resulting in 

a total of 500 slices. These slices were then packaged in sterilized self-sealing bags and stored in a 

refrigerator at 4℃ for durations of 0, 24, 48, 72, and 96 hours. Subsequently, the microbial 

concentrations of the pork samples were determined in accordance with the GB 47892-2010 standard, 

"Determination of Microbial Counts in Foods." The microbial colony concentrations of the pork 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 June 2025 doi:10.20944/preprints202506.0484.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0484.v1
http://creativecommons.org/licenses/by/4.0/


 3 of 23 

 

samples were measured separately, and the average value was calculated to represent the microbial 

colony concentration parameter for the samples.According to the national standard GB/T 9959.2-

2008, which pertains to Split Fresh and Frozen Lean Pork, the total number of bacterial colonies in 

fresh meat should not exceed 106 CFU/g. After 72 hours of storage at 4℃, the total colony count of the 

sampled pork reached 1.778279×106 CFU/g, surpassing the standard limit for fresh pork total colony 

count. Consequently, pork freshness was classified into five grades based on microbial colony 

concentration parameters, as summarized in Table 1. This grading system closely aligns with the 

findings of Zhang et al. (2023) [11] and Cheng et al. (2024) [14]. 

Table 1. Main parameters of pork freshness grading. 

Freshness grade Microbial Concentration (×103CFU/g) Storage Time (h) 

First-grade fresh pork 4.168 0 

Second-grade fresh pork 13.182 24 

Third-grade fresh pork 301.995 48 

First-grade spoiled pork 1778.279 72 

Second-grade spoiled pork 5370.317 96 

2.1.2. Pork Freshness Dataset 

Five pork samples, each representing different freshness grades, were imaged under natural 

light using a CCD camera. The captured images were subsequently uploaded to a computer via USB 

for storage. A total of 120 samples were collected for each grade of pork freshness, resulting in an 

overall dataset of 600 samples. These images were resized to 224×224 pixels for subsequent analysis. 

The images corresponding to various pork freshness classes are illustrated in Table 2. First-grade and 

second-grade fresh pork samples exhibited a bright red color with good luster, while third-grade 

fresh pork samples displayed a dark red hue with an average appearance. In contrast, first-grade and 

second-grade spoiled pork samples were characterized by a dark red color and poor luster. 

Table 2. Pork freshness dataset analysis. 

Class Image Resolution 

First-grade fresh meat 

 

224×224×3 

Second-grade fresh meat 

 

224×224×3 

Third-grade fresh meat 

 

224×224×3 

First-grade spoiled meat 

 

224×224×3 
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Second-grade spoiled meat 

 

224×224×3 

A k-way, n-shot task was established, where k denotes the number of categories and n indicates 

the number of samples in the support set. In this study, pork freshness was categorized into five 

classes; thus, the research task is defined as a 5-way n-shot task. To validate the model's performance, 

n images are randomly selected from each class of the dataset to form the support set. 

2.2 Few-Shot Learning Method Based on BBSNet 

In few-shot learning, images are mapped to task-specific metric spaces to facilitate similarity-

based recognition. Prototypical networks [26] are noted for their simplicity and efficiency. Recent 

studies have incorporated self-attention mechanisms[27–29] to improve feature discrimination. These 

works demonstrate that attention-driven prototype refinement has the potential to mitigate feature 

ambiguity in scenarios with limited data. 

To address the high computational costs associated with existing attention-enhanced 

prototypical networks, we propose BBSNet, a lightweight architecture designed for five-class pork 

freshness classification. Built upon prototypical networks, BBSNet utilizes the ShuffleNetV2 

backbone to minimize computational load while integrating the BiFormer module to enhance feature 

discriminability. Additionally, the BCN normalization method is employed to facilitate stable 

training with higher learning rates and reduced dependency on initialization.The proposed pipeline 

involves the following steps:  

a)Extracting feature vectors using BBSNet; 

b)Computing cosine similarities between query features and the five class prototypes in the 

support set; 

c)Determining the category with the highest similarity through softmax activation. This design 

effectively balances efficiency and accuracy, as illustrated in Figure 1. 

BBSNet

BBSNet
 

similarity 1

similarity 2

similarity 3

similarity 4

similarity 5

Calculate 

similarity
softmax

Predicted 

value

5-Way n-Shot
Support Set:

First-grade fresh meat

Second-grade fresh meat

Third-grade fresh meat

First-grade spoiled meat

Second-grade spoiled meat

Feature vectors

Quary set

Feature vectors

 

Figure 1. Basic structure of few shot learning. 

2.2.1. Composition of BBSNet 

Metric-based methods typically employ episodic training strategies to train the feature extractor, 

utilizing either a fixed or parameterized distance metric. This approach places substantial demands 
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on the performance of the feature extraction network. A high-performing feature extraction network 

is crucial for ensuring the accuracy of metric operations in few-shot learning [30,31]. 

Figure 2 (a) illustrates the structure of the BBSNet feature extraction network. The input image 

is processed through a convolutional layer with a 3x3 convolutional kernel and a stride of 2, before 

entering the first stage after passing through a max pooling layer. This stage comprises the basic unit 

of ShuffleNetV2 in conjunction with the Patch Merging + BiFormer block module. The second 

through fourth stages consist of the ShuffleNetV2 downsampling unit alongside the Patch Merging 

+ BiFormer block module. After the original image undergoes processing through four computational 

stages, it is subsequently passed through a convolutional layer that employs 11 convolutional kernels 

with a filter size of 1. This is followed by a global average pooling layer, a dropout layer with a 

dropout rate of 0.4, and a Flatten layer. Consequently, the image features are extracted into a one-

dimensional vector. Dropout is utilized for model regularization by randomly deactivating a portion 

of the neurons, thereby enhancing network sparsity, which is beneficial for feature selection and the 

prevention of overfitting during training [11]. The Adam algorithm is employed as the model 

optimizer for the feature extraction network, with the learning rate set to 0.001. 

 

Figure 2. Ilustration of BBSNet： (a) Basic structure of BBSNet;(b) Improved ShuffleNetv2,basic unit; (c) 

Improved ShuffleNetv2,spatial downsampling unit 

2.2.2. Upgrading of ShuffleNetV2 Module 
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Although ShuffleNetV2 prioritizes computational efficiency, its effectiveness in fine-grained 

tasks, such as pork freshness grading, is limited by insufficient feature discrimination. To address 

this limitation, we enhance the network architecture through two structural innovations. 

(a)BCN: 

Integrated after each convolutional layer (3×3 depthwise and 1×1), BCN, in conjunction with 

ReLU, stabilizes feature distributions while preserving discriminative texture and color details. 

(b)BiFormer-enhanced dual-branch design:  

Basic unit: Features are processed sequentially through depthwise convolution → BCN → patch 

merging → BiFormer (capturing spatial-channel dependencies) → channel shuffling. 

Downsampling unit: Parallel branches reduce spatial resolution by half. The right branch 

incorporates BiFormer and BCN to facilitate multi-scale feature fusion. 

Given the sensitivity of local feature differences, such as color and texture, in images of pork 

freshness, BCN effectively preserves subtle feature variations across different regions. This is 

achieved by performing local statistical normalization on image blocks, thereby avoiding the 

potential blurring of local information that may result from the global normalization approach of BN. 

The BiFormer module optimizes computational efficiency without compromising feature specificity. 

Collectively, these modifications strengthen ShuffleNetV2's ability to discern critical freshness-

related patterns in pork images, aligning with the precision requirements of food quality assessment 

[32]. 

2.2.3. Accelerating feature fitting with batch channel normalization 

Internal variable shifts may occur due to the randomness in parameter initialization and 

variations in input data [33].BCN integrates the advantages of BN[34] and LN [35] by utilizing the 

correlations between channels and batch processing.  

To address the limitations of traditional BN and LN in capturing both spatial and channel-wise 

statistics, we adopt BCN proposed by Khaled et al. (2023) [36]. BCN dynamically balances the 

contributions of batch-wise and channel-wise normalization through a learnable parameter ι, 

enabling adaptive feature scaling and shifting. 

The BCN operation is defined as: 
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where xi is the input image tensor,Ɩ,γ and β are learnable parameters and ɛ is a small constant 

used for numerical stability. By adopting BCN method, all channels in convolutional layer shared the 

same normalization terms μ and σ2, μ1，μ2 and σ12,σ22 denote the mean and variance computed 

across both batch and channel dimensions.This improved model performance in deep learning 

networks [37]. In this research, LN layers in BiFormer module and BN layers in ShuffleNet were all 

replaced with BCN. Here, the learnable parameters Ɩ, γ, and β were all randomly initialized from a 

normal distribution (with a mean of 0 and standard deviation of 1). 

2.2.4 Upgrading of BiFormer module 

In recent years, Vision Transformers have made significant advancements in the field of 

computer vision [38,39]. The existing BiFormer module [40] incorporates a LN layer, which 

necessitates the computation of a global dimension for each sample, resulting in substantial 

computational costs. Furthermore, LN demonstrates insensitivity to variations in sequence length, 

rendering it more appropriate for sequence-based tasks such as natural language processing [35].To 

mitigate these limitations, this study substitutes the LN layer with a BCN layer, thereby constructing 

a BCN-BiFormer attention mechanism, as illustrated in Figure 3. The BiFormer module comprises a 

3×3 depthwise convolutional layer, a bi-level routing attention layer, a BCN normalization layer, and 

a dilated multi-layer perceptron (with a dilation ratio of e).The input consists of an H×W×3 three-

channel image, which is processed through four stages: 
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Stage 1: An overlapping patch embedding layer and the BCN-BiFormer module reduce the 

feature size to H/4×W/4×3. 

Stages 2–4: Block merging modules and BCN-BiFormer modules halve the spatial dimensions 

while doubling the channel count at each stage. 

The structure of improved Biformer is illustrated in Figure 3,the DWConv denotes depthwise 

convolution, the BCN represents batch channel normalization processing, and the MLP refers to a 

multilayer perceptron. 
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Figure 3. Structure of improved Biformer 

In Figure 3, the input feature map X, denoted as CWHRX  , is initially subdivided into S×S 

subregions. Each subregion comprises HW/S2 feature vectors. X is reconstituted as Xr, which belongs 

to CHW/SSR  22
. Subsequently, the feature vectors undergo linear trans formations to generate three 

matrices, Q, K and V. Attention relations between regions are then obtained by constructing a 

directed graph to localize the relevant regions of a given region. It is possible to obtain the region 

level Qr and Kr An expression for the adjacency matrix Arcan be obtained in Eq. (2). 

( )Trrr KQA =  (2) 

The expression for the routing index matrix Ir can be obtained Eq.(3) : 

( )rr AtopIndexI =  
(3) 

The expression for Kg,Vg can be obtained from 
rI  Eq. (4): 

( ) ( )rgrg V,Igather,VK,IgatherK ==  
(4) 

Lastly, the gathered Kg and Vg undergo attention processing, and an additional term,LCE(V), 

is incorporated to yield the output tensor O Eq.(5) . 

( ) ( )VLCE,VQ,KAttentionO gg +=
 

(5) 

In the image classification task, the expansion ratio (e) of the MLP was set to 3, the parameter S 

was set to 7, and the top-k values in the four-stage BRA were specified as 7, 8, 16, and 49, respectively 

[40].  

2.2.5 Probability Distribution Function Based on Cosine Similarity 
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The primary differences among images representing various levels of pork freshness were 

observed in terms of color and luster. As detailed in Section 2.1, experimental verification indicated 

that with prolonged storage time, the color of the pork deepened while its luster diminished. In 

digital images, despite variations in luster, the directions of feature vectors for the same image 

remained largely consistent, which made it challenging to distinguish subtle differences. However, 

utilizing cosine similarity proved effective in differentiating the directions of feature vectors, thereby 

enhancing the model's performance. 

To accurately assess the similarity of image features, this research employed cosine similarity 

[41] as a metric for evaluating image similarity. As outlined in Sections 2.1 , it was posited that the 

support set comprised five types of images, corresponding to the five classes of the pork freshness 

dataset, with each class containing n samples. Consequently, a 5-way, n-shot task was executed. The 

feature vectors of the support set images were extracted using a convolutional neural network, 

resulting in n feature vectors for each class. 

The n feature vectors were averaged and subsequently normalized to yield five one-dimensional 

feature vectors: 54321 μ,μ,μ,μ,μ .Figure 4 illustrates the calculation process. The vector q was 

derived following the feature extraction and normalization of each image in the query set using the 

same convolutional neural network. 

5-Way n-Shot
Support Set: feature vectors

Take the mean of n vectors

..............

Normalization

Normalization

Normalization

Normalization

Normalization

..............

..............

..............

..............

BBSNet

BBSNet

BBSNet

BBSNet

BBSNet

Take the mean of n vectors

Take the mean of n vectors

Take the mean of n vectors

Take the mean of n vectors

First-grade fresh meat

Second-grade fresh meat

Third-grade fresh meat

First-grade spoiled meat

Second-grade spoiled meat

 

Figure 4. Few-shot learning feature vector extraction and processing 

After the normalization processing of query and support set image vectors, cosine similarity 

values among the vector q and 54321 ,μ,μ,μ,μμ  were compared. As presented in Figure 5, cosine 

similarity value was denoted as ( ),qμsim n . Here, θ is the angle between the two vectors being 

compared, and the smaller the value of θ, the greater the similarity between the two vectors. Cosine 

similarity was expressed as:  

( ) θ
qμ

qμ
,qμsim

n

n
n cos

22

=


=  (6) 

where nμ is the mean vector of the nth support set,
2nμ is the 2-norm of the vector nμ , and

2
q is the 2-norm of the vector q. 
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Figure 5. Cosine similarity comparison. 

Softmax classifier was applied to predict the similarity between support and query sets. 

(Mq)softp max=  (7) 

where M is the mean vectors of the samples of the five pork freshness categories in the support 

set, which was defined as: 

 TTTTTT ,μ,μ,μ,μμM 54321=
 

(8) 

and q is the feature vector of query set. Then, the probability distribution p of query set samples 

was defined as: 

( )TTTTTT qq,μq,μq,μq,μμsoftp
54321

max=
 

(9) 

2.3 Fine-Tuning Strategy 

This study presents a cosine similarity-based fine-tuning framework that incorporates an 

adaptive softmax classifier to enhance few-shot recognition. After pre-training the BBSNet feature 

extractor on support set samples, both support and query images are encoded into one-dimensional 

feature vectors. The cosine similarities between these vectors are processed through a softmax 

classifier, whose parameters are optimized using support set data to align the weight vectors with 

intrinsic feature similarity patterns. To maintain computational efficiency, the pre-trained BBSNet 

parameters remain frozen during the fine-tuning process. The optimization employs a two-stage 

strategy for each epoch:  

(a)Cross-entropy minimization on support set samples refines the classification boundaries; (b) 

Entropy regularization applied to query set features mitigates overfitting and enhances 

discriminability.  

This dual mechanism synergistically improves model generalizability, resulting in significant 

accuracy gains in few-shot tasks while preserving computational efficiency. 

2.3.1. Updating Cross-Entropy Loss Function 

To distinguish between model training samples and fine-tuning samples, during fine-tuning 

process, the samples and labels in support set were denoted as ）（ jjx y, . Here, ( )
jxf  is the feature 

vector extracted through BBSNet and pj is the predicted label of the model, defined as: 
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( ) bxfWsoftp jj += max
 (10) 

As described in Section 2.2, to accelerate fine-tuning convergence speed, the value of W was 

initialized to M and b was set as a zero column vector. Here, M is the mean of feature vectors in 

support set. 

 TTTTTT ,μ,μ,μ,μμMW 54321==
 

(11) 

 T，，，，b 00000=  (12) 

During fine-tuning process, support set samples were applied as training samples and cross-

entropy loss function was used to update the values of W and b. Cross-entropy loss function was 

calculated using Eq. (13), where yj is true label and pj is predicted label. 

)P(f(xy),ppy(yCrossEntroloss j

n

j

jj jj logmin
1


=

−==

 
(13) 

2.3.2 Updating Entropy Regularization Function 

During the updating process of cross-entropy loss function, due to the small number of training 

samples, the model was prone to overfitting. In this research, entropy regularization was added to 

cross-entropy loss function to prevent overfitting. 

An image in query set was denoted as A. The feature vector extracted by BBSnet was denoted 

as )(Af . Probability was calculated using softmax activation function as a probability distribution

( ) bAfWsoftp += max . Assuming that there were m samples in query set, the entropy 

regularization term of m samples was denoted as H(p) 

i

m

i

i pp-H(p) log
1


=

=

 
(14) 

where i is the number of samples in query set. H(p) measured the amount of probability 

distribution p information. Substituting Eq.(14) into Eq.(13), the loss function in fine-tuning process 

was obtained as: 
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ij
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(15) 

By incorporating the entropy regularization term of the query set into the loss function, the 

optimizer subtracts this regularization term in each epoch. When the regularization term is large, a 

significant value is deducted in each epoch, thereby accelerating the convergence speed of the loss 

function. 

2.4 Model Training 

2.4.1 Pre-training setting 

The model was compiled in Windows environment on computer with I7-8700 CPU, 8G of 

memory, and NVIDIA GTX1060 6G graphics card. All the code was implemented using Keras 

framework based on TensorFlow 2.0 version. 

2.4.2 Pre-training setting 

The mini-ImageNet dataset is widely utilized in the field of few-shot image recognition. It 

comprises 100 categories, featuring images of various objects such as fish and birds. Few-shot 

learning aims to classify unknown images by leveraging the characteristics of known images. 

Consequently, in accordance with classification principles, mini-ImageNet has been partitioned into 

a training set, a test set, and a validation set, as detailed in Table 3. 
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Table 3. Mini-ImageNet Dataset overview. 

 Training Set (83%) Validation Set (12%) Test Set (8%) 

Number of Categories 80 12 8 

Number of Samples 49800 7200 4800 

The few-shot feature extraction network was pre-trained using a transfer learning method [15] 

to obtain the initial model weights. To accomplish the classification task involving 100 categories of 

images from the mini-ImageNet dataset, the flatten layer of the convolutional neural network model 

was removed during pre-training. The fully connected layer utilized 100 neurons for output. The 

Adam optimizer was employed during the backpropagation process, with the cross-entropy loss 

function applied, and the softmax function used for classification. The learning rate was set to 0.0001. 

The initial weights of BBSNet were obtained after completing 40 epochs. 

2.5 Model Evaluation Metrics 

Model evaluation parameters included true positives (TP), true negatives (TN), false positives 

(FP), and false negatives (FN) [42]. In this research, accuracy (Acc), sensitivity (Sen), specificity (Spe), 

and precision (Pre) were adopted as model evaluation metrics. Specific calculation equations were 

expressed as follows: 

l
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where TP is the number of positive samples correctly classified as positive, TN is the number of 

negative samples correctly classified as negative, FP is the number of negative samples incorrectly 

classified as positive, FN is the number of positive samples incorrectly classified as negative, l is the 

total number of sample categories, and i is evaluation metric for each category. 

3 Results and Discussions 

3.1 Performance Comparison with Classic Algorithms 

3.1.1 Comparison with Classic Few-Shot Models 

To evaluate the performance of the few-shot model developed in this research, a comparative 

experiment was conducted between our model and several classic few-shot models, including 

MAML [43], Matching Networks [44], Prototypical Networks [26], and Relation Networks [45]. All 

models underwent pre-training using the Mini-ImageNet dataset, and their performance was 
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assessed on two tasks: 5-way 1-shot and 5-way 5-shot learning. The results are summarized in Table 

4. 

Table 4. Performance comparison of classical few-shot models. 

Model Backbone Comparison function 
5way,1-shot 

Accuracy (%) 

5way, 5-shot 

Accuracy (%) 

Matching Net ResNet-18 Cosine similarity. 48.12 67.20 

Prototypical 

networks 
ResNet-18 Euclidean distance. 44.56 54.31 

Relation Net ResNet-18 — 51.44 63.12 

Ours 
ShuffleNetV2 

+ Biformer 
Cosine similarity. 59.72 78.84 

The pre-trained features of classical models and small sample models on general datasets, such 

as mini-ImageNet, often struggle to capture the unique color and texture variations of food, as 

exemplified by the color attenuation resulting from the oxidation of pork fat. In this study, we employ 

the Biformer module to fuse local details, such as muscle fiber texture, with global image features, 

thereby enhancing sensitivity to key indicators of food spoilage. The BCN layer mitigates the 

distribution shift between the pre-trained domain (mini-ImageNet) and the target domain (pork 

images), thereby improving the stability of feature representation. Additionally, the cosine similarity 

comparison method optimizes the alignment of feature directions, enhancing the aggregation 

capability of similar samples. Under extremely low sample conditions (1-shot), the model presented 

in this study achieves an accuracy rate of 59.72%, significantly outperforming other models. This 

result demonstrates that the model effectively addresses the overfitting issue through pre-training 

initialization and the injection of prior knowledge, such as the physicochemical principles of food 

spoilage. Furthermore, the accuracy of 78.84% in the 5-shot task indicates that the model can rapidly 

capture essential task characteristics with a limited number of samples, thereby reducing reliance on 

labeled data. Consequently, this research achieves superior performance in the task of pork freshness 

recognition. 

3.1.2 Comparison against classical universality algorithms 

Several classic deep learning network models, including AlexNet [46], VGG16 [47], GoogLeNet 

[48], and ResNet50 [49], were selected to predict pork freshness. The results obtained from these 

models were compared with those from the few-shot learning model developed in this research. 

During the training process of the few-shot model, a 5-way, 80-shot method was adopted following 

the preset pre-training; specifically, for a 5-class classification task, 80 images were provided for each 

category as training samples. All models utilized 400 images as training samples. The test results are 

presented in Table 5. 

Table 5. Ours method vs. other methods on meat freshness dataset. 

Method 

Results 

Input 

image 

size 

Batc

h 

size 

Number of 

parameters 

(M) 

Accuracy 

(%) 

Sensitivi

ty(%) 

Specifici

ty(%) 

Precisio

n(%) 

AlexNet 224*224*3 2 60 52.13 57.96 44.64 77.57 

VGG16 224*224*3 2 138 52.42 69.74 75.30 70.31 

GoogLeN

et 

224*224*3 2 7 58.24 69.61 52.56 70.43 

ResNet50 224*224*3 2 25.6 68.43 79.33 74.78 69.29 

Ours 224*224*3 2 2.3 96.36 78.85 85.71 96.35 

Table 5 illustrates that the average accuracy of the few-shot model developed in this research is 

96.36%, significantly surpassing that of traditional network models. This finding indicates that our 
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model achieved the highest classification accuracy for both true positive and true negative samples, 

reflecting superior classification performance. Furthermore, the model's average specificity and 

average precision were recorded at 85.71% and 96.35%, respectively, both of which represent the 

highest values among all evaluated models. In terms of model sensitivity, the average sensitivity of 

the proposed model was 78.85%, ranking second only to the ResNet50 model, suggesting that our 

model also demonstrated relatively high recognition accuracy for true positive samples. 

AlexNet, VGG16, and GoogLeNet, three classical models, are constrained by their shallow 

architectures and limited parameter capacities, resulting in significantly inferior performance 

metrics. This observation highlights the severe overfitting issue present in these classic models when 

trained on small sample datasets. Although ResNet50 mitigates the problem of deep network 

degradation through the use of residual structures, its reliance on large-scale data for training 

hampers the effective optimization of numerous parameters in scenarios with limited samples, 

leading to suboptimal performance metrics. This research model is based on the lightweight 

backbone network of ShuffleNetV2, which boasts a parameter count of approximately 2.3 million 

(representing 9% of ResNet50) and achieves an exceptionally low computational cost, with a training 

time of only 59 minutes. Furthermore, BCN normalization addresses gradient fluctuations during 

small-batch training by decoupling batch statistics from channel statistics. Traditional BN suffers a 

significant decline in performance when the batch size is less than 16. Classical models depend on 

fully connected layers for decision-making in classification tasks and necessitate large-scale datasets 

to effectively learn classification boundaries. In this research, we employ cosine similarity to directly 

compare the directions of feature vectors, thereby reducing parameter dependence and enhancing 

applicability in scenarios with limited sample sizes. In summary, when the number of samples is 

constrained, small sample methods demonstrate significant advantages across all dimensions 

compared to classical neural network models that require extensive datasets for training. 

3.2 Batch Channel Normalization Impacts 

The purpose of normalization is to enhance training efficiency, reduce the risk of overfitting, and 

improve network stability and generalization capabilities. In this study, the BCN layer was utilized 

to replace the BN layer in the ShuffleNetV2 model, while the LN layer in the BiFormer module was 

substituted with the BCN layer to optimize model performance. To evaluate the optimization effect 

of the BCN layer in the feature extraction network, we compared the accuracies of the model using 

BCN, BN, and LN layers across two tasks: 5-way 1-shot and 5-way 5-shot. In the 5-way 1-shot task, 

only one sample was drawn from each category, resulting in a total of five samples for model training. 

Conversely, in the 5-way 5-shot task, five samples were drawn from each category, leading to a total 

of 25 samples for model training. Subsequently, 100 samples with varying freshness levels were 

randomly selected as the test set to assess the prediction accuracy of the model after few-shot training. 

The results are summarized in Table 6. 

Table 6. The impacts of different normalization methods on model performance. 

Model 
5way 1-shot 

Accuracy（%） 

5way 5-shot 

Accuracy（%） 

ShuffleNetV2+BN，BiFormer+LN 48.23 63.25 

ShuffleNetV2+BCN，BiFormer+LN 49.56 64.18 

ShuffleNetV2+BN，BiFormer+BCN 51.49 68.31 

ShuffleNetV2+BCN，BiFormer+BCN 52.44 69.52 

As presented in Table 6, the integration of BCN layers resulted in an improvement of 4.21% in 

5-way 1-shot accuracy and 6.27% in 5-way 5-shot accuracy compared to the baseline model. This 

enhancement can be attributed to BCN's dual normalization framework, which combines the 

advantages of BN and LN. Specifically, BCN stabilizes the training process by normalizing per-

channel features while leveraging batch statistics, including mean and variance. Compared to BN, 
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BCN exhibits superior robustness in small-batch scenarios due to its channel-wise normalization, 

which mitigates noise interference caused by inaccurate batch statistics (Li et al., 2019). In few-shot 

learning tasks characterized by limited data and imbalanced class distributions, the BCN layer 

effectively mitigates overfitting risks by dampening fluctuations in feature distributions while 

enhancing the model's discriminative ability for few-shot features. 

In ShuffleNetV2, substituting BN with BCN resulted in improvements of 1.33% and 1.95% in 5-

way 1-shot and 5-shot accuracy, respectively. This enhancement is attributed to BCN's ability to 

reinforce inter-channel correlations. Traditional BN relies on spatial statistics in image tasks, which 

are susceptible to noise contamination under few-shot conditions [34]. In contrast, BCN enforces 

uniform feature scaling across channels through channel-wise normalization, thereby improving 

feature consistency and discriminability. Notably, BCN maintains a computational complexity 

comparable to that of BN without incurring additional memory overhead, rendering it suitable for 

lightweight model optimization.In the BiFormer module, replacing LN with BCN resulted in more 

significant improvements of 3.26% (1-shot) and 5.06% (5-shot), surpassing the gains observed in 

ShuffleNetV2. This discrepancy arises from the distinct operational principles of LN and BCN. LN, 

originally designed for NLP, normalizes sequence dimensions per sample to handle long-range 

dependencies [35]. However, in image processing tasks, the spatial structures (e.g., edges, textures) 

exhibit local correlations, and LN's sample-level normalization may disrupt inter-channel semantic 

associations [50]. BCN addresses this limitation through global channel-wise normalization, 

preserving local spatial consistency while promoting inter-channel collaboration, which aligns better 

with hierarchical visual feature learning [51]. 

3.3 BiFormer Attention Mechanism impacts 

The BiFormer attention mechanism enhances image processing by allowing the model to 

concentrate on the most relevant regions and features. To assess the impact of introducing the 

BiFormer attention module on the model, the BiFormer module was integrated into the ShuffleNetV2 

network, along with the incorporation of patch merging and BiFormer modules into the backbone 

network. The results obtained after substituting the BN layer in ShuffleNet and the LN layer in the 

BiFormer module with the BCN layer are summarized in Table 7. All comparison results presented 

in Table 7 were computed using the fine-tuning method. 

Table 7. The impact of improved BiFormer on model performance. 

Model 
5way, 1-shot 

Accuracy（%） 

5way, 5-shot 

Accuracy（%） 

ShuffleNetV2, Backbone 52.44 69.52 

ShuffleNetV2+BCN-BiFormer，Backbone 55.73 69.62 

ShuffleNetV2, Backbone+BCN-BiFormer 57.91 71.61 

ShuffleNetV2+BCN-BiFormer, Backbone+BCN-

BiFormer 
59.72 78.84 

Using ShuffleNetV2 as the baseline, the gradual integration of BCN-BiFormer yields significant 

performance improvements, as shown in Table 7. Incorporating BCN-BiFormer into the backbone 

alone enhances 1-shot accuracy by 3.29%, increasing it to 55.73%, while 5-shot accuracy sees a modest 

increase of 0.1%, reaching 69.62%. This underscores the effectiveness of BCN-BiFormer in extracting 

discriminative features from limited samples. Further deployment of BCN-BiFormer in the backbone 

backend leads to additional improvements, raising 1-shot and 5-shot accuracy to 57.91% (+5.47% 

compared to the baseline) and 71.61% (+2.09% compared to the baseline), respectively, thereby 

validating its role in enhancing high-level feature fusion.Notably, joint integration of BCN-BiFormer 

in both the backbone and backend results in substantial gains: 1-shot accuracy reaches 59.72% (+7.28% 

compared to the baseline), while 5-shot accuracy surges to 78.84% (+9.32% compared to the baseline), 

exceeding the cumulative effects of single-position enhancements. This synergy highlights 
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BiFormer’s dual roles: enhancing feature discriminability in the backbone for few-shot generalization 

and refining decision boundaries through weighted feature fusion in the backend. In the 5-shot 

scenario, the increased number of support samples further amplifies BiFormer’s feature refinement, 

leading to significant improvements in inter-class discrimination.These results demonstrate that 

BCN-BiFormer systematically enhances few-shot classification performance through multi-layer 

feature enhancement, providing empirical evidence for the efficacy of leveraging attention 

mechanisms to boost model representational power.  

In contrast to traditional channel attention[52] and spatial attention [53], BiFormer achieves fine-

grained feature selection through joint optimization of channel-spatial sparse weights. During few-

shot learning, where models must rapidly adapt to novel categories, dynamic attention mechanisms 

enhance class-discriminative features by dynamically focusing on category-specific regions while 

suppressing background noise interference.The integration of BiFormer with Patch Merging further 

strengthens multi-scale feature interactions, thereby improving generalization capabilities in few-

shot scenarios. The core advantage of BiFormer lies in the synergy between dynamic sparsity and 

cross-level feature fusion, enabling efficient capture of discriminative features under limited data. 

Unlike similar attention mechanisms such as DynamicViT[54] and Deformable Attention[39], 

BiFormer's hash routing and lightweight architecture are uniquely suited to the computational 

constraints and rapid adaptation requirements of few-shot tasks.  

3.4. Number of Support Set Samples Impacts 

To reduce training time and computational load, the pre-training of few-shot models is typically 

conducted solely during the extraction of image feature vectors. The number of support set samples 

refers to the quantity of samples from a single category within each task. This quantity provides prior 

knowledge to the model, enabling it to perform classification tasks by leveraging this information. 

Consequently, the number of support set samples significantly influences model performance. 

During the fine-tuning process, support set samples are utilized to train and optimize the model; 

thus, the optimization effectiveness of fine-tuning is inevitably impacted by the number of support 

set samples. To evaluate the effect of the number of support set samples on model performance, the 

support set was configured with sample sizes of 1, 5, 10, 20, 40, 80, 100, and 120 to assess model 

accuracy. The results are summarized in Table 8. 

Table 8. Accuracy of Models with Different Support Set Sample Numbers. 

In pork freshness recognition, Table 8 illustrates the relationship between support set size and 

model accuracy in BBSNet. Fine-tuning consistently enhances accuracy across all support set sizes. 

For instance, it increases accuracy by 3.08% at the 1-shot setting and by 9.1% at the 80-shot setting, 

corroborating the findings of Chen et al. (2021) [41] regarding the task-specific adaptation of pre-

trained features for domain-specific attributes such as pork oxidation. When the support set reaches 

80 samples, accuracy plateaus at 96.36%, and increasing the sample size to 120 does not yield any 

Fine-

tuning 

1-Shot 

Accura

cy（%

） 
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） 

80-

Shot 

Accura
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） 

100-

Shot 

Accura

cy（%

） 

120-

Shot 

Accura
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） 

× 56.64 71.55 76.29 83.46 85.81 87.21 87.19 87.20 

√ 59.72 78.84 83.44 91.25 94.44 96.36 96.32 96.33 
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improvement. This suggests that 80 samples effectively encompass the primary features of pork 

spoilage (such as color and texture), as described by Kyung et al. (2024) [55]. Additional samples 

likely introduce redundant data, consistent with the "core set" theory in few-shot learning [56], which 

posits that marginal gains diminish once critical diversity is achieved. The architecture of BBSNet 

effectively addresses these challenges. The Biformer module integrates local texture such as muscle 

fiber disintegration and global color to maximize information extraction from limited samples, 

accounting for the observed 3% accuracy gain for each doubling of samples below 80. 

Recent studies corroborate these findings. Yuan et al. (2020) [57] demonstrated that meta-

learning models can achieve up to 90% of maximum accuracy with only 50 to 100 samples in fine-

grained tasks, which is comparable to BBSNet's saturation point at 80 samples. Zhao et al. (2024) [58] 

indicated that the diversity of the support set, rather than its size, is the key factor driving few-shot 

performance. This principle is effectively leveraged by BBSNet, which emphasizes physicochemical 

features. For practical applications, the threshold of 80 samples provides an optimal balance between 

cost and performance.  

3.5. Number of Query Set Samples Impacts 

The ratio of the Support Set to the Query Set wields a significant influence over the model's 

training efficiency and generalization capabilities [59]. In the domain of few - shot learning, the 

support set functions as the limited labeled data that enables the model to rapidly adapt to novel 

tasks. Conversely, the query set represents the data used to assess the model's performance. A query 

set that is relatively small compared to the support set may result in overfitting, as the model may 

lack a sufficient variety of samples to generalize effectively beyond the support set instances [60]. 

Conversely, a larger query set offers more opportunities for the model to discern underlying patterns 

and enhance its generalization, yet it may also augment the computational load and training time[61].  

To investigate the impact of query set size on the performance of the few-shot learning model 

for pork freshness recognition, we fixed the support set size at 5-way and 5-shot, while varying the 

number of samples in the query set to 5, 10, 15, 20, 25, 30, and 35. We subsequently measured the 

model's classification accuracy and training time. As illustrated in Table 9, the classification accuracy 

increased steadily from 56.64% to 78.84% as the query set size expanded from 5 to 25. This trend 

suggests that a larger query set facilitates improved parameter tuning, thereby enhancing the model's 

capability to recognize features indicative of pork freshness.  

Notably, when the query set size was further increased to 30 and 35, the accuracy decreased 

slightly to 77.21% and 77.19%, respectively. This decline may be attributed to the model overfitting 

to the specific characteristics of the larger query set rather than learning the underlying general 

patterns of pork freshness. Similar observations were reported by Triantafillou et al. (2020) [62], who 

suggested that an excessively large query set can introduce noise and complexity, thereby degrading 

the model's generalization performance. In terms of training time, a positive correlation was observed 

between the query set size and the training duration, as expected. More samples in the query set 

required additional computational resources for processing, which led to longer training times. This 

trade-off between accuracy and training efficiency emphasizes the importance of identifying an 

optimal query set size for practical applications. 

Table 9. Performance Metrics of Few-Shot Learning Model with Varying Query Set Sizes. 

Query set sample size Accuracy (%) Training time 

(min) 

5 56.64 12.3 

10 68.55 15.1 

15 71.29 18.9 

20 73.46 22.5 

25 78.84 26.8 
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30 77.21 31.4 

35 77.19 35.6 

 

In terms of training time, as anticipated, the increase in the number of query set samples results 

in a gradual lengthening of the model's training duration. This phenomenon occurs because a greater 

number of samples requires additional computational resources and time for the model to process 

and update its parameters. The trade-off between accuracy and training time highlights the 

importance of carefully selecting an appropriate query set size. Compared to previous research [63], 

which also investigated the impact of query set size on few-shot learning models, our findings 

consistently demonstrate the existence of an optimal query set size that balances the model's 

generalization ability with computational efficiency. This discovery not only enhances our 

understanding of the role of query set samples in few-shot learning but also provides practical 

guidance for future research and applications in related tasks, such as food quality assessment.  

3.6. Validation of Model Generalization on Large-Scale Unknown Samples 

To validate the model's ability to recognize unknown samples, this study conducted additional 

experiments using the Food-101 dataset[64] , a widely recognized benchmark for food recognition 

tasks. The dataset consists of 101 food categories, each containing 1,000 images, resulting in a total of 

101,000 images. This large-scale evaluation ensures the statistical significance of the results and 

verifies the model's robustness under data-scarce conditions. Given the ample number of samples, 

this study selected a 5-way 80-shot task to assess the model's performance, with five randomly chosen 

categories in each training round. In the support set, 80 samples were selected from each category, 

yielding a total of 400 images. As discussed in Section 3.5, the number of query set samples is set to 

five times that of the support set, totaling 2,000 samples, with stratified sampling employed to ensure 

equal representation across all samples [65].The model pre-training method, detailed in Section 2.2.4, 

utilizes fine-tuning to enhance model performance. The experimental results are presented in Table 

10.  

Table 10. Comparative performance metrics of BBSNet across Food101 and pork freshness datasets. 

Dataset Name. Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) 

Food101 92.4 89.6  94.1 91.8 

Pork freshness 96.36 78.85 85.71 96.35 

The model demonstrated superior accuracy on the pork freshness dataset, achieving 96.36% 

compared to 92.4% in Food101. This indicates an enhanced discriminative capability in freshness 

assessment. The performance disparity may be attributed to two potential factors.  

The model demonstrated superior accuracy on the pork freshness dataset, achieving 96.36% 

compared to 92.4% in Food101. This indicates an enhanced discriminative capability in freshness 

assessment. The performance disparity may be attributed to two potential factors:  

(a)The intrinsic biological indicators of pork deterioration, such as changes in color gradients, 

variations in surface texture, and profiles of volatile compounds, which provide more distinctive 

feature representations than the subtle inter-class differences present in the 101-category fine-grained 

food classification task of Food101 [64]; 

(b)The model architecture may inherently prioritize domain-specific feature extraction 

mechanisms relevant to freshness detection.  

Furthermore, the sensitivity disparity (89.6% vs. 78.85%) reveals fundamental characteristics of 

the task. While the model effectively identifies true positive samples in Food101's multi-class 

scenario, its reduced sensitivity in assessing pork freshness likely reflects ambiguities associated with 

transitional states—samples exhibiting partial biochemical decay characteristics that complicate the 

clear categorization of fresh versus spoiled. This observation aligns with the specificity results (94.1% 

vs. 85.71%), where the lower specificity for pork freshness indicates an increase in false positives 
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during spoiled meat detection, possibly due to overlapping spectral features between borderline 

fresh samples and early-stage spoiled specimens.The precision metrics further underscore the 

domain-dependent behavior of the model. The significantly higher precision in predicting pork 

freshness (96.35% compared to 91.8%) indicates that when the model classifies a sample as 'fresh', it 

exhibits a 96.35% confidence level in its accurate identification. This precision-sensitivity trade-off 

suggests that the model employs a conservative classification strategy for freshness detection, 

prioritizing the reliability of positive predictions, albeit at the potential cost of overlooking marginal 

cases. Such behavior may be biologically justified, considering food safety requirements, where false 

negatives (misclassifying spoiled meat as fresh) pose greater risks than false positives. 

To further interpret the model’s generalization performance on unseen datasets, we analyzed 

the feature maps generated by convolutional layers to visualize the discriminative patterns that drive 

predictions [47].The feature maps of different datasets are shown in Figure 6 and Figure 7.  

Figure 6. The feature maps of pork freshness dataset. 

 

Figure 7. The feature maps of Food101 dataset. 

For the Food101 dataset, feature activations predominantly concentrate on surface details, such 

as the texture of bread and the fibers of beef, as well as the overall color distribution, which aligns 
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with the requirements of fine-grained classification. In the context of pork freshness detection, the 

model emphasizes local biological characteristics: fresh samples exhibit high-intensity activation of 

uniform red muscle tissue, while spoiled samples activate dim discolored areas and demonstrate 

abnormal textures. For ambiguous transition samples, the feature maps present a mixed activation 

pattern of fresh and spoiled regions, resulting in reduced sensitivity (78.85%). This reflects the 

model’s decision-making difficulties when confronted with contradictory features, such as partially 

discolored areas that still possess a normal texture. The high precision (96.35%) arises from the strong 

consensus activation of clear fresh features, characterized by uniform red coloration and intact 

fibers[66], indicating that the model adopts a conservative strategy—classifying an item as 'fresh' only 

when the features are highly consistent, thereby prioritizing food safety. 

4. Conclusions 

This study demonstrates that BBSNet—a novel few-shot framework integrating pre-trained 

weight optimization and BiFormer-BCN hybrid feature extraction—achieves state-of-the-art 

performance in pork freshness detection under extreme data scarcity, attaining an accuracy of 96.36% 

at 5-way 80-shot. By efficiently capturing discriminative features, such as color and texture decay, 

and optimizing task configuration with a support set of 80 and a query/support ratio of 5:1, BBSNet 

significantly outperforms existing meta-learning benchmarks, including MAML and Relation 

Networks, as well as deep CNN architectures like ResNet50 and VGG16. Moreover, it prioritizes 

high-precision prediction of the fresh class, achieving an accuracy of 96.35%, thereby mitigating the 

risks of false negatives in food safety. Future research should focus on enhancing multimodal 

generalization and facilitating edge deployment, aiming to address the current challenges posed by 

imaging diversity and computational complexity in industrial applications. 
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