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Highlights 

Main Findings: 

• The proposed Geostrophic-Constrained Neural Network (GCNN) improves SSH prediction 

accuracy by 11% (RMSE: 1.73 cm) over the baseline, with high computational efficiency—3 hours 

training time and 3.7 ms inference per prediction. 

• Incorporating the land mask information into the inputs is implied and proved to be a simple yet 

effective way to enhance the AI model performance on the satellite data. 

Implications: 

• Demonstrates that incorporating latitude-weighted geostrophic constraints significantly enhances 

both physical consistency and prediction skill in data-driven ocean modeling. 

• Provides an efficient and interpretable hybrid approach for SSH forecasting that balances physical 

principles with computational performance. 

Abstract 

Sea surface height (SSH) derived from satellite altimetry is widely used in oceanographic research 

and marine environmental monitoring. However, numerical ocean models for SSH forecasting are 

computationally expensive, while purely data-driven methods often lack physical consistency. To 

address these limitations, we propose a Geostrophic-Constrained Neural Network (GCNN) for short-

term SSH prediction in the South China Sea (SCS), utilizing satellite data. Based on the SimVPv2 

architecture, the model incorporates several strategies to enhance both physical consistency and 

forecast performance: (1) using mask information as input to reduce artifacts caused by land 

contamination in oceanographic data; (2) augmenting the loss function with a physics-informed term 

that enforces geostrophic balance; and (3) applying latitude-based weighting to this constraint to 

account for the breakdown of geostrophic approximation near the equator. On the test dataset, the 

GCNN achieves a root mean squared error (RMSE) of 1.73 cm, representing an 11% improvement 

over the unconstrained baseline model. Furthermore, the model is computationally efficient, 

requiring only about 3 hours for training and 3.7 milliseconds per inference. The GCNN not only 

improves predictive accuracy but also enhances interpretability by adhering to ocean dynamical 

principles, offering a promising approach for the modeling and prediction of SSH. 

Keywords: sea surface height forecasting; physics-informed neural network; geostrophic constraint; 

deep learning; remote sensing 
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1. Introduction 

As a critical indicator of mesoscale oceanic dynamical processes, sea surface height (SSH) is 

routinely used to map mesoscale circulation features [1,2] and quantify mesoscale eddy dynamics 

[3,4], which contributes to oceanic mass transport comparable in magnitude to that of the large-scale 

wind- and thermohaline-driven circulation [5]. Given this scientific importance, the ability to 

accurately forecast SSH is of critical operational and engineering significance. Timely and reliable 

SSH forecasts provide the basis for deriving surface currents, which are essential for a wide range of 

maritime activities. In the offshore energy sector, precise knowledge of future current and eddy 

locations is indispensable for the safe execution of sensitive operations, such as the installation and 

maintenance of oil rigs and offshore wind turbines [6]. Therefore, developing models that can deliver 

high-accuracy SSH forecasts is a key objective in modern operational oceanography. 

Approaches to forecasting SSH can be broadly categorized into three groups: numerical models, 

statistical methods, and data-driven deep learning models. Numerical models, such as the Hybrid 

Coordinate Ocean Model (HYCOM), solve fundamental hydrodynamic equations to simulate oceanic 

states [7]. While physically comprehensive, they are computationally prohibitive, requiring complex 

parameterization of sub-grid-scale processes, and the accuracy is highly sensitive to initial and 

boundary conditions—limitations that have motivated the search for alternative approaches. 

Statistical methods, such as autoregressive models, offer a computationally cheaper alternative but 

are often based on linear assumptions, limiting their ability to capture the complex, non-linear 

dynamics inherent in ocean systems [8]. 

The rapid development of artificial intelligence (AI) has revolutionized spatiotemporal 

forecasting in oceanography, with deep learning models emerging as particularly powerful tools. 

These data-driven approaches have demonstrated remarkable success across various oceanographic 

applications. Convolutional neural networks (CNNs) have proven effective for El Niño-Southern 

Oscillation (ENSO) prediction [9], while the integration of multivariate empirical orthogonal function 

(MEOF) analysis with one-dimensional convolutional long short-term memory (Conv1D-LSTM) 

networks have shown promising results for multi-variable sea surface forecasting [10]. More recently, 

innovative adaptations of vision Transformers (ViT) with self-attention mechanisms have enabled 

three-dimensional multivariate modeling for enhanced ENSO prediction [11]. 

Despite these advances, fundamental limitations persist in purely data-driven approaches. The 

inherent “black box” nature of these models raises concerns about physical consistency in their 

predictions [12], particularly when extrapolating beyond the temporal scope of training data or 

processing noisy observational inputs. This limitation has motivated the development of Physics-

Informed Neural Networks (PINNs), which embed physical laws directly into the learning process 

through penalty terms that quantify violations of governing equations [13]. The PINN framework 

has shown considerable promise across various oceanographic applications, including tropical 

cyclone field reconstruction [14], surface current prediction [15], three-dimensional thermohaline 

modeling in the tropical Pacific [16], and improved air-sea flux parameterizations [17]. However, 

despite these successful applications, the potential of PINNs for sea surface height (SSH) forecasting 

remains largely unexplored, representing a significant gap in current oceanographic research. This 

gap is particularly noteworthy given SSH’s fundamental role in ocean dynamics through geostrophic 

balance, a relationship that could provide natural physical constraints for PINN-based forecasting 

systems. 

Building on this potential, we note that among the fundamental principles of ocean dynamics, 

the geostrophic balance provides a robust first-order approximation for large-scale, low-frequency 

ocean circulation. This balance, which describes an equilibrium between the Coriolis force and the 

pressure gradient force, is known to govern the circulation in many regions of the world’s oceans [3]. 

The South China Sea (SCS) is one such region, where the large-scale circulation is predominantly in 

geostrophic balance [18,19]. A key practical advantage of using a geostrophic constraint is its elegance 

and efficiency: it relates the sea level gradient to the velocity field, meaning the constraint can be 
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formulated using only SSH data, without requiring external variables like wind forcing or in-situ 

velocity measurements. 

In this study, we propose and evaluate a Geostrophic-Constrained Neural Network (GCNN) for 

ten-day SSH forecasting in the SCS. A latitude-weighted geostrophic constraint is embedded into the 

loss function, along with the incorporation of mask information, to further enhance model 

performance. Our primary objective is to demonstrate that this physics-informed approach improves 

both forecast accuracy and physical consistency compared to a purely data-driven baseline. In 

addition to extensive experiments validating the model’s improvement, we conduct a comprehensive 

analysis of its performance across different seasons, forecast lead times, and bathymetric regimes. 

This analysis aims to quantify the benefits and limitations of applying the geostrophic constraint in 

this dynamically complex region. 

2. Data and Methods 

2.1. Data 

This study employs daily mean absolute dynamic topography data—defined as the sea surface 

height above the geoid and hereafter referred to as SSH—obtained from the Copernicus Marine 

Environment Monitoring Service (CMEMS). The dataset has a spatial resolution of 1/8° × 1/8° and 

incorporates multi-satellite altimeter observations. It has undergone tidal correction and mean 

dynamic topography processing to ensure data quality. 

The study domain (2°N–22°N, 104°E–124°E) encompasses the SCS basin and adjacent Luzon 

Strait, corresponding to a 160×160 grid. This region captures critical dynamical features including the 

Kuroshio intrusion through Luzon Strait, which significantly modulates SCS circulation patterns 

(Nan et al., 2015) and consequently influences SSH variability across the basin. The dataset covers the 

period from 1 January 1993 to 14 June 2024 and is divided into three subsets: a training set (1993–

2021), a validation set (2022), and a test set (2023–14 June 2024). The validation set is used for 

hyperparameter tuning and monitoring the training process, while the test set serves as an 

independent dataset to evaluate the model’s predictive performance. Notably, 2022 was a La Niña 

year, whereas 2023 transitioned to an El Niño year. Previous studies  have demonstrated that ENSO 

signals can influence SCS circulation and SSH variability through processes such as the Luzon Strait 

water exchange [20]. This interannual variability introduces additional challenges for model 

predictions but provides a more rigorous assessment of the model’s generalization capability.   

2.2. Model 

2.2.1. Model Structure 

The SimVPv2 model employed in this study is a purely convolutional architecture that 

efficiently captures spatiotemporal coupling relationships through a gated spatiotemporal attention 

(gSTA) mechanism. Compared to conventional spatiotemporal prediction models (e.g., ConvLSTM 

[21], PredRNN [22]), SimVPv2 demonstrates superior performance in terms of structural simplicity, 

computational efficiency, and prediction accuracy, showing exceptional performance on multiple 

benchmark datasets [23]. These characteristics make it particularly suitable for modeling complex 

oceanographic data. 

Designed for sequential prediction of two-dimensional spatial variables, the SimVPv2 

architecture consists of three primary components: (1) Spatial Encoder, (2) Spatiotemporal Translator, 

and (3) Spatial Decoder. Similar to U-Net, the model incorporates skip connections between the initial 

encoder layers and final decoder layers to preserve original features. 

The Spatial Encoder comprises Nₛ layers of 2D convolutional blocks, each defined as: 

𝑧𝑖 = σ(𝑁𝑜𝑟𝑚2𝑑(𝐶𝑜𝑛𝑣2𝑑(𝑧𝑖−1))) , 1 ≤ 𝑖 ≤ 𝑁𝑠, (1) 

where zᵢ represents the feature map after the i-th convolutional block (with z₀ as input), Conv2d 

denotes a standard 3×3 2D convolution (implemented as PyTorch’s Conv2d), Norm2d indicates a 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 September 2025 doi:10.20944/preprints202509.1707.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1707.v1
http://creativecommons.org/licenses/by/4.0/


 4 of 16 

 

GroupNorm layer (group=2), and σ represents the SILU activation function. The architecture 

alternates between stride=1 and stride=2 convolutions for progressive downsampling. 

The Spatial Decoder essentially mirrors the structure of the encoder, replacing downsampling 

operations with upsampling through PyTorch’s PixelShuffle using a scale factor of 2. The final layer 

serves as the output layer, which converts the feature channels into the desired number of output 

channels. 

The core part lies in the Spatiotemporal Translator, composed of Nₜ stacked gSTA Blocks. As 

illustrated in Figure 1, each gSTA Block sequentially combines a Spatial Attention layer and a 

MixMLP layer (constructed from 1×1 convolutions and depth-wise convolutions). The Spatial 

Attention layer features channel-preserving 1×1 convolutions bracketing an attention module, and 

the attention module can be mathematically expressed as: 

𝑧𝑗̂ = 𝐶𝑜𝑛𝑣2𝑑1×1 (𝐶𝑜𝑛𝑣2𝑑𝐷𝑤−𝑑 (𝐶𝑜𝑛𝑣2𝑑𝐷𝑤(𝑧𝑗))) , (2) 

𝑔, 𝑧
𝑗
= 𝑠𝑝𝑙𝑖𝑡(𝑧𝑗̂), (3) 

𝑧𝑗+1 = σ(𝑔)⊙ z
j
, (4) 

where 𝐶𝑜𝑛𝑣2𝑑𝐷𝑤  and 𝐶𝑜𝑛𝑣2𝑑𝐷𝑤−𝑑  denote depthwise and dilated depthwise convolutions 

respectively, g represents attention coefficients, σ  indicates softmax normalization, and ⊙  is 

element-wise multiplication. This gating mechanism dynamically weights features based on their 

spatiotemporal importance. 

 

Figure 1. Hierarchical illustration of the gSTA architecture: (a) overall framework, (b) expansion of the Spatial 

Attention in (a), and (c) details of the Attention Module in (b).  The abbreviations used in the figure are defined 

as follows: Conv, Convolutional layer; GN, Group Normalization; Scale, multiplication with a learnable scale 

factor; DP, Drop Path; GELU, GELU activation function. 

2.2.2. Hyperparameter Configuration 

For an input tensor of dimensions (𝐵, 𝑇, 𝐶, 𝐻,𝑊), the model first flattens the temporal dimension 

into the batch dimension (𝐵 × 𝑇, 𝐶, 𝐻,𝑊) . After spatial encoding, the tensor (𝐵 × 𝑇, 𝐶, 𝐻ᶠ,𝑊ᶠ) 

undergoes channel-temporal folding to (𝐵, 𝑇 × 𝐶,𝐻ᶠ,𝑊ᶠ), where 𝐻ᶠ = 𝐻/2𝑁ₛ and 𝑊ᶠ = 𝑊/2𝑁ₛ. The 

translator’s operations on this restructured tensor enable simultaneous learning of spatial and 

temporal relationships through depthwise spatial attention and channel-wise convolutions. 

As shown in Figure 2, we adopt a 10-day sequence of SSH fields as input to predict the 

subsequent 10-day SSH fields, corresponding to input and output dimensions of (10, 1, 160, 160). 
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Given the relatively low spatial resolution (160×160), we minimize information loss during 

downsampling and upsampling by limiting the encoder layers (Ns) to 2, performing only one 

downsampling and one upsampling operation. Within the attention module, we employ dilated 

convolutions with a dilation rate of 2 (skipping every other grid point) and an effective kernel size of 

21 to capture broader spatial dependencies. 

 

Figure 2. Flowchart of the SimVPv2 model for SSH prediction. The batch dimension is omitted for clarity. The 

batch size is 40 (4 × 10) in both the Spatial Encoder and Spatial Decoder, and 4 in the Spatiotemporal Translator. 

To enhance computational efficiency and mitigate overfitting —constrained by the small 

training dataset (several thousand samples) and low data resolution—we select conservative hidden 

layer dimensions: a spatial hidden size of 16 and a temporal hidden size of 128. Further regularization 

is achieved via dropout and drop path rates of 0.3. Other hyperparameters, including the default 

kernel size 3 for encoder/decoder convolutions and the MLP ratio 8 in the Translator’s MixMLP, 

remain unchanged. 

The training was conducted on an NVIDIA GeForce RTX 4090 GPU with 24 GB of memory. To 

mitigate overfitting and improve computational efficiency, the following training strategy was 

adopted: a batch size of 4 was used to introduce more stochasticity and accelerate training. A 

ReduceLROnPlateau learning rate scheduler was applied with an initial rate of 1e⁻⁴ to alleviate 

gradient instability caused by the small batch size. The learning rate was reduced by a factor of 0.1 if 

the validation loss did not decrease for 5 consecutive epochs, thereby promoting steady convergence. 

Training proceeded for up to 150 epochs with early stopping configured with a patience of 10 epochs, 

monitoring the validation loss to terminate training if no improvement was observed.  

Under the specified configuration, the GCNN model is relatively compact with only 3,273,809 

parameters. Training was completed in approximately three hours, processing samples at an average 

rate of 64.4 samples per second. During testing, the model demonstrated efficient inference, with an 

average latency of 3.7 milliseconds per sample — a value derived from averaging over 10,000 

inference runs at a batch size of 1. The entire process required only a single RTX 4090 GPU, 

highlighting its computational efficiency and low resource demands. 

2.3. Strategies 

2.3.1. Geostrophic Constraint in SSH Prediction 

In physical oceanography, the geostrophic balance is a fundamental dynamical approximation 

in which the Coriolis force is balanced by the horizontal pressure gradient force. Owing to its clear 

physical meaning and relatively simple mathematical form, it is widely used to estimate large-scale 

oceanic currents from sea surface height (SSH) observations. 

Under the f-plane approximation, where the Coriolis parameter is assumed constant, the 

geostrophic balance can be expressed as: 

𝑓𝑢𝑔 = −𝑔
∂ζ

∂𝑦
, (5) 
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𝑓𝑣𝑔 = 𝑔
∂ζ

∂𝑥
, (6) 

where (𝑢𝑔, 𝑣𝑔 ) are the zonal and meridional components of the geostrophic velocity, 𝑔 is the 

gravitational acceleration (taken as 9.81 m/s-2), 𝜁 represents the sea surface height (SSH), and 𝑓 is the 

Coriolis parameter, defined as: 

𝑓 = 2Ω𝑠𝑖𝑛(ϕ), (7) 

Here, Ω is the Earth’s angular velocity (taken as 7.2921×10-5rad/s), and ϕ is the latitude. 

Solving equations (5) and (6) for the velocity components yields: 

𝑢𝑔 = −
𝑔

𝑓

∂ζ

∂𝑦
, (8) 

𝑣𝑔 =
𝑔

𝑓

∂ζ

∂𝑥
, (9) 

In the training of our SSH prediction model, both the input and output are exclusively SSH 

fields. The primary loss function is the Mean Squared Error (MSE) between the predicted and target 

SSH: 

𝑙𝑜𝑠𝑠𝑆𝑆𝐻 = 𝑀𝑆𝐸(ζ𝑝𝑟𝑒𝑑, ζ𝑡𝑎𝑟𝑔𝑒𝑡), (10) 

Here, 𝜁𝑝𝑟𝑒𝑑 , 𝜁𝑡𝑎𝑟𝑔𝑒𝑡denote the predicted SSH and the target SSH from the training dataset for the 

corresponding date, respectively. The MSE is calculated as: 

𝑀𝑆𝐸(𝑥, 𝑦) =
1

𝑁
∑(𝑥𝑖 − 𝑦𝑖)

2

𝑁

𝑖=1

, (11) 

where N is the total number of data points. 

To incorporate the geostrophic balance into the model’s loss function, a geostrophic constraint 

loss is introduced. First, the SSH spatial gradient fields of predictions and targets are computed using 

a Sobel operator. Subsequently, the geostrophic velocity components (𝑢𝑝𝑟𝑒𝑑 , 𝑣𝑝𝑟𝑒𝑑 , 𝑢𝑡𝑎𝑟𝑔𝑒𝑡, 𝑣𝑡𝑎𝑟𝑔𝑒𝑡) are 

derived from the SSH spatial gradient fields as described in equations (8) and (9). The calculated 

geostrophic velocities are divided by the standard deviation from CMEMS geostrophic velocity data 

and multiplied by that from CMEMS SSH data—a step intended to align the dimension of the 

computed geostrophic velocities with that of SSH. Finally, the MSE between the predicted and target 

geostrophic velocities forms the geostrophic loss term: 

𝑙𝑜𝑠𝑠𝑢 = 𝑀𝑆𝐸(𝑢𝑝𝑟𝑒𝑑/σ𝑢 ⋅ σ𝑆𝑆𝐻, 𝑢𝑡𝑎𝑟𝑔𝑒𝑡/σ𝑢 ⋅ σ𝑆𝑆𝐻), (12) 

𝑙𝑜𝑠𝑠𝑣 = 𝑀𝑆𝐸(𝑣𝑝𝑟𝑒𝑑/σ𝑣 ⋅ σ𝑆𝑆𝐻, 𝑣𝑡𝑎𝑟𝑔𝑒𝑡/𝜎𝑣 ⋅ 𝜎𝑆𝑆𝐻), (13) 

𝑙𝑜𝑠𝑠𝑔𝑒𝑜 = 𝑙𝑜𝑠𝑠_𝑢 + 𝑙𝑜𝑠𝑠_𝑣, (14) 

The total loss function for training the model is a linear combination of the SSH prediction loss 

and the geostrophic velocity loss: 

𝑙𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝑙𝑜𝑠𝑠𝑆𝑆𝐻 + λ𝑙𝑜𝑠𝑠𝑔𝑒𝑜, (15) 

where 𝜆 is the geostrophic constraint coefficient. A larger value of 𝜆 imposes a stronger geostrophic 

constraint, whereas a smaller value signifies a weaker constraint. 
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2.3.2. Latitude-Weighted Loss 

The geostrophic constraint in our model is based on the geostrophic velocity equations (Eq. 8, 

9). A direct application of these equations is problematic at low latitudes, as the Coriolis parameter f 

in the denominator approaches zero, leading to an over-amplification of the geostrophic loss term 

where the geostrophic balance is inherently weak. This can introduce significant errors into the model 

training process. 

To mitigate this issue, we introduce a latitude-dependent weighting factor, w(𝜙), designed to 

smoothly suppress the geostrophic constraint in equatorial regions. The weight is calculated using 

the following square rooted sigmoid function: 

𝑤(ϕ) =
1

√(1 + 𝑒−𝑘(ϕ−ϕ0))
, (16) 

According to Lagerloef et al. (1999), the geostrophic approximation under the f-plane 

assumption is generally valid at latitudes higher than approximately 5°N. Based on this guidance, 

we introduce a latitude-dependent weighting scheme to gradually apply the geostrophic constraint 

with increasing latitude. Specifically, we define a sigmoid-shaped weight function with parameters 

ϕ0 = 7°and k = 2, such that the weight transitions smoothly from nearly 0 south of 5°N to nearly 1 

north of 10°N. 

2.3.3. Mask-Informed Input 

In the application of deep learning models, particularly convolutional neural networks, to 

oceanographic data, a significant challenge is the prevalence of NaN (Not a Number) values—which 

often correspond to land grids in marine datasets. A common practice is to replace these NaN values 

with zeros. However, this approach is suboptimal, as simply zero-filling may mislead the 

convolutional model during feature extraction, given that such models rely on sliding kernels across 

the grid to capture meaningful spatial patterns. Another method involves interpolation, which fills 

the land grids using values derived from surrounding ocean data. While interpolation may offer 

better performance than simply assigning zeros to land grids, it still introduces misleading 

information to the model: originally information-free land areas are now filled with artificially 

imputed values, which do not correspond to any real physical processes and may still distort feature 

learning. 

For instance, in SSH prediction tasks, shallow network layers could misinterpret zero-filled or 

interpolated land grids as authentic SSH values, thereby propagating erroneous information to 

deeper layers. To address this issue, we propose a simple yet effective method: concatenating a binary 

mask that identifies valid grids—a tensor of ones and zeros with the same spatial dimensions as the 

input, but with a single channel—to the input along the channel dimension. This operation 

transforms the input shape from (B, T, C, H, W) to (B, T, C+1, H, W), thereby explicitly informing the 

model about the presence of invalid grid cells in a straightforward yet effective manner. 

3. Results 

3.1. Impact of the Geostrophic Constraint Coefficient 

To determine the optimal weighting for the geostrophic constraint, we conducted a series of 

experiments in which the model was trained under varying values of the geostrophic constraint 

coefficient, denoted as . In order to mitigate the effects of randomness and enhance the robustness of 

the results, each experiment was repeated five times under identical hyperparameter settings except 

for the random seed. The performance of each configuration was evaluated on the test dataset, and 

the results were averaged across the five runs to ensure a more reliable and statistically meaningful 

comparison. 

Figure 3 illustrates the relationship between model performance and 𝜆, using the RMSE and the 

Pearson Correlation Coefficient (PCC) as evaluation metrics. RMSE is computed as the square root of 

the mean squared error between predicted and target SSH fields, averaged over the test set, while 
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PCC is calculated by averaging the daily correlation coefficients between predicted and target SSH 

fields across the test set. As 𝜆 increases from zero, the RMSE initially decreases and the PCC increases, 

indicating improved performance. Optimal performance is achieved at 𝜆 = 0.7, after which the 

model’s accuracy degrades. Therefore, the term GCNN hereafter refers specifically to the model 

trained at this optimal value (𝜆 = 0.7). 

 

Figure 3. (a) RMSE and (b) PCC between CMEMS target data and GCNNs predictions under different values of 

the geostrophic constraint coefficient 𝜆. Dark blue dots represent the mean values from five models trained with 

identical configurations except random seeds; error bars indicate the 95% confidence intervals (CI) computed 

via Bootstrap method. Light blue points show individual results from each run. The Base (red dashed line) 

denotes the SimVPv2 model trained without applying any introduced strategies; the shaded region represents 

its 95% CI. 

Given that the geostrophic loss were normalized, the coefficient 𝜆 can be interpreted as the 

relative importance assigned to the geostrophic loss versus the primary SSH loss. The degradation in 

performance for 𝜆 > 0.7 suggests that the geostrophic constraint should serve as a supplementary, 

rather than dominant, component of the loss function. This phenomenon can be mainly attributed to 

the presence of ageostrophic dynamics: Ocean circulation is not exclusively geostrophic; it contains 

significant ageostrophic components. A key advantage of data-driven models is their ability to learn 

complex relationships not fully captured by simplified physical equations. Forcing the model to 

adhere too strictly to geostrophy by increasing 𝜆 penalizes it for learning these true, non-geostrophic 

dynamics. This rigid constraint becomes counterproductive, leading to performance that can be 

worse than that of the unconstrained AI model. 

3.2. Ablation Study 

In the Method section, we introduced three strategies aimed at enhancing model performance. 

As demonstrated in Figure 3, integrating all three leads to notable improvement. However, the 

individual contribution of each strategy had not been evaluated. To assess their respective 

effectiveness, we conducted a series of ablation studies in which one strategy was omitted at a time. 

As shown in Figure 4, the removal of any of the three strategies results in an increase in RMSE and a 

decrease in PCC. Among them, abandoning the geostrophic constraint has the most pronounced 

effect. These results confirm that all three strategies contribute to improving the performance of the 

GCNN, and that the geostrophic constraint plays an especially critical role. 
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Figure 4. Similar to Figure 3, except that the GCNN here specifically denotes the model incorporating all three 

strategies—geostrophic constraint (𝜆 = 0.7), latitude-weighted loss, and mask-informed input—while “No GC”, 

“No LW”, and “No MI” correspond to models trained without the respective strategy. 

4. Analysis of Results 

Authors should discuss the results and how they can be interpreted from the perspective of 

previous studies and of the working hypotheses. The findings and their implications should be 

discussed in the broadest context possible. Future research directions may also be highlighted. 

From the experiments above, it can be observed that the fluctuations caused by randomness 

during the training process are considerable. To minimize the impact of such randomness, all random 

seeds were fixed to 42 and cuDNN’s deterministic algorithms were enabled throughout the training 

of the subsequent models. This ensures that models trained under the same hyperparameters are 

strictly identical, except for those trained with geostrophic constraint loss. Due to its additional 

computational steps, this loss introduces new uncertainties. Nevertheless, as Table 1 demonstrates, 

despite not being entirely identical, the use of fixed random seeds and cuDNN’s deterministic 

algorithms still results in highly consistent GCNN outputs across repeated trials under identical 

hyperparameters. Across three independent trials, the RMSE values exhibit minimal deviation, 

remaining within 1.6% of the mean RMSE. Based on this high consistency, we selected one of the 

three runs as the representative instance of the GCNN for all subsequent analyses. 

Table 1. Independent replicate experiments using same random seeds. 

Model 
RMSE (cm) 

Trial 1 Trial 2 Trial 3 Mean SD 

Base 1.9768 1.9768 1.9768 1.9768 0 

Base + MI 1.9329 1.9329 1.9329 1.9329 0 

Base + GC 1.7899 1.7921 1.8242 1.8021 0.0157 

GCNN 1.7309 1.7316 1.7286 1.7304 0.0013 

4.1. Comparative Performance Analysis 

To further evaluate the effectiveness of the physics-informed approach, the performance at 

different lead time of the GCNN was compared against two other models: Base and Persistence. 

Persistence, which assumes the future state is identical to the current state (𝜁(𝑡+1) = 𝜁(𝑡)), is a 

benchmark comparison and forecast reference widely accepted in oceanic science [24], and serves as 

a simple baseline for forecast skill here. 

As shown in Figure 5, both the GCNN and Base significantly outperform Persistence in terms of 

RMSE, with the performance gap widening as the lead time increases. A similar trend is observed for 

the PCC. While Persistence’s correlation is comparable to the AI models at a lead time of one day, its 
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performance degrades rapidly thereafter, highlighting the superior predictive skill of the GCNN at 

longer horizons. 

 

Figure 5. Comparison of the forecast skill of different models at different lead time in the SCS from 1 January 

2023 to 14 June 2024, using (a) RMSE and (b) PCC. 

Most importantly, the GCNN consistently demonstrates improved performance over the Base, 

exhibiting lower RMSE and higher PCC across all lead times. This result confirms the benefit of 

incorporating physical knowledge into the neural network architecture. However, the magnitude of 

this improvement is modest. This is likely attributable to the challenges of applying the geostrophic 

constraint over a domain that includes extensive low-latitude areas where the geostrophic balance is 

weak. Although the latitude-weighting scheme was implemented to mitigate this, it may introduce 

discontinuities in the loss function that can complicate the training process, thereby limiting the full 

potential benefit of the physical constraint. 

4.2. Seasonal Variation in Prediction Accuracy  

The predictive performance of both the Base and the GCNN exhibits a distinct seasonal cycle, as 

illustrated in the time series of forecast errors in Figure 6. For this analysis, the error metric for any 

given start date represents the average performance over the subsequent ten-day forecast period. 

Figure 6 clearly indicates that for both models, the RMSE and the PCC are both systematically lower 

during the summer months (April–September, red shading) compared to the winter months 

(October–March, blue shading). 

We hypothesize that this seasonal difference in forecast skill is primarily driven by the inherent 

seasonal variability of the SSH field itself. To investigate this, we quantified the temporal and spatial 

variability of SSH for each season in the test dataset. Mean Temporal variability, denoted as σ𝑇, is 

defined as the spatial average of the standard deviation calculated over time at each grid point. It 

measures the typical magnitude of temporal fluctuations within the SSH field.  Mean Spatial 

Variability, denoted as σ𝑆 , is defined as the standard deviation of the time-averaged SSH field. It 

represents the magnitude of spatial fluctuations within the time-averaged SSH field. 

As summarized in Table 2, both the mean temporal and spatial variability are significantly lower 

in summer than in winter. This indicates that the SSH field is generally more quiescent and spatially 

smoother during the summer. To directly link this variability to prediction error, we computed the 

PCC between the temporal variability (σ𝑇) and the time-averaged absolute error (AE) of the Base 

prediction at each grid point. The analysis revealed statistically significant positive correlations in 

both summer (r = 0.52) and winter (r = 0.58), with confidence levels exceeding 99.9%. This confirms 

that locations with greater temporal variability are inherently more difficult to predict, and that the 
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higher overall variability in winter is a key driver of the observed seasonal degradation in forecast 

accuracy. Combined with the stronger correlation in winter, we hypothesize that the SSH field 

exhibits more high-frequency and irregular variations in winter, leading to a greater tendency of the 

model to overfit. This overfitting contributes to the seemingly counterintuitive phenomenon whereby 

both RMSE and PCC are higher in winter than in summer. 

Table 2. Seasonal statistics of SSH variability and the PCC between 𝛔𝑻 and time-averaged absolute error (AE) 

of the Base prediction. 

Season 𝛔𝑺(cm) 𝛔𝑻(cm) PCC (100%) 

Summer 7.41 5.45 0.52 

Winter 9.54 6.97 0.58 

 

Figure 6. (a) Lead-mean RMSE for the Base and the GCNN predictions versus date on the test dataset. Seasonal-

mean (b) RMSE and (c) PCC at different forecast lead time, comparing performance of the Base and the GCNN. 

Furthermore, a closer inspection of Figure 6 reveals that the performance improvement of the 

GCNN over the Base is more pronounced in summer, especially when the lead time is longer. This 

observation aligns with established ocean dynamics in the SCS. The summer period is characterized 

by more stable large-scale geostrophic circulation patterns [25]. In this regime, the geostrophic 

constraint provides a more accurate and beneficial physical prior. In contrast, winter is typically 

marked by stronger wind forcing and enhanced Ekman dynamics, which disrupt the geostrophic 

balance, particularly in the upper ocean [26]. The reduced validity of the geostrophic assumption in 

winter likely limits the effectiveness of the physics-informed constraint, resulting in a smaller 

performance gain for the GCNN. 
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4.3. Spatial Distribution of Forecast Error 

The previous section established that the overall forecast error is lower in summer and that the 

performance improvement of the GCNN is also season-dependent. To further investigate these 

patterns, we analyze the spatial distribution of the time-averaged absolute error (AE) for both the 

Base model and the GCNN, as shown in Figures 7 and 8. 

Figure 7 indicates that the AE of the Base model is not uniformly distributed, with elevated 

errors concentrated in dynamically active regions, including the coastal waters off Vietnam, the Gulf 

of Tonkin, the Guangdong coast, the area east of the Luzon Strait, and the Sunda Shelf. 

Further analysis of Figure 8 reveals that the AE of the Base model is initially relatively uniform 

but becomes increasingly heterogeneous as lead time increases. This inhomogeneity also exhibits 

seasonal variations. For example, at a lead time of 10 days, the AE is notably higher during winter 

along the Vietnamese coast, the Guangdong coast, the Gulf of Tonkin, and the Sunda Shelf. This 

pattern is consistent with the winter intensification of monsoon-driven circulation features, such as 

the Vietnam Coastal Current and the Natuna Eddy, which are associated with stronger nonlinear 

dynamics [27].  

 

Figure 7. The spatial distribution of the time-averaged prediction (a) absolute error (AE) for the Base model and 

(b) the absolute error reduction (AER) of the GCNN model compared to the Base model (𝐴𝐸𝐵𝑎𝑠𝑒 − 𝐴𝐸𝐺𝐶𝑁𝑁) from 

1 January 2023 to 14 June 2024. The black line indicates the 200-meter isobath. 

In addition to seasonal variations, another prominent characteristic of the forecast error is the 

strong influence of bathymetry. High-error regions are predominantly located in shallow coastal and 

shelf waters. To quantify this, we divided the domain into shelf areas (< 200 m) and deep-basin 

regions (DB; defined as areas with water depth exceeding 200 m). As summarized in Table 3, the 

RMSE for the Base model in the DB region is 1.717 cm, which is 13% lower than the full-domain RMSE 

of 1.977 cm. This discrepancy can be attributed to two main factors: (1) the reduced accuracy of 

satellite altimetry data in coastal zones [28], and (2) the presence of complex nearshore dynamical 

processes—such as coastal currents, shelf waves, tides, and upwelling—which are often nonlinear, 

high-frequency, and not fully resolved by the model [29]. 

Table 3. Model performance metrics (RMSE) for the whole domain (WD) and deep-basin areas (DB, depth > 200 

m). 

Model Scope Full year Summer Winter 
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Base 
WD 1.977 1.851 2.096 

DB 1.717 1.694 1.718 

GCNN 
WD 1.732 1.593 1.876 

DB 1.445 1.416 1.485 

 

Figure 8. Same as Figure 7, but for different lead times and seasons: (a) summer, (b) winter. 

4.4. Impact of the Geostrophic Constraint 

The application of the geostrophic constraint also leads to significant spatial variation in forecast 

performance. As indicated in Table 3, the improvement achieved by the GCNN over the Base model 

is more pronounced in the DB region, where the RMSE is reduced by 16%, compared to a 12% 

reduction in the whole domain (WD). 

Figure 7 shows that the GCNN improves forecast accuracy across most of the study areas. One 

of the most substantial improvements occurs east of the Luzon Strait. This result aligns with previous 

studies suggesting that the Kuroshio transport through the strait is primarily governed by 

geostrophic dynamics [30], confirming that the integration of this physical constraint enhances model 

performance in regions where the underlying assumption is most valid. 

The effect of the geostrophic constraint also varies with forecast lead time (Figure 8). At a one-

day lead time, the GCNN provides relatively uniform improvement across the domain. However, as 

the lead time extends to 7 and 10 days, the spatial distribution of improvements becomes more 

heterogeneous. While performance gains intensify in regions where geostrophic balance dominates—

such as east of the Luzon Strait and the central deep basin—some areas near the land boundary show 
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limited improvement or even increased error. This may be related to complex nonlinear effects 

induced by boundary dynamics, which warrant further investigation. 

5. Conclusions 

In this study, we developed a physics-informed deep learning model, termed the Geostrophic-

Constraint Neural Network (GCNN), to improve sea surface height (SSH) forecasting in the South 

China Sea (SCS). Based on the SimVPv2 architecture, the GCNN incorporates two key enhancements: 

First, it uses mask information as input to reduce artifacts introduced by the processing of extensive 

land points in oceanographic datasets with AI models. Second, a latitude-weighted geostrophic 

constraint is integrated into the loss function by minimizing the discrepancy between predicted and 

target geostrophic currents derived from SSH gradients. This constraint accounts for the reduced 

validity of geostrophic balance near the equator. By embedding these first-order physical dynamics, 

the model achieves improved forecast accuracy and enhanced physical consistency without 

increasing computational complexity during prediction. 

We investigated the influence of seasonality on model performance. Both the Base and GCNN 

models demonstrated higher forecast accuracy during summer compared to winter. Correlation 

analysis between the AE of the Base prediction and temporal variability of the SSH field confirmed 

that regions with higher temporal variability are inherently more challenging to predict. 

Consequently, the increased temporal variability of SSH during winter is identified as a significant 

factor contributing to seasonal degradation in forecast accuracy. Further evaluation revealed that the 

GCNN consistently outperformed the Base in RMSE, with more substantial improvements during 

summer (14%) compared to winter (10%). This seasonal discrepancy is likely attributable to more 

stable and geostrophically consistent circulation patterns during the summer southwestern monsoon. 

Bathymetric effects were also investigated. Both models exhibited significantly lower RMSE in 

deep basin areas (DB, depth > 200 m) compared to the whole domain—a result primarily attributable 

to two factors: the reduced accuracy of satellite altimetry data in coastal zones, and the presence of 

complex nearshore dynamical processes not fully captured by the models. Moreover, the 

performance advantage of the GCNN over the Base was more pronounced in DB. These results 

underscore the role of topographic features in modulating the efficacy of physical constraints, 

highlighting the necessity of incorporating bathymetric context into the design of future models. 

Overall, this study confirms the feasibility and value of embedding geophysical constraints, 

specifically geostrophic balance, into deep learning frameworks for SSH forecasting. GCNN 

improves prediction skill while enhancing interpretability by aligning with physical ocean dynamics. 

This work demonstrates a promising direction for integrating physical knowledge with data-driven 

modeling in ocean prediction. 

As previous studies have shown that wind forcing plays a critical role in modulating SCS 

circulation, our future research will focus on incorporating wind stress fields as predictive inputs. 

Integrating wind fields could further enhance model performance in regions where Ekman dynamics 

and wind-driven processes dominate SSH variability. This extension may also enable better 

forecasting of wind-induced coastal currents and mesoscale eddies, with potential applications in 

real-time navigation, marine hazard early warning, and coupled atmosphere–ocean modeling. 
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