Pre prints.org

Article Not peer-reviewed version

A Physics-Informed Neural Network for
Sea Surface Height Prediction in the
South China Sea

Linxiao Huang, Yegiang Shu, Jinglong_Yao . , Danian Liu
Posted Date: 19 September 2025
doi: 10.20944/preprints202509.1707v1

Keywords: Sea Surface Height Forecasting; Physics-Informed Neural Network; Geostrophic Constraint;
Deep Learning; Remote Sensing

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/3587077

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2025 d0i:10.20944/preprints202509.1707.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
A Physics-Informed Neural Network for Sea Surface

Height Prediction in the South China Sea

Linxiao Huang 2, Yeqiang Shu , Jinglong Yao 234* and Danian Liu !

1 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese
Academy of Sciences, Guangzhou 510301, China

2 University of Chinese Academy of Sciences, Beijing 100049, China

3 High Impact Weather Key Laboratory of CMA, Changsha 410118, China

4 China-Sri Lanka Belt and Road Joint Laboratory on Tropical Oceanography, Chinese Academy of Sciences,
Guangzhou 510301, China

* Correspondence: yaojl@scsio.ac.cn

Highlights

Main Findings:

® The proposed Geostrophic-Constrained Neural Network (GCNN) improves SSH prediction
accuracy by 11% (RMSE: 1.73 cm) over the baseline, with high computational efficiency —3 hours
training time and 3.7 ms inference per prediction.

® Incorporating the land mask information into the inputs is implied and proved to be a simple yet
effective way to enhance the Al model performance on the satellite data.

Implications:

* Demonstrates that incorporating latitude-weighted geostrophic constraints significantly enhances
both physical consistency and prediction skill in data-driven ocean modeling.

¢ Provides an efficient and interpretable hybrid approach for SSH forecasting that balances physical
principles with computational performance.

Abstract

Sea surface height (SSH) derived from satellite altimetry is widely used in oceanographic research
and marine environmental monitoring. However, numerical ocean models for SSH forecasting are
computationally expensive, while purely data-driven methods often lack physical consistency. To
address these limitations, we propose a Geostrophic-Constrained Neural Network (GCNN) for short-
term SSH prediction in the South China Sea (SCS), utilizing satellite data. Based on the SimVPv2
architecture, the model incorporates several strategies to enhance both physical consistency and
forecast performance: (1) using mask information as input to reduce artifacts caused by land
contamination in oceanographic data; (2) augmenting the loss function with a physics-informed term
that enforces geostrophic balance; and (3) applying latitude-based weighting to this constraint to
account for the breakdown of geostrophic approximation near the equator. On the test dataset, the
GCNN achieves a root mean squared error (RMSE) of 1.73 cm, representing an 11% improvement
over the unconstrained baseline model. Furthermore, the model is computationally efficient,
requiring only about 3 hours for training and 3.7 milliseconds per inference. The GCNN not only
improves predictive accuracy but also enhances interpretability by adhering to ocean dynamical
principles, offering a promising approach for the modeling and prediction of SSH.

Keywords: sea surface height forecasting; physics-informed neural network; geostrophic constraint;
deep learning; remote sensing
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1. Introduction

As a critical indicator of mesoscale oceanic dynamical processes, sea surface height (SSH) is
routinely used to map mesoscale circulation features [1,2] and quantify mesoscale eddy dynamics
[3,4], which contributes to oceanic mass transport comparable in magnitude to that of the large-scale
wind- and thermohaline-driven circulation [5]. Given this scientific importance, the ability to
accurately forecast SSH is of critical operational and engineering significance. Timely and reliable
SSH forecasts provide the basis for deriving surface currents, which are essential for a wide range of
maritime activities. In the offshore energy sector, precise knowledge of future current and eddy
locations is indispensable for the safe execution of sensitive operations, such as the installation and
maintenance of oil rigs and offshore wind turbines [6]. Therefore, developing models that can deliver
high-accuracy SSH forecasts is a key objective in modern operational oceanography.

Approaches to forecasting SSH can be broadly categorized into three groups: numerical models,
statistical methods, and data-driven deep learning models. Numerical models, such as the Hybrid
Coordinate Ocean Model (HYCOM), solve fundamental hydrodynamic equations to simulate oceanic
states [7]. While physically comprehensive, they are computationally prohibitive, requiring complex
parameterization of sub-grid-scale processes, and the accuracy is highly sensitive to initial and
boundary conditions—limitations that have motivated the search for alternative approaches.
Statistical methods, such as autoregressive models, offer a computationally cheaper alternative but
are often based on linear assumptions, limiting their ability to capture the complex, non-linear
dynamics inherent in ocean systems [8].

The rapid development of artificial intelligence (AI) has revolutionized spatiotemporal
forecasting in oceanography, with deep learning models emerging as particularly powerful tools.
These data-driven approaches have demonstrated remarkable success across various oceanographic
applications. Convolutional neural networks (CNNs) have proven effective for El Nifio-Southern
Oscillation (ENSO) prediction [9], while the integration of multivariate empirical orthogonal function
(MEOF) analysis with one-dimensional convolutional long short-term memory (Conv1D-LSTM)
networks have shown promising results for multi-variable sea surface forecasting [10]. More recently,
innovative adaptations of vision Transformers (ViT) with self-attention mechanisms have enabled
three-dimensional multivariate modeling for enhanced ENSO prediction [11].

Despite these advances, fundamental limitations persist in purely data-driven approaches. The
inherent “black box” nature of these models raises concerns about physical consistency in their
predictions [12], particularly when extrapolating beyond the temporal scope of training data or
processing noisy observational inputs. This limitation has motivated the development of Physics-
Informed Neural Networks (PINNs), which embed physical laws directly into the learning process
through penalty terms that quantify violations of governing equations [13]. The PINN framework
has shown considerable promise across various oceanographic applications, including tropical
cyclone field reconstruction [14], surface current prediction [15], three-dimensional thermohaline
modeling in the tropical Pacific [16], and improved air-sea flux parameterizations [17]. However,
despite these successful applications, the potential of PINNs for sea surface height (SSH) forecasting
remains largely unexplored, representing a significant gap in current oceanographic research. This
gap is particularly noteworthy given SSH's fundamental role in ocean dynamics through geostrophic
balance, a relationship that could provide natural physical constraints for PINN-based forecasting
systems.

Building on this potential, we note that among the fundamental principles of ocean dynamics,
the geostrophic balance provides a robust first-order approximation for large-scale, low-frequency
ocean circulation. This balance, which describes an equilibrium between the Coriolis force and the
pressure gradient force, is known to govern the circulation in many regions of the world’s oceans [3].
The South China Sea (SCS) is one such region, where the large-scale circulation is predominantly in
geostrophic balance [18,19]. A key practical advantage of using a geostrophic constraint is its elegance
and efficiency: it relates the sea level gradient to the velocity field, meaning the constraint can be
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formulated using only SSH data, without requiring external variables like wind forcing or in-situ
velocity measurements.

In this study, we propose and evaluate a Geostrophic-Constrained Neural Network (GCNN) for
ten-day SSH forecasting in the SCS. A latitude-weighted geostrophic constraint is embedded into the
loss function, along with the incorporation of mask information, to further enhance model
performance. Our primary objective is to demonstrate that this physics-informed approach improves
both forecast accuracy and physical consistency compared to a purely data-driven baseline. In
addition to extensive experiments validating the model’s improvement, we conduct a comprehensive
analysis of its performance across different seasons, forecast lead times, and bathymetric regimes.
This analysis aims to quantify the benefits and limitations of applying the geostrophic constraint in
this dynamically complex region.

2. Data and Methods
2.1. Data

This study employs daily mean absolute dynamic topography data—defined as the sea surface
height above the geoid and hereafter referred to as SSH—obtained from the Copernicus Marine
Environment Monitoring Service (CMEMS). The dataset has a spatial resolution of 1/8° x 1/8° and
incorporates multi-satellite altimeter observations. It has undergone tidal correction and mean
dynamic topography processing to ensure data quality.

The study domain (2°N-22°N, 104°E-124°E) encompasses the SCS basin and adjacent Luzon
Strait, corresponding to a 160x160 grid. This region captures critical dynamical features including the
Kuroshio intrusion through Luzon Strait, which significantly modulates SCS circulation patterns
(Nan et al., 2015) and consequently influences SSH variability across the basin. The dataset covers the
period from 1 January 1993 to 14 June 2024 and is divided into three subsets: a training set (1993—
2021), a validation set (2022), and a test set (2023-14 June 2024). The validation set is used for
hyperparameter tuning and monitoring the training process, while the test set serves as an
independent dataset to evaluate the model’s predictive performance. Notably, 2022 was a La Nina
year, whereas 2023 transitioned to an El Nifo year. Previous studies have demonstrated that ENSO
signals can influence SCS circulation and SSH variability through processes such as the Luzon Strait
water exchange [20]. This interannual variability introduces additional challenges for model
predictions but provides a more rigorous assessment of the model’s generalization capability.

2.2. Model
2.2.1. Model Structure

The SimVPv2 model employed in this study is a purely convolutional architecture that
efficiently captures spatiotemporal coupling relationships through a gated spatiotemporal attention
(gSTA) mechanism. Compared to conventional spatiotemporal prediction models (e.g., ConvLSTM
[21], PredRNN [22]), SimVPv2 demonstrates superior performance in terms of structural simplicity,
computational efficiency, and prediction accuracy, showing exceptional performance on multiple
benchmark datasets [23]. These characteristics make it particularly suitable for modeling complex
oceanographic data.

Designed for sequential prediction of two-dimensional spatial variables, the SimVPv2
architecture consists of three primary components: (1) Spatial Encoder, (2) Spatiotemporal Translator,
and (3) Spatial Decoder. Similar to U-Net, the model incorporates skip connections between the initial
encoder layers and final decoder layers to preserve original features.

The Spatial Encoder comprises N layers of 2D convolutional blocks, each defined as:

z; = G(NormZd(ConUZd(zi_l))),1 <i<Ns, (D

where z; represents the feature map after the i-th convolutional block (with z, as input), Conv2d
denotes a standard 3x3 2D convolution (implemented as PyTorch’s Conv2d), Norm2d indicates a
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GroupNorm layer (group=2), and o represents the SILU activation function. The architecture
alternates between stride=1 and stride=2 convolutions for progressive downsampling.

The Spatial Decoder essentially mirrors the structure of the encoder, replacing downsampling
operations with upsampling through PyTorch’s PixelShuffle using a scale factor of 2. The final layer
serves as the output layer, which converts the feature channels into the desired number of output
channels.

The core part lies in the Spatiotemporal Translator, composed of N stacked gSTA Blocks. As
illustrated in Figure 1, each gSTA Block sequentially combines a Spatial Attention layer and a
MixMLP layer (constructed from 1x1 convolutions and depth-wise convolutions). The Spatial
Attention layer features channel-preserving 1x1 convolutions bracketing an attention module, and
the attention module can be mathematically expressed as:

z) = Conv2d,y, (CondeDw_d (CondeDW(zj))), ()
9.7 = split(2)), 3)
2t =06(g) O 7, 4

where Conv2dp,, and Conv2dp,_, denote depthwise and dilated depthwise convolutions
respectively, g represents attention coefficients, ¢ indicates softmax normalization, and © is
element-wise multiplication. This gating mechanism dynamically weights features based on their
spatiotemporal importance.

r---—-—-——=—=-—=-—=-=== r--———-—=-=-=-=-= |
Spatial Mix
H GN |-« Attention [ Scale GN |- Mip |- Scale . H
W C w
C (a) gSTA Block
r--———=—-—-—=—-—=-==-== ]
Conv Attention Conv
HIY o [TV Module [ 151 O
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Figure 1. Hierarchical illustration of the gSTA architecture: (a) overall framework, (b) expansion of the Spatial
Attention in (a), and (c) details of the Attention Module in (b). The abbreviations used in the figure are defined
as follows: Conv, Convolutional layer; GN, Group Normalization; Scale, multiplication with a learnable scale
factor; DP, Drop Path; GELU, GELU activation function.

2.2.2. Hyperparameter Configuration

For an input tensor of dimensions (B, T, C, H, W), the model first flattens the temporal dimension
into the batch dimension (B xT,C,H,W). After spatial encoding, the tensor (B X T,C, HfwH
undergoes channel-temporal folding to (B, T x C,H,W"), where H'= H/2N: and W"= W /2":. The
translator’s operations on this restructured tensor enable simultaneous learning of spatial and
temporal relationships through depthwise spatial attention and channel-wise convolutions.

As shown in Figure 2, we adopt a 10-day sequence of SSH fields as input to predict the
subsequent 10-day SSH fields, corresponding to input and output dimensions of (10, 1, 160, 160).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Given the relatively low spatial resolution (160x160), we minimize information loss during
downsampling and upsampling by limiting the encoder layers (Ns) to 2, performing only one
downsampling and one upsampling operation. Within the attention module, we employ dilated
convolutions with a dilation rate of 2 (skipping every other grid point) and an effective kernel size of
21 to capture broader spatial dependencies.

Spatial Spatialtemporal Spatial

Encoder Translator Decoder
]
Skip

Connection
f "
32#80+80 128-80%80 128+80=80 128280280 (10232)=80=80
%(_/l(vl()ll\ 160 165160+ 160 1+160x160 %(_/

Input: 10<1<160<160 Output: 10x1x160~160

Figure 2. Flowchart of the SimVPv2 model for SSH prediction. The batch dimension is omitted for clarity. The
batch size is 40 (4 x 10) in both the Spatial Encoder and Spatial Decoder, and 4 in the Spatiotemporal Translator.

To enhance computational efficiency and mitigate overfitting —constrained by the small
training dataset (several thousand samples) and low data resolution —we select conservative hidden
layer dimensions: a spatial hidden size of 16 and a temporal hidden size of 128. Further regularization
is achieved via dropout and drop path rates of 0.3. Other hyperparameters, including the default
kernel size 3 for encoder/decoder convolutions and the MLP ratio 8 in the Translator's MixMLP,
remain unchanged.

The training was conducted on an NVIDIA GeForce RTX 4090 GPU with 24 GB of memory. To
mitigate overfitting and improve computational efficiency, the following training strategy was
adopted: a batch size of 4 was used to introduce more stochasticity and accelerate training. A
ReduceLROnPlateau learning rate scheduler was applied with an initial rate of le™ to alleviate
gradient instability caused by the small batch size. The learning rate was reduced by a factor of 0.1 if
the validation loss did not decrease for 5 consecutive epochs, thereby promoting steady convergence.
Training proceeded for up to 150 epochs with early stopping configured with a patience of 10 epochs,
monitoring the validation loss to terminate training if no improvement was observed.

Under the specified configuration, the GCNN model is relatively compact with only 3,273,809
parameters. Training was completed in approximately three hours, processing samples at an average
rate of 64.4 samples per second. During testing, the model demonstrated efficient inference, with an
average latency of 3.7 milliseconds per sample — a value derived from averaging over 10,000
inference runs at a batch size of 1. The entire process required only a single RTX 4090 GPU,
highlighting its computational efficiency and low resource demands.

2.3. Strategies
2.3.1. Geostrophic Constraint in SSH Prediction

In physical oceanography, the geostrophic balance is a fundamental dynamical approximation
in which the Coriolis force is balanced by the horizontal pressure gradient force. Owing to its clear
physical meaning and relatively simple mathematical form, it is widely used to estimate large-scale
oceanic currents from sea surface height (SSH) observations.

Under the f-plane approximation, where the Coriolis parameter is assumed constant, the

geostrophic balance can be expressed as:
ag
fug=—g 3’ (5)
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d
fro=g50, ©

where (ugy,v,) are the zonal and meridional components of the geostrophic velocity, g is the
gravitational acceleration (taken as 9.81 m/s?), { represents the sea surface height (SSH), and f is the
Coriolis parameter, defined as:

f =2Qsin(p), (7)

Here, Q) is the Earth’s angular velocity (taken as 7.2921x10-rad/s), and ¢ is the latitude.
Solving equations (5) and (6) for the velocity components yields:

_ gt

M= Fay ®
_ 90t

Vg —?5, 9

In the training of our SSH prediction model, both the input and output are exclusively SSH
fields. The primary loss function is the Mean Squared Error (MSE) between the predicted and target
SSH:

lossssy = MSE((predJ (target)i (10)

Here, {preq) (targerdenote the predicted SSH and the target SSH from the training dataset for the

corresponding date, respectively. The MSE is calculated as:

N
1
MSE(x,y) = NZ(XI: -y)?, (11)

where N is the total number of data points.

To incorporate the geostrophic balance into the model’s loss function, a geostrophic constraint
loss is introduced. First, the SSH spatial gradient fields of predictions and targets are computed using
a Sobel operator. Subsequently, the geostrophic velocity components (Upreas Vprea: Utargets Vearget) are
derived from the SSH spatial gradient fields as described in equations (8) and (9). The calculated
geostrophic velocities are divided by the standard deviation from CMEMS geostrophic velocity data
and multiplied by that from CMEMS SSH data—a step intended to align the dimension of the
computed geostrophic velocities with that of SSH. Finally, the MSE between the predicted and target
geostrophic velocities forms the geostrophic loss term:

loss, = MSE(upred/Gu : GSSH'utarget/Gu : GSSH)' (12)
loss, = MSE(vpred/Gv * OssH» vtarget/av ' USSH)' (13)
lossgeo = loss_u + loss_v, (14)

The total loss function for training the model is a linear combination of the SSH prediction loss
and the geostrophic velocity loss:
losSiotar = L0SSssy + Al0SSgeo, (15)
where 1 is the geostrophic constraint coefficient. A larger value of 1 imposes a stronger geostrophic
constraint, whereas a smaller value signifies a weaker constraint.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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2.3.2. Latitude-Weighted Loss

The geostrophic constraint in our model is based on the geostrophic velocity equations (Eq. 8,
9). A direct application of these equations is problematic at low latitudes, as the Coriolis parameter f
in the denominator approaches zero, leading to an over-amplification of the geostrophic loss term
where the geostrophic balance is inherently weak. This can introduce significant errors into the model
training process.

To mitigate this issue, we introduce a latitude-dependent weighting factor, w(¢), designed to
smoothly suppress the geostrophic constraint in equatorial regions. The weight is calculated using
the following square rooted sigmoid function:

1
w(d) =

[(1 + e k@=60))

According to Lagerloef et al. (1999), the geostrophic approximation under the f-plane

(16)

assumption is generally valid at latitudes higher than approximately 5°N. Based on this guidance,
we introduce a latitude-dependent weighting scheme to gradually apply the geostrophic constraint
with increasing latitude. Specifically, we define a sigmoid-shaped weight function with parameters
¢y = 7°and k = 2, such that the weight transitions smoothly from nearly 0 south of 5°N to nearly 1
north of 10°N.

2.3.3. Mask-Informed Input

In the application of deep learning models, particularly convolutional neural networks, to
oceanographic data, a significant challenge is the prevalence of NaN (Not a Number) values—which
often correspond to land grids in marine datasets. A common practice is to replace these NaN values
with zeros. However, this approach is suboptimal, as simply zero-filling may mislead the
convolutional model during feature extraction, given that such models rely on sliding kernels across
the grid to capture meaningful spatial patterns. Another method involves interpolation, which fills
the land grids using values derived from surrounding ocean data. While interpolation may offer
better performance than simply assigning zeros to land grids, it still introduces misleading
information to the model: originally information-free land areas are now filled with artificially
imputed values, which do not correspond to any real physical processes and may still distort feature
learning.

For instance, in SSH prediction tasks, shallow network layers could misinterpret zero-filled or
interpolated land grids as authentic SSH values, thereby propagating erroneous information to
deeper layers. To address this issue, we propose a simple yet effective method: concatenating a binary
mask that identifies valid grids—a tensor of ones and zeros with the same spatial dimensions as the
input, but with a single channel—to the input along the channel dimension. This operation
transforms the input shape from (B, T, C, H, W) to (B, T, C+1, H, W), thereby explicitly informing the
model about the presence of invalid grid cells in a straightforward yet effective manner.

3. Results
3.1. Impact of the Geostrophic Constraint Coefficient

To determine the optimal weighting for the geostrophic constraint, we conducted a series of
experiments in which the model was trained under varying values of the geostrophic constraint
coefficient, denoted as . In order to mitigate the effects of randomness and enhance the robustness of
the results, each experiment was repeated five times under identical hyperparameter settings except
for the random seed. The performance of each configuration was evaluated on the test dataset, and
the results were averaged across the five runs to ensure a more reliable and statistically meaningful
comparison.

Figure 3 illustrates the relationship between model performance and 4, using the RMSE and the
Pearson Correlation Coefficient (PCC) as evaluation metrics. RMSE is computed as the square root of
the mean squared error between predicted and target SSH fields, averaged over the test set, while

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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PCC is calculated by averaging the daily correlation coefficients between predicted and target SSH
fields across the test set. As A increases from zero, the RMSE initially decreases and the PCC increases,
indicating improved performance. Optimal performance is achieved at 4 = 0.7, after which the
model’s accuracy degrades. Therefore, the term GCNN hereafter refers specifically to the model
trained at this optimal value (1=0.7).

(a) RMSE Comparison — Different A (b) PCC Comparison — Different A
0. 9871
---- Base ---- Base
1950 & G0N o« ki
0. 986
1.90 .
€
2 ¢ 0.985
w o
w
z
1.80 0.984
1750 e NE 0 A | e memmm—mmmmmmm—m ]
0. 983
1.70 .
00 01 05 07 10 50 100 00 01 05 07 10 50 10.0
A A

Figure 3. (a) RMSE and (b) PCC between CMEMS target data and GCNNs predictions under different values of
the geostrophic constraint coefficient A. Dark blue dots represent the mean values from five models trained with
identical configurations except random seeds; error bars indicate the 95% confidence intervals (CI) computed
via Bootstrap method. Light blue points show individual results from each run. The Base (red dashed line)
denotes the SimVPv2 model trained without applying any introduced strategies; the shaded region represents
its 95% CI.

Given that the geostrophic loss were normalized, the coefficient 4 can be interpreted as the
relative importance assigned to the geostrophic loss versus the primary SSH loss. The degradation in
performance for A > 0.7 suggests that the geostrophic constraint should serve as a supplementary,
rather than dominant, component of the loss function. This phenomenon can be mainly attributed to
the presence of ageostrophic dynamics: Ocean circulation is not exclusively geostrophic; it contains
significant ageostrophic components. A key advantage of data-driven models is their ability to learn
complex relationships not fully captured by simplified physical equations. Forcing the model to
adhere too strictly to geostrophy by increasing 4 penalizes it for learning these true, non-geostrophic
dynamics. This rigid constraint becomes counterproductive, leading to performance that can be
worse than that of the unconstrained Al model.

3.2. Ablation Study

In the Method section, we introduced three strategies aimed at enhancing model performance.
As demonstrated in Figure 3, integrating all three leads to notable improvement. However, the
individual contribution of each strategy had not been evaluated. To assess their respective
effectiveness, we conducted a series of ablation studies in which one strategy was omitted at a time.
As shown in Figure 4, the removal of any of the three strategies results in an increase in RMSE and a
decrease in PCC. Among them, abandoning the geostrophic constraint has the most pronounced
effect. These results confirm that all three strategies contribute to improving the performance of the
GCNN, and that the geostrophic constraint plays an especially critical role.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 4. Similar to Figure 3, except that the GCNN here specifically denotes the model incorporating all three
strategies —geostrophic constraint (1 =0.7), latitude-weighted loss, and mask-informed input—while “No GC”,
“No LW”, and “No MI” correspond to models trained without the respective strategy.

4. Analysis of Results

Authors should discuss the results and how they can be interpreted from the perspective of
previous studies and of the working hypotheses. The findings and their implications should be
discussed in the broadest context possible. Future research directions may also be highlighted.

From the experiments above, it can be observed that the fluctuations caused by randomness
during the training process are considerable. To minimize the impact of such randomness, all random
seeds were fixed to 42 and cuDNN’s deterministic algorithms were enabled throughout the training
of the subsequent models. This ensures that models trained under the same hyperparameters are
strictly identical, except for those trained with geostrophic constraint loss. Due to its additional
computational steps, this loss introduces new uncertainties. Nevertheless, as Table 1 demonstrates,
despite not being entirely identical, the use of fixed random seeds and cuDNN'’s deterministic
algorithms still results in highly consistent GCNN outputs across repeated trials under identical
hyperparameters. Across three independent trials, the RMSE values exhibit minimal deviation,
remaining within 1.6% of the mean RMSE. Based on this high consistency, we selected one of the
three runs as the representative instance of the GCNN for all subsequent analyses.

Table 1. Independent replicate experiments using same random seeds.

RMSE (cm)
Model Trial 1 Trial 2 Trial 3 Mean SD
Base 1.9768 1.9768 1.9768 1.9768 0
Base + MI 1.9329 1.9329 1.9329 1.9329 0
Base + GC 1.7899 1.7921 1.8242 1.8021 0.0157
GCNN 1.7309 1.7316 1.7286 1.7304 0.0013

4.1. Comparative Performance Analysis

To further evaluate the effectiveness of the physics-informed approach, the performance at
different lead time of the GCNN was compared against two other models: Base and Persistence.
Persistence, which assumes the future state is identical to the current state ({(t+1) = {(t)), is a
benchmark comparison and forecast reference widely accepted in oceanic science [24], and serves as
a simple baseline for forecast skill here.

As shown in Figure 5, both the GCNN and Base significantly outperform Persistence in terms of
RMSE, with the performance gap widening as the lead time increases. A similar trend is observed for
the PCC. While Persistence’s correlation is comparable to the Al models at a lead time of one day;, its
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performance degrades rapidly thereafter, highlighting the superior predictive skill of the GCNN at
longer horizons.

(a) (b)

Persistence 1.000
Base
5 GCNN
0.9751
4_
€
23 w 0.950
L @]
n o
z
2 0.925
1
0.900+
0_
1 2 3 45 6 7 8 910 1 2 3 45 6 7 8 910
Lead Time (Day) Lead Time (Day)

Figure 5. Comparison of the forecast skill of different models at different lead time in the SCS from 1 January
2023 to 14 June 2024, using (a) RMSE and (b) PCC.

Most importantly, the GCNN consistently demonstrates improved performance over the Base,
exhibiting lower RMSE and higher PCC across all lead times. This result confirms the benefit of
incorporating physical knowledge into the neural network architecture. However, the magnitude of
this improvement is modest. This is likely attributable to the challenges of applying the geostrophic
constraint over a domain that includes extensive low-latitude areas where the geostrophic balance is
weak. Although the latitude-weighting scheme was implemented to mitigate this, it may introduce
discontinuities in the loss function that can complicate the training process, thereby limiting the full
potential benefit of the physical constraint.

4.2. Seasonal Variation in Prediction Accuracy

The predictive performance of both the Base and the GCNN exhibits a distinct seasonal cycle, as
illustrated in the time series of forecast errors in Figure 6. For this analysis, the error metric for any
given start date represents the average performance over the subsequent ten-day forecast period.
Figure 6 clearly indicates that for both models, the RMSE and the PCC are both systematically lower
during the summer months (April-September, red shading) compared to the winter months
(October-March, blue shading).

We hypothesize that this seasonal difference in forecast skill is primarily driven by the inherent
seasonal variability of the SSH field itself. To investigate this, we quantified the temporal and spatial
variability of SSH for each season in the test dataset. Mean Temporal variability, denoted as o7, is
defined as the spatial average of the standard deviation calculated over time at each grid point. It
measures the typical magnitude of temporal fluctuations within the SSH field. Mean Spatial
Variability, denoted as o5 , is defined as the standard deviation of the time-averaged SSH field. It
represents the magnitude of spatial fluctuations within the time-averaged SSH field.

As summarized in Table 2, both the mean temporal and spatial variability are significantly lower
in summer than in winter. This indicates that the SSH field is generally more quiescent and spatially
smoother during the summer. To directly link this variability to prediction error, we computed the
PCC between the temporal variability (o;) and the time-averaged absolute error (AE) of the Base
prediction at each grid point. The analysis revealed statistically significant positive correlations in
both summer (r = 0.52) and winter (r = 0.58), with confidence levels exceeding 99.9%. This confirms
that locations with greater temporal variability are inherently more difficult to predict, and that the
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higher overall variability in winter is a key driver of the observed seasonal degradation in forecast
accuracy. Combined with the stronger correlation in winter, we hypothesize that the SSH field
exhibits more high-frequency and irregular variations in winter, leading to a greater tendency of the
model to overfit. This overfitting contributes to the seemingly counterintuitive phenomenon whereby
both RMSE and PCC are higher in winter than in summer.

Table 2. Seasonal statistics of SSH variability and the PCC between oy and time-averaged absolute error (AE)
of the Base prediction.

Season og(cm) or(cm) PCC (100%)
Summer 741 5.45 0.52
Winter 9.54 6.97 0.58
(a)
4.01

w
[N

RMSE (cm)
N
N

1.6 A s A\ S I".- 4 I. ' ‘I'. AN R Pl [T :”;-«', f|
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Figure 6. (a) Lead-mean RMSE for the Base and the GCNN predictions versus date on the test dataset. Seasonal-
mean (b) RMSE and (c) PCC at different forecast lead time, comparing performance of the Base and the GCNN.

Furthermore, a closer inspection of Figure 6 reveals that the performance improvement of the
GCNN over the Base is more pronounced in summer, especially when the lead time is longer. This
observation aligns with established ocean dynamics in the SCS. The summer period is characterized
by more stable large-scale geostrophic circulation patterns [25]. In this regime, the geostrophic
constraint provides a more accurate and beneficial physical prior. In contrast, winter is typically
marked by stronger wind forcing and enhanced Ekman dynamics, which disrupt the geostrophic
balance, particularly in the upper ocean [26]. The reduced validity of the geostrophic assumption in
winter likely limits the effectiveness of the physics-informed constraint, resulting in a smaller
performance gain for the GCNN.
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4.3. Spatial Distribution of Forecast Error

The previous section established that the overall forecast error is lower in summer and that the
performance improvement of the GCNN is also season-dependent. To further investigate these
patterns, we analyze the spatial distribution of the time-averaged absolute error (AE) for both the
Base model and the GCNN, as shown in Figures 7 and 8.

Figure 7 indicates that the AE of the Base model is not uniformly distributed, with elevated
errors concentrated in dynamically active regions, including the coastal waters off Vietnam, the Gulf
of Tonkin, the Guangdong coast, the area east of the Luzon Strait, and the Sunda Shelf.

Further analysis of Figure 8 reveals that the AE of the Base model is initially relatively uniform
but becomes increasingly heterogeneous as lead time increases. This inhomogeneity also exhibits
seasonal variations. For example, at a lead time of 10 days, the AE is notably higher during winter
along the Vietnamese coast, the Guangdong coast, the Gulf of Tonkin, and the Sunda Shelf. This
pattern is consistent with the winter intensification of monsoon-driven circulation features, such as
the Vietnam Coastal Current and the Natuna Eddy, which are associated with stronger nonlinear
dynamics [27].

(a) Absolute Error (b) Absolute Error Reduction

18°N

14°N

10°N

6°N

108°E 112°E 116°E 120°E

[ ‘ T I 4 s
0 1 2 3 4 5 -2 -1 0 1 2
AE (cm) AER (cm)

Figure 7. The spatial distribution of the time-averaged prediction (a) absolute error (AE) for the Base model and
(b) the absolute error reduction (AER) of the GCNN model compared to the Base model (AEp,;, — AEgcny) from
1 January 2023 to 14 June 2024. The black line indicates the 200-meter isobath.

In addition to seasonal variations, another prominent characteristic of the forecast error is the
strong influence of bathymetry. High-error regions are predominantly located in shallow coastal and
shelf waters. To quantify this, we divided the domain into shelf areas (< 200 m) and deep-basin
regions (DB; defined as areas with water depth exceeding 200 m). As summarized in Table 3, the
RMSE for the Base model in the DB region is 1.717 cm, which is 13% lower than the full-domain RMSE
of 1.977 cm. This discrepancy can be attributed to two main factors: (1) the reduced accuracy of
satellite altimetry data in coastal zones [28], and (2) the presence of complex nearshore dynamical
processes—such as coastal currents, shelf waves, tides, and upwelling—which are often nonlinear,
high-frequency, and not fully resolved by the model [29].

Table 3. Model performance metrics (RMSE) for the whole domain (WD) and deep-basin areas (DB, depth > 200

m).

Model Scope Full year Summer Winter
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Base WD 1.977 1.851 2.096
DB 1.717 1.694 1.718

WD 1.732 1.593 1.876

GCNN DB 1.445 1.416 1.485

(a) Summer

108°E 112°E 116°E 120°E 108°E 112°E 116°E 120°E 108°E 112°E 116°E 120°E 108°E 112°E 116°E 120°E

Figure 8. Same as Figure 7, but for different lead times and seasons: (a) summer, (b) winter.

4.4. Impact of the Geostrophic Constraint

The application of the geostrophic constraint also leads to significant spatial variation in forecast
performance. As indicated in Table 3, the improvement achieved by the GCNN over the Base model
is more pronounced in the DB region, where the RMSE is reduced by 16%, compared to a 12%
reduction in the whole domain (WD).

Figure 7 shows that the GCNN improves forecast accuracy across most of the study areas. One
of the most substantial improvements occurs east of the Luzon Strait. This result aligns with previous
studies suggesting that the Kuroshio transport through the strait is primarily governed by
geostrophic dynamics [30], confirming that the integration of this physical constraint enhances model
performance in regions where the underlying assumption is most valid.

The effect of the geostrophic constraint also varies with forecast lead time (Figure 8). At a one-
day lead time, the GCNN provides relatively uniform improvement across the domain. However, as
the lead time extends to 7 and 10 days, the spatial distribution of improvements becomes more
heterogeneous. While performance gains intensify in regions where geostrophic balance dominates —
such as east of the Luzon Strait and the central deep basin—some areas near the land boundary show
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limited improvement or even increased error. This may be related to complex nonlinear effects
induced by boundary dynamics, which warrant further investigation.

5. Conclusions

In this study, we developed a physics-informed deep learning model, termed the Geostrophic-
Constraint Neural Network (GCNN), to improve sea surface height (SSH) forecasting in the South
China Sea (SCS). Based on the SimVPv2 architecture, the GCNN incorporates two key enhancements:
First, it uses mask information as input to reduce artifacts introduced by the processing of extensive
land points in oceanographic datasets with Al models. Second, a latitude-weighted geostrophic
constraint is integrated into the loss function by minimizing the discrepancy between predicted and
target geostrophic currents derived from SSH gradients. This constraint accounts for the reduced
validity of geostrophic balance near the equator. By embedding these first-order physical dynamics,
the model achieves improved forecast accuracy and enhanced physical consistency without
increasing computational complexity during prediction.

We investigated the influence of seasonality on model performance. Both the Base and GCNN
models demonstrated higher forecast accuracy during summer compared to winter. Correlation
analysis between the AE of the Base prediction and temporal variability of the SSH field confirmed
that regions with higher temporal variability are inherently more challenging to predict.
Consequently, the increased temporal variability of SSH during winter is identified as a significant
factor contributing to seasonal degradation in forecast accuracy. Further evaluation revealed that the
GCNN consistently outperformed the Base in RMSE, with more substantial improvements during
summer (14%) compared to winter (10%). This seasonal discrepancy is likely attributable to more
stable and geostrophically consistent circulation patterns during the summer southwestern monsoon.

Bathymetric effects were also investigated. Both models exhibited significantly lower RMSE in
deep basin areas (DB, depth > 200 m) compared to the whole domain—a result primarily attributable
to two factors: the reduced accuracy of satellite altimetry data in coastal zones, and the presence of
complex nearshore dynamical processes not fully captured by the models. Moreover, the
performance advantage of the GCNN over the Base was more pronounced in DB. These results
underscore the role of topographic features in modulating the efficacy of physical constraints,
highlighting the necessity of incorporating bathymetric context into the design of future models.

Overall, this study confirms the feasibility and value of embedding geophysical constraints,
specifically geostrophic balance, into deep learning frameworks for SSH forecasting. GCNN
improves prediction skill while enhancing interpretability by aligning with physical ocean dynamics.
This work demonstrates a promising direction for integrating physical knowledge with data-driven
modeling in ocean prediction.

As previous studies have shown that wind forcing plays a critical role in modulating SCS
circulation, our future research will focus on incorporating wind stress fields as predictive inputs.
Integrating wind fields could further enhance model performance in regions where Ekman dynamics
and wind-driven processes dominate SSH variability. This extension may also enable better
forecasting of wind-induced coastal currents and mesoscale eddies, with potential applications in
real-time navigation, marine hazard early warning, and coupled atmosphere—ocean modeling.
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