Pre prints.org

Article Not peer-reviewed version

Functional Language Logic

Vincenzo Manca *
Posted Date: 30 December 2024
doi: 10.20944/preprints202412.2423v1

Keywords: Natural Language Processing; Logical Semantics; High-Order Logic; Machine Learning; Large
Language Models; Transformers

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/169360

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 December 2024 d0i:10.20944/preprints202412.2423.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Functional Language Logic

Vincenzo Manca

University of Verona; vincenzo.manca@univr.it

Abstract: The formalism of Functional Language Logic (FLL) is presented, which is an extension of
the logical formalism introduced in [22] for representing sentences in natural languages. In the FLL
framework, a sentence is represented by aggregating primitive predicates corresponding to words of
a fixed language (English in the given examples). The FLL formalism constitutes a bridge between
mathematical logic (high-order predicate logic) and classical logical analysis of discourse, rooted in
the Western linguistic tradition. Namely, FLL representations reformulate on a rigorous logical basis
many fundamental classical concepts (complementation, modification, determination, distribution,
...), becoming, at the same time, a natural way of introducing mathematical logic through natural
language representations, where the logic of linguistic phenomena is analyzed independently from
the single syntactical and semantical choices of particular languages. In FLL, twenty logical operators
express the mechanisms of logical aggregation underlying meaning constructions. The relevance of
FLL in Chatbot interaction is considered, and the relationship between embedding vectors of LLM
(Large Language Models) transformers and FLL representations is outlined.

Keywords: natural language processing; logical semantics; high-order logic; machine learning; large
language models; transformers

1. Introduction

The logic of natural language is an old investigation field going back to Aristotile’s logic, the
middle-age Scholastic philosophy, and Leibniz’s investigation at the beginning of mathematical logic
[34]. In his book about the mathematical analysis of logic [4], George Boole emphasizes the logical
basis of natural language. In 1979 Gottlob Frege [13] defined First-order Predicate Logic as a complete
conceptual framework. Frege’s language includes predicates of any number of arguments, individual
constants and variables, propositional connectives, and quantifiers (universal and existential).

In Principia Mathematica [37], Bertrand Russell and Alfred Withehead introduced the theory of
logical types as a remedy to the logical paradoxes discovered within the foundation of mathematics.

In 1928, Alonzo Church introduced the lambda notation, and in 1940 the lambda typed calculus
[6]. However, the notion of function, defined by a mathematical formula, goes back to Leonard Euler
[10] and Gottlob Frege [13], who realized the functional nature of predicates. Mathematical function
resulted in a powerful foundational concept, in mathematical logic, in computability, up to the new
frontiers of artificial intelligence [3,6,14,19,23,25,26,31,33,40]. Hans Reichenbach developed a logical
analysis of the conversation language in a chapter of his book on mathematical logic [36].

In 1970, Richard Montague wrote the paper “English as a formal language" where typed lambda
calculus and high-order logic are combined to represent ordinary discourse, and several papers on the
same line followed [9,27-29,39].

The elimination of variables is a problem intensively investigated in mathematical logic by many
authors, such as Moses Schonfinkel, Harshel Curry, Robert Feys, Alfred Tarski, and Leon Henkin
[7,16]. In natural language, neither apparent nor free variables are used, therefore a logical analysis of
language has to cope with this phenomenon for a full comprehension of its internal mechanisms. We
will show, that this aspect is strictly related to the monadic nature of predicates and the possibility of
having high-order predicates.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202412.2423.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 December 2024 d0i:10.20944/preprints202412.2423.v1

20f17

In [22] a formalism of logical semantics for natural languages was introduced within the High-
order Monadic Logic HML, which is essentially a typed lambda calculus based on unary functions
with a new logical operator of “Predicate Abstraction" making logical representations of sentences
completely adherent to the usual linguistic constructions. In the same paper, an experiment is reported
on teaching the given logical formalism to ChatCPT3.5. This shows interesting perspectives on the
interaction with chatbots, revealing a surprising ability to use such logical formalism.

In this paper, the approach of [22] is developed, by defining the more complete and motivated
formalism of Functional Language Logic (FLL), strictly related to the classical logical analysis of
sentences. Any word in a given dictionary is a unary predicate, a function from individuals to truth
values. Twenty logical operators express the logical aggregations underlying the main linguistic
constructions (Table 23 ).

The functional types for the predicates, individuals, substantives, propositions, hyper-predicates,
and ad-predicates are introduced. Hyper-predicates are predicates that apply to predicates and give
new propositions, whereas ad-predicates apply to predicates and give new predicates.

The following sections are devoted to specific linguistic phenomena. Direct and indirect comple-
mentations are reduced to the application of a complementation operator that, in the case of a direct
complementation, takes a substantive, producing a new predicate, while in the case of an indirect
complementation, takes an atomic proposition, again giving a new predicate. Modification is the
operator transforming a predicate into an ad-predicate.

Predication, complementation, and modification are the main linguistic constructs. Specification
is a case of complementation, which is considered apart due to its generality and importance.

Descriptive operators apply to predicates and provide substantives. arguments are then consid-
ered.

Finally, operators for managing with context, references, and performatives are considered.

Chatbots, preconceived in [40], are a frontier of artificial intelligence, their acquisition of complex
and articulated competencies in dialogic activity with humans confirms the essential role of natural
language in constructing the conceptual organization of cognitive systems. Namely, Greeks used the
same word, “Logos" meaning either language or reason. This consideration suggests that FLL could
be a strategic tool in teaching chatbots to acquire sophisticated competencies in logical analysis [22,24].

In conclusion, a topic for further research is addressed, which is related to the relationship between
FFL logical representation of meanings and the embedding vectors of LLM transformers in modern
conversational systems.

2. Material and Methods
2.1. Logical Symbols and Operators

Given an expression E(x) built with operations applied to constant and variables, where the
variable x ranges on the class A, and taking values in the class B, we denote by x.E(x) the function
from A to B associating to any element a € A the value E(b) assumed by E(x) when x takes the value
a. Alonzo Church introduced the lambda notation Ax.E(x) to stress that the function does not depend
on the chosen variable, we omit the symbol A for a shorter notation. If in x.E(x) variable x is replaced
by y (which takes the same values as x does), for every a:

(x.E(x))(a) = (v-E(y))(a) = E(a)

therefore:
x.E(x) =y.E(y)

that is, the two A-expressions are different names for the same function.

A predicate is a symbol denoting a function from a set of individuals to a set of two truth values,
we denote by T, L. In the following, we will use predicates with only one argument (monadic) or
zero arguments. Monadic predicates are called Properties, while predicates with no arguments are


https://doi.org/10.20944/preprints202412.2423.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 December 2024 d0i:10.20944/preprints202412.2423.v1

30f17

Propositions, which can also be considered symbols for truth values. Letters P,Q, R, ..., possibly
with indices, will denote predicates. Symbols a,b, c, . . ., possibly with indices, are individual constants
(names of particular individuals), and symbols x, y, z, . . ., possibly with indices, are individual variables.
Letters X, Y, Z, .. ., possibly with indices, are predicate variables.

Symbols -, =, A, V, ¢+, called connectives, are operations on truth values with the following
meanings: T =1,-1 =T,P > Q=1iff P=T,0=L,PANQ=TiffP=T,Q=T;,PVvQ=1
iff P=1,0= 1 (whence T=-PVP),P+ Qiff P=Q.

Symbols V, 3, called quantifiers, are operations such that VP(x) = T iff x.P(x) = x.T; 3P(x) = L
iff x.P(x) = x.L.

Connectives and quantifiers can also be easily seen as operators over predicates, for example,
P — Q=ux.(P(x) - Q(x)), VP = Vx.P(x).

2.2. Abstraction Operators

The operator of class abstraction transforms a monadic predicate P in the class A of the values on
which the predicate holds (gives truth value T). This operator was initially defined by Georg Cantor
and formalized by Bertrand Russed with the notation X.P(x). Nowadays, the commonly used notation
for classes is A = {x|P(x)}.

The notion of type is analogous to that of a class; it is used in many contexts and with many
specific senses. We write a : t to denote that 2 has a type of t. Of course, the elements of a given type
provide a class, and analogously, having a type is a property. Therefore, a type can be assimilated into
the concepts of class and property, even if its meaning is more related to that one of a symbolic mark
to attach to objects for categorizing them.

However, it is useful to distinguish similar concepts because, in many complex analyses, these
notions refer to different levels of a discourse that are useful to consider separately. For example, the
names of things are different from things in themselves, and operating with names can provide useful
possibilities better dealt with in specific contexts by avoiding any confusion with things and operations
onthem. If x : s and E(x) : t, we denote by (s — f) the type of x.E(x); if A is a class of elements of type
t, then we denote by [t] the type of A. Therefore, types can be arranged in expressions of increasing
complexity: t, (s — t),[s], ([s] — t),.... The maximum number of nested pairs of parentheses or
brackets in the expression of a type provides the logical order of that type.

In 1901, Bertrand Russel discovered a logical paradox related to the intuitive notion of class.
Namely, some autoreferential conditions (the class of classes that do not belong to themselves) are
contradictory. Axiomatic set theories were developed, which define sets as special classes regulated
by axioms, avoiding paradoxes. Type theory, elaborated by Bertrand Russel and Alfred Whitehead,
overcomes paradoxes by assigning types for dealing with high-order predicates that apply to predicates
as arguments [18]. In natural language, expressions such as Past(P) or Yesterday(P) are typical
examples of predicates taking predicates as arguments.

Two expressions denoting individuals are equal when they denote the same individual. We can
express equality by using monadic properties according to the following trick. We add for every
individual a a predicate E, that holds on an individual b if it denote the individual denoted by a:

E,(b) <> a=bh.

Analogously, a binary operation, such as +, can be expressed by using the monadic operation Sumz =
x.3 + x, namely:
Sumsz(5) =8

In this way, an operation’s argument becomes a parameter embedded in a unary operation, giving the
same result as a binary operation on two arguments. This phenomenon is crucial in natural language,
allowing for a monadic representation of all predicates occurring in linguistic constructions.


https://doi.org/10.20944/preprints202412.2423.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 December 2024 d0i:10.20944/preprints202412.2423.v1

40f17

The operator of predicative abstraction allows for raising the logical order of a predicate. If Pred
is a predicate, we denote by ~Pred its predicative abstraction, for which:

“Pred(P) <+ (P — Pred)

that is, " Pred is a hyperpredicate (with respect to Pred), which holds over all predicates that imply
Pred. This means that the implication P — Pred becomes the application of a hyper-predicate ~Pred(P)
telling that P is an implicant of Love, which is different from Love(a), where a is a loving individual.
Namely, P is a predicate, then it does not love, being Love a property of individuals.

Good P

Good a

Figure 1. A graphical representation of the predication Good(a) in a direct way (bottom) and trough predicative
abstraction (Top).

In the following, we will write Love(P) for abbreviating ~Love(P) because the type raising is
implicitly deduced by the argument, which is a predicate rather than an individual.

2.3. Complementation and Descriptive operators

Some other operators will be introduced in the next sections. Two of them change the logical type
of expression and correspond to linguistic constructs that change the linguistic category of expressions.
They are the complementation operator, denoted by underscore _, and the specification operator
(a special case of complementation) denoted by a suffix-dot. The other two operators are descriptive
because tale predicates and provide substantives. They are determination operator ¢, due to Giuseppe
Peano [35], and choice operator ¢, due to David Hilbert [18] complete our list.

2.4. Comparison with Related Logical Formalisms

Many formalisms are aiming at representing sentences logically. After the mentioned approach
inaugurated by Richard Montague, in many fields, such as logic, linguistics, philosophy, computer
science, knowledge representation, and other related fields, the search for logical representations
coupling rigor with simplicity and adequacy was always very active and oriented to many specific
requirements of some applicative contexts. In the setting of logical approaches, let us mention the works
in the context of the CSLI (Center for the Study of Language and Information), especially the Situation
Logic, the Natural Language Semantics, and the intensional logic [2,8,11,12]. For many aspects, FLL
has common features with these approaches, but two important characteristics distinguish it properly.
It is directly related to the traditional logical analysis of the discourse, which is very popular in the
educational curricula, especially in the context of classical dead languages (Greek, Latin); moreover,
it is based on a limited number of logical symbols applied to the words of fixed dictionaries, which
makes it very simple to learn, even without entering in its complex logical basis.

The formalism of FLL is concerned with the logical representations of sentences. However, for
completeness, we want to mention some topics that are important in logical formalisms but outside the
scope of the paper. One of these topics is concerned with formal deductions (Proof Theory), realized by
suitable deductive algorithms; the other refers to the interpretations of formulas within mathematical
structures (Model Theory) [6,18,21,38].

The first logical calculus was elaborated for Predicative Logic by Gottlob Frege for Predicate Logic
[13]. This logic has constant and individual variables, predicative constants denoting relations of any
number of arguments on individuals, together with connectives and quantifiers. Frege’s predicative


https://doi.org/10.20944/preprints202412.2423.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 December 2024 d0i:10.20944/preprints202412.2423.v1

50f17

calculus, and many other equivalents to it, resulted to be complete, that is, it can deduce all the logical
consequences deriving from a list of axioms. A logical consequence of a set of propositions T is a
formula true in all the models where the propositions of T are true.

In Model Theory, a model M is associated with a class T of formulae (a theory) when all the
formulae of T, according to suitable interpretation rules, are true in M. For Predicative Logic, a
fundamental result, known as Lowenheim-Skolem Theorem, holds according to which any coherent
theory (where L cannot be deduced) can be interpreted in the domain of natural numbers [6,18].

3. Results

Let us assume that all words of a given language, in our case, English (written with capital initial
letters), are monadic predicates of some logical order. Sometimes, for a better reading of complex
formulas, we will use the inverse parentheses notation by writing )a(P instead of P(a).

3.1. Categories and Functional Types

The formalism FLL has the following categories of expressions, and some of them will receive
some types:

1) Arguments, of type arg, is the category of any expression that occurs as an argument of a
function;

2) Individuals, of type ind, is the category of denotations of costants 4, b,c, ..., which can be
considered as indexes o indicals of objects assumed in a discourse;

3) Propositions, of type bool, is the category of denotations of truth values, also seen as predicates
of zero arguments. An expression P(a) is an atomic proposition, or a simple predication while
(P A Q)(a), for example (Eat and Drink)(a), where the predicate is the conjunction of two predicates,
or (P(a) A Q(a), which is the conjunction of two propositions, are not atomic predications. We will
indicate by atom the type of atomic propositions;

4) Predicates, of type pred, is the category of monadic predicates, that is, functions from arguments
to truth values:

pred = (ind — bool)

in this category predicative constants P, Q, R, ... are included;
5) Hyper-predicates, of type hyperpred, is the category of predicates that apply to predicates and
provide propositions:
hyperpred = (pred — bool)

hyper-predicates can be considered second-order predicates, and analogously, third-order predicates
can be considered and, in general, higher-order predicates for further levels;
6) Ad-predicates, of type adpred, is the category of functions that apply to predicates and provide
predicates:
adpred = (pred — pred)

7) Substantives, of type subst, is the category of individuals, predicative constants, and any
expression that can be equated to them. Also, capital letters A, B, C. ... denoting classes (possibly with
indexes) are substantives. Equating an expression to a constant provides a substativation;

8) Logical Operators are the symbols expressing operations on predicates;

9) Performatives are the symbols expressing discourse functionalities.

In the sequel, we provide examples of FLL representations for small texts in the natural language
(English). From these representations, twenty logical operators emerge that can describe the meaning of
these texts by composing the meanings of the single words. In this reduction, we get the comprehension
of texts from the predicates associated with the lemmas of a dictionary.

We want to recall that the usual grammatical categories of Verbs, Nouns, and Adjectives are based
on spatiotemporal features. Adverbs realize hyper predicates on predicates (negation, intensification,


https://doi.org/10.20944/preprints202412.2423.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 December 2024 d0i:10.20944/preprints202412.2423.v1

60of 17

modality, ...). At the same time, the other linguistic units are “empty words", having meanings driven
by the contexts in playing roles that correspond to logical operators of FLL.

3.2. FLL Representation of Simple Sentences

Let us start with a simple sentence: “John is good." Its FLL representation is given in Table 1.

Table 1. “John is good."

John(a)
Good(a)

John is a person name, then John(a) means that there is an individual 2 who saisfies the property of
having the name “John", and a satisfies the property “Good".
The sentence “John loves Mary" has the FLL representation given in Table 2.

Table 2. “John loves Mary."

John(a)
Mary(b)
Love_(b)(a)

Here a new operator appears, with postfix notation, indicated by _ and called of complementaton,
which transforms a predicate, such as Love, into the predicate Love_(b), completing the meaning of
Love with the object b. When Love_(b) applies to the individual a we get (Love_(b))(a), or simply
Love_(b)(a), expressing “a love b". Therefore, complementing a monadic predicate, we express a binary
predicate. In general, given a predicate Pred, the expression Pred_ is a function of three possible types,
according to the following list:

Pred_ : (subst — pred)

Pred_ : (atom — pred)
Pred_ : (pred — pred)

the example above falls in the first case and is called direct complementation; the second case is
called indirect complementation; the third case is called modification, or with traditional terminology,
predicative complementation.

For a better reading of formulas, we avoid application parentheses after _ in complementations,
and we assume that the complementation operator applies with left priority. Firstly, the leftmost
operator applies, then the operator _ following it on the right, and so on, up to the rightmost comple-
mentation operator. In this way, in the usual notation P(a), the subject of the predicate is at the end, on
the right, while in the inverse parentheses notation )a(P, the subject is at the beginning on the left.

The sentence “John goes home with a bike" has the representation given in Table 3.

Table 3. “John goes home with a bike."

John(a)
Home(b)
Bike(c)
)a( Go_Place(b)_Instrument(c)

in this representation, the operator _ transforms Go into Go_, a function taking an atomic proposition
and producing a predicate. Analogously Go_Place(b) is a predicate to which the operator _ applies,
and Go_Place(b)_ takes as an argument Instrument(c) and becomes Go_Place(b)_Instrument(c). In


https://doi.org/10.20944/preprints202412.2423.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 December 2024 d0i:10.20944/preprints202412.2423.v1

7 of 17

conclusion, the resulting predicate applies to the individual a providing a proposition. Atomic
propositions Place(b) and Instrument(c) define the roles of complements b, c which complete the
predicate Go.

Figure 2 visualizes the representation of Table 3 by a labeled graph: constants or words label
nodes. Simple arrows denote predication, while labeled arrows express the operator indicated in the
label. We remark that the graph is a second-order graph (in more complex cases, third or fourth orders
are necessary) because there are nodes including subgraphs (represented by surrounding curves)

O
.

a

Figure 2. A graphical representation of sentence given in Table 3

A different way of expressing complementation is through arguments that are sequences, as
in Table 4. However, the method based on the complementation operator is more adherent to the
linguistic mechanism of complementation therefore, in the sequel, we follow it.

Table 4. “John goes home with the bike."

John(a)
Home(b)
Bike(c)
u=(ab,c)
Go(u) A Subject(a) A Place(b) A Instrument(c)

3.3. Complementation

Traditional linguistic analysis is focused on a long list of possible complements: object, specifi-
cation, place, time, instrument, .... In a list used in the schools, it is possible to find fifty different
types of complements. However, such lists result, to a large extent, arbitrary and incomplete. The
linguistic form of complementation depends on specific syntactic features. In a logical representation,
it is important only to identify the elements completing a predicate by distinguishing each one from
the others. Let us consider the sentence “John gives a pen to Mary." The following FLL representation

of this sentence is given in Table 5.

Table 5. “John gives a pen to Mary."

John(a)
Pen(b)
Mary(c)

)a( Give_(b)_Receive(c)

However, different predicates (Take, Accept, Destination, Target) could be used instead of "Re-
ceive" to adequately express the role of constant c, apart from specific syntactical realizations of the

sentence.


https://doi.org/10.20944/preprints202412.2423.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 December 2024 d0i:10.20944/preprints202412.2423.v1

8of 17

The sentence “People elected John as major" is represented in Table 6.

Table 6. “People elected John as major."

A = People John(b)
Elect(P)
Past(P)

P_Major(b)(A)

3.4. Specification

The specification is a frequent kind of indirect complementation, putting in some relationship a
predicate with a substantive (membership, inclusion, pertinence, possess, ... ). It is useful to introduce
for it a special symbol:

Pred.a

completing Pred with the argument a as a specification complement. The sentence “John goes home
with his bike" is given in Table 7 where a predicate constant P and predicative abstraction is used.
Figure 3 visualizes this FLL representation (in the following examples the symbol of predicative
abstraction will be tacitly intended).

Table 7. “John goes home with his bike."

John(a)
Home.a(b)
Bike.a(c)
“Go(P)
)a( (P_Place(b)_Instrument(c)

Bike

Figure 3. A graphical representation of sentence given in Table 7.

The sentence “John asked Mary for information on the train timetable" is in Table 8.

Table 8. ‘John asked Mary for information on the train timetable."

John(a)
Timetable_Train(b)
Information.b(c)
Mary(d)
Ask(P)
Past(P)
Ja(P_d_c



https://doi.org/10.20944/preprints202412.2423.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 December 2024 d0i:10.20944/preprints202412.2423.v1

9of 17

The dot notation for specification suggests reducing all cases of indirect complementation to
specification (in some languages, such as Arabic, there are only the object complement and the
specification complement). For example, “John goes home with his bike" is represented in Table 9
using the specification operator for expressing complementation.

Table 9. “John goes home with his bike."

John(a)
Home.a(b)
Bike.a(c)
Go(P)
Direction.P(b)
Instrument.P(c)
P(a)

A more complex example is the sentence “Yesterday I was walking without shoes", in Table 10,
which has a complex ad-predicate realized by modifications.

Table 10. “Yesterday I was walking without shoes."

Me(a)
Walk(P)
Without_(2_Shoe)(P)
Past(P)
Progressive(P)
Yesterday(P)
P(a)

Equivalent representations are given in Tables 11,12.

Table 11. “Yesterday I was walking without shoes."

Me(a)
Walk(P)
Past(P)
Progressive(P)
Yesterday(P)
¢ = (a1,a2)
Shoe.a(a1)
Shoe.a(a)
Pair_ay(aq)
)a( P_Without(c)

Table 12. “Yesterday I was walking without shoes."

Me(a)
Walk(P)

Past(P)
Progressive(P)
Yesterday(P)

)a( P_(—~(Wear_(2_Shoe))



https://doi.org/10.20944/preprints202412.2423.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 December 2024 d0i:10.20944/preprints202412.2423.v1

10 of 17

These examples show clearly that the same sentence can be represented in many ways. Each
representation has advantages or inadequacies concerning the others. The right choice depends on the
kind of the intended application of the representation.

3.5. Modification

In the previous examples, we used the modification operator to transform a predicate into an
ad-predicate. The typical case ad-predicates are the adverbs modifying verbs, or special verbs, such as
begin, finish, interrupt, can, will, must, appear, seem, ..., are modifiers of other verbs, as it happens in
the representation of Table 13.

Table 13. “John wanted to speak."

John(a)
(Want_Speak)(P)
Past(P)
Progressive(P)
P(a)

An analogous modification occurs when a noun or adjective modifies an adjective, as it is shown
in Table 14, and Figure 4.

Table 14. “John is a good policeman."

John(a)
(Good_Policeman)(a)

of course “John is good" and “John is a good policeman" use “good" in two completely different ways,
making it evident that the same word, in different contexts, can exhibit different logical types. Namely,
in the first case, Good is a predicate, while in the second one, it is an ad-predicate.

Good a

a

Figure 4. A graphical representation of "Good(a)" (Top) and "Good_Policeman(a)" (Bottom).

3.6. Determiners, Indefinites, Plurals

The : operator of determination was introduced by Giuseppe Peano [35]. Let P be a predicate
that is satisfied only by one individual; then, this individual is denoted by :P. Hence:

1P =a < P(a) A (—(a=b) — —P(b))

The expression (P corresponds to the definite article of natural languages. If we write a = (Boy, we
mean that in the given context, a boy is univocally determined and is identified by the individual
constant a. If more than one value satisfies P, all the propositions where (P occurs are false.


https://doi.org/10.20944/preprints202412.2423.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 December 2024 d0i:10.20944/preprints202412.2423.v1

11 0of 17

The € operator choice has been introduced by David Hilbert [18], it provides a chosen indefinite
value that satisfies P. If no argument satisfies P, all the propositions where eP occurs are false. Hence:

a=¢eP < P(a)

and:
P(eP) + VxP(x).

Using eP we can put:
{eP} = {x|P(x)}.

Operators ¢ and ¢ have both type (pred — subst).

Different occurrences of eP may denote different individuals. If we say Any man who loves a woman
is happy, we refer to an indefinite man. If we say that Any man who loves a woman is happy, but any man
who does not love any woman is searching for a woman whom he can love, clearly, the two occurrences of
“any man" have to denote different persons. Otherwise, the sentence is meaningless.

Proposition Q(eP) implies the following propositions, where constants cover all the values
satisfied by P:

ap = ¢eP — Q(a1)

a = eP — Q(a2)

Therefore, the choice operator ¢ provides universal quantification and the constructions distribut-
ing the values of a predicate over other predicates (every man is mortal).

We can extend & notation with numeric indexes so that ¢ expressions with the same index denote
the same individual. In this way, expressions such as ¢;P can be used as usual variables. For example,
lambda expressions can be expressed by:

x.E(x) = e1.E(e7).

Indefinite values expressed by € expressions are different from generic indeterminate values that,
in many languages, correspond to undeterminate articles. In FLL, particular values are denoted by
individual constants. Namely, when we write P(a), we mean that there exists a value that satisfies P,
and we call it a.

Relative clauses are of two kinds: descriptive e restrictive. If we say “John, who lives in Rome,
will not come to the meeting”, the relative clause (introduced by who) adds information that can be
equivalently given by saying: “John will not come to the meeting, he lives in Rome".

Conversely, “John is searching for a pen that writes green" is a restrictive relative clause because
characterizes what John is searching for. The FLL representation of Table 15 is obtained using the
choice Hilbert operator.

Table 15. “John is searching for a pen that writes green.”

John(a)
Pen(P)
Green_Write(P)
Search-for_eP(a)

Now we give an example using the e operator to express a consecutive construction.
“The bag is so heavy that I cannot bring it" in FLL provides the representation of Table 16.


https://doi.org/10.20944/preprints202412.2423.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 December 2024 d0i:10.20944/preprints202412.2423.v1

12 of 17

Table 16. “The bag is so heavy that I cannot bring it."

Me(a)
b =Bag
(Weight_Quantity).b(c)
¢’ = ¢(x.Quantity_(Weight)(x) A Can_(Bring)_x(a))
Greater_c’(c)

In the last equation ¢ applies to the predicate within parentheses, and Greater_c’(c) means that: “The
weight ¢ (of the bag) overcomes ¢/, which is any weight that a can bring.

In FLL numerals: 0, 1, 2, ... (in decimal notation) and ordinals: 1°,2°,3°,..., with the usual
symbols of arithmetic operations and relations, are available.

Modification with numerals (0, 1, 2, ...) allows for a simple representation of plurals. Given a
predicate Pred, the expression 2_Pred means a couple of individuals that satisfy Pred. Analogously,
(> 1)Pred denotes a plurality of individuals satisfying Pred.

Modifications such as 2°_Pred denote ordinals (“the second which satisfies Pred") assuming an
order, specified by the context or previously given. For example, the following is a representation that
refers to two boys; the first speaks, and the second listens:

2_Boy(a)
1°.a(b)
2%.a(c)
Speak(b)
Listen(c)

3.7. Contexts, References, and Performatives

Deixis (Greek etymology) refers to all the aspects of a sentence’s spatiotemporal context. Words
such as this, that, now, I, and you are deictic words assuming meanings that refer to their specific
context. A situation consists of all elements necessary to the correct meaning of a sentence, including
deixis and other aspects, such as presuppositions that a speaker assumes about the persons, things,
facts, and habits on which a specific communication is based. Moreover, other aspects regarding
persons involved in communication can be relevant, and in many languages, these aspects can
remarkably influence the expressions used. The register (familiar, formal, institutional, ...), especially
in some languages, can direct even the choice of the words of sentences.

Anaphora (Greek etymology) refers to the linguistic elements pointing to words and expressions
already occurring in sentences in the linear order of their generation. Pronouns are the typical elements
playing this role. The concordance is the mechanism on which anaphora is based. Moreover, the same
mechanism is also responsible for the aggregation of linguistic expressions in bigger units, including
them as components.

Concordance is realized using grammatical marks expressing features (gender, number, person,
time, ...). The system of grammatical features can change in different languages (form, color, localiza-
tion, distribution, consistency, ...). A pronoun can be seen as an aggregation of marks. In this way,
it refers to the closest linguistic expression preceding it and having the same marks. Grammatical
features alter linguistic forms using inflection and conjugation so that elements with the same marks
are aggregated in bigger units.

In the FLL representations, the individual constants realize pronouns, while parentheses realize
aggregation. If we consider the complexity of phenomena realizing anaphora and concordance, we
can appreciate FLL's great advantage over natural languages.

A class of sentences widely analyzed by logicians since the Middle Ages are donkey sentences,
so-called for an example reported in an ancient treatise of logical analysis of language (Every man who


https://doi.org/10.20944/preprints202412.2423.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 December 2024 d0i:10.20944/preprints202412.2423.v1

13 0f 17

owns a donkey will beat). The problem with these sentences is the pronoun reference in the context of
a universal quantification.
The sentence “Every man loves the woman who loves him". In predicative logic becomes:

Vx, y((Man(x) A Woman(y) A Love(y)_(x)) — Love(x)_(y))

where a reference hereditates the distributive nature of the referred term (Every_man /who).
If we express universal quantification with the ¢ operator, we get:

Love_eMan(¢eWoman) — Love_tWoman(1Man)
where iota operator refers to the individuals chosen on the left of implication. Using & with indexes:
Love_g1Man(eyWoman) — Love_gyWoman(eqy Man)
however, a form more adherent to the linguistic form and using once ¢ is the following:
((a = eMan) A\ Woman(b) A Love_a(b) — Love_b(a).

“Any man loved by a woman loves her", which we can also represent by Tables 17 and 18 (the choice is
intended in the class of substantives).

Table 17. “Any man loved by a woman loves her.’

a = eMan
(Woman(b) A Love_a(b)) — Love_b(a)

Table 18. “Any man loved by a woman loves her.’

a =¢eMan
Love(P)

Love(Q)
(Woman(b) A P_(b) ) — Q_b(a)

Let us consider the sentence “The boys were entering two at a time." Traditional logical analysis
tells us that “two at a time" is a complement of "distribution." However, this does not completely
clarify its underlying logical mechanism, which is completely represented in Table 19.

Table 19. “The boys were entering two at a time."

A = (Class_(2Boy))
a=¢eA
Time.a(b)
Enter_Time(b)(a)

The values of ¢A change with the choices within the class A, and for each pair, there is an entrance
time.

We can further explicit the distribution process. Let a1, 4y, ... be the choices eP and by, by, . . . the
choices €Q (covering the boys and the times). Then, the FLL representation is equivalent to the
sequence of propositions:


https://doi.org/10.20944/preprints202412.2423.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 December 2024 d0i:10.20944/preprints202412.2423.v1

14 of 17

Enter_Time(by)(ay)
Enter_Time(by)(a;)

It is important to remark on the continuative character of the verb “were entering" because it tells
us that the process is developed in a time interval along a sequence of steps. Therefore, the distribution
expresses a modality of realization of the process associated with the verb enter. Table 20 shows the
associated FLL representation.

Table 20. “The boys were entering two at a time."

A =((>1)_Boy))
Enter(P)
Continuative(P)
P_Distribution(2)(A)

which we can read: “The boys were entering distributing in two". In this way, we are very close to the
linguistic form of the sentence through an analysis of the deep structure of the sentence.
Coordination and subordination between propositions consist of predications over propositions.
In the sentence: “While the boys were entering the classroom, the teacher was writing on the black-
board", a relationship expressed by while" occurs between propositions P;, P, representable by the
predication:
While_P1 (Pz)

where:
P; = The boys were entering the classroom;

P, = The teacher was writing on the blackboard.

Conjunctions of temporal and situational nature (concessive, adversative, consecutive, final,
causal, ...) express relationships in typical subordinative clauses.

An FLL representation can be always expressed by a predication such as P(a), where all the
specific information about P and a are given in the remaining part of the representation. In a sense, all
the components of the sentence representation converge into P(a). We may use the assertion symbol
= to stress this special role. In the linguistic terminology, = P(a) means that P(a) is the principal
proposition of the sentence, to which the other propositions refer in determining their subordinative
relationships.

Languages allow for describing facts but also giving commands, and asking questions.

Performatives are linguistic elements responsible for indicating the specific functionality of
statements. We give only two examples in FLL here: "Go home!" and "Where do you go?" of Tables 21
and 22, respectively.

Table 21. “Go home."

You(a)

b = (Home
Go(P)

la = P_b(a)



https://doi.org/10.20944/preprints202412.2423.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 December 2024 d0i:10.20944/preprints202412.2423.v1

150f 17

Table 22. “Where do you go?"

You(a)
Place(b)
Go(P)

? |=P_Place(?b)(a)

The interrogative symbol before the assertion symbol tells us that the expression is a question and
the same symbol before the constant confers to the constant the role of the interrogative pronoun.
Analogously the exclamation mark expresses orders and before the constant it indicates the individual
to which the order is directed.

In conclusion, the FLL logical representation of language is based on predication with predicate
and arguments at different logical orders. The presence of different logical orders provides the
main complexity of linguistic expressions. When people learn to speak, they implicitly acquire the
capability of analysis and synthesis that allows for correct and efficient use of the integrated system of
predications underlying FLL representations. Three of four logical orders are very often present in the
ordinary discourse (“your beauty fascinates me").

Logical symbols of FLL can be reduced to 20. No variable symbols are present, but individual
constants a, b, c... .. possibly indexed, and predicative constants P, Q, R, . .. or class constants A, B,C, . ..
(possibly indexed). Table 23 summarizes all FLL operators. Table 24 will show the interlingual character
of FLL representations.

Table 23. FLL Operators

—+ AV = Implication, Negation, Conjunction, Disjunction, Equality
OO A" e Application, A and ™ Abstraction, Determinate, Indefinite
_ Complementation/Modification, Specification

=17 Assertion, Command, Question.

— [] : ind bool Typing.

Table 24. An FLL representation of the Cinese sentence: “lesterday I was walking along the sea."

WER & EaEy

#(a)

=(P) ¥EX YesterDay
YEX(P) #® / .

B(c) %  Going
18.c(b) i Sea

175 (b) B Side

LA #(P) #  Scattered
P_((i3.c)(b))(a) % Step


https://doi.org/10.20944/preprints202412.2423.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 December 2024 d0i:10.20944/preprints202412.2423.v1

16 of 17

4. Conclusions

The adequacy of FLL in representing the logic of natural languages highlights, in terms of
mathematical logic, the role of traditional logical analysis developed within the classical linguistic
tradition, linked to the study of ancient languages and based on Aristotile’s schema of predication.
Namely, FLL logically puts on a rigorous basis the main concepts on which logical analysis is built by
using twenty logical operators (Table 23). In this sense, the logic of the natural language results in a
link between mathematical logic and linguistics, and also a natural way to approach the first using
the second one. The monadic nature of FLL is a crucial aspect concerning the elimination of variables,
coupled with the use of high-order predicates.

In previous work, conversations with ChatGPT were reported, which show the ability of these
systems to learn a logical formalism similar to FLL and acquire the capability of providing correct
logical representations of given texts. However, we know these chatbots are based on transformers,
and then linguistic meanings are reduced to embedding vectors, as numerical vectors of many thousands
of components.

The idea of an embedding vector is rooted in a long linguistic tradition [15], which emerged in the
20th century, with the origin in structural linguistics concerning phonology, where a phoneme is a set
of pertinent features that exclusively identify it in opposition to all the other phonemes of a language.
The same intuition can be exported to word semantics because, given a document corpus, a word can
be identified by all the documents where it occurs and by all the positions where in these documents it
occurs.

A further investigation could be focused on the relationship between embedding vectors for
sentences and discourses and their corresponding FLL representations. The two methods correspond
to (geometric) synthetic versus (logic) analytic comprehension. Specific aspects of a detailed analysis of
their comparison could provide crucial elements for a deep understanding of the related cognitive
process on which knowledge is based [24].

Mathematical logic, with the notions of class, symbol, number, variable, operation, equation,
relation, function, predicate, set, type, proposition, truth value, connective, variable abstraction, and
predicate abstraction provides a powerful and universal system of conceptualization, which surely
is one of the most relevant successes of mathematics. Teaching chatbots mathematical logic could
improve their semantic mechanisms by acquiring theoretical competencies in their internal knowledge
organization.

A line of development of the paper could be the analysis of chatbot interactions in learning
and exhibiting FLL representations, along with the experience presented in [22]. The levels, times,
and strategies of FLL training could provide tools for evaluating the logical competencies of future
conversational systems.

References

1. Bahdanau, D., Cho, K., Bengio, Y., Neural Machine Translation by Jointly Learning to Align and Translate,
arXiv:1409.0473 (2014)

2. Barwise, J., The Situation in Logic, CSLI Lecture Notes,17 (1989)

3. Goodfellow, L, Bengio, Y. Courville A., Deep Learning. MIT Press (2016) Situations, Language Logic. Studies in
Linguistics and Philosophy (SLAP, vol. 34), D. Reidel Publishing Company, Dordrecht, Holland (1987)

4. Boole, G.: The mathematical analysis of logic. Cambridge: MacMillan, Barclay; & Macmillan, London: George

Bell (1847)

Brown T. B. et al.: Language Models are Few-Shot Learners, NEURIPS, 33, 1877-1901 (2020)

Church, A.: Introduction to Mathematical Logic, Princeton University Press (1956)

Curry H. B., Feys, R. Combinatory Logic, North-Holland Publishing Company (1958)

Devlin, K., Situation theory and situation semantics, in: Handbook of the History of Logic Vol. 7, 2006, 601-664,

Elsevier, Amsterdam, Netherlands (2006)

9.  Dowty, D. R., Wall, R. E. (ed.): Introduction to Montague semantics, D. Reidel (1989)

10.  Euler, L., Introductio in Analysin Infinitorum. M. M. Bousquet, Lausanne (1948)

® N oo


https://doi.org/10.20944/preprints202412.2423.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 December 2024 d0i:10.20944/preprints202412.2423.v1

17 of 17

11. Fenstad, J. E., Halvorsen, PK., Langholm, T., Benthem, J., Situations, Language and Logic. Studies in Linguistics
and Philosophy, vol 34. Springer, Dordrecht (1987) Available online: https://doi.org/10.1007 /978-94-009-1
335-6_2

12.  Fitting, M., Intensional Logic in: The Stanford Encyclopedia of Philosophy, Available online: https:/ /plato.
stanford.edu/archives/win2022/entries/logic-intensional /, Metaphysics Research Lab, Stanford University
(2022)

13.  Frege, G., Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens, Halle an der
Saale, Verlag von Louis Nebert (1879)

14. Gelb, W, Kirsch, B., The Evolution of Artificial Intelligence: From Turing to Modern Chatbots, Tulane
University, Archives, https:/ /aiinnovatorsarchive.tulane.edu/2024/ (2024)

15. Harris, Z., S., Distributional Structure, WORD, 10:2-3, 146-162 (1954)

16. Henkin L., Monk J. D., Tarski A., Cylindric Algebras, Vol. 1, North-Holland (985)

17. Hilbert, D.: Uber das Unendliche, Mathematische Annalen 95, 161-190 (1926)

18. Hilbert, D., Ackermann, W.: Principles of to Mathematical Logic (tr. from German, 1928), AMS Chelsea
Publishing (1991)

19. Hornick, K., Stinchcombe, M., White, M.: Multilayer feedforward networks are universal approximators,
Neural Networks, 2, 359-366 (1989)

20. Kaplan,]. et al.: Scaling Laws for Neural Language Models arXiv:2001.08361 (2020)

21. Manca, V: A Metagrammatical Logical Formalism, in C. Martin-Vide (ed.), Mathematical and Computational
Analysis of Natural Language, John Benjamins (1998)

22. Manca, V. Agile Logical Semantics for Natural Languages. Information, 15, 1, 64 (2024)

23. Manca, V., Artificial Neural Network Learning, Attention, and Memory, Information, 15, 387 (2024)

24. Manca, V., On the functional nature of cognitive-systems , Information, 15, 807 (2024)

25. Mitchell, T., Machine Learning, McGraw Hill (1997)

26. Minsky, M., Computation. Finite and Infinite Machines, Prentice-Hall Inc. (1967)

27. Montague, R.: Universal Grammar, Theoria, 36, 373-398 (1970)

28. Montague, R. English as a formal language, In B. Visentini et al. (eds) I Linguaggi nella Societa e nella Tecnica,
Milan (1970)

29. Montague, R. The Proper Treatment of Quantification in Ordinary English, https://www.cs.rthul.ac.uk/ zhao-
hui/montague?3.pdf

30. Neumann, von, J.: The Computer and the Brain, Yale University Press (2012)

31. Nielsen, M. Neural Networks and Deep Learning. Online (2013)

32.  OpenAl, GPT4-Technical Teport, ArXiv: submit/4812508 [cs.CL] 27 Mar (2023)

33. Parker, D.B., Learning logic. Technical Report TR-47. Center for Computational Research in Economics and
Management Science, MIT, Cambridge, MA. (1985)

34. Parkinson, G. H. R.: Leibniz Logical Papers, Clarendon Press (1966)

35. Peano, G.: Opere Scelte, vol. II: Logica Matematica. Interlingua ed Algebra della Grammatica, Edizioni
Cremonese (1958)

36. Reichenbach, H.: Elements of Symbolic Logic, MacMillan Limited (1947)

37. Russell, B., Whitehead, A. N., Principia Mathematica, Cambridge University Press (1910-13)

38. Tarski, A.: The semantic concept of truth and the foundation of semantics. Philosophy and Phenomenological
Research 4, University of California, Berkley (1944).

39. Thomason, R. H. (ed.): Formal Philosophy, Yale University Press (1974)

40. Turing, A. M.: Computing Machinery and Intelligence, Mind, London, N. S. 59,433-460 (1950)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and /or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.1007/978-94-009-1335-6_2
https://doi.org/10.1007/978-94-009-1335-6_2
https://plato.stanford.edu/archives/win2022/entries/logic-intensional/
https://plato.stanford.edu/archives/win2022/entries/logic-intensional/
https://doi.org/10.20944/preprints202412.2423.v1

	Introduction
	Material and Methods
	Logical Symbols and Operators
	Abstraction Operators
	Complementation and Descriptive operators
	Comparison with Related Logical Formalisms

	Results
	Categories and Functional Types
	FLL Representation of Simple Sentences
	Complementation
	Specification
	Modification
	Determiners, Indefinites, Plurals
	Contexts, References, and Performatives

	Conclusions
	References

