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Abstract: Electric mobility is one of the ways to contain greenhouse gas and local pollutants
emissions in urban areas. Nevertheless, the massive introduction of battery-powered electric
vehicles (EVs) brings some concerns related to their energy demand. Modelling vehicle usage and
charging behavior is essential for charge demand forecasting and energy consumption estimation.
Therefore, it is crucial to understand how the charging decisions of EV owners are influenced by
different factors, ranging from the charging infrastructure characteristics to the users’ profiles. This
review intends to examine the approaches used to investigate on charging behavior and highlight
trends and differences between the results, remarking on any gaps worthy of further investigation.
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1. Introduction

The switch to electric mobility is one of the ways to contain emissions of both greenhouse gas
and local pollutants in urban areas. Electric vehicles (EVs) come in different types, such as pure or
battery electric vehicles (BEVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles
(PHEVs), and fuel cell electric vehicles (FCEVs). BEVs are electric vehicles that rely solely on batteries
to transmit energy. BEVs need an external source of energy to recharge the batteries. HEVs use both
an internal combustion engine (ICE) and an electric powertrain, which can be combined in various
ways. PHEVs also have both an ICE engine and an electric powertrain, but unlike HEVs, electric
propulsion is the primary driving force. These vehicles require larger battery capacity than HEVs and
can be recharged directly from the grid. FCEVs are powered by fuel cells that use chemical reactions
to produce electricity. The electricity generated by the fuel cells drives the wheels through an electric
motor, and any excess energy is stored in storage systems like batteries or supercapacitors [1]. The
focus of the present study is on the charging behaviors of BEVs and partially PHEVs. The widespread
adoption of electric vehicles hinges on two key factors: technological advancements and market
acceptance. In order to optimize vehicle costs, electric vehicle manufacturers strive to select the best
battery technology that ensures both safety and performance, including long-range autonomy and
high power [2]. To facilitate the adoption of EVs and make their widespread use feasible, it is
necessary to develop an adequate charging network [3,4]; this, in turn, involves correct planning that
satisfies real demand. Elements such as power request, charge duration, spatial and temporal
distribution of demand influence the planning and subsequent utilization rate of charging
infrastructure, the emissions associated with the generation of electricity for charging, and the impact
of charging on the grid electricity [5,6]. For these reasons, understanding and predicting charging
behaviors with sufficient accuracy is essential. It is thus important to elucidate how the charging
decisions of EV owners are influenced by external variables related to charging infrastructure and
mobility needs, and by intrinsic socioeconomic and psychological factors, as well as by charging
network design, that could also maximize utilization rate and user satisfaction.

Electric vehicles can be charged at various locations and speeds, and the costs may differ. An EV
supply equipment (EVSE) can be composed by one or more charging points (CP), that connect the
power grid to the electric vehicles, drawing AC power to charge the EV battery in DC. The converters
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can be either onboard or offboard, depending on the type of charging. The chargers can be classified
into two categories, 'level' and 'mode’. Charging level have been defined by the Society of Automotive
Engineers (SAE), while the four charging modes are defined by the International Electrotechnical
Commission (IEC). 'Level' refers to the power and voltage of the charging system, while 'mode’ refers
to the electronic communication between the vehicle and the power supply. This communication is
critical for ensuring safety and proper charge control. The International Electrotechnical Commission
(IEC) has defined four charging modes [7].

Mode 1 refers to home charging directly from a standard power outlet with a simple extension
cord. However, this charging method does not provide shock protection against DC currents.
Moreover, mode 1 is prohibited in many countries. Mode 2 charging involves the use of a special
cable, provided with the EV, with integrated shock protection. Mode 3 charging involves a dedicated
charging station or a home-mounted wall box for EV charging. Both provide shock protection against
AC or DC currents. In Mode 3, the connecting cable is provided with the wall box or charging station.
Mode 4 is mainly used for DC fast-charging applications. In this mode, AC is converted to DC in an
external charger, which is then used to charge the EV battery. In the first three modes, the EV is
directly connected to the AC distribution network and the conversion to DC takes place in the vehicle.
In the mode 4, the conversion takes place in the charger.

Level 1 charging refers to 120 AC voltage with a power of 2 kW, it is typically used in residential
settings and requires no special equipment. It is not allowed in EU. Level 2 corresponds to the
standard European 230/240V AC plug. It can be used for domestic charge or in public charging poles.
The delivered power usually ranges from 3 kW to 20 kW. Level 3 indicates quick charging stations
using high voltage direct current (DC), typically 400 V DC. The charging power of these stations
ranges from 50 kW up to 130 kW. Level 4 chargers use 400-800 V DC voltage, with power up to 500
kW, and are mainly intended for long-distance driving and heavy vehicle [8,9].

The need for an in-depth analysis of the real and potential charging demand has led to a
significant number of studies on the EVs energy demand modeling, at different levels of aggregation
depending on the purpose of the study. Disaggregated approaches directly consider individual
patterns of mobility and EV recharge whilst aggregated ones often start from energy demand at EV
supply equipment (EVSE). These approaches are not mutually exclusive, and the data from different
sources are often combined to model EV loading.

The characterization of charging behavior is inextricably linked to the diffusion of EVs. Indeed,
the individual characteristics of EV users also influence charging behaviors. EV users are often male,
of higher education and middle age, with above-average income and with multiple cars per
household [10-12], which corresponds to the profile of EV early adopters [13]. With the spread of
electric mobility, this audience tends to widen and include different users” groups with presumably
diverse needs and behavior. Some research refers to a relatively immature phase of the adoption of
electric mobility, and their results must be analyzed considering that the behavior of the EV early
adopters may not coincide with those springing from the mass adoption.

In fact, the propensity to adopt EVs depends on many factors, both economic and psychological,
investigated in literature. Economic studies usually compare the alternative between different types
of vehicles described by their characteristics based on which consumers make decisions by making
trade-offs between attributes. Psychological studies focus on motivations by examining the influence
of a broad range of individual-specific psychological or social constructs [14]. Financial, technical,
and infrastructural factors have a significant impact on the choice of switching to EVs, while
psychological variables have a stable effect demonstrated by several studies. The influence of
socioeconomic and demographic variables is still unclear and sensitive to small changes [14].
However, early EV users show some prevalent characteristics, such as a high level of education and
a high income, being predominantly young or middle-aged males, living in large families that own
more than one car, and living in small to medium-sized cities [10]. Having experienced EV driving
and awareness of environmental values are factors that dispose to the purchase of an electric car [15],
as well as satisfaction for use, which appears to be high among both experienced and novice EV users
[16]. Adding vehicle-to-grid functionality seems to be an option that tends to favor EV adoption,
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probably because it can represent a possible economic income for owners [15]. The self-perception as
belonging to a specific category of people, and the perception of the electric car as a status symbol
seem to influence positively the purchase choice [17,18].

Increasing experience with EVs raises awareness of many aspects of electric mobility. For
example, battery range was rated less critical for people who have owned EVs for longer than for
newbies or conventional car owners. On the other hand, charging anxiety seems less present in early
adopters while potential users appear more concerned of not having enough autonomy or sufficient
charging infrastructure [19]. Battery life is considered a more critical factor for internal combustion
engine vehicle (ICEV) owners than EV owners [15], although it emerges that range and battery
charging are the two main reasons for dissatisfaction among EV users [16]. According to surveys and
interviews, traditional car buyers' knowledge and awareness of EV charging infrastructure is
currently low [20], possibly because of scarce intentions to buy an EV or continue to use the specific
knowledge derived from experience with ICEV when they imagine using EVs. This fact should be
considered in the analysis, as some surveys infer charging behavior from data that include ICEV
owners.

This work collects several studies that focus on the charging habits and choices of private EV
owners in urban areas based on technological, environmental, or socio-demographic variables. Some
of these studies are explicitly dedicated to the investigation of the charging behavior, while others
aim at other results, such as the determination of the optimal location of the charging structures, or
the smart management of charging requests in stations, or the assessment of demand for scenarios of
penetration of electric mobility. Our own aim is to highlight prevalent criteria in charging behavior,
detect different approaches across studies, and identify gaps in this research field. We also want to
illustrate the different data frameworks and related limits. Given the vastness of the subject,
establishing a classification based on a single interpretation is practically impossible. We have
therefore decided to present the papers based on the approaches used. In particular, we identify the
following:

1. Review works

2. Articles focused on demand-side data (mobility or charging behaviors)

3. Works based offer-side data (usage of the charging infrastructure.

We further categorize the works based on the subject they investigate within the previous larger
macro-categories.

It should be noted that the categorization used is somewhat arbitrary and obviously not
definitive, as some studies rely on multiple data sources and produce intricate and multifaceted
findings.

Our goal is to identify the shared characteristics of urban charging behavior. Consequently, we
will pay particular attention to the aspects related to users' decision-making process.

In the next section, we will briefly outline the search parameters used for collecting the papers.
Afterwards, we will present a roundup of recent review work that has dealt with the EV charging
behavior. We then present results for some studies investigating the charging behavior of private
EVs. Lastly, we highlight common factors and differences in the behaviors observed in the different
contexts. The conclusions also present some topics worth considering for future research.

2. Literature and Method

The analysis of the charging behavior is of fundamental importance for the correct planning of
the infrastructures, the choice of optimal charge management strategies, and the application of
policies aimed at improving the penetration of electric mobility and the demand integration with the
electricity distribution network. There are different possible approaches to the investigation, which
may depend on the type of data used, the variables taken into consideration, and the specific
purposes of the studies. Indeed, the charges demand analysis can rely on different data and
information sources. Some studies reviewed in this work are devoted to behavioral investigation,
while others use the data to obtain load estimates for further purposes. The studies are generally
conducted on limited geographical areas and for well-defined periods. The datasets used to obtain
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information on charging choices and load curves include charging point (CP) information, historical
charging session series, traffic monitors, travel surveys, users’ questionnaires, and EV information.
Data analysis approaches include statistical characterization, stochastic processes, and machine
learning.

Aggregated or disaggregated analysis can be used for the assessment of the demand. The
aggregated analysis does not generally consider the characteristics of the vehicle and/or the user. It
relies on data in which the charge requests are evaluated according to various recharge parameters,
such as time, location, power and, when available, state of charge of the battery (SOC). The
disaggregated analysis, on the contrary, starts from the “mobility profile” of individuals, often
correlating these data with the socio-economic information. While in principle it is possible to obtain
the disaggregated demand starting from the aggregated load curves [21], using the disaggregated
data allows for more precise analysis and calculation of the aggregate demand [22].

The works included in the review are presented according to the following scheme: first, we will
illustrate some recent review papers on EV charging; then, review the literature based on their
approaches to the charging behavior analysis: from the point of view of users’ preferences or from
the exploitation of the existing charging infrastructure.

The search was carried out using the keywords 'charging behavior’; 'EV charging’; 'charge
infrastructures usage'; 'EV user behavior'; 'EV charge'; and combinations of the previous ones on the
main search tools of scientific publications (Google Scholar, Internet Archive Scholar (IAS), CORE).
We limited the search to papers published after 2015, except for some particularly relevant works.
The search on Google Scholar and CORE used the “OR” operator between keywords. For IAS, the
string used is “charg* behav*” for the search in ‘Description’ field. Google Scholar returned around
24.400 results; 2.374 research outputs found in CORE; For IAS, we obtained 5,721 results. Out of these,
1098 were text. When we filtered for Subject!, only 84 texts returned.

We selected articles that specifically mentioned the charging behavior of EV users in their title
or abstract. From this selection, we further refined our search to include only those articles that relied
on survey data related to mobility and charging habits, charging infrastructures, or floating car data.
We excluded papers that only evaluated aggregated charging behaviors without analyzing
individual charging behavior patterns. Additionally, we disregarded studies that solely relied on
synthetic models to assess charging behavior and demand. Our research terms were comprehensive
enough to cover all types of charging except for those that are still in the early stages of diffusion,
such as wireless charging.

2.1 Review Papers

Defining user charging behavior is a complex task for several reasons. First, as already
mentioned, charge behavior is influenced by many factors that can be psychological, sociological,
demographic, or geographical or linked to the maturity of the EV market and the diffusion of
charging infrastructure. Secondly, the data from which to extract or infer these behaviors is limited,
as in the case of targeted surveys, or suffers from intrinsic limitations, such as, for example, mobility
data also relating to ICE vehicles or charging data relating only to certain operators or geographical
areas. Several review articles have addressed the problem of examining and classifying papers that
have dealt with the charging question. Patil et al. [23] examined the approaches and data sources
used to model charging behaviors aimed at their implementation in the planning of charging
infrastructures. Liao et al. [14] presented a review of studies to identify which characteristics of the
EV and its system of services, including the infrastructure system and policies to promote electric

! Subject and number of texts: Computing Research Repository, 26; Mathematical Physics, 18;
Chemical Physics, 17; Systems and Control, 10; Computational Physics, 9; Disordered Systems and
Neural Networks, 9; Information Theory, 7; Qualitative Research, 2; *CHEMICAL REACTIONS, 2.
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mobility, impact on consumer choices. Amara-Ouali et al. [24] reviewed open databases relevant for
EV charging demand modeling and gave an overview of the forecasting models, ranging from
statistical characterization, stochastic processes, and machine learning. An examination of the studies
on the charging demand impact on the energy distribution grid is presented in Deb et al. [5]. Jia &
Long [25] provided a collection of data sets on sales volume, driving, EV charging, and automotive
battery performance. The discussion includes the analysis of some EV models and types of EVSE, the
impact of EV charging behavior on the local infrastructure, and some smart charging optimization
approaches. Hardman et al. [26] analyzed studies on user interactions and preferences for charging
infrastructure, using data based on questionnaires, GPS data from vehicles, and EVSE data. Although
home charging emerges as the preferred option, the authors stressed that further analysis is needed
to determine the best strategy for developing the infrastructure needed to support EV rollouts. In
addition, Funke et al. [27] reviewed the studies investigating the medium-long-term demand for
recharging infrastructure, comparing the framework conditions in different countries to highlight the
differences. The authors conclude that public charging infrastructure seems necessary as an
alternative to home charging only in some densely populated areas. Daramy-Williams et al. [19]
reviewed the literature related to user experiences including driving and travel behaviors, vehicle
interactions, and subjective aspects of the user experience, including symbolic and social aspects such
as environmentalism, futurism, and social status. The current work focuses on the charging behavior
of private electric vehicle users, while disregarding aspects related to the impact on the network that
some previous reviews may have covered. The primary objective is to provide a comprehensive
overview of the different factors that can impact the users' charging demand. More specifically, our
objective is to verify whether it is possible to identify, within the literature, the variables that influence
charging behavior beyond context differences; mutually, we aim at verifying if and how, local
characteristics affect individual behaviors. Some recommendations on areas that require further
investigations are also given in the conclusions.

2.2. Analysis of Users’ Preferences and Needs

User preferences regarding charging can be detected directly, through surveys, or indirectly, by
analyzing mobility and travel needs from data collected by traffic acquisition systems or GPS.
Surveys usually provide disaggregated data, from which information on users’ characteristics can be
extracted, while mobility data are usually aggregated with none or limited information on users.

2.2.1. Survey Based Papers

A valid tool to investigate charging behavior are the questionnaires addressed to actual or
potential EV users. The questionnaires can explore various aspects related to mobility, such as travel
and charging habits, responses to policies, and attitudes toward EV. At the same time, they aim to
highlight possible influences of different parameters on the results, such as socio-economic,
territorial, infrastructural aspects, which are more difficult to identify or even undetectable using
other approaches based, e.g., on charge events or traffic data.

2.2.1.1. Travel Survey

Some questionnaires and surveys collect travel data from which it is possible to infer charging
behavior. In fact, the travel pattern of an EV user is a key factor in simulating and predicting the
distribution of charging demand. The validity of household travel surveys in estimating charging
load has been tested in the Swiss context in [28]. The study uses the results of a survey on ICE cars,
and assumes a complete transformation into EVs, both pure battery (BEV) and plug-in hybrids
(PHEV). The load curves obtained under this hypothesis are compared with the measurements made
in various field tests for the EVs, showing a good agreement. The charging decision scheme modeled
depends solely on the SOC. The same charging criterion is adopted by Igbal et al. [29] to determine
the power demand for residential EVSE. Using traffic survey data on ICE and assuming a transition
to EV, they classify daily usage based on different categories of car owners and provide an estimate
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of SOC based on distances traveled. The importance of travel choices in the charging decisions is
illustrated in Zhang et al. [11]. They explore the relationship between two models of causal choices:
in the first, the charging strategy is determined first and affects the travel chain; in the other, the
journey influences the charge decision. The preferences from about 500 questionnaires show that the
model in which the travel choice precedes that of recharging is more suitable for interpreting the
experimental charging curves.

Gao et al. [30] use mobility questionnaires explicitly devoted to EV owners to construct the
spatial and temporal distribution of stops as a function of destinations. Findings show that the
charging demand in residential area and workplaces are the largest, followed by public park lots and
curbside parking.

A survey on driving and ownership data is the basis of the charging demand estimation for
public infrastructure in urban areas where the domestic charging is not broadly available [31]. The
results reveal that nearly 78% of energy demand can be supplied by private CPs, of which 11%
provided by chargers installed in shared residential parking lots, reducing the need for public CPs
by up to 58%. For commuters without home charging, workplaces charging could lower the need for
public charging by 68%. DC fast charging would amount only to 3% of the total charging demand
due to the significantly higher cost and greater inconvenience of the dedicated stop. Charge demand
at workplace charging facilities is evaluated also in [32]. The survey outcomes show that slow
chargers in the workplace can almost completely meet the intra-city travel demand of private EVs,
even if the size of the city greatly influences the mobility patterns, and the charging demand curves
due to the different travel needs.

2.2.1.2. Users Charging Preferences Survey

Survey results are often combined with data from other sources to obtain even more reliable
charging behavior simulations, especially to account for the impact that variability of trips and
charging behaviors has on the estimation of aggregate charging demand [33]. The study reported in
[34] crosses the topographic data of various points of interest with the time users spend near them,
the average stop for daily activity, and vehicle fleet data. Data from travel surveys are combined with
those from the charging of an EV fleet to evaluate the impact of charging on the grid [35,36].

Other surveys-based studies explicitly focus on investigating users’ charging preferences and
which factors affect the decision. A joint research based on stated mobility and charging choices [37]
shows that the instantaneous SOC is the most important factor in influencing the decision to charge,
while the predicted SOC at the destination affects the route choice. Charging time, proximity to the
origin and consistency with the direction of travel significantly influence the charging station
selection process [37]. Users often recharge with SOCs above 50%, especially at home or work, and
the availability of slow charging at the destination leads to not considering the choice of fast charging
[38].

Results in [39] show that Korean consumers prefer charging mainly during the evening at home.
However, during peak hours, people favor fast public charging. Similar results are reported in an
Australian survey [40]: in general, charging habits are strongly influenced by costs, and drivers prefer
charging their EVs at home or work rather than at a public charging station. However, people with
travel commitments involving other family members prefer using a public charging station. Daina et
al. [41] investigate home charging preferences showing that the energy to charge has a positive
marginal utility in most cases, while the charging time has a more complex influence: most of the
users keep the vehicle under charge until they stay at home and do not to finish charging if this causes
delays in departure. The charge cost always has a negative marginal utility.

An extensive analysis of charging behaviors in the USA [42] collected data on location, time, and
power of charge events. 57% of users stated that they only charge at home, and 40% at home and
away from home, mainly at work. Most users start charging when they plug in their vehicle, but
around 20% use a timer to shift their EV load to off-peak hours. In addition, the higher the EV range,
the more likely the respondent is to use public charging.
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A stated choice survey and willingness-to-pay (WTP) analysis confirmed home charging as the
primary charging method, while public infrastructure was deemed insufficient [43]. The determining
factors in the charging choice are the price, the occupancy rate and the waiting time at the charging
infrastructure. An acceptable distance from the destination point to the charging infrastructure is 5-
10 minutes walking distance [43]. Other WTP analysis shows that it increases proportionally to the
CP power and its distance from the city center [44]. Dorcec et al. [45] obtained similar conclusions;
moreover, the lower the SOC, the more EV owners are willing to pay for charging. Attention to
environmental issues emerges in the positive correlation between the WTP and the portion of
recharge energy from renewable sources [46]. The willingness to participate in smart charging
projects that can reduce costs and increase the share of renewable energy has also been confirmed
[47]. Controlled charging is an efficient method to minimize peak demand and maximize the use of
renewable sources while reducing costs, although privacy concerns remain [48]. For this reason, user-
controlled charging is preferred over network operator-driven charging [49].

Fast charging represents an interesting technological solution that could positively affect the
diffusion of electric mobility. A stated preferences survey on users’ fast-charging choices on long-
distance trips revealed that SOC and the possibility to reach the fast station without deviations from
the planned trip are the primary factors influencing charging decisions [50]. A survey of EV usage in
Japan analyzed the SOC when fast charging begins during a road trip. Users' anxiety about charge
opportunities strongly affects this value, which varies according to the type of user and their activities
[51]. Based on a revealed preferences survey [52], the factors influencing the charging mode choice
are the battery capacity and SOC, the possibility to charge overnight, and the number of past fast-
charge events. In addition, the interval of days between the current charge and the next trip has a
positive effect on slow charging at home/company. With a survey of BEV owners, Wen et al. [53]
identify three basic types of charging behavior: triggered by price and need; replenish whenever the
opportunity arises; based on a wider range of factors, including charging power, dwell time and the
cost of home charging. It also emerged that the respondent majority is willing to pay more for fast
charging over slow charging. The preferences expressed on some social media by consumers
highlights that direct current (DC) fast charging is popular with consumers for reducing charging
times; vehicle range is a concern when traveling long distances or using air conditioners; private
charging is particularly appreciated by consumers, but is hampered by the lack of dedicated parking
spaces, especially in large cities [54]. From a questionnaire administered in Germany to owners and
potential users of electric cars [13], it was found that motorway service stations, shops and traditional
filling stations are optimal candidates for fast charging stations. A survey conducted by Globisch et
al. [55] suggests that is more important to build a fast charging network than strengthen the slow one.

2.2.1.3. Socio-Demographic and Psychological Aspects

Demographic and social attributes impact travel patterns and influence daily EV load profiles
[56]. In [57], a charging demand simulation method is proposed that considers people's demographics
and social characteristics, e.g.,, gender, age, and education level, as well as travel-related
spatiotemporal variables, which appear to have a considerable effect on the shape of the EV load
profile, particularly for working days and workplaces. Males and workers are generally more likely
to charge away from home while owning an ICEV beside EV appears to increase the likelihood of
only using home charging; age does not appear to have a statistically significant effect on the choice
of charging location [58]. Those who claim to have travel flexibility and those who perceive mobility
as a necessity tend to charge on the go. Drivers who plan their travels less tend to charge at home
instead [58]. Users who choose public charging have a high-income level, tolerate waiting in line and
travel long distances; conversely, consumers who prefer to charge home at night are sensitive to the
charging price [59]. Y. Zhang et al. [60] show that the choice of charging is significantly influenced by
socio-demographic variables such as gender and risk aversion, as well as by structural factors such
as travel chain, coverage of recharging facilities, travel distance, and perception of SOC. Choice of
CPs is affected by destination type, parking duration, charge price, next travel distance, travel chain,
SOC, and risk aversion [60].
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The aspects related to the charging experience are increasingly arousing the interest of
researchers. Asensio et al. [61] analyze the users' reviews collected online for public and private
charging stations. The results show that nearly half of users report a negative experience at charging
stations. The judgment of other users on the EVSE quality of service and their attitude to risk
influences the choice of the infrastructure, especially for younger and higher-income users [62].

An approach combining survey and EV data is presented in [63]. The charging choice is
influenced by sociodemographic characteristics, such as the type of home, income and age, but also
the availability of domestic charge or free charging in the workplace. Charging network subscriptions
has a positive impact on the likelihood of using public infrastructure [64]. Interestingly, commute
length is a significant factor only for PHEV owners and not for BEV owners [63].

An interesting notion in the psychology behind the charging behavior is the so-called user—
battery interaction style (UBIS) introduced by Franke & Krems [65]: users with low UBIS have a lower
awareness of the meaning of the energy level of the devices, which leads to recharge based on
contextual triggers rather than on the battery SOC. The correct assessment of the residual range is
linked to range anxiety. The same survey found that some personality traits, such as self-control and
low impulsivity, and greater technical competence were positively correlated with decreased
autonomy anxiety [66]. A survey on ICE and BEV users with varying levels of experience reveals that
stress levels for vehicle range are similar in the two groups, even though BEV users demonstrate
greater confidence in the vehicle and tank/battery indicators [67]. Conversely, Yuan et al. [68] found
that BEV drivers tend to have more range anxiety than ICEs if driving on a long journey. Connected
to the previous aspects is the attitude to risk in the charging choice [69]. The inclusion of the risk
attitude, in the form of a latent variable, improves the adaptation to the experimental data of the
developed forecasting model [11].

Some studies aim to investigate which actions can improve access to charging and users’
perception of the charging infrastructure as available, reliable, and sufficient for their needs. A pilot
experiment on dedicated neighborhood charging [70] shows that potential EV users value parking-
combined and bookable charging options within the city as of paramount importance, especially as
parking is a problem heard among EV users and not. A survey of stated preferences without a private
residential charging option finds that the most important aspects of public charging are closely
related to personal safety and proximity to home, especially if the service is used overnight [71].

With a view to a comparison with conventional mobility, Dixon et al. [72] analyses travel diaries
to quantify the inconvenience deriving from longer recharging times compared to the refueling times
of ICE cars. They verify that around 95% of people with access to domestic charge and medium-sized
EV batteries, can achieve equal convenience. That is not the case for people who rely only on
workplace or public charging, for whom a percentage of trips would become unattainable.

The effectiveness of policies to influence charging choices is of great interest to local or national
authorities, although the evaluation is not always simple. For example, the application of a fee is
generally effective in inducing users to move the car at the end of the charge, but the need for parking
can lead to nullifying the control action [73]. Another strategy for indirect control is to act on the
charge price with dynamic pricing. The response to this type of solicitation is heterogeneous among
different social groups [74].

In table 1 we present an overview of the studies presented in the section. We summarize the
information on the survey (SP: stated preferences; RP: revealed preferences; TS: travel survey; Web:
social media or web sites) and any other data sources used; the year and country of data collection;
the main topic of the study: tick on 'Users behavior' if the study focuses on charging habits of actual
or potential EV users; 'Infrastructures’ if the work also considers aspects related to the planning and
management of charging infrastructures, such as optimal location, power, ancillary services, impact
on the grid; 'Policies' if interventions for improving or boost electric mobility are explicitly
considered, such as intelligent management of recharging, variable prices, incentive policies.
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Table 1. Summary of the investigation based on survey (SP: stated preferences; RP: revealed
preferences; TS: travel survey; Web: social media or web sites).

SurveySourc Users Infrastructure Policie
Z Sample Size Year? Country Behavio s s Keypoints
r

Source

Relationship
Y. Zhang et al. between
[11] SP 494 respondents 2021 China ® ® travel chain
and charging
choices
Acceptance &
optimal
SP 252 respondents 2015 Germany o) o) location of
fast
charging.
Validation of
charge
. . profiles
Pare[sgg etal g 59,090 inhabitants 2015 SW‘tzeﬂa“ 0 derived from
mobility
questionnaire
s

Philipsen et al.
[13]

Classification
of EV daily
Over 30,000 use and

Igbal et al. [29] TS households 2016  Finland ° ° chargl'ng
behavior

based on
SOC
Demand
dominated
by charging
Gao et al. [30] TS 1,156 households 2021 China o) in the
residential
area and
workplace
Evaluation of

i i energy
Thingvad et al. TS 56,328 households 2014 Denmark o) demand @

[31] 2019 public &
private CP
Use of
charging
facilities at
the
workplace in
different
urban

X. Liu et al. [32] RP 141 prespondents 2021 China ° °

contexts
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Crozier et al.
[33]

Pagany et al.
[34]

Bollerslev et al.
[35]

Calearo et al.
[36]

Y. Yang et al.
[37]

Ashkrof et al.

(38]

Moon et al. [39]

Jabeen et al. [40]

Daina et al. [41]

TS+
charging
data

TS

TS+
charging
data

TS +
charging
data

sp

sp

sp

Sp

sp

2 milions trips

+ charging data of 213 2016

Nissan Leaf

Over 5000 households

2012-
2013

160,000 travel surveys 2012;

+ 10,000 Nissan Leaf
charging events

2015-
2016

160,000 travel surveys 2012;

+ 7,163 Nissan LEAFs
charging events

237 respondents

505 respondents

418 respondents

54 respondents

88 respondents

2015-
2016

2014

2020

2016

2012

2012

UK

Germany

Denmark,

Japan

Denmark,
USAJapan

China

Netherland
S

Korea

Australia

UK

Q

Impact of the
variability of
travel and
charging
behavior on
overall
demand
Optimal CPs
location
based on EV
drivers' route
choice and
charging
preferences
Coincidence
factor of
EV charging
given driving
and plug-in
behaviors
Quantify the
load impact
of domestic
charges on
distribution
grid feeders
Investigate
the mobility
and charging
choices of EV
drivers
Explore BEVs
drivers route
choice and
charging
preferences
Estimate EV
expansion
scenarios and
their
electricity
demands
Prevalence of
home and
workplace
charging
from
charging
habit
analysis
Evaluation of
the marginal



https://doi.org/10.20944/preprints202311.1706.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2023 doi:10.20944/preprints202311.1706.v1

11

utility of the
recharged
energy, of the
time and of
the cost of
the recharge
Analysis of
the private
charging and
plug-in
electric car

EPRI [42] TS 4,000 PEV owners 2016 USA o o )

market
Analysis of
charging
2020 Germany ® behavior and
EV
preferences
WTP vs
power and
SP 435 respondents 2014 Germany ) © location of
the charging
station
WTP for

IZIO rc[e;c;t SP 101 respondents 2019  Croazia ° different

Anderson et al. Around 4,000 EV
SP
[43] users

Plenter et al.
[44]

charging
options
WTP for
charging
SP 181 respondents 2016 USA o) © with
renewable
energy
EV smart
. . charging
Lagomarsino et SpP 222 respondents 2020 Switzerlan ° ) preferences
al. [47] d
and
strategies

Nienhueser &
Qiu [46]

Acceptance
Canada of energy
SP 1640 respondents 2015 o) © supplier-
controlled
charges.

Bailey & Axsen,
[48]

Acceptance

of two types

of controlled

SP 60 respondents 2020 UK ° ® charges: by
user or by

Delmonte et al.
[49]

network

operator
Factors that
influence the

choice of
location and

M. Xu et al. [52] RP 500 respondents 2017 Japan ©
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Wen et al. [53]

Y.-Y. Wang et al.

(54]

Globisch et al.
[55]

Fischer et al.
[56]

J. Zhang et al.
[57]

Latinopoulos et
al. [58]

Y. Chen & Lin
[59]

sp

Web

sp

TS

TS

sp

sp

315 respondents 20163 USA

59,067 pieces of 2011

consumer discussion 2020 China
data

1030 Ev drivers 2018 Germany

2008-
40.000 households 2009 Germany

Not specified 202009  USA

UK,

118 respondents 2017 Ireland

1907 respondents 2019 China

charging
method
Identification
of three
categories of
prevalent
charging
behaviors
Natural
language
processing
technology to
explore
consumer
preferences
for charging
infrastructure
Factors that
influence the
attractiveness
of public
charging
infrastructure

EV load
impact and
management
strategies at
different
parking
locations
EV charging
load
simulations
considering
user
demographic
s
Understand
the factors
influencing
the demand
for EV
charging on
the go
Factors
influencing
consumer
satisfaction
with
charging
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infrastructure

Relationship
between
RP+SP 494 respondents 2021 China © ) travel chain
and charging
choices

Y. Zhang, Luo,
Wang, et al. [60]

Evaluation of

. the degree of
Asensio et al. Web 127,257 reviews 2011- USA 00 00 satisfaftion of
[61] 2015 .
the charging
stations
Analyze the
influence of
previous
users’
satisfaction
SP 300 respondents 2021 China 00 with
charging
facilities and
risk attitude

of drivers

Y. Wang et al.
[62]

Impact of

battery size,
About 1400 range,
respondents + GPS & driving, and
2015- . . .

log data of 72 PEV 2018 California o) 00 charging
households for a full behavior on
year PEV energy

consumption.

Nicholasetal. RP+EV log
[63] data + GPS

Differences
in charging
7979 EY 2016- California behavior
Lee et al., [64] RP users (completed 00 among
2017 .
survey 15%) different
types of PEV
owners
Understandi
ng of the
psychological
SP+RP 79 EV users 2013 Germany ) dynamics
underlying
charging
behaviour

Franke & Krems
[65,66]

Investigating
range stress
SP 204 respondents 2018 Germany O] among ICE
and EV
users.

Philipsen et al.
[67]
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Yuan et al. [68]

Pan et al. [69]

Hardinghaus et
al. [70]

Budnitz et al.
[71]

Dixon et al. [72]

Wolbertus &
Gerzon, 2018
[73]

Latinopoulos et
al. [74]

Number of
articles for
thematic area

RP

sp

sp

TS

Sp

sp

208 BEV drivers

160 EV drivers

377 respondents

2001 respondents

39,000 travel diaries

119 respondents

118 respondents

2018 China o)

2018 China o1}

2021 Germany 00

June UK )

2012-
2016

2018 Neth:rland o0

2017 UK 00

39

)]

18

)]

@@

@@

11

Range
anxiety effect
on driver’s
emotions and
behaviors
EV drivers
charging
choice
models
incorporating
risk attitude
and different
decision
strategies
Pilot
experiment
on dedicated
neighborhoo
d charging
Use natural
language
processing
technology to
explore
consumer
preferences
for charging
infrastructure

Inconvenienc
e of the
duration of
the EV
charge
Effectiveness
of a parking
fee at the end
of the charge
Response of
EV drivers to
dynamic
charging
service
pricing.

2.2.2. Mobility and Charging Behavior Data

Mobility data is a valid source for extracting travel and transport habits in each area. The
quantity and quality of information can vary greatly depending on the methods used to collect and
record data. Mobility data can be combined with recordings of the charging events and information
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from the EV on-board instrumentation to provide a more comprehensive picture of the charging
behaviors [25]. Mobility data can identify the points of greatest attraction and the spatiotemporal
distribution of travels. In some cases, they can refer to ICE vehicles and are translated to electric
mobility with the hypothesis that journeys, especially in urban areas, do not change radically with
the transition from one type of powertrain to another [75].

EV charging preferences are the subject of various studies based on mobility and EV data. They
usually concentrate on initial and final SOC during charges, frequency of charges with respect to
distances travelled, or number and nature of stops.

Some work referred to an initial phase of EV diffusion. The prevalent use of charging at home
and work emerges in two studies [76,77]. Both studies show that the start charging SOC is, on
average, above 50%. Using static and dynamic data regarding EV and CP in over 10 European
countries, [78] found four main patterns of behavior, characterized by different temporal
distributions of trips and charges, depending on the type of EV and the location of the CPs.

Mobile telephony data integrated with census data, a survey on PEV drivers, and measurements
at the CPs have made it possible to build a high-definition space-time mobility model [79], which
detects how the charging behaviors follow the traffic trend, suggesting the absence of a charging
strategy. Furthermore, considering the SOC, the consumption, the charge time, and the distance
between successive charges, it emerges that EV users charge more frequently than necessary [80].
This result is confirmed by J. Yang et al., [81]: analyzing driving and recharging behaviors, they find
that the distances between consecutive recharges are in general shorter than the average daily
distances, indicating a tendency to charge whenever there are convenient opportunities, regardless
of the remaining range. This behavior is comparable with what obtained in [82], and with the results
in [83] that highlights a high daily number of opportunity charges. The risk analysis of the interval
times between recharging events shows that both vehicle attributes, such as state of charge, distance
traveled, average driving speed, and individual characteristics (range anxiety, age, and purpose of
travel) significantly influence the instantaneous rate of occurrence of charging events [84].

The vehicle usage also influences the charging behavior, with commercial EVs charging after a
trip more often than private ones, with a tendency for private BEVs to synchronize charging with the
cheapest electricity rates [85]. Regarding fast charging, users generally prefer stations that require a
shorter detour and are greatly influenced in their choice by the residual SOC [86].

Different approaches have tried to classify private charge behaviors applying statistical analysis
techniques [87,88], clustering [89,90], or data mining [91], substantially confirming the prevalence of
slow night charging on weekdays. Using aggregate analysis of charging demand one can gain
insights into the charging behavior of different types of users [92]. For example, [93] find that the
probability of using public charging in a given area is proportional to the average number of cars per
household, and inversely proportional to the percentage of private homes in the residential area
considered. Powell et al. [94,95] provide a model for estimating the aggregated charging profile of
different driver groups whose charging behaviors are clusters derived from a large data set on
workplace, public and residential charging.

Charging choices are obviously also influenced by charge costs [26,96,97], or the possibility of
using the free parking [98], which can be used to influence charging preferences [99].

2.3. Analysis of the Infrastructure Usage

Charging data directly provide the load curves at the stations, allowing a detailed analysis of
the request distribution. Studies based on this data often aim at reconstructing or estimating the
spatiotemporal distribution of the energy demand for charging rather than characterizing individual
recharging behavior, and the granularity of the data reflects in the detail of the result and the speed
of the model response. Historical series of customer charges provide relatively faster predictions than
those collected at EVSEs, however posing more problems for privacy [100]. In general, both datasets
generate comparable prediction errors. Although charging and mobility data are commonly used for
general analysis, they can also provide insight into specific charging behaviors within the analyzed
context. Other studies are explicitly devoted to highlighting charging preferences, and they often rely
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on multiple source data. Detailed spatio-temporal patterns of charging infrastructures usage emerge
from the analysis of EVSE and traffic data, which are more laborious to obtain from a disaggregated
analysis. Regarding the temporal distribution of charging events, data from EVs revealed a
prevalence of nighttime charging for private EV [101]. Home charging mainly starts in the evening
and lasts until the next morning, and charging at work is concentrated in the morning on weekdays
[89,102,103]. Public charging is distributed throughout the day, but is energetically marginal [102],
with prevalence of fast charging during the day and slow charging at night [104,105]. Furthermore,
residential charging seems to be less influenced by seasonality, while the use of public charging
stations changes at different times of the year, especially in relation to holiday periods [103,106].
Weather also influences the use of public stations [87,107], as do extraordinary events and traffic
information [108]. Daytime and weekday public charging occurs mainly at alternating current (AC)
charging stations, while direct current (DC) fast charging stations are more popular at weekends
[109]. The temporal distribution of usage also depends on the vocation of the area where charging
stations are located [110]. In general, fast charging stations show a higher usage rate than public level
2 charging stations [103,111], making higher profits due to better margins [109]. However, the
utilization rate of DC stations appears to decrease as one moves towards rural areas [112]. The low
utilization rate of AC stations is also due to the stationary times much higher than the charging times
[113-115]. This behavior could indicate that consumers are not yet aware of the time required to
recharge their vehicles or consider parking a primary need, even with respect to recharging [73,116].
Conversely, charging behavior at fast-charging stations is more similar to normal refueling behavior,
with short connection times aimed at the ability to complete the intended journey [73]. Domestic
charging has a longer dwell time than other CPs of equal power, while at commercial premises the
dwell time is short, probably because these are opportunity recharges [116]. The arrival time,
permanence and inactivity at public CPs differ depending on whether the charge takes place near the
home, work or in a parking lot [108]. Furthermore, the distribution of the recharge on the days of the
week appears to be different according to travel habits and travel destinations in different areas of
the same country [98]. For example, Chinese research [117] identifies the most frequent charging
behavior with commuting: charging starts when the car is parked, between 8:00 and 10:00 and lasts
on average 4 hours. Evening or nighttime charging behaviors account for 26% and 21% of total
charging. The most frequent behavior (30%) is identified with commuting: charging begins when the
car is parked, between 8:00 and 10:00. The average recharge lasts about 4 hours. Evening or nighttime
charging behaviors account for 26% and 21% of total charging.

For home charging, the research interest is mainly concentrated on the hourly distribution of
recharges since the power levels involved are generally limited. Domestic charges concentrate in the
evening and at night [111,118], with peaks in correspondence with the time slots before and after
work [80,119]. The SOC at the start of charge shows a wide range of values, with a tendency to charge
fully the battery [120]. The influence of electricity pricing on the temporal distribution of charging is
addressed in [121] using machine learning techniques. Data from smart electricity meters are often
used to extract EV load curves [122-125]. Cars with higher capacity batteries seem to favor home
charging [116].

As far as workplace charging is concerned, this represents a valid charging opportunity,
especially when it is perceived as cheaper than charging at home or when this is not available. Usage
shows regular patterns on working days, with a low rate of exploitation on holidays [126,127].

In [128], the application of a data mining model allows to study the shape of the typical daily
profile, the predictability with respect to weather conditions and the trend of the EV charging
demand.

In Table 2 we present an overview of the papers that explicitly cited the database used in the
work. The sources are classified as: charging data, registered at the EVSE; mobility data, which
represent traffic or GPS or EV onboard monitor units log data; Other data, if sources different from
the above are included in the study. Although cited in the papers, some of the resources are no longer
available at present.
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Table 2. Sources of charging and mobility data for some of the cited studies.
Authors Charging  Mobility Other Data Period?  Country Resource
Data Data
Y. Xu et al. Mobile . . http://www.nrel.gov/tsdc?
201 lif
[79] phone data 018 California http://nhts.ornl.gov 4
. . S 5
Weldon et o 2011-2015  Ireland http.//educatlon.greenem9t10n p'ro]ect.eu/
al. [80] http://www.greenemotion-project.eu/®
Miartz,et al. https://www.mdpi.com/article/10.3390/en15
201
[83] ° ° 019 Germany 186575/s!
Daina & Users https://innovation.ukpowernetworks.co.uk/
© 2014 UK .
Polak [84] survey projects/low-carbon-london/?
.Ki
Sa | ‘;;‘7? 0 0 2010-2014 Netheralnds https://elaad.nl/en/?
Y. L[nglle]zt al. ) 2018 UK https://data.dundeecity.gov.uk?®
ingh et al.
Sm‘?g 9? a ) 2020  Netherlands https://elaad.nl/en/™
https://crome.forschung.kit.edu/english/ind
eX.phpErrore. Il segnalibro non ¢é definito.
2011-2013
Schéuble et https://www .izeus kit.edu/english/"
o ° 2012-2014 Germany ..
al. [92] 2013-2015 https://www.isi.fraunhofer.de/de/competen
ce-center/energietechnologien-
energiesysteme/projekte/Get_eReady.html'2
Kim et al. o 001 Korea https://www.data.go:kr/data/l5076352/0pen
[98] api.do’®
Dodson & 2017 - https://www.nationalgrideso.com/industry-

o) UK information/connections/customer-

Slater [102] 2018 connection-events !
Hecht et al. 2019 -
. 3 15
(109] © 001 USA https://doi.org/10.17632/ddv53zsf9m.1
Sadeghlanp ° Users 2015  Netherlands https://elaad.nl/en/16
ourhamami survey

2 If the survey period is not explicitly reported, we use the year of publication.
3 Access on 30 July 2023

4 Access on 30 July 2023

5 Access on 30 July 2023

6 Access on 30 July 2023

7 Access on 30 July 2023

8 Access on 30 July 2023

9 Access on 30 July 2023

10 Access on 30 July 2023

Jun

-

Ju

-

—

—

1 Access on 30 July 2023
2 Access on 30 July 2023
3 Access on 30 July 2023
4 Access on 30 July 2023
5 Access on 30 July 2023
6 Access on 30 July 2023


https://doi.org/10.20944/preprints202311.1706.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2023 doi:10.20944/preprints202311.1706.v1

18
et al. [106]
Flammini et
al. [113]
Gerossier et
. 17
al. [118] 2015 Texas https://dataport.cloud/
Yi& 2011 - https://avt.inl /content/pubs-az.html4E
Scoffield, o o - USA ps://avt.inl.gov cc;sn ent/pubs-az.htm
[121]
Asensio et https://doi.org/10.7910/DVN/QF1PMO
al. [126] ° 2020 UsA [122]
Z.]. Leeet 2016-2018 California https://ev.caltech.edu/dataset 20
al. [127]
Xydas et al. .
[128] ® 2012-2013 UK http://www.pluggedinmidlands.co.uk?
Mandev et 2011 -
. 22
al. [132] ® 2020 https://www.voltstats.net/
3. Results

The literature presents a diverse view of private charging behavior, which can be attributed to
various factors [83]. One such factor is the early stages of electric mobility in certain countries,
resulting in limited data for analysis. Additionally, charging behavior depends on mobility needs,
which are influenced by socioeconomic and geographical factors, as well as available infrastructure
in the region [24,129]. Despite the heterogeneities, some charging behavior patterns are identifiable
across several studies [78,79,101], that we will summarize in the following.

3.1. Influence of Mobility Choices

Commuting routines and planned trips have a significant impact on EV charging choices.
According to studies, charging habits tend to follow traffic patterns, indicating a lack of a well-
defined charging strategy. As a result, EVs are often charged immediately upon arrival, leading to
spikes in demand [30,79]. A distinction concerns the decision of charging during the journey or at the
destination. Charging on the go can influence route choice, as it can involve detours to reach a CP,
and mainly concerns occasions when EVs cannot complete the journey with the available battery
energy. The increase in battery autonomy made this occurrence usually uncommon in urban areas
[62].

The charging decisions for electric vehicle (EV) owners are influenced by their travel choices,
which in turn are affected by various factors such as personal preferences, income, age, gender, and
education level [29,129]. The duration of scheduled stops is a significant factor that impact the
charging decision. Longer stops increase the likelihood of EV drivers charging their vehicles [53].
Parking time also impacts on charging choices: private chargers are usually used at night, and public
charging is generally done during the day. Additionally, the selection of a charging station depends
on various factors such as charging duration, proximity to the origin, and consistency with the
direction of travel [37].

17 Access on 30 July 2023
8 Access on 30 July 2023
9 Access on 30 July 2023
20 Access on 30 July 2023
21 Web site access returned an error (30 July 2023).
2 Access on 30 July 2023

o

[

N
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Regarding driving habits and distances traveled, EVs are often used for urban journeys with
limited mileage [58,80,105]. A European study found that 75% of observed cars travel less than 47 km
daily, while rental EVs travel a daily average of 66.5 km [78]. In urban settings, [101] find that over
71% of distances traveled were less than 15 km, and about 76% of parking events lasted less than 1
hour. An early English trial [141] finds that the length and average duration of the journey are 9 km
and 15 minutes, respectively. A UK survey shows that only 10% of respondents drive more than 40
miles a day, around 30% use EV for their daily commute, while around the same percentage use it
between 4 and 6 days a week [58]. In EU, 97% of EV drivers use their vehicles daily or several times
a week. Their EV are mostly new (67%) and privately owned (70%) [12].

Studies also show a difference between the charging habits of PHEVs and BEVs [57,61,64,118].
Both types of EVs use home charging as the main source of energy supply [64,87,116]. The analysis
reported in [142] on the recharging behavior of PHEVs in North America highlights the habit of night
recharging and the non-intensive use of additional recharging. Hardman et al. [26] reports that
PHEVs recharge less often than BEVs at public stations or along long-distance corridors. Overall,
long-range BEVs connect more frequently than short-range ones, while the opposite is true for PHEVs
[61]. PHEVs generally recharge at lower SOCs than BEVs [116].

3.2. Use of Infrastructure

Charging behaviors cannot ignore the availability and composition of charging infrastructures
and the context of the area analyzed. This means that the results obtained for specific geographical
areas in the literature have limited applicability to other countries. Nonetheless, there are some
charging behaviors that are common among most EV users, such as the predominance of home
charging, where it is available [26], and the important role of workplace charging infrastructure for
EV commuters [27,64]. Concerning the choice of where to charge, generally, public charging
infrastructures are used differently depending on their location in the city [112]. According to a Dutch
study on public CPs [106], roadside charging accounts for 62.86% of all sessions, while charging near
home is 27.84%, and charging sessions near work cover 9.3%.

The general preference for home charging emerges in many studies [26,132], followed by
workplace and public charging [26,111,133]. According to the IEA, approximately 89% of charging
stations are private, located in places of convenient access, such as at home or in offices [1]. According
to a survey by the European Alternative Fuel Observatory (EAFO), 76% of EV users in the EU charge
at home, while around 20% do so regularly at work [132]. This results is in line with what obtain in
the UK [58,134], and in Germany [13], although with some variations in the percentages distribution.
In the USA, about 80% of recharging takes place at home [82,135], and about 50% drivers use it
exclusively [61]. In addition, in British Columbia most users have access to home charging [20]. The
availability of CPs at work represents an important opportunity [77], especially for users without
access to home charging [132]. Users who charge exclusively at work usually have unlimited free or
paid access to work CPs [61]. However, free or over-subsidized charging can lead to inefficient use
of the CPs if there is no incentive to move a vehicle after the charge is over [136], and it can encourage
plugging in even if the remaining range is enough for subsequent trips, creating congestion for
chargers [118]. Furthermore, free charges are not financially viable and could discourage future
charge investments by employers. Therefore, suitable pricing policies can significantly influence the
use of charging in the workplace [127,136].

Public charging infrastructure can be a valuable alternative for areas with limited home
charging options, particularly in densely populated urban areas [31]. Personal safety and proximity
to the home are the most crucial factors in public charging replacing private charging, particularly
during nighttime usage [71]. Additionally, public charging infrastructures are used differently
depending on their location [112]. In [106] state that public charging along the streets accounts for
62.86% of all sessions, while charging near work is 27.84% of the total, and charging sessions near
home makes up 9.3%. Public and corridor charging stations are the least used types of infrastructure
[26,113]. The overall analysis of charging demand reveals that the likelihood of using public charging
within a given area is proportional to the average number of cars per family and inversely
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proportional to the percentage of private homes in the area [93]. Fast charging is a promising
technological solution that can positively impact the spread of electric vehicles. By reducing charging
times, it can potentially increase user acceptance of electric mobility. A questionnaire conducted in
Germany revealed that motorway service stations, shops, and traditional refueling stations are ideal
locations for fast charging stations. EV users are willing to take a detour to find fast charging stations,
but they reject waiting time [13]. Users are also willing to pay more for fast charging compared to
slow charging [53,55].

The connection profiles differ between weekdays and weekends, with about 25% of the total
energy supplied during the weekend [113]. Another characteristic that emerges is that the dwell times
at the CP are generally much longer than the actual recharge time, with inactivity percentages
ranging from about 40 to 75% [78,79,113]. The idle time, i.e., the period an EV is parked without
charging, last on average 4 hours, although it depends on the CP position and its charging power
[73]. Slow charging points typically have much longer dwell times than fast ones [111,112], leading
to high operational inefficiency [73,112,137,138]. In general, the shortest stays are recorded at road
CPs and the longest in office and public access car parks [78] and at residential CPs [103]. As a result,
the average charging power rates are often significantly lower than the nominal power [109,112].

The temporal distribution of the recharge depends on various factors, including geographical
and social variables (work start and end times, commuting rate, etc.). However, a peak can usually
be observed in the morning when leaving for work and later when arriving at work, and in the
evening when returning home, especially for slow charging [104,128] and domestic [143]. On
weekends, domestic charging is more evenly distributed throughout the day [108]. Fast charging is
used more during the day [104] with very short idle times of 48 min average [106,137]. In [81], they
find pattern in the temporal charging distribution, with the mean and median being around 14:00,
and some groups preferring to charge at night. It emerges from some studies that charge occur less
than once a day and with periodicity of approximately 24 hours [78,79], although Yang et al. [81]
reports an average number of charges in days of use of 1.1. At home, about 70% of cars charge only
once a day, and three or more daily recharges are highly unlikely [119,120].

Fast DC stations show a utilization rate nearly three times higher than AC CPs [103,109]. Indeed,
European EV owners consider charging speed one of the most important characteristics of a public
CP. However, the frequency of use of fast chargers is 10% in the EU, compared to 21% for public slow
chargers [132]. This result may be attributed to a minor diffusion of fast chargers compared to slow
ones. An adequate public charging network seems to favor the adoption of electric mobility
[1,55,75,139,140], but there is no unanimity which alternative between slow or fast is more important
for the diffusion of electric mobility [31,55,75].

The usage patterns of electric vehicle charging stations differ depending on whether they are
residential or public. Residential charging occurs mainly at night and is spread out evenly across the
week. Public charging, on the other hand, happens mostly during the day and is concentrated on
weekdays [103]. Public charging usage is also affected by seasonal changes, with holidays having a
particularly significant impact. AC charging stations are more frequently used for weekday and
daytime charging, while DC fast charging stations are more popular on the weekends [103,105,106].
The temporal distribution of public stations usage also depends on the vocation of the areas where
they are located [110].

3.3. Sensitivity to Costs

When and where to charge depend on the service cost. The charge price negatively affects the
infrastructure choice, while the parking opportunity has a positive effect [62,69]. However, some
users are more time sensitive and do not wish to deviate to save money [58]. The possibility to pay
by credit card at public charging stations also appears to be an important factor for EU BEV drivers
[132]. Drivers often prefer to charge electric vehicles at home or work rather than at a public charging
station, as the price is lower [26,40,96,97]. Offering reduced charging prices during certain time slots
can have a positive impact on the choices made by infrastructure users, even if the savings are
marginal [99]. However, free charging at work can lead to unintended consequences, as it can


https://doi.org/10.20944/preprints202311.1706.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2023 doi:10.20944/preprints202311.1706.v1

21

encourage people to connect even if the residual autonomy is sufficient. This can result in congestion
at charging stations, which can cause inconvenience to those who need to charge at work to complete
their daily commute [97]. Moreover, providing free charging is not financially sustainable and may
discourage employers from investing in charging infrastructure in the future.

3.4. Classification of Charging Behaviors

The identification of groups of users with similar charging behaviors can be helpful in
determining charging demand under different scenarios.

Applying clustering techniques to a set of charging sessions revealed four prevalent charging
behaviors. The first is the morning behavior, with an average connection duration of 8.5 hours, which
is primarily associated with charging at work. The second is the daytime behavior, with an average
duration of 1.5 hours. The third and fourth behaviors are afternoon and evening charging, with an
average duration of 4.5 and 15 hours, respectively. These charging behaviors are mainly identified
with home charging [89]. The analysis of approximately 5 million charging transactions at public
charging points identified 13 main behaviors. The most prevalent of these are night-time charging at
home and charging at work. For quick charges, there is a variety of behaviors linked to different types
of users and purposes [90]. According to a survey of electric vehicle (EV) owners in the United States,
there are three main types of charging behavior. The first type charges their EV based on price and
need, while the second type recharges their vehicle whenever there is an opportunity. The third type
considers a wider range of factors such as charging power, dwell time, and the cost of home charging
[53]. Another study by Y. Liu et al. [91] classifies EV charging behavior during weekdays, weekends,
and holidays for a month in 2018. The findings show that the largest group of users recharge their
EVs primarily during weekdays after dawn, with slow recharges and small amounts of energy.
Meanwhile, on weekends, most users start charging mainly after sunrise, with short charges but with
a high amount of energy.

In a study conducted by Siddique et al. [116] on 821 charging stations in Illinois, correlations
between charger/vehicle characteristics and charging behavior were analyzed. The results indicate
that home charging has a longer dwell time than other charging points at the same charging level,
while at commercial destinations, the dwell time is short, which may indicate that customers use
these charging points for opportunistic charging. The study also found that charging sessions are
generally shorter on weekdays and in the morning than in the afternoon. Cars with higher capacity
batteries show longer dwell times and are more likely to recharge at home. At DC chargers, dwell
times are the lowest, and the initial state of charge (SOC) is more than 20% lower than other chargers,
which may indicate that fast charging is used only when needed.

Although home charging is preferred in general, studies show fast public charging is preferred
during peak hours or beyond daily routine [39,40].

3.5. Autonomy and Charging Anxiety

The perception of SOC is closely linked to the evaluation of the EV residual autonomy and varies
from person to person based on their choice of charging. Accurate assessment of residual autonomy
is associated with the concept of recharging anxiety [66] and risk attitude [11].

Overall, the studies place emphasis on battery SOC, charging time and prices. The battery SOC
is considered among the most influential factors when modeling the charging choices
[28,30,38,45,84,130,131], although its distribution at the beginning of the charge seems to depend on
the type of charging infrastructure used: the higher the power, the lower the initial SOC [131]. From
the data collected in pilot studies, surveys, or recharging data, we can see a tendency to recharge
when the SOC is quite high, around 50%, even if the range is sufficient to complete subsequent trips
[58,76,78], which means that users tend not to use the full capacity of the battery, but connect the
vehicle as soon as they have the opportunity. This tendency is particularly true for home or private
charging, especially for overnight charging [101]. Morning charging near multi-family homes occurs
with a lower initial SOC than charging at single-family homes [116], and public charging, especially
fast ones, has the lowest initial SOC values [105,116,128]. Users tend to overestimate the importance
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of the battery SOC in the charging decision, particularly for short trips [47], and tend to charge the
battery at high SOC [81,92,101,104,112,116]. These findings may suggest that people tend to charge
based on the availability of charging opportunities rather than necessity. Additionally, one may
overestimate the need for charging by focusing on the state of charge (SOC) instead of the available
range, especially for shorter trips and larger batteries.

Risk attitude is another important element in the charging behavior characterization: risk
aversion leads to focus mainly on the remaining range, while risk-tolerant users tend to balance the
cost of recharging with the remaining battery autonomy [69]. The degree of recharging anxiety
depends on many factors, such as infrastructure availability, travel plans, and understanding of the
battery [58]. Technological knowledge, driving experience, and risk aversion play a positive role in
alleviate this stress [62,67,68]. However, range stress also depends on other factors, such as the
driver's gender, and age. Two studies have produced conflicting results on the relationship between
gender and risk perception. While one study conducted by Y. Wang et al. [62] found that women
tend to exhibit more cautious behavior than men, it is difficult to establish a correlation between
anxiety about autonomy and other socioeconomic variables. On the other hand, another study by
Daina & Polak [84] found no significant correlation between gender and perceived risk level, while
highlighting a correlation with age.

Distances between consecutive recharges tend to be shorter than the average daily distances,
which suggests that EV drivers prefer to recharge whenever they have the opportunity, irrespective
of the remaining range [81,82]. Most private EV users charge their batteries almost completely,
indicating a preference to maximize the amount of electricity obtained from each charging event
[101,112].

3.6. Socioeconomic, Cultural, Environmental and Experiential Factors

Conducting questionnaire surveys with users is a useful tool to analyze the various factors that
affect their private charging behavior. However, due to the complexity of the topic and the challenges
involved in isolating the influence of different variables on behavior, it can be challenging to provide
conclusive results.

A study conducted by Xu et al. [52] explored the factors influencing the choice of charging mode
and location among around 500 BEV users in Japan. The study found that the battery's capacity and
state of charge, the possibility of overnight charging, and the number of previous fast charging events
were the key factors influencing the users' choice of charging mode and location. Additionally, the
interval between the current charge and the next trip positively impacts in choosing slow charging at
home or work. Another survey conducted by Anderson et al. [43] among approximately 4,000 EV
users identified the price, occupancy rate, waiting time, and distance of the charging infrastructure
from the point of interest as key determining factors in the choice of charging. In another study [41],
a random utility model was proposed based on stated choices for home charging preferences. The
results of this study indicated that the amount of energy to be recharged had a positive marginal
utility in most cases, while the actual charging time had a more complex influence. Most users
preferred to keep the vehicle charged as long as they were home and avoided ending the charge if it
caused delays in departure. The charging cost, on the other hand, always had a negative marginal
utility.

A recent survey conducted in California analyzed the charging behavior, mobility, and car
diagnostic data of EV owners and lessees [63]. The survey revealed that individuals charging their
EVs only at home were typically high-income individuals, seniors, and owners of single-family
homes. They owned BEVs with a greater electric range and did not have access to workplace chargers.
Renters with higher education were more likely to use workplace charging to top up. On the other
hand, EV users who only charged their vehicles at work were more likely to have unlimited free or
paid charging at work. The group of users who relied solely on public grid charging typically
consisted of low-income renters (compared to other BEV owners) who owned a Tesla and had
multiple drivers in their household. Lastly, young BEV owners with access to free chargers at work
were more likely to use all types of charging facilities.
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According to the concept of User-Battery Interaction (UBIS) analyzed by Franke and Krems [65],
the psychological approach to charging users is different for those with low and high UBIS. Users
with low UBIS have a lower awareness of the battery level of their devices. Thus, they tend to
recharge based on contextual triggers rather than on the battery charge level, which is the case for
users with high UBIS. Moreover, the survey revealed that personality traits such as self-control, low
impulsivity, and greater competence towards the system were positively correlated with reduced
autonomy anxiety.

Latinopoulos et al. [58] found that men are more likely to charge their electric vehicles away
from home compared to women. However, age did not appear to have a significant impact on the
choice of charging location. Working individuals were more likely to recharge outside of their homes,
most likely due to the availability of charging opportunities at their workplaces. Those who have a
conventional ICE vehicle are more likely to use home charging exclusively. In contrast, EV owners
tend to charge only at home, while those who rent EVs are more likely to charge in different locations.
The study also found that free charging outside of the home reduces the use of home charging and is
positively correlated with trip planning. People who consider travel as a necessity or have flexibility
in their travel plans tend to charge outside home, while those who don't plan their travel choices
much tend to charge their vehicles mostly at home.

Recently, the service experience at the charging stations has been recognized as influential in the
charging decision process [45,62,98]. Analyzing the impact of the service level of charging stations on
user choice, it emerges that the high satisfaction score of previous users and the short queue time
attract more EV drivers [62]. The study identified two types of decision-making models among the
participants: (1) those who prioritize service quality, which represents the majority of the
interviewees and includes younger drivers with more driving experience and higher income, and (2)
those who consider multiple factors such as range, parking time, and charging fee, known as
pragmatic drivers. A recent study [59] revealed that individuals with higher income levels who travel
longer distances tend to opt for public charging infrastructure. On the other hand, those who prefer
charging their electric vehicles at night and are more sensitive to the charging price are likely to be
more satisfied with private charging infrastructure.

Furthermore, the choice of charging at public charging stations is directly influenced by the
weather conditions [98], environmental conditions, comfort, or any faults at the EVSE, [45] which
means that the comfort of charging stations is not a trivial factor. These studies emphasize that the
service level and users’ satisfaction are relevant in the EVSE choice.

Controlled charging is a useful way to reduce peak demand and make the most of renewable
energy sources. While people generally accept overnight charging controlled by energy suppliers,
some have concerns about privacy. The cost incentives offered by controlled charging are well-
received by users, but the goal of maximizing renewable energy use has been less successful [48]. A
recent study by Delmonte et al. [49] found that participants were willing to accept controlled charging
only if it led to significant reductions in charging costs. Moreover, participants preferred a user-led
strategy over a network manager-led one because it was perceived to have a lower risk of not fully
charging a vehicle at the required time.

The effectiveness policies capable of influencing charging choices is of strong interest to local or
national authorities. Applying a tax is generally effective in inducing users to move their car when it
runs out of charge. However, the behavior is not unique, but three categories stand out: subjects
sensitive to the application of the tariff, users who move the car regardless of the tariff, and those
who do not move the car, regardless of the established fee level [73]. The latter may be more sensitive
to the scarcity of other parking opportunities, and mostly drivers who rely on charging at public
infrastructure. Indeed, a pilot experiment on dedicated neighborhood charging shows that potential
users of electric vehicles value charging options combined with parking and bookable within the city,
especially because parking is a problem felt among users of electric and non-electric vehicles [70].

Another strategy for indirectly controlling charging is to act on its price. The work in [74]
examines user response to dynamic charging pricing. Respondents could choose whether to book
now with a guaranteed price or wait for a better rate but taking on the risk of an increase in costs,
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with a known probability. Most of survey participants, particularly those who were older or had a
fixed job, preferred a certain price to an uncertain one. Parents, people with a higher education level,
and those who have been driving EVs for longer are more likely to exhibit strategic behavior.

4. Discussion

Transport contributes largely to noxious emissions, both greenhouse gases and local pollutants.

The electrification of vehicles leads to a significant reduction of these impacts. A reliable and available

charging infrastructure is essential to facilitate the diffusion of electric vehicles. Consumers are

becoming more environmentally conscious and are seeking sustainable transportation options. To
ensure a smooth transition, it's important to understand the commuting and travel needs of users
and how well these needs can be met by electric vehicles. To this end, many studies have been
dedicated to analyzing the recharging of EVs, both for public, commercial, or private vehicles.

Examining what influences private charging behavior is possible through user surveys and analysis

of mobility and charge data. Due to the vastness of this topic and the difficulty in isolating the impact

of various variables on behavior, it is challenging to provide definitive results. Several factors
influence charging decisions, including gender, risk aversion, type of travel, availability of charging
stations, travel distance, and SOC perception. Destination, parking duration, charging time, price,
subsequent travel distance, and travel chain type all impact EV charging [11,26,60,97].

The study of the private users charging behavior is far from being exhaustive, which can be
ascribed to various reasons, among which there are:

1. At present, most studies investigating charging habits include only few social and demographic
groups, excluding many potential users who may have different charging needs and attitudes.
Further exploration is needed on the issue of different charging preferences based on gender
[71,144]. Despite charging infrastructure manufacturers' efforts to make their systems compliant
with the needs of disabled individuals, there has been no research the authors are aware of
conducted on the charging needs and preferences of impaired people. This is a critical gap that
needs to be addressed. Additionally, academic research often overlooks EV users in rural areas
[145], whose charging habits may have a greater impact on the grid than their urban counterparts
[146].

2. Charging behaviors also depend on the social and cultural frame and the topographical structure
of the urban environment. According to research, personal safety, socio-demographic
characteristics, and environment are relevant factors influencing the selection of charging
infrastructure, and the willingness to pay and walk [13,53,67,71]. The topology of the urban areas
can influence charging preferences. In urban areas with limited access to home charging, parking
availability can positively impact infrastructure choice despite charging costs [54,62,69,70,73,98].
Therefore, it is critical to understand these factors and create effective strategies tailored to the
specific needs of each community.

As for the evaluation of the energy and power demand from EV in future scenarios, some aspect
of the investigation should be considered:

3. Inferences of EV from ICE behavior should be treated carefully, as there may be a lack of
understanding and familiarity with electric mobility. Conclusions should be carefully weighed
against knowledge of EV owners' behavior.

4. Charge behaviors also depend on the available infrastructure. Changes in the deployment,
number, and technologies available for EVSE could significantly change charging behavior. An
example is wireless charging, a technology that can simplify charge operation [147,148].

These topics can be further explored with new and more comprehensive data available and
combining different information sources, such as mobile apps for charging management and
reservation. A promising line of study employs users’ reviews to obtain information on charging
preferences and user needs, also for the optimal design of charging infrastructure and services [54,61].
Using this data can help examine the possible obstacles and desires in the usage of the infrastructure,
especially public ones, by various users, with special attention to the most fragile categories. It is also
interesting to inspect the relationship between charging behavior and infrastructure technology to
comprehend the different use of the same type of structure that emerges from some studies. These
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further investigations will allow decision-makers to plan a more efficient public charging structure,
implement actions to encourage developing private charging infrastructure, and design mobility
plans that favor sustainable mobility solutions.
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