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Article

Tunneling, the Equilibrium Constant, and Epicatalysis:
A Second-Law Paradox?
Jack Denur 1,2

1 Department of Physics, University of North Texas, 1155 Union Circle # 311427, Denton, TX 76203-5017, USA;
jackdenur@my.unt.edu; Tel.: +1-214-675-6599

2 Electric & Gas Technology, Inc., 3305 Main Street, Rowlett, TX 75088-4983, USA

Abstract: Consider one particle (which could be an atom, molecule, Brownian particle, etc.) in
thermodynamic equilibrium with a heat reservoir at temperature T. This particle can be in a low-
potential-energy well L whose energy floor is EL and whose degeneracy is GL or in a higher- (or at least
equally high) potential-energy well H whose energy floor is EH and whose degeneracy is GH . L and H
are separated by a barrier B, which the particle can traverse. The Second Law of Thermodynamics
asserts that the ratio of the probability of this particle being in H to that of it being in L, i.e., the
equilibrium constant Keq corresponding to its dissemination between the two wells L and H, is in
accordance with the Boltzmann (or canonical) distribution: Keq = (GH/GL) exp[−(EH − EL)/kT].
Given thermodynamic equilibrium this indeed always obtains if transits between L and H occur only
via thermal excitation of our particle. But we show that despite thermodynamic equilibrium this does not
obtain if transits between L and H occur both via thermal excitation and via tunneling. Implications
concerning the Second Law of Thermodynamics are discussed. We then provide general remarks
pertaining to catalysis versus epicatalysis, followed by concluding remarks.

Keywords: equilibrium constant Keq; thermal excitation; tunneling/anti-tunneling; entropy; Second
Law of Thermodynamics; thermodynamic equilibrium; Boltzmann (canonical) distribution; cataly-
sis/epicatalysis; Type-A systems; Type-B systems

1. Introduction
Consider one particle (which could be an atom, molecule, Brownian particle, etc.) in thermody-

namic equilibrium with a heat reservoir at absolute (Kelvin) temperature T. This particle can be in
a low-potential-energy well L whose energy floor is EL and whose degeneracy is GL or in a higher-
(or at least equally high) potential-energy well H whose energy floor is EH and whose degeneracy is
GH . L and H are separated by a barrier B, which the particle can traverse. The energy EB required to
surmount the barrier from the floor of L exceeds EH .

The Second Law of Thermodynamics asserts that the ratio of the probability of this particle being
in H to that of it being in L, i.e., the equilibrium constant Keq,L⇄H corresponding to its dissemination
between the two wells L and H, is in accordance with the Boltzmann (or canonical) distribution as per

Keq,L⇄H =
P(in H)

P(in L)
=

GH
GL

e−(EH−EL)/kT , (1)

where k is Boltzmann’s constant. (Of course, the terms “Boltzmann distribution” and “canonical
distribution” are synonymous [1–3]. Henceforth we will simply employ “Boltzmann distribution”.) In
Equation (1) we our construe our particle being in L as the reactant configuration and it being in H
as the product configuration. If we instead construe it being in H as the reactant configuration and it
being in L as the product configuration, then of course

Keq,H⇄L =
1

Keq,L⇄H
=

P(in L)
P(in H)

=
GL
GH

e−(EL−EH)/kT =
GL
GH

e(EH−EL)/kT . (2)
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Thus Equation (2) is redundant. Therefore henceforth we will employ only Equation (1) [except where
also referring to Equation (2) adds emphasis].

In Section 2 we will show that, given thermodynamic equilibrium, Equation (1) [and, redundantly,
also Equation (2)] is always obeyed in compliance with the Second Law if transits between L and H occur
only via thermal excitation of our particle. But in Section 3 we will show that despite thermodynamic
equilibrium this does not obtain, i.e., that Equation (1) [and, redundantly, also Equation (2)] is violated,
if transits between L and H occur both via thermal excitation and via tunneling.

In Section 4 implications concerning the Second Law of Thermodynamics are discussed. Expand-
ing on Section 2, we more thoroughly expound compliance with the Second Law if transits between L
and H occur only via thermal excitation. But, expanding on Section 3, we more thoroughly expound
that if transits between L and H also occur via tunneling there is at least a Second-Law paradox
(what prima facie seems not compliant with the Second Law but with careful analysis is shown to be
compliant), and perhaps even a challenge to the Second Law (what may actually be not compliant with
the Second Law).

General remarks pertaining to catalysis versus epicatalysis are provided in Section 5. Concluding
remarks are provided in Section 6. In the Appendix, we evaluate the minimum work that the Second
Law requires to change Keq.

2. The Equilibrium Constant
Keq Given Thermal Excitation Alone
In Section 2 we show that given thermodynamic equilibrium our system is compliant with the

Second Law of Thermodynamics—specifically, with the Boltzmann distribution—as per Equation (1)
[and, redundantly, also as per Equation (2)] if transits between L and H occur only via thermal
excitation of our particle. [This is an approximation: some tunneling (and some anti-tunneling) always
occurs, but in Section 2 we consider this approximation.]

Consider again our one particle (which could be an atom, molecule, Brownian particle, etc.). Let it
be of mass m in a uniform gravitational field g and be free to move between two gravitational-potential-
energy wells, a lower well L of x-directional width XL and a higher (or at least equally high) well H
of x-directional width XH , via traversal of a barrier B of x-directional width XB. In a top view, the
x-directional axis (y = 0) passes through the centers of the mutually adjacent L, B, and H, all three of
which are of equal y-directional width 2Y. The x-directional axis can be construed as negative-positive
= west-east, the y-directional axis as negative-positive = south-north, and the z-directional axis as
negative-positive = down-up. The west wall of L at x = 0, the east wall of H at x = XL + XB + XH ,
and the south and north walls of the entire system at y = −Y and y = +Y are assumed to be arbitrarily
tall in order to prevent the escape of our particle.

Our particle is in thermodynamic equilibrium via thermalization at its impacts with its heat
reservoir at temperature T; this heat reservoir is comprised of the floors and walls of L and H, and
the barrier B. Thus it can be construed as a one-particle isothermal atmosphere. Our results are
easily generalizable to an N -particle isothermal atmosphere sufficiently rarefied that the atmospheric
particles collide essentially always with the floor, the walls, and the barrier B, and essentially never
with each other: such an N -particle isothermal atmosphere is essentially equivalent to N independent
one-particle isothermal atmospheres.

Set the datum elevation at the floor of the lower well L at the fixed value zL = 0. Let the floor
of the higher (or at least equally high) well H be at elevation zH and the barrier be of height zB:
zB > zH ≥ zL = 0, i.e., we allow the choice zH = zL = 0 as well the choice zH > zL = 0, but require
the strict inequality zB > zH . Thus the minimum possible gravitational potential energy of our particle
relative to the datum elevation zL = 0 is zero when it is in L, EH = mgzH ≡ NHkT ≥ 0 when it
is in H, and EB = mgzB ≡ NBkT > EH when it is over the barrier B. [NH ≡ EH/kT = mgzH/kT,
NB ≡ EB/kT = mgzB/kT. We construe our particle to be in L (H) if it is within the horizontal areal
extent of L (H) even if its altitude exceeds zB.]
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We will consider variations of the vertical coordinates zH and zB, as well as of the horizontal areal
extents of L, H, and B. These horizontal variations can be most simply accomplished via those of B
alone, by extending B into and/or retracting B from L and/or H—by increasing or decreasing the
x-directional length of B in the direction of L and/or of H. Let GL, GH , and GB be the degeneracies
corresponding, respectively, to our particle occupying the lower well L, occupying the higher (or
at least equally high) well H, or being over the barrier B. These degeneracies are proportional to
area: they increase (decrease) monotonically—indeed, proportionately—with increasing (decreasing)
horizontal areal extents of L, H, and B, respectively. Since the y-directional widths of L, H, and B are
identical and fixed at 2Y, GL, GH , and GB are proportional to their respective x-directional lengths, XL,
XH , and XB. Thus henceforth we can substitute XL, XH , and XB for GL, GH , and GB, respectively.

At thermodynamic equilibrium, the Second Law of Thermodynamics—specifically, the Boltzmann
distribution—asserts that the probabilities of our particle being in L, in H, or over the barrier B must
be, respectively,

P(in L) =
XL

XL + XHe−NH + XBe−NB
≡ XL

Q
, (3)

P(in H) =
XHe−NH

XL + XHe−NH + XBe−NB
≡ XHe−NH

Q
, (4)

and

P(over B) =
XBe−NB

XL + XHe−NH + XBe−NB
≡ XBe−NB

Q
, (5)

where in accordance with standard notation

Q ≡ XL + XHe−NH + XBe−NB (6)

is the partition function, also called the sum-over-states, of our system [4,5].
Let the x-directional component of our particle’s average thermal scalar speed be ⟨Vx⟩. (Enclosure

within angular brackets denotes averaging.) Because our particle is at thermodynamic equilibrium
with a heat reservoir at temperature T, ⟨Vx⟩ is identical irrespective of our particle’s altitude and of
whether it is in L, in H, or over the barrier B (see, for example, Reif [2], Sections 6.1–6.4; especially, in
Section 6.3, the subsections entitled “Molecule in an ideal gas” and “Molecule in an ideal gas in the
presence of gravity”). We focus on Keq,L⇄H and hence on the dissemination of our particle between L
and H; therefore we need not consider the time it spends over (or tunneling through) the barrier B.

When our particle is in L, it bounces through an x-directional distance of 2XL between attempts to
transit from L to H. Hence the average time that our particle spends in L between attempts to transit
from L to H is

⟨tL⟩ =
2XL

⟨Vx⟩
(7)

and the average rate of these attempts is

⟨rL⟩ =
1

⟨tL⟩
=

⟨Vx⟩
2XL

. (8)

Similarly, when our particle is in H, it bounces through an x-directional distance of 2XH between
attempts to transit from H to L. Hence the average time that our particle spends in H between attempts
to transit from H to L is

⟨tH⟩ =
2XH

⟨Vx⟩
(9)

and the average rate of these attempts is

⟨rH⟩ =
1

⟨tH⟩
=

⟨Vx⟩
2XH

. (10)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 March 2025 doi:10.20944/preprints202503.0123.v1

https://doi.org/10.20944/preprints202503.0123.v1


4 of 16

For every attempt to transit from H to L via thermal excitation that succeeds, in accordance
with the Boltzmann distribution there is a probability e−NH that a transit from L to H via thermal
excitation will succeed. Hence considering the dissemination of our particle between L and H via
thermal excitation alone, the thermal equilibrium constant is

Kthermal
eq,L⇄H =

Pthermal(in H)

Pthermal(in L)
=

⟨rthermal(L → H)⟩
⟨rthermal(H → L)⟩ =

⟨rL⟩e−NH

⟨rH⟩
=

⟨Vx⟩
2XL

e−NH

⟨Vx⟩
2XH

=
XH
XL

e−NH , (11)

where Pthermal(in L) [Pthermal(in H)] is the probability that our particle is in L [H] if transits between
L and H occur only via thermal excitation over the barrier B. This is in compliance with the Second
Law—specifically, with the Boltzmann distribution.

We re-emphasize that some tunneling (and some anti-tunneling) always occurs, but in Section 2 we
considered thermal excitation alone as an approximation.

3. Thermal Excitation and Tunneling
Tunneling from L to H is unnecessary for traversal of the barrier B if our particle attains by thermal

excitation altitude of at least zB and hence gravitational potential energy of at least mgzB = NBkT
relative to the datum elevation zL = 0 at the floor of L. Likewise, tunneling from H to L is unnecessary
for traversal of the barrier B if our particle attains by thermal excitation altitude of at least zB − zH

and hence gravitational potential energy of at least mg(zB − zH) = (NB − NH)kT relative to the
elevation zH at the floor of H. But tunneling from H to L can occur if our particle is in the altitude
range zH ≤ z < zB in H. The probability of our particle being in this altitude range in H equals the
probability that it is in H as per Equation (4) times the probability, 1 − e−mg(zB−zH)/kT = 1 − e−(NB−NH)

as per the Boltzmann distribution, that it is in the altitude range zH ≤ z < zB given that it is in H:

P(zH ≤ z < zB in H) = P(in H)P(zH ≤ z < zB| in H)

=
XHe−NH

Q

[
1 − e−(NB−NH)

]
=

XH
(
e−NH − e−NB

)
Q

. (12)

The average rate of tunneling of our particle from H to L equals the fraction f H→L
tun of tunneling attempts

from H to L that succeed times the average rate of tunneling attempts from H to L as per Equation (10)
times P(zH ≤ z < zB in H) as per Equation (12). [In employing Equation (10), we assume that our
particle is massive enough, the temperature is high enough, and XH and 2Y are large enough that its
translational motion in H can be treated classically.] Thus applying Equations (10) and (12):

⟨rtun(H → L)⟩ = f H→L
tun

⟨Vx⟩
2XH

XH
(
e−NH − e−NB

)
Q

=
f H→L
tun ⟨Vx⟩

(
e−NH − e−NB

)
2Q

. (13)

Tunneling can occur only to states of lower or equal energy, not to states of higher energy [6–8].
Therefore, tunneling from L to H cannot occur if our particle is in the altitude range zL = 0 ≤ z < zH

in L [6–8]. If tunneling from L to H is to occur, our particle must first attain by thermal excitation
altitude of at least zH in L and hence gravitational potential energy of at least mgzH = NHkT relative
to the datum elevation zL = 0 at the floor of L. The probability that it can do so at any one given
attempt is e−mgzH/kT = e−NH , and hence the probability that it cannot do so at any one given attempt
is 1 − e−mgzH/kT = 1 − e−NH . Moreover, as we have already mentioned, tunneling is unnecessary
for traversal of the barrier B if our particle attains by thermal excitation altitude z ≥ zB and hence
gravitational potential energy of at least mgzB = NBkT relative to the datum elevation zL = 0
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at the floor of L: this occurs with probability e−mgzB/kT = e−NB at any one given attempt. The
probability of our particle being in the altitude range zH ≤ z < zB in L wherein tunneling from
L to H can occur equals the probability as per Equation (3) that it is in L times the probability,
1−

(
1 − e−NH

)
− e−NB = e−NH − e−NB as per the Boltzmann distribution, that it is in the altitude range

zH ≤ z < zB given that it is in L:

P(zH ≤ z < zB in L) = P(in L)P(zH ≤ z < zB| in L)

=
XL
Q

(
e−NH − e−NB

)
. (14)

The average rate of tunneling of our particle from L to H equals the fraction f L→H
tun of tunneling

attempts from L to H that succeed times the average rate of tunneling attempts from L to H as per
Equation (8) times P(zH ≤ z < zB in L) as per Equation (14). [In employing Equation (8), we assume
that our particle is massive enough, the temperature is high enough, and XL and 2Y are large enough
that its translational motion in L can be treated classically.] Thus applying Equations (8) and (14):

⟨rtun(L → H)⟩ = f L→H
tun

⟨Vx⟩
2XL

XL
Q

(
e−NH − e−NB

)
=

f L→H
tun ⟨Vx⟩

(
e−NH − e−NB

)
2Q

. (15)

We must also consider anti-tunneling: our particle being reflected back to L even if it has acquired
by thermal excitation altitude z ≥ zB and hence gravitational potential energy of at least mgzB = NBkT
relative to the floor of L, and its being reflected back to H even if it has acquired by thermal excitation
altitude z ≥ zB − zH and hence gravitational potential energy of at least mg(zB − zH) = (NB − NH)kT
relative to the floor of H.

The probability that our particle is in the altitude range z ≥ zB in L equals the probability as per
Equation (3) that it is in L times the probability, e−NB as per the Boltzmann distribution, that it is in the
altitude range z ≥ zB given that it is in L:

P(z ≥ zB in L) = P(in L)P(z ≥ zB| in L)

=
XL
Q

e−NB . (16)

The average rate of anti-tunneling of our particle back to L equals the fraction f in L
antitun of anti-tunneling

attempts in L that succeed times average rate of anti-tunneling attempts in L as per Equation (8) times
P(z ≥ zB in L) as per Equation (16). [In employing Equation (8), we assume that our particle is massive
enough, the temperature is high enough, and XL and 2Y are large enough that its translational motion
in L can be treated classically.] Thus applying Equations (8) and (16):

⟨rantitun(in L)⟩ = f in L
antitun

⟨Vx⟩
2XL

XL
Q

e−NB =
f in L
antitun⟨Vx⟩e−NB

2Q
. (17)

The probability that our particle is in the altitude range z ≥ zB in H equals the probability as per
Equation (4) that it is in H times the probability, e−(NB−NH) as per the Boltzmann distribution, that it is
in the altitude range z ≥ zB given that it is in H:

P(z ≥ zB in H) = P(in H)P(z ≥ zB| in H)

=
XHe−NH

Q
e−(NB−NH) =

XH
Q

e−NB . (18)

The average rate of anti-tunneling of our particle back to H equals the fraction f in H
antitun of anti-tunneling

attempts in H that succeed times average rate of anti-tunneling attempts in H as per Equation (10)
times P(z ≥ zB in H) as per Equation (18). [In employing Equation (10), we assume that our particle is
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massive enough, the temperature is high enough, and XH and 2Y are large enough that its translational
motion in H can be treated classically.] Thus applying Equations (10) and (18):

⟨rantitun(in H)⟩ = f in H
antitun

⟨Vx⟩
2XH

XH
Q

e−NB =
f in H
antitun⟨Vx⟩e−NB

2Q
. (19)

Our particle must be in the same altitude range, namely zH ≤ z < zB, in both L and H in order
for tunneling to occur in either direction, i.e., either from L to H or from H to L, respectively. And it
must be in the same altitude range, namely z ≥ zB, in both L and H in order for anti-tunneling to occur
back to L or back to H, respectively. Therefore the most plausible conjecture is that ftun should be the
same with respect to tunneling in either direction, i.e., that f L→H

tun = f H→L
tun = ftun, and likewise that

fantitun should be the same with respect to anti-tunneling in both wells, i.e., that f in L
antitun = f in H

antitun =

fantitun. This conjecture is rendered even more plausible given that our system is at thermodynamic
equilibrium—irrespective of whether or not Keq,L⇄H = (GH/GL) exp[−(EH − EL)/kT] as the Second
Law (specifically, the Boltzmann distribution) asserts: at equilibrium—irrespective of whether or
not that equilibrium is that which Second Law (specifically, the Boltzmann distribution) asserts—we
should expect the average rate of any process and its reverse to be equal. Moreover, the issue of the
validity of our challenge to the Second Law, let alone of our Second-Law paradox, does not hinge
on the equalities f L→H

tun = f H→L
tun = ftun and f in L

antitun = f in H
antitun = fantitun. Therefore let us accept these

equalities.
Hence in accordance with the immediately preceding paragraph, applying Equations (13) and

(15):

⟨rtun(L → H)⟩ = ⟨rtun(H → L)⟩ =
ftun⟨Vx⟩

(
e−NH − e−NB

)
2Q

. (20)

And likewise in accordance with the immediately preceding paragraph, applying Equations (17) and
(19):

⟨rantitun(in H)⟩ = ⟨rantitun(in L)⟩ = fantitun⟨Vx⟩e−NB

2Q
. (21)

Since by Equation (20) ⟨rtun(L → H)⟩ = ⟨rtun(H → L)⟩, tunneling from L to H is on the av-
erage counterbalanced by tunneling from H to L. And since by Equation (21) ⟨rantitun(in L)⟩ =

⟨rantitun(in H)⟩, likewise anti-tunneling back to L is on the average counterbalanced by anti-tunneling
back to H. Hence as we should expect since our system is at thermodynamic equilibrium
—irrespective of whether or not Keq,L⇄H = (GH/GL) exp[−(EH − EL)/kT] as the Second Law (specifi-
cally, the Boltzmann distribution) asserts—tunneling, anti-tunneling, and most importantly net tunnel-
ing = tunneling minus anti-tunneling from L to H is on the average counterbalanced by that from H
to L.

Applying Equations (20) and (21), we have, for the average rate of net tunneling = tunneling
minus anti-tunneling either from L to H or from H to L:

⟨rtun,net(L → H)⟩ = ⟨rtun(L → H)⟩ − ⟨rantitun(L → H)⟩
= ⟨rtun,net(H → L)⟩ = ⟨rtun(H → L)⟩ − ⟨rantitun(H → L)⟩

=
ftun⟨Vx⟩

(
e−NH − e−NB

)
2Q

− fantitun⟨Vx⟩e−NB

2Q

=
⟨Vx⟩

[
ftun

(
e−NH − e−NB

)
− fantitune−NB

]
2Q

. (22)

As a brief aside, we mention that since no physically-realistic barrier or well can be perfectly
square, the formulas for the probabilities of tunneling and anti-tunneling that presume perfectly square
barriers and wells are approximations [9–14]. Thus construing our barrier B and wells L and H as
perfectly square is an approximation. But since we do not require specific numerical values for ftun and
fantitun, we can get off scot-free with this approximation.
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4. A Second-Law Paradox (and Perhaps Even Challenge)
Applying Equations (11) and (22), we have, for the total equilibrium constant, i.e., considering

both thermal excitation and net tunneling = tunneling minus anti-tunneling:

Ktotal
eq,L⇄H =

⟨rtotal(L → H)⟩
⟨rtotal(H → L)⟩ =

⟨rthermal(L → H)⟩+ ⟨rtun,net(L → H)⟩
⟨rthermal(H → L)⟩+ ⟨rtun,net(H → L)⟩

=

⟨Vx⟩
2XL

e−NH +
⟨Vx⟩[ ftun(e−NH−e−NB)− fantitune−NB ]

2Q

⟨Vx⟩
2XH

+
⟨Vx⟩[ ftun(e−NH−e−NB)− fantitune−NB ]

2Q

=
e−NH

XL
+

ftun(e−NH−e−NB)− fantitune−NB

Q

1
XH

+
ftun(e−NH−e−NB)− fantitune−NB

Q

=

e−NH
XL

+
ftun(e−NH−e−NB)− fantitune−NB

XL+XHe−NH+XBe−NB

1
XH

+
ftun(e−NH−e−NB)− fantitune−NB

XL+XHe−NH+XBe−NB

=
Ptotal(in H)

Ptotal(in L)

{
in general ̸= Pthermal(H)

Pthermal(L) = Kthermal
eq,L⇄H = XH

XL
e−NH

= Kthermal
eq,L⇄H iff Kthermal

eq,L⇄H = 1
. (23)

The inequality in the last line of Equation (23) poses, at least prima facie, a Second-Law paradox,
and perhaps even a challenge to the Second Law. (iff means: if and only if.) This inequality obtains
solely owing to the second (net-tunneling) terms in the numerators and denominators of the first
four lines of Equation (23). If these terms become negligible, owing either to Case (i): both ftun

and fantitun being negligibly small (they cannot individually be exactly zero: the probability of neither
tunneling nor anti-tunneling never totally vanishes) or Case (ii): the fantitun term cancelling the ftun

term (cancellation to exactly zero is possible, at least in principle), Ktotal
eq,L⇄H → Kthermal

eq,L⇄H = XH
XL

e−NH and
thus the consequent prima facie Second-Law paradox, let alone challenge to the Second Law, vanishes
[for all practical purposes in Case (i) and up to exactly in Case (ii)].

Comparing Equations (11) and (23), if the second (net-tunneling) terms in the numerators and
denominators of the first four lines of Equation (23) do not vanish, they imply at least prima facie
Second-Law paradoxes, and perhaps even challenges to the Second Law with respect to the first
(thermal) terms thereof. For then, if and only if NH = ln XH

XL
=⇒ Ktotal

eq,L⇄H = Kthermal
eq,L⇄H = 1 is our

system in compliance with the Second Law of Thermodynamics—specifically, in compliance with the
Boltzmann distribution. If NH > ln XH

XL
, Kthermal

eq,L⇄H < Ktotal
eq,L⇄H < 1 and hence in the face of thermodynamic

equilibrium our particle is more probably in H and less probably in L than the Second Law—specifically,
the Boltzmann distribution—asserts. And if NH < ln XH

XL
, Kthermal

eq,L⇄H > Ktotal
eq,L⇄H > 1 and hence in the

face of thermodynamic equilibrium our particle is more probably in L and less probably in H than the
Second Law—specifically, the Boltzmann distribution—asserts. (Note that in both cases wherein
Ktotal

eq,L⇄H ̸= Kthermal
eq,L⇄H , Ktotal

eq,L⇄H is intermediate between Kthermal
eq,L⇄H and unity. Of course, in all three cases

the allowable range of values of XH
XL

is restricted to that wherein NH ≥ 0.) At least prima facie, this
seems to pose at least a Second-Law paradox, and perhaps even a challenge to the Second Law. We
will show that this also obtains in the high-temperature and extreme-high-temperature/NH → 0 limits
of Equation (23), but not in the extreme-low-temperature limit thereof.

Perhaps more importantly, at least prima facie, it seems that, at least in principle, XL, XH , NH ,
and/or NB—and hence Ktotal

eq,L⇄H—can, at least in principle, be changed (epicatalysis) with zero thermo-
dynamic cost. Changes in XL and/or XH can be effected (most simply by extending B into and/or
retracting B from L and/or H) at least in principle with zero net work input. Given that our particle
constitutes a one-molecule gas, work is required to decrease XL and/or XH , because this renders
our particle more constrained [15,16], i.e., more localized [15,16], in L and/or in H (see also Reif [2],
Sections 3.1 and 3.2). But, at least in principle, all of this work can be recovered via a subsequent equal
increase in XL and/or XH . Also, the work required to raise the floor of H (i.e., to increase NH) and/or
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to raise the barrier B (i.e., to increase NB) can, at least in principle, be recovered, e.g., via employment
of a counterweight. (Of course, if instead NH and/or NB is decreased, a counterweight can be raised.)
Thus XL, XH , NH , and/or NB—and hence Ktotal

eq,L⇄H—can, at least in principle, be changed (epicatalysis)
with zero work input, i.e., with zero thermodynamic cost. At least prima facie, this seems to pose at least
an even stronger Second-Law paradox, and perhaps an even stronger challenge to the Second Law.
For, the Second Law of Thermodynamics requires a minimum work input as the cost of changing not
only Ktotal

eq,L⇄H as per Equation (23) in particular, but any equilibrium constant Keq in general. (See the
Appendix.)

Let us now consider the high-temperature, extreme-high-temperature/NH → 0, and extreme-
low-temperature limits of Equation (23), applying especially the fourth line thereof.

In the high-temperature limit, e−NH → 1 − NH , e−NB → 1 − NB, e−NH − e−NB → (1 − NH)−
(1 − NB) = NB − NH , and the fourth line of Equation (23) simplifies to

lim
T→∞

Ktotal
eq,L⇄H =

1−NH
XL

+ ftun(NB−NH)− fantitun(1−NB)
XL+XH(1−NH)+XB(1−NB)

1
XH

+ ftun(NB−NH)− fantitun(1−NB)
XL+XH(1−NH)+XB(1−NB)

. (24)

In the high-temperature limit, if and only if NH = 1 − XL
XH

=⇒ Ktotal
eq,L⇄H = Kthermal

eq,L⇄H = 1 is our
system in compliance with the Second Law of Thermodynamics—specifically, in compliance with the
Boltzmann distribution. If NH > 1− XL

XH
, Kthermal

eq,L⇄H < Ktotal
eq,L⇄H < 1 and hence in the face of thermodynamic

equilibrium our particle is more probably in H and less probably in L than the Second Law—specifically,
the Boltzmann distribution—asserts. And if NH < 1 − XL

XH
, Kthermal

eq,L⇄H > Ktotal
eq,L⇄H > 1 and hence in

the face of thermodynamic equilibrium our particle is more probably in L and less probably in H than
the Second Law—specifically, the Boltzmann distribution—asserts. (Note that in both cases wherein
Ktotal

eq,L⇄H ̸= Kthermal
eq,L⇄H , Ktotal

eq,L⇄H is intermediate between Kthermal
eq,L⇄H and unity. Of course, in all three cases

the allowable range of values of XH
XL

is restricted to that wherein NH ≥ 0.) At least prima facie, this
seems to pose at least a Second-Law paradox, and perhaps even a challenge to the Second Law.

In the extreme-high-temperature/NH → 0 limit, i.e., either in the limit T → ∞ with any finite
NH ≥ 0 or if NH = 0 at any T > 0 K, e−NH → 1, e−NB → 1, e−NH − e−NB → (1 − NH)− (1 − NB) =

NB − NH , there is further simplification to

lim
T→∞

Ktotal
eq,L⇄H =

1
XL

+ ftun(NB−NH)− fantitun
XL+XH+XB

1
XH

+ ftun(NB−NH)− fantitun
XL+XH+XB

. (25)

In the extreme-high-temperature/NH → 0, limit, if and only if XH = XL =⇒ Ktotal
eq,L⇄H = Kthermal

eq,L⇄H = 1
is our system in compliance with the Second Law of Thermodynamics—specifically, in compliance with
the Boltzmann distribution. If XH > XL, Kthermal

eq,L⇄H > Ktotal
eq,L⇄H > 1 and hence in the face of thermodynamic

equilibrium our particle is more probably in L and less probably in H than the Second Law—specifically,
the Boltzmann distribution—asserts. And if XH < XL, Kthermal

eq,L⇄H < Ktotal
eq,L⇄H < 1 and hence in the face of

thermodynamic equilibrium our particle is more probably in H and less probably in L than the Second
Law—specifically, the Boltzmann distribution—asserts. At least prima facie, this seems to pose at least
a Second-Law paradox, and perhaps even a challenge to the Second Law.

Hence in both the high-temperature and extreme-high-temperature/NH → 0 limits as per Equa-
tions (24) and (25), as in the general case in accordance with Equation (23), if Ktotal

eq,L⇄H ̸= Kthermal
eq,L⇄H ̸= 1

our system is not in compliance with the Second Law of Thermodynamics—specifically, in not in com-
pliance with the Boltzmann distribution. At least prima facie, this seems to pose at least a Second-Law
paradox, and perhaps even a challenge to the Second Law. [Also, as in the general case, in the high-
temperature and extreme-high-temperature/NH → 0 limits (unless Ktotal

eq,L⇄H = Kthermal
eq,L⇄H = 1) Ktotal

eq,L⇄H

is intermediate between Kthermal
eq,L⇄H and unity.] Moreover, as in the general case, in the high-temperature

and extreme-high-temperature/NH → 0 limits at least prima facie it seems that, at least in principle,
XL, XH , NH , and/or NB—and hence Ktotal

eq,L⇄H—can be changed (epicatalysis) with zero work input, i.e.,
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with zero thermodynamic cost. At least prima facie, this seems to pose an even stronger paradox, and
perhaps even a stronger challenge, to the Second Law.

Furthermore, in both the high-temperature and extreme-high-temperature/NH → 0 limits, as
in the general case in accordance with Equation (23), both of these at least prima facie Second-Law
paradoxes, and perhaps even challenges to the Second Law, obtain solely owing to the second (net-
tunneling) terms in the numerators and denominators of Equations (24) and (25), implying at least
prima facie Second-Law paradoxes, and perhaps even challenges to the Second Law with respect to the
first (thermal) terms thereof. If these net-tunneling terms become negligible, owing either to Case (i):
both ftun and fantitun being negligibly small (they cannot individually be exactly zero: the probability of
neither tunneling nor anti-tunneling never totally vanishes) or Case (ii): the fantitun term cancelling the
ftun term (cancellation to exactly zero is possible, at least in principle), Ktotal

eq,L⇄H → Kthermal
eq,L⇄H = XH

XL
and

hence both of our at least prima facie Second-Law paradoxes, let alone challenges, to the Second Law,
vanish [for all practical purposes in Case (i) and up to exactly in Case (ii)].

In the extreme-low-temperature limit T → 0 K, if NH > 0 the fourth line of Equation (23) simplifies
as per:

lim
T→0 K,NH>0

Ktotal
eq,L⇄H = lim

T→0 K,NH>0

e−NH
XL

+
ftun(e−NH−e−NB)− fantitune−NB

XL+XHe−NH+XBe−NB

1
XH

+
ftun(e−NH−e−NB)− fantitune−NB

XL+XHe−NH+XBe−NB

= lim
T→0 K,NH>0

e−NH
XL

+
ftun(e−NH−e−NB)− fantitune−NB

XL

1
XH

+
ftun(e−NH−e−NB)− fantitune−NB

XL

= lim
T→0 K,NH>0

e−NH+ ftun(e−NH−e−NB)− fantitune−NB

XL
1

XH

= lim
T→0 K,NH>0

XH
XL

[
e−NH + ftun

(
e−NH − e−NB

)
− fantitune−NB

]
=

XH
XL

× 0

= 0. (26)

(Since NB > NH , e−NB → 0 faster than e−NH → 0, and e−NH − e−NB → 0 faster yet, as T → 0 K.)
In the extreme-low-temperature limit T → 0 K, if NH > 0 both of our at least prima facie Second-
Law paradoxes, let alone challenges, to the Second Law, vanish: our particle becomes frozen in L.
Emphasizing: Notwithstanding that both of our proposed at least prima facie Second-Law paradoxes,
and perhaps even challenges to the Second Law, hinge entirely upon net tunneling, they vanish in the
limit T → 0 K because in the limit T → 0 K only tunneling from H to L is possible (no tunneling from L
to H, no thermal excitation, and no anti-tunneling in H) and therefore if NH > 0 our particle becomes
frozen in L.

In the extreme-low-temperature limit T → 0 K, NH = 0 designates that NH is strictly equal to 0; by
contrast, T → 0 K implies that T approaches arbitrarily closely to 0 K. Hence we are justified in setting
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EH/kT = mgzH/kT = 0 =⇒ e−EH/kT = e−mgzH/kT = 1. Hence in the limit T → 0 K if NH = 0 the
fourth line of Equation (23) simplifies as per:

lim
T→0 K,NH=0

Ktotal
eq,L⇄H = lim

T→0 K,NH=0

e−NH
XL

+
ftun(e−NH−e−NB)− fantitune−NB

XL+XHe−NH+XBe−NB

1
XH

+
ftun(e−NH−e−NB)− fantitune−NB

XL+XHe−NH+XBe−NB

=
1

XL
+ ftun

XL

1
XH

+ ftun
XL

=

1+ ftun
XL

XL+ ftunXH
XLXH

=
XH(1 + ftun)

XL + ftunXH
. (27)

In the extreme-low-temperature limit T → 0 K, if NH = 0 Equation (27) yields, quantitatively in
accordance with quantum-mechanical evaluations: (i) lim

T→0 K,NH=0
Ktotal

eq,L⇄H = XH
XL

if the barrier B is tall

enough and wide enough that ftun → 0, and (ii) lim
T→0 K,NH=0

Ktotal
eq,L⇄H = 1 if XH = XL irrespective of

the value of ftun. If neither condition (i) or (ii) immediately above is met, Equation (27) yields, in
accordance with what quantum mechanics predicts: (iii) XH

XL
> lim

T→0 K,NH=0
Ktotal

eq,L⇄H > 1 if XH > XL

and (iv) XH
XL

< lim
T→0 K,NH=0

Ktotal
eq,L⇄H < 1 if XH < XL. If neither condition (i) or (ii) immediately above is

met, Equation (27) may be limited to qualitative accuracy as per (iii) and (iv) immediately above. This
is an artifact of the derivation of Equation (23), of which Equation (27) is the extreme-low-temperature
limiting case if NH = 0, relying on (a) Equations (7)–(10), which assume a temperature high enough
that the translational motion of our particle in L and H can be treated classically, and (b) the assumption
that the barrier B is traversable both via thermal excitation and via tunneling. Of course, both of these
assumptions break down in the limit T → 0 K, in which limit if NH = 0 our particle becomes frozen
in a quantum-mechanical ground state that occupies both L and H with traversals of the barrier B
via tunneling in both directions between L and H (as opposed to it becoming frozen solely in L in the
limit T → 0 K if NH > 0). The pertinent point is that, if NH = 0 as if NH > 0, in the limit T → 0 K
our particle becomes frozen in the ground state, and hence both of our proposed at least prima facie
Second-Law paradoxes, and perhaps even challenges to the Second Law, vanish.

Thus the limit T → 0 K must not be imposed, in order that transits from L to H and from H to
L can occur both via thermal excitation and via tunneling: only then can, at least prima facie and at
least in principle, the inequality Ktotal

eq,L⇄H ̸= Kthermal
eq,L⇄H obtain spontaneously: only then does there obtain

our spontaneous non-Boltzmann-dissemination Second-Law paradox, and perhaps even challenge
to the Second Law. And, furthermore, only then can Ktotal

eq,L⇄H be changed (epicatalysis) without any
net expenditure of work: at least prima facie, even more strongly posing a Second-Law paradox, and
perhaps even a challenge to the Second Law. Hence, while both of these Second-Law paradoxes, and
perhaps even Second-Law challenges, depend on traversal of the barrier B via tunneling, they fail in
the limit T → 0 K wherein barrier traversal is possible only via tunneling. The temperature must be
high enough so that there is also some barrier traversal via thermal excitation.

With respect to altering the equilibrium constant Ktotal
eq —irrespective of whether or not any Second-

Law challenge or even paradox obtains—thermal excitation becomes more important relative to net
tunneling only up to a limit as temperature increases: the first term in the numerator on the right-hand
sides of the second, third, and fourth lines of Equation (23) eventually maximizes at 1/XL as per
Equations (24) and (25).

With respect to the rate of attainment of equilibrium, tunneling necessarily becomes more important
without limit relative to thermal excitation with decreasing temperature. Let us consider the attainment
of equilibrium in the limit T → 0 K if NH > 0 and if our particle is initially in H. In the limit T → 0 K
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attainment of equilibrium that requires traversal of a barrier is possible only via tunneling. Our particle,
initially in H, can traverse the barrier B to its equilibrium state of being frozen in L only via tunneling:
traversal of the barrier B from H to L via thermal excitation becomes nonexistent in the limit T → 0 K:

lim
T→0 K

⟨rtun,net(H → L)| in H⟩ = ftun
⟨Vx⟩
2XH

[
1 − e−(NB−NH)

]
− fantitun

⟨Vx⟩
2XH

e−(NB−NH)

=
⟨Vx⟩
2XH

{
ftun

[
1 − e−(NB−NH)

]
− fantitune−(NB−NH)

}
=

⟨Vx⟩
2XH

ftun

> 0; (28)

by contrast,

lim
T→0 K

⟨rthermal(H → L)| in H⟩ = ⟨Vx⟩
2XH

e−(NB−NH) = 0. (29)

Note that: (i) owing to zero-point energy—ultimately, owing to the uncertainty principle—
lim

T→0 K
⟨Vx⟩ > 0 and hence tunneling from H to L can occur in the limit T → 0 K in accordance

with Equation (28), and (ii) not only traversal of the barrier B via thermal excitation in either direction
but also, because our particle becomes frozen in L, tunneling from L to H and anti-tunneling in H
becomes nonexistent in the limit T → 0 K. (Obviously, in the limit T = 0 K, ⟨Vx⟩ must be construed as
a quantum-mechanical average speed, not as a thermal average speed.)

Of course, attainment of equilibrium is always within the strictures of the Second Law—this or any
other example of attainment of equilibrium is in compliance with the Second Law—no Second-Law
challenge or even paradox.

As an aside, we note that: (i) The equilibrium constant Keq for chemical reactions is typically (e.g.,
in textbooks) given by Equation (11), i.e., based on the assumption that transitions between reactants
and products occur via thermal excitation alone, and (ii) the rate of approach of chemical reactions to
equilibrium is typically (e.g., in textbooks) discussed considering only thermal excitation over potential-
energy barriers. But these are approximations: the correct, or at least a more correct, expression for Keq

is, in actuality, as per Equations (23)–(29); also, the rate of approach to equilibrium is always governed
at least to some extent by net tunneling. Yet even though thermal excitation becomes more important
relative to net tunneling only up to a limit as temperature increases, this limit is sufficient for most—
even if perhaps not all—chemical reactions that at room temperature or higher both the equilibrium
constant Keq and the rate of approach to equilibrium can be to within adequate accuracy reckoned
as occurring via thermal excitation alone. But in the limit T → 0 K thermal excitation over barriers
becomes impossible, and the transition of any chemical system to its ground state—the equilibrium
state into which any chemical system (indeed, any system whatsoever, chemical or otherwise) freezes
in the limit T → 0 K—can occur only via tunneling. The room-temperature-or-higher approximations
of considering both Keq and the rate of approach of chemical reactions to equilibrium via thermal
excitation alone typically results in errors small enough to neglect only because chemical reactions
are typically not investigated at sufficiently low temperatures for tunneling to contribute appreciably,
in comparison with thermal excitation, to barrier traversal. Perhaps we should consider at least the
possibility that low-temperature chemical reactions [17] for which tunneling [17] contributes appreciably,
in comparison with thermal excitation, to barrier traversal might be employed by Second-Law-abiding
free-energy life [17,18] and, if it exists, also by Second-Law-challenging thermosynthetic life [18–23]
in cold environments, e.g., on moons of the gas giant planets in our solar system. Moreover, because
thermal excitation becomes more important relative to net tunneling only up to a limit as temperature
increases, perhaps for some chemical reactions—perchance including those employed by Second-Law-
challenging thermosynthetic life [18–23]—net tunneling may contribute to Keq being spontaneously
alterable from Second-Law prognostications even at room temperature or higher. We also note that
at very low temperatures quantization of energy modifies the rate of approach to equilibrium from
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either direction, and if not equally from both directions hence also Keq itself (epicatalysis), from the
classical Arrhenius values [24,25]. (In these works [24,25] this is not explicitly implicated in regard to
challenging the Second Law or even Second-Law paradoxes, but perhaps such an implication cannot
prima facie be ruled out.)

5. Catalysis Versus Epicatalysis; Type-A Versus Type-B Systems and Processes
Catalysis entails changing the forward and reverse rates of a process a ⇄ b by equal ratios and

hence not changing Keq,a⇄b [26]. (The ratios can be either greater or less than unity: if less than unity
it is often dubbed anticatalysis.) Hence catalysis changes the rate of approach to equilibrium but
not Keq,a⇄b itself. By contrast, epicatalysis entails changing the forward and reverse rates of a process
a ⇄ b by unequal ratios and hence changing Keq,a⇄b [27–50], whether or not the rate of approach to
equilibrium is also changed. Catalysis of course does not in any case pose a Second-Law paradox,
much less challenge the Second Law [26]. Epicatalysis poses at least a Second-Law paradox, and
perhaps even challenges the Second Law, if and only if it can be accomplished with less work input
per particle than the minimum that the Second Law requires (see the Appendix). This is not the case
with respect to certain instances of epicatalysis [27–29]. (Epicatalysis is discussed, but without being
dubbed “epicatalysis”, in References [27,28].) But at least prima facie, it does seem to be the case that
the required work input is zero in principle in the instance of epicatalysis investigated in this present
paper. Furthermore, both theoretical and experimental evidence indicates that the required work
input is zero not merely in principle but also in practice in the instances of epicatalysis discussed in
References [30–50] (though not, to the best knowledge of the author, dubbed “epicatalysis” until 2018).
And in practice implies a Second-Law challenge, not merely paradox.

Type-A systems and processes, which comply with both the First and Second Laws of Thermody-
namics, have been distinguished from Type-B systems and processes, which comply with the First
Law but contravene the Second Law [19–23,51]. Type-B systems and processes include, but are not
limited to, those that employ epicatalysis [19–23,51].

The main question that we pose in this paper is whether or not our prima facie result—that the
system considered herein is, even if only in principle, a Type-B system—is in fact correct.

6. 6. Conclusion: Brief Review of our System; Aspects of the Second Law
We investigated the thermodynamics of a system comprised of one particle (atom, molecule,

Brownian particle, etc.) in thermodynamic equilibrium with its heat reservoir at temperature T.
This particle can move between a low-potential-energy well L and a higher- (or at least equally
high) potential-energy well H via traversing a barrier B. (The results for our one-particle isothermal
atmosphere are easily generalizable to an N -particle isothermal atmosphere sufficiently rarefied that
the atmospheric particles collide essentially always with the floor, the walls, and the barrier B, and
essentially never with each other: such an N -particle isothermal atmosphere is essentially equivalent to
N independent one-particle isothermal atmospheres.) In Section 2 we showed that, in the approximation
of considering the barrier to be traversable via thermal excitation alone, our system is compliant with the
Second Law of Thermodynamics. But in Sections 3 and 4 we showed that if the barrier is traversable
also via tunneling, at least on the face of it there seems to be at least a Second-Law paradox, and perhaps
even a challenge to the Second Law. (But not if only via tunneling alone, which obtains in the limit
T → 0 K and our particle becomes frozen in L if NH > 0, or in a quantum-mechanical ground state
occupying both L and H if NH = 0.)

In Section 5 we briefly compared and contrasted catalysis, which does not alter the equilibrium
constant Keq, versus epicatalysis, which does. We emphasized that catalysis always is compliant with
the Second Law—and that epicatalysis is also compliant with the Second Law if the work input per
particle required to change Keq is not less than the Second Law requires (see the Appendix). But if
the required work per particle is less than the Second Law requires, epicatalysis presents at least a
Second-Law paradox, and perhaps even a challenge to the Second Law—a Type-B process.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 March 2025 doi:10.20944/preprints202503.0123.v1

https://doi.org/10.20944/preprints202503.0123.v1


13 of 16

We note that systems and processes that challenge the Second Law—Type-B systems and
processes [19–23,51]—contravene only the aspect of the Second Law that forbids perpetual mo-
tion of the second kind [30]. It takes only one proven example of a Type-B system or process
to set the contravention of this aspect of the Second Law in stone [30]. But other aspects of the
Second Law, e.g., that entropy S = k ln ∑ pj ln pj statistical-mechanically and change in entropy
dS = dqreversible/T ⇐⇒ ∆S =

∫
dqreversible/T classically, that entropy is a state function depend-

ing only on the state of a system and not on the history of how the state was arrived at [1–5,15,16],
and the many indispensable thermodynamic relations whose derivations are at least partially based
thereon [1–5,15,16], retain absolute validity even for Type-B systems (see also Čápek and Sheehan [30],
Chapter 1). And, of course, the existence of Type-B systems does not encroach on the ubiquity of
Type-A systems: as has been noted, if the aspect of the Second Law that forbids perpetual motion of
the second kind “is shown to be violable, it would nonetheless remain valid for the vast majority of
natural and technological processes” (see Čápek and Sheehan [30], p. 13).
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Appendix A. Appendix: Minimum Work that the Second Law Requires to Change
Keq

If a system capable of transitions between two configurations a and b is at thermodynamic
equilibrium with a heat reservoir at temperature T, it is characterized by its equilibrium constant
Keq,a⇄b. By contrast, the reaction quotient Q (not to be confused with the partition function or sum-
over-states Q) characterizes the actual state of this system, whether at thermodynamic equilibrium or
not. Consider a system whose constituent particles (atoms, molecules, Brownian particles, etc.) can be
in either one of two configurations, a or b (possibly separated by a potential-energy barrier), construing
a to be the reactant configuration and b to be the product configuration. Let Peq(a) and Peq(b) be
the probability of finding any one given particle in configuration a or configuration b, respectively,
given thermodynamic equilibrium. Let PQ(a) and PQ(b) be the probability of finding any one given
particle in configuration a or configuration b, respectively, with the system in its actual state, whether
at thermodynamic equilibrium or not. Thus at thermodynamic equilibrium [52,53]

Keq =
Peq(b)
Peq(a)

, (A1)

and in general, whether at thermodynamic equilibrium or not,

Q =
PQ(b)
PQ(a)

. (A2)

At thermodynamic equilibrium PQ(a) = Peq(a), PQ(b) = Peq(b), and hence Q = Keq.
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The Second Law of Thermodynamics asserts that the minimum work input per particle (atom,
molecule, Brownian particle, etc.) required to force the system away from thermodynamic equilibrium,
i.e., from Keq to Q ̸= Keq, keeping Keq itself fixed, is [52–55]

Wmin = kT
∣∣∣∣ln Q

Keq

∣∣∣∣. (A3)

Note the absolute value sign: equal work is required to force the system away from thermodynamic
equilibrium by the same ratio in either direction, keeping Keq itself fixed. [This process is discussed (with
respect to chemical systems) by Mahan and Myers [54] in Section 4.4, and by Wark [55] in Sections 14-1
and 14-2.] But Wmin is also the minimum work input per particle (atom, molecule, Brownian particle,
etc.) that the Second Law requires to change Keq itself to Q = Keq + ∆Keq, as per

Wmin = kT
∣∣∣∣ln Keq + ∆Keq

Keq

∣∣∣∣ = kT
∣∣∣∣ln(1 +

∆Keq

Keq

)∣∣∣∣. (A4)

As with respect to Equation (A3), note the absolute value signs: equal work is required to change Keq

by the same ratio in either direction, i.e., irrespective of whether ∆Keq is positive or negative.
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