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Abstract: We present an any-to-one voice conversion (VC) system, using an autoregressive model and

LPCNet vocoder, aimed to enhance the converted speech in terms of naturalness, intelligibility, and

speaker similarity. As the name implies, non-parallel any-to-one voice conversion does not require

paired source and target speeches and can be employed for arbitrary speech conversion tasks. Recent

advancements in neural-based vocoders, such as WaveNet, have improved the efficiency of speech

synthesis. However, in practice, we find that the trajectory of some generated waveforms is not

consistently smooth, leading to occasional voice errors. To address this issue, we propose to use an

autoregressive (AR) conversion model along with the high-fidelity LPCNet vocoder. This combination

not only solves the problems of waveform fluidity but also produces more natural and clear speech,

with the added capability of real-time speech generation. To precisely represent the linguistic content

of a given utterance, we use speaker-independent PPG features (SI-PPG) computed from an automatic

speech recognition (ASR) model trained on a multi-speaker corpus. Next, a conversion model maps

the SI-PPG to the acoustic representations used as input features for the LPCNet. The proposed

autoregressive structure enables our system to produce the following prediction step outputs from

the acoustic features predicted in the previous step. We evaluate the effectiveness of our system by

performing any-to-one conversion pairs between native English speakers. Experimental results show

that the proposed method outperforms state-of-the-art systems, producing higher speech quality and

greater speaker similarity.

Keywords: voice conversion; non-parallel data; autoregressive model; LPCNet; Phonetic

Posteriorgrams

1. Introduction

Voice conversion (VC) aims to modify the speech signal spoken by a source speaker to make it

sound as if it was spoken by a different speaker, referred to as the target speaker while keeping the

linguistic content unchanged. VC has a wide range of applications, including personalized speech

synthesis, speech enhancement, speaker identification, human-robot interaction, and movie dubbing.

Generally, voice conversion systems differ in terms of how the datasets are obtained and utilized

during training. Systems using parallel training data require recordings of the same linguistic content

from paired source and target speakers, while those using non-parallel training data (i.e., non-parallel

VC) are trained on unpaired speech data. A recent comprehensive overview of VC techniques and

their performance evaluation methods, from statistical approaches to deep learning, can be found

in [1,2]. Various methods have been proposed for parallel voice conversion tasks using statistical

modeling, such as Gaussian Mixture Models (GMMs) [3,4] and frequency warping [5,6]. Although

these methods are low-cost in terms of time and resources, spectral details are typically lost when

using low-dimensional representations, leading to overly smoothed speech waveforms. To overcome
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this issue, more advanced models have been developed, taking advantage of machine learning-based

techniques such as Deep Neural Networks (DNNs) [7,8], Recurrent Neural Networks (RNNs) [9] and

Sequence-To-Sequence (Seq2Seq) [10,11], which achieved superior performance in terms of naturalness

and similarity when compared to conventional VC methods.

While previous VC methods have shown promising outcomes, they face a significant limitation:

the requirement for parallel training data, which may not always be readily available in practice.

In recent years, VC research utilizing non-parallel training data has seen substantial improvements,

largely due to the effectiveness of deep learning techniques in learning mapping functions. Successful

techniques have been developed, such as those in [12–15]. For example, approaches including

CyleGAN-VC [16], StarGAN-VC [17] and VAW-GAN [18], have employed generative adversarial

networks (GANs) [19] to improve both speech quality and similarity to the target speaker, particularly

when a large amount of speech data is available. Other approaches, introduced in [13,15], use Seq2Seq

models and aim to separate linguistic features from speaker identity components. During the training

process, the model learns linguistic representations from acoustic features using the encoder output as

the reference. At run-time conversion, the Seq2Seq decoder is used to reconstruct the acoustic features,

taking advantage of target speaker representations.

The recent advances in non-parallel VC involve the use of linguistic features extracted from

the automatic speech recognition (ASR) model trained using a large multi-speaker corpus, such

as Phonetic PosterioGram (PPG) and bottleneck features. PPGs refer to frame-level contextual

representations derived from the posterior probabilities associated with each phonetic class, using a

speaker-independent ASR system (SI-ASR).

The application of these techniques has received particular attention in relevant studies [10,20–23]

where a conversion model is first used to convert PPGs extracted from the source speech into spectral

features of the target speaker. Subsequently, a vocoder is applied using the converted features to

generate the target speaker’s speech waveforms. WaveNet [21] serves as the primary neural vocoder

widely utilized in VC methods. However, it has a limitation in generating only one speech sample at a

time, which presents challenges for real-time applications. Moreover, despite the success of PPGs, one

of their limitations is the lack of smoothness in the trajectory of the generated waveforms, leading to

speech artifacts, particularly in run-time conversion.

In this paper, we propose an innovative non-parallel voice conversion framework that relies on

an autoregressive model, a fusion of PPGs and speaker-embedding linguistic features, and an LPCNet

vocoder for any-to-one voice conversion. This method allows us to transform the voice of an arbitrary

speaker, including those who were not part of the training data, into the voice of a known speaker. Our

approach focuses on improving the robustness of VC techniques in terms of speech quality, naturalness,

and speaker similarity.

In summary, the main contributions of this paper are as follows:

• We propose a VC framework using an autoregressive conversion model in order to obtain

acoustic features with higher precision, thereby generating a smooth trajectory and reducing

speech error problems.
• We use a high-fidelity LPCNet-based vocoder, which improves the efficiency of speech synthesis

and is able to generate speech in real-time.
• We leverage the use of SI-PPGs, which exclude the attention-based duration conversion module.

Additionally, we incorporate speaker embeddings obtained from the speaker encoder network

as auxiliary features, which improves the overall training stability and minimizes pronunciation

artifacts.
• We evaluate the effectiveness of our system by performing "any-to-one" voice conversion pairs

on the popular American CMU-ARCTIC database.

Experiments on both objective and subjective evaluations showed that the proposed method

outperforms state-of-the-art systems, demonstrating clearer pronunciation and greater speaker

similarity.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 October 2023                   doi:10.20944/preprints202310.1231.v1

https://doi.org/10.20944/preprints202310.1231.v1


3 of 16

The remaining sections of this paper are organized as follows: Section 2 introduces the related

work that has motivated our research. Section 3 describes the method we propose. Section 4 details

the experimental setup. Section 5 presents the results and discussion. We conclude in Section 6.

2. Related work

Non-parallel VC techniques are even more challenging because they do not need parallel data

for training. Some successful non-parallel VC methods include variational autoencoder (VAE) [18],

generative adversarial network (GAN) [19] and its variants such as CycleGAN [16] and StarGAN [17].

Although these methods have focused on transforming a non-parallel corpus into a quasi-parallel

corpus and then on learning a conversion function (which is not so straightforward), they can lead to a

degradation of speech quality.

Recent methods based on the use of linguistic features PPGs and vocoders have been also

proposed and have proven to be effective [10,20–23]. PPGs are high-level contextual representations

obtained from the posterior probabilities of each phonetic class using a speaker-independent ASR

system. Although PPG techniques have been applied successfully, they still have inherent limitations,

e.g. the quality of the PPGs is highly dependent on the ASR system.

While conventional parametric vocoders, as mentioned in the work of Kawahara et al. [24],

could be utilized, they tend to produce synthesized speech of lower quality than neural vocoders.

In particular, WaveNet, presented by Liu et al. [21], represents a very successful implementation of

a neural vocoder. WaveNet operates as an autoregressive generative model, known for its ability

to generate high-fidelity audio waveforms. WaveNet’s autoregressive structure greatly improves

the continuity of the generated waveforms; however, its drawback lies in the slowness of real-time

synthesis, due to the one-by-one generation of waveform samples. In response to this limitation, an

alternative to WaveNet has been proposed in the form of WaveRNN [25], which seeks to improve the

quality of the WaveNet model. WaveRNN uses a layer of sparse gated recurrent units (GRUs) rather

than the dilated causal convolutions used in WaveNet.

Recently, a highly efficient neural vocoder, known as LPCNet [26], has been introduced, drawing

inspiration from WaveRNN. LPCNet leverages the principles of linear predictive coding (LPC) to model

vocal tract responses and incorporates linear prediction techniques into the WaveRNN architecture,

resulting in a reduction in the complexity of generating raw speech waveforms. Notably, LPCNet

achieves the synthesis of higher-quality speech compared to WaveRNN, even when using the same

network size. Moreover, LPCNet exhibits real-time or faster-than-real-time performance on a single

CPU core, thanks to efficient vectorization techniques. Since its inception, LPCNet has emerged as a

popular choice for various speech synthesis tasks.

Hence, numerous approaches have been proposed to improve the inference speed of

LPCNet [27–29]. In addition, there is considerable enthusiasm for high-fidelity neural vocoders

that exploit generative adversarial networks for their lightweight architectures and fast speech

generation capabilities [30–32]. Nevertheless, the training of these vocoders can pose challenges,

potentially leading to audible artifacts like pitch errors and periodicity artifacts, attributed to their

non-autoregressive (non-AR) structures [33].

Our proposed method differs from conventional PPG-VC techniques such as the works of Zhou

et al. [20] and Sun et al. [34], in that we use the acoustic features of the previous step as input to

generate next-step output through the proposed AR structure, resulting in a smooth waveform and

low speech distortion. Indeed, taking advantage of the PPGs, our proposal allows for any-to-one

conversion due to its speaker-independent characteristics. In addition, as part of our approach, we use

speaker embeddings derived from a speaker encoder network, originally trained for the classification

of multiple speakers [35], as additional features to more accurately capture the characteristics of target

speakers. The concatenation of PPGs and speaker embedding features results in a more intelligible

converted speech.
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For speech synthesis, instead of the basic WaveNet vocoder used in some baseline systems as

[10,36], we use a high-fidelity LPCNet-based vocoder [26], which combines linear prediction with

recurrent neural networks. LPCNet has a considerable advantage in terms of the simplicity of the

model. WaveNet, on the other hand, is a much more complex model, involving more neurons. As a

result, it often requires a larger dataset during training to achieve high audio-quality speech.

3. Method

The architecture of the proposed non-parallel VC framework, shown in Figure 1, comprises three

main components: (1) Features extraction unit, (2) Conversion model, and (3) Waveform synthesizer.

We use an SI-ASR model to extract PPG linguistic features which are used as input. The conversion

model includes an encoder and an autoregressive decoder, which aims to convert the linguistic features

into acoustic features. We adopt the LPCNet vocoder as a synthesizer that uses the predicted acoustic

features to reconstruct the speech waveform. All these components are described in the following

subsections.

Figure 1. Training stage (a) and conversion stage (b) of the proposed non-parallel VC system based on

an autoregressive conversion model.

3.1. PPG Features Extraction

To generate PPG features, an ASR system is used to balance the difference between speakers.

We used a speaker-independent ASR model (SI-ASR) based on the Kaldi toolkit [37]. The model is

trained to estimate posterior probabilities using a large multi-speaker corpus. More specifically, the

input of the SI-ASR consists of acoustic features Xt extracted at each frame t. The outputs are posterior

probabilities vectors, denoted Pt, which represent the PPG’s linguistic features calculated as follows:

Pt = (p(s|Xt)|s) (1)

where p(s|Xt) denotes the posterior probability of each phonetic class s.

3.2. Conversion Model

We adopt an encoder-decoder recurrent network for the conversion model. The encoder we use is

based on the Tacotron model [38]. Firstly, a sequence of PPGs is taken as input. The input vectors are

then passed through a Pre-Net, a non-linear transformation, which includes a bottleneck layer with
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dropout to facilitate convergence. The pre-net outputs are further processed using a CBHG module

[38] to produce the final encoder representation. The effectiveness of CBHG stems from its ability

to learn context-dependent representations at a high level. CBHG’s architecture consists of a 1-D

convolutional bank, highway networks [39], and Bidirectional Gated Recurrent Unit (Bi-GRU) [40]

layers.

We define a sequence of PPG features P = (p1, . . . , p2, pN) of length N as the encoder input,

where P ∈ R
N×Dp . Here, N represents the number of frames and Dp is the PPG dimension. The

Pre-Net layer produces a set of output vectors denoted as R = [r1, r2, . . . , rN ], where R ∈ R
N×Dr .

The encoder outputs sequence H = [h1, h2, . . . , hN ] (i.e. the hidden representations) are obtained,

where H ∈ R
N×Dh , Dh is the dimension of the encoder output vectors.

For the decoder, we use an attention-based decoder which is an autoregressive RNN model. This

means that it predicts a sequence of acoustic features using the encoder outputs. The architecture

consists of an attention layer, an LSTM layer, and a Pre-Net layer. The attention layer employs a

"Bahdanau" attention mechanism, which compresses the encoder output into a fixed-length context

vector. This context vector is then combined with the output of the attention layer and used as input

for the LSTM layer.

We define the sequence of acoustic features representing the decoder output as O =

(o1, o2, . . . , oN), where O ∈ R
N×Do . First, at each step t, the attention layer generates a fused

representation, denoted as ft ∈ R
1×D, which is computed by concatenating the previous acoustic

feature ot−1 ∈ R
1×Do with the encoder output ht ∈ R

1×Dh using the following formulas:

ft = αT
attCt (2)

where Ct ∈ R
2×D is the concatenated representations as:

Ct = [ot−1Wo; htWh] (3)

The attention vectors noted αatt ∈ R
2×1, are computed as follows:

αatt = so f tmax(Pf w f ) (4)

Pf = tanh(CtW f ) (5)

where Wo ∈ R
Do×D, Wh ∈ R

Dh×D, and W f ∈ R
D×D are trainable parameters used to equalize the

different feature dimensions of all inputs to size D. tanh is the hyperbolic tangent activation function.

Secondly, the LSTM layer is initialized using two inputs: the generated fusion representation

denoted ft, and the decoder hidden state from the previous step denoted hd
t−1. The decoder LSTM

output od
t is produced as:

od
i = LSTM( ft, ht−1) (6)

The LSTM output od
t is then fed into the pre-net layer to generate the decoder output. The Pre-Net

serves as bottleneck information needed to learn the autoregressive decoder.

The acoustic feature vector ot ∈ R
1×Do representing the decoder output is finally generated.

3.3. Waveform synthesizer

To generate the converted speech, a waveform synthesizer based on a variant of WaveRNN

vocoder [25] is used. We chose LPCNet vocoder [26], an efficient neural vocoder, which combines

linear prediction with RNN to considerably improve the audio quality of the resynthesized speech.

LPCNet generates speech from Bark-Frequency Cepstral Coefficients (BFCCs) [41] and two pitch

(period, correlation) parameters. This presents a high-level control of the spectral shape outputs as it

directly depends on the shape of the linear predictive coding filter.
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To implement the model, we were inspired by open-source code made available by both the

Mozilla and Google LLC teams [26]. In order to achieve better control over high-frequency features, we

increased the dimension of the input features from 18-D Bark-Frequency Cepstral Coefficients (BFCCs)

to 30-D BFCCs. This resulted in the extraction of 32-D acoustic features comprising 30-D BFCCs, 1-D

pitch period, and 1-D pitch correlation.

3.4. Model Training

In the training stage, acoustic features are first extracted from the target speech signals. PPGs

are then computed using the SI-ASR model from the MFCC features. Speaker embeddings are also

computed from the target speech as auxiliary features through a speaker encoder neural network.

These embeddings will then serve as a reference for all subsequent real-time conversions to the target

speaker. The conversion model takes PPG features and speaker embeddings as inputs and predicts

acoustic features as outputs.

All parameters of the conversion model are optimized using the mean squared error (MSE) loss

between the ground truth and the predicted acoustic feature vectors through the back-propagation

algorithm (BP).

At run-time conversion, the PPG features are extracted from the source speech. These features

are then concatenated with the previously calculated speaker embeddings of the target speaker and

fed into the conversion model to predict acoustic features. Finally, the LPCNet vocoder utilizes the

predicted features to generate the speech waveform. This process is shown in Figure 1.

4. Experiments

The following subsections outline the experimental datasets, implementation details, and the

various experiments conducted to evaluate the proposed method.

4.1. Database

We use the American CMU-ARCTIC database [42] for VC experiments. The multi-speaker TIMIT

corpus [43] was used to train the SI-ASR system. The CMU-ARCTIC database is a collection of parallel

recordings of seven professional speakers of different genders and accents. Each speaker recorded a

set of 1132 sentences in the form of ".wav" audio files. All the speech signals are sampled at a sampling

rate of 16 kHz, windowed by a 25 ms Hamming window, and shifted every 5 ms. In this paper, only

the utterances of native US English speakers were taken into account: two females (SLT and CLB) and

two males (BDL and RMS). 500 utterances were selected for each speaker to form the non-parallel

training set. A further 50 non-overlapping utterances are selected for testing and evaluation. In our

experiments, we performed an any-to-one speech conversion, using the female speaker SLT as the

target speaker and two male speakers (BDL, CLB), and a female speaker (RMS) as the source speakers

as follows: BDL to SLT, CLB to SLT, and RMS to SLT.

4.2. Implementation Details

For each input utterance, the PPGs are obtained using a DNN-based SI-ASR model with 4 hidden

layers. This model is implemented using the Kaldi speech recognition toolkit [37] and trained on TIMIT

corpus [43]. For DNN-ASR training, we use 40-dimensional filterbank acoustic features extracted

every 10 ms frameshift with 25 ms window size as input. The output of this model is the sequence

of PPG feature vectors. For each waveform input, PPG feature vectors of dimension 512 (Dp = 512)

are extracted. The conversion model takes as input a sequence of 512-D PPG features and speaker

embeddings which are used as additional features to better capture different aspects of the target

speaker’s characteristics. The speaker embeddings are derived from a DNN-based speaker encoder

that has been trained for multi-speaker classification as applied in the [35] study. To compute speaker

embeddings for the target speaker, we choose a reference recording with a long duration from the
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training data. We also extract 39th-order mel-cepstral coefficients (MCCs) from spectral envelopes

which are utilized as spectral features for objective evaluation.

To train the conversion model, we choose a batch size of 32, an Adam optimizer with β1 = 0.9,

β2 = 0.999, and an initial learning rate of 0.001. We used Mean Square Error (MSE) as the loss

function. Firstly, we used a Pre-Net, which consisted of a dense layer with a dropout rate of 0.5, and an

output dimension of 512. Secondly, we incorporated a CBHG module with a 1-D convolutional bank

comprising 16 sets of 1-D convolutional filters, each with 128 output channels and ReLU activation.

These convolutional outputs were then fed into a highway network (consisting of 4 fully-connected

layers) followed by a Bi-GRU (with 128 units per direction) to extract 256-dimensional context-feature

representations (where Dh = 256) as encoder outputs. In the third step, the 256-dimensional encoder

outputs were combined with previously predicted acoustic features through an attention RNN layer.

The fused representations were then passed through an LSTM layer of 512 cells. Finally, the

outputs of the LSTM layer were fed into a decoder Pre-Net with a dropout rate of 0.5 to predict acoustic

features (where Do = 32) to be used by LPCNet for speech synthesis.

The LPCNet operates at a 16 kHz sampling rate and a frame rate network that processes 10 ms

frames. We use 32-D acoustic features including 30-D Bark-scale frequency cepstral coefficients, 1-D

pitch period, and 1-D pitch correlation. The LPCNet is trained for 200 epochs, the batch size is 32, and

the learning rate is set to 1 × 103.

4.3. Compared methods

To evaluate the effectiveness of our proposed system (Proposed) on the VC task, four recent

state-of-the-art systems (S1, S2, S3, S4) designed for VC were chosen for comparison using parallel

and non-parallel training data. Note that all systems were tested under the same conditions for a fair

and complete evaluation. The details are described below:

• Baseline system 1 (S1): Refers to parallel VC system [11] based on ASR and text-to-speech

(TTS)-oriented pretraining strategy using Transformer models for sequence-to-sequence VC. This

method provides a significant improvement in performance in terms of intelligibility and speech

quality, even when training data is limited.
• Baseline system 2 (S2): Refers to parallel baseline VC system [10] based on sequence-to-sequence

mapping model with attention, which achieved better performance on naturalness and speaker

similarity when compared with conventional methods.
• Baseline system 3 (S3): Refers to non-parallel VC system [44] based on a variant of the GAN

model called StarGAN. This system can generate converted speech signals at a high speed,

allowing for real-time applications and requiring only a few minutes of training to produce

realistic speech.
• Baseline system 4 (S4): Refers to non-parallel baseline VC system [36] aims to jointly train

conversion model and WaveNet vocoder using mel-spectrograms and Phonetic Posteriorgrams.

5. Results and Discussion

Objective and subjective evaluations were performed to assess the performance of our systems

in terms of speech quality and speaker similarity. The assessment utterances are taken from the 25

utterances in the test set.

Audio samples from this work are depicted in https://techtech-solution.com/Kadria/20221215/

index.php.

5.1. Objective evaluations

We objectively evaluated the similarity between the target and converted speech by using Mel

Cepstral Distortion (MCD), a widely used metric for spectral distortion in speech conversion, calculated

using Equation 7. The MCD results of both our proposed and baseline methods were evaluated.
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MCD[dB] =
10

ln 10

√

√

√

√2
D

∑
k=1

(C
(c)
k − C

(t)
k )2 (7)

where C(c)
k and C

(t)
k represent the kth coefficient of the converted and target MCCs vectors,

respectively. D denotes the dimension of MCCs (39-dimensional features), calculated with a 25ms

window size and 10ms window shift.

To measure the intelligibility of the speech generated by the different systems we also calculated

the Word Error Rates (WER) from the ASR transcriptions. We used the Word Error Rate Matlab toolbox

[45] to calculate the Levenstein distance [46] between the hypothesis sentence (ASR transcription

output) and the reference sentence (original utterance). The Levenstein distance WER considers

insertions, deletions, and substitutions observed in the ASR transcription output. The WER formula is

given in the following Equation 8. The smaller the WER scores, the better the speech intelligibility.

WER =
Substitutions + Insertions + Deletions

Total number o f words in re f erence sentence
× 100 (8)

The MCDs results obtained with the proposed and baseline methods on the validation set are

summarized in Table 1. A lower MCD value signifies the better performance of the VC system.

Table 1. Mel Cepstral Distortion (dB) results of baseline and proposed methods.

Methods
MCD (dB)

BDL–>SLT CLB–>SLT RMS–>SLT Average

Para
S1 [11] 7.08 6.63 6.88 6.86

S2 [10] 7.22 6.64 7.34 7.06

N-Para

S3 [44] 6.57 6.47 6.40 6.48

S4 [36] 7.17 7.31 7.11 7.19

Proposed 6.53 6.49 6.37 6.46

Comparing the proposed method to the baseline methods S3 et S4, which are based on non-parallel

training data, the results clearly show that the proposed method performs better for all conversion

pairs. The average MCD values obtained by the method we propose are significantly lower than those

obtained by S4, namely 6.46 dB vs. 7.19 dB but almost equivalent to those obtained by S2 i.e. 6.46 vs.

6.48. We can explain this by using the autoregressive structure that incorporates the outputs from the

previous step to predict the outputs of the next step, which results in smoother waveforms. We can

confirm this by using the efficient LPCNet vocoder to generate waveforms, while S3 and S4 adopt the

WORLD [47] and WaveNet vocoders respectively.

On the other hand, by comparing the proposed method to the baseline methods based on parallel

training data, we can show that our system produces considerably better MCD values than those

obtained by S2 for all conversion pairs. For example, for the RMS-to-SLT conversion pair, a relative

reduction of 0.98 is noted. Furthermore, we compare the baseline S1 and our method based on parallel

and non-parallel voice conversion. We observe that the proposed method gives slightly better MCD

values than S1, i.e. an average of 6.86 vs.6.46.
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Table 2 gives the WER scores obtained for our VC method and the state-of-the-art methods. Note

that these WERs are achieved when ASR is trained using converted data for male and female speakers.

Table 2. ASR Word error rate (WER) (%) scores for source speech (Source), converted speech from

proposed and baseline (S1, S2, S3, S4) methods for male and female speakers.

Methods
WER in (%)

BDL (Male) CLB (Female) Average

Source 8.56% 7.46% 8.01%

Proposed 28.89% 27.69% 28.29%

S1 37.39% 34.19% 35.79%

S2 32.67% 29.87% 31.54%

S3 41.33% 43.03% 42.18%

S4 50.6% 48.76% 49.68%

The proposed method demonstrated lower WER scores (i.e. better intelligibility) compared to

state-of-the-art methods for both male and female speakers.

From the female speaker’s WER, it can be seen that our method notably reduces errors compared

to the male speaker’s WER. Specifically, when comparing the WER from baseline S4 with our proposed

method, there was a substantial relative reduction of 21.07%. However, there was a slight degradation

in the WER from baseline S2, amounting to 3.98%.

These results demonstrate that the conversion model trained on a non-parallel corpus performs

comparably, and in some cases better, than its counterparts trained on a parallel corpus. This shows the

effectiveness of our method in improving speech quality and reducing pronunciation errors. However,

it is essential to note that the direct comparison of parallel and non-parallel VC methods is not entirely

fair, as the non-parallel VC only uses the target speaker’s data during training.

Figure 2 illustrates improvements in spectrogram visualization by comparing the converted

speech between the proposed and baseline (S1) systems. Our observations indicate that the proposed

method effectively mitigates speech artifacts. However, for the S1 system, the reconstructed speech

exhibits audible artifacts, occasionally appearing within non-speech segments.
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Figure 2. Spectrograms of the target speech, the converted speech from the proposed system and the

S1 baseline system of the same sentence "Beyond refusing to sell us food, they left us to ourselves".

5.2. Subjective evaluations

We perform subjective listening tests to assess the performance of our systems in terms of speech

quality and speaker similarity of the generated speech from the 5 conversion methods (proposed, S1,

S2, S3, and S4). It should be noted that all tests were performed under the same conditions.

We first conduct the Mean Opinion Score (MOS) test, admittedly the most pertinent subjective

test. For each conversion pair, 10 pairs (sentences) were randomly selected from the 25 paired samples

of the test set. A group of fifteen listeners (five males and ten females) took part in the listening tests

where each participant had to listen to 10 speech samples converted according to each of the systems

mentioned above. In this experiment, each converted sample was randomly presented to listeners who

were asked to independently judge the quality of the speech in terms of speech quality and naturalness

on a five-level scale (ranging from 1, for the lowest quality, to 5 for the best quality). Each participant

has the chance to replay each stimulus before giving his/her note.

We then perform an ABX similarity test to evaluate the recognition of the target speaker. The setup

is similar to the MOS test. X was the converted sample in each pair, and A and B were the source and

target samples, respectively. Listeners are requested to judge the proximity of the converted sample X

to both source sample A and target sample B by giving a score of either 0 or 1 (0 for the choice of source

speaker and 1 point for the choice of target speaker) after each listening session. The final result is

given as a percentage for the converted voices X that is recognized as the target speaker. In the case of

Male-to-Female and Female-to-Male conversion, the inter-gender conversions were easily recognized.

The results of the subjective MOS and ABX tests obtained on the validation set are depicted in

Figure 3 and Figure 4, respectively.
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Figure 3. MOS results with 95% confidence intervals on naturalness obtained from all conversion pairs.

From Figure 3, it can be observed that the S4 system yields lower MOS values than the other three

methods, which confirms the results of the objective experiments. In the RMS-to-SLT conversion pair,

we notice that the method we propose proved to be close and has slightly lower efficiency compared

to the S2 system. Respective MOS values are 3.86 and 3.89. In all conversion pairs performed, we can

further see that the MOS scores of our proposed method are higher than those of the S4 method on

naturalness.

Figure 4 presents the results of the similarity test obtained from the Male-to-Male and

Female-to-Female conversion pairs. As can be seen, listeners preferred the proposed system and

the baseline S3 since the stimuli provided by both methods seem to them more similar and closer to

the target than those provided by the other methods.

Figure 4. ABX results with 95% confidence intervals on similarity obtained from Female-to-Female

and Male-to-Male conversion pairs.

In order to evaluate the degree of preference for the different conversion systems, we also conduct

an AB preference test to compare between proposed methods (designated A) and baseline methods

(designated B). Similar to the ABX test, 10 pairs were randomly selected from the 25 paired test samples.
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For every pair of samples, listeners were asked to listen to utterances presented in a random order and

decide which of the two samples was better in terms of speech quality.

The obtained results of the AB test on naturalness and similarity are respectively presented in

Figure 5 along with the average of the scores with 95% confidence interval.

Figure 5. Results of AB preference test on naturalness and similarity between the proposed and (a)

baseline system 1 S1, (b) baseline system 2 (S2), (c) baseline system 3 (S3), and (d) baseline system 4

(S4).

Overall, we can see in Figure 5 (b) et (d) that the proposed method outperforms the baseline

S2 and S4 in terms of naturalness and speaker similarity of the converted speech. In Figure 5 (a),

comparing the baseline S1 to our proposed system, we see that 50.34% of the listeners prefer the

proposed method, 44.66% prefer the baseline method, and the remaining 5% show no significant

preference between the two converted samples. In Figure 5 (b) we clearly see the preference of our

system by the listeners, i.e. 60.67% against 11.67% average score. This proves that our proposed system

has higher naturalness and similarity scores than the S2 and S4 baseline systems.

Therefore, based on the above test results, it can be concluded that our non-parallel VC system

significantly outperforms the baseline non-parallel methods and can achieve a level of conversion

performance comparable to that of parallel VC methods, both in terms of speech quality and similarity

to the target speaker.

6. Conclusion

In this work, we propose a non-parallel voice conversion framework using an autoregressive

model, linguistic PPG features, and an LPCNet vocoder for any-to-one speech conversion. In contrast

to data-parallel approaches, our system does not require parallel training data, can be easily adapted to
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real-time applications, and is exceptionally flexible for any-to-one voice conversion tasks. Experimental

results demonstrate that our proposed method improves the naturalness of the converted speech

and its similarity to the target speaker. In our future work, we intend to explore techniques aimed at

stabilizing and expediting the learning process in non-parallel VC. Additionally, we aspire to extend

our approach to cross-lingual speech conversion and investigate the influence of linguistic diversity on

the performance of our model.
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