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Abstract: We present an any-to-one voice conversion (VC) system, using an autoregressive model and
LPCNet vocoder, aimed to enhance the converted speech in terms of naturalness, intelligibility, and
speaker similarity. As the name implies, non-parallel any-to-one voice conversion does not require
paired source and target speeches and can be employed for arbitrary speech conversion tasks. Recent
advancements in neural-based vocoders, such as WaveNet, have improved the efficiency of speech
synthesis. However, in practice, we find that the trajectory of some generated waveforms is not
consistently smooth, leading to occasional voice errors. To address this issue, we propose to use an
autoregressive (AR) conversion model along with the high-fidelity LPCNet vocoder. This combination
not only solves the problems of waveform fluidity but also produces more natural and clear speech,
with the added capability of real-time speech generation. To precisely represent the linguistic content
of a given utterance, we use speaker-independent PPG features (SI-PPG) computed from an automatic
speech recognition (ASR) model trained on a multi-speaker corpus. Next, a conversion model maps
the SI-PPG to the acoustic representations used as input features for the LPCNet. The proposed
autoregressive structure enables our system to produce the following prediction step outputs from
the acoustic features predicted in the previous step. We evaluate the effectiveness of our system by
performing any-to-one conversion pairs between native English speakers. Experimental results show
that the proposed method outperforms state-of-the-art systems, producing higher speech quality and
greater speaker similarity.

Keywords: voice conversion; non-parallel data; autoregressive model; LPCNet; Phonetic
Posteriorgrams

1. Introduction

Voice conversion (VC) aims to modify the speech signal spoken by a source speaker to make it
sound as if it was spoken by a different speaker, referred to as the target speaker while keeping the
linguistic content unchanged. VC has a wide range of applications, including personalized speech
synthesis, speech enhancement, speaker identification, human-robot interaction, and movie dubbing.

Generally, voice conversion systems differ in terms of how the datasets are obtained and utilized
during training. Systems using parallel training data require recordings of the same linguistic content
from paired source and target speakers, while those using non-parallel training data (i.e., non-parallel
VC) are trained on unpaired speech data. A recent comprehensive overview of VC techniques and
their performance evaluation methods, from statistical approaches to deep learning, can be found
in [1,2]. Various methods have been proposed for parallel voice conversion tasks using statistical
modeling, such as Gaussian Mixture Models (GMMs) [3,4] and frequency warping [5,6]. Although
these methods are low-cost in terms of time and resources, spectral details are typically lost when
using low-dimensional representations, leading to overly smoothed speech waveforms. To overcome
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this issue, more advanced models have been developed, taking advantage of machine learning-based
techniques such as Deep Neural Networks (DNNs) [7,8], Recurrent Neural Networks (RNNs) [9] and
Sequence-To-Sequence (Seq2Seq) [10,11], which achieved superior performance in terms of naturalness
and similarity when compared to conventional VC methods.

While previous VC methods have shown promising outcomes, they face a significant limitation:
the requirement for parallel training data, which may not always be readily available in practice.

In recent years, VC research utilizing non-parallel training data has seen substantial improvements,
largely due to the effectiveness of deep learning techniques in learning mapping functions. Successful
techniques have been developed, such as those in [12-15]. For example, approaches including
CyleGAN-VC [16], StarGAN-VC [17] and VAW-GAN [18], have employed generative adversarial
networks (GANSs) [19] to improve both speech quality and similarity to the target speaker, particularly
when a large amount of speech data is available. Other approaches, introduced in [13,15], use Seq2Seq
models and aim to separate linguistic features from speaker identity components. During the training
process, the model learns linguistic representations from acoustic features using the encoder output as
the reference. At run-time conversion, the Seq2Seq decoder is used to reconstruct the acoustic features,
taking advantage of target speaker representations.

The recent advances in non-parallel VC involve the use of linguistic features extracted from
the automatic speech recognition (ASR) model trained using a large multi-speaker corpus, such
as Phonetic PosterioGram (PPG) and bottleneck features. PPGs refer to frame-level contextual
representations derived from the posterior probabilities associated with each phonetic class, using a
speaker-independent ASR system (SI-ASR).

The application of these techniques has received particular attention in relevant studies [10,20-23]
where a conversion model is first used to convert PPGs extracted from the source speech into spectral
features of the target speaker. Subsequently, a vocoder is applied using the converted features to
generate the target speaker’s speech waveforms. WaveNet [21] serves as the primary neural vocoder
widely utilized in VC methods. However, it has a limitation in generating only one speech sample at a
time, which presents challenges for real-time applications. Moreover, despite the success of PPGs, one
of their limitations is the lack of smoothness in the trajectory of the generated waveforms, leading to
speech artifacts, particularly in run-time conversion.

In this paper, we propose an innovative non-parallel voice conversion framework that relies on
an autoregressive model, a fusion of PPGs and speaker-embedding linguistic features, and an LPCNet
vocoder for any-to-one voice conversion. This method allows us to transform the voice of an arbitrary
speaker, including those who were not part of the training data, into the voice of a known speaker. Our
approach focuses on improving the robustness of VC techniques in terms of speech quality, naturalness,
and speaker similarity.

In summary, the main contributions of this paper are as follows:

* We propose a VC framework using an autoregressive conversion model in order to obtain
acoustic features with higher precision, thereby generating a smooth trajectory and reducing
speech error problems.

* We use a high-fidelity LPCNet-based vocoder, which improves the efficiency of speech synthesis
and is able to generate speech in real-time.

* We leverage the use of SI-PPGs, which exclude the attention-based duration conversion module.
Additionally, we incorporate speaker embeddings obtained from the speaker encoder network
as auxiliary features, which improves the overall training stability and minimizes pronunciation
artifacts.

* We evaluate the effectiveness of our system by performing "any-to-one" voice conversion pairs
on the popular American CMU-ARCTIC database.

Experiments on both objective and subjective evaluations showed that the proposed method
outperforms state-of-the-art systems, demonstrating clearer pronunciation and greater speaker
similarity.
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The remaining sections of this paper are organized as follows: Section 2 introduces the related
work that has motivated our research. Section 3 describes the method we propose. Section 4 details
the experimental setup. Section 5 presents the results and discussion. We conclude in Section 6.

2. Related work

Non-parallel VC techniques are even more challenging because they do not need parallel data
for training. Some successful non-parallel VC methods include variational autoencoder (VAE) [18],
generative adversarial network (GAN) [19] and its variants such as CycleGAN [16] and StarGAN [17].
Although these methods have focused on transforming a non-parallel corpus into a quasi-parallel
corpus and then on learning a conversion function (which is not so straightforward), they can lead to a
degradation of speech quality.

Recent methods based on the use of linguistic features PPGs and vocoders have been also
proposed and have proven to be effective [10,20-23]. PPGs are high-level contextual representations
obtained from the posterior probabilities of each phonetic class using a speaker-independent ASR
system. Although PPG techniques have been applied successfully, they still have inherent limitations,
e.g. the quality of the PPGs is highly dependent on the ASR system.

While conventional parametric vocoders, as mentioned in the work of Kawahara et al. [24],
could be utilized, they tend to produce synthesized speech of lower quality than neural vocoders.
In particular, WaveNet, presented by Liu et al. [21], represents a very successful implementation of
a neural vocoder. WaveNet operates as an autoregressive generative model, known for its ability
to generate high-fidelity audio waveforms. WaveNet’s autoregressive structure greatly improves
the continuity of the generated waveforms; however, its drawback lies in the slowness of real-time
synthesis, due to the one-by-one generation of waveform samples. In response to this limitation, an
alternative to WaveNet has been proposed in the form of WaveRNN [25], which seeks to improve the
quality of the WaveNet model. WaveRNN uses a layer of sparse gated recurrent units (GRUs) rather
than the dilated causal convolutions used in WaveNet.

Recently, a highly efficient neural vocoder, known as LPCNet [26], has been introduced, drawing
inspiration from WaveRNN. LPCNet leverages the principles of linear predictive coding (LPC) to model
vocal tract responses and incorporates linear prediction techniques into the WaveRNN architecture,
resulting in a reduction in the complexity of generating raw speech waveforms. Notably, LPCNet
achieves the synthesis of higher-quality speech compared to WaveRNN, even when using the same
network size. Moreover, LPCNet exhibits real-time or faster-than-real-time performance on a single
CPU core, thanks to efficient vectorization techniques. Since its inception, LPCNet has emerged as a
popular choice for various speech synthesis tasks.

Hence, numerous approaches have been proposed to improve the inference speed of
LPCNet [27-29]. In addition, there is considerable enthusiasm for high-fidelity neural vocoders
that exploit generative adversarial networks for their lightweight architectures and fast speech
generation capabilities [30-32]. Nevertheless, the training of these vocoders can pose challenges,
potentially leading to audible artifacts like pitch errors and periodicity artifacts, attributed to their
non-autoregressive (non-AR) structures [33].

Our proposed method differs from conventional PPG-VC techniques such as the works of Zhou
et al. [20] and Sun et al. [34], in that we use the acoustic features of the previous step as input to
generate next-step output through the proposed AR structure, resulting in a smooth waveform and
low speech distortion. Indeed, taking advantage of the PPGs, our proposal allows for any-to-one
conversion due to its speaker-independent characteristics. In addition, as part of our approach, we use
speaker embeddings derived from a speaker encoder network, originally trained for the classification
of multiple speakers [35], as additional features to more accurately capture the characteristics of target
speakers. The concatenation of PPGs and speaker embedding features results in a more intelligible
converted speech.
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For speech synthesis, instead of the basic WaveNet vocoder used in some baseline systems as
[10,36], we use a high-fidelity LPCNet-based vocoder [26], which combines linear prediction with
recurrent neural networks. LPCNet has a considerable advantage in terms of the simplicity of the
model. WaveNet, on the other hand, is a much more complex model, involving more neurons. As a
result, it often requires a larger dataset during training to achieve high audio-quality speech.

3. Method

The architecture of the proposed non-parallel VC framework, shown in Figure 1, comprises three
main components: (1) Features extraction unit, (2) Conversion model, and (3) Waveform synthesizer.
We use an SI-ASR model to extract PPG linguistic features which are used as input. The conversion
model includes an encoder and an autoregressive decoder, which aims to convert the linguistic features
into acoustic features. We adopt the LPCNet vocoder as a synthesizer that uses the predicted acoustic
features to reconstruct the speech waveform. All these components are described in the following

subsections.
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Figure 1. Training stage (a) and conversion stage (b) of the proposed non-parallel VC system based on
an autoregressive conversion model.

Conversion Stage (b)

3.1. PPG Features Extraction

To generate PPG features, an ASR system is used to balance the difference between speakers.
We used a speaker-independent ASR model (SI-ASR) based on the Kaldi toolkit [37]. The model is
trained to estimate posterior probabilities using a large multi-speaker corpus. More specifically, the
input of the SI-ASR consists of acoustic features X; extracted at each frame t. The outputs are posterior
probabilities vectors, denoted P;, which represent the PPG’s linguistic features calculated as follows:

Pr = (p(s|Xt)ls) )
where p(s|X;) denotes the posterior probability of each phonetic class s.
3.2. Conversion Model

We adopt an encoder-decoder recurrent network for the conversion model. The encoder we use is
based on the Tacotron model [38]. Firstly, a sequence of PPGs is taken as input. The input vectors are
then passed through a Pre-Net, a non-linear transformation, which includes a bottleneck layer with
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dropout to facilitate convergence. The pre-net outputs are further processed using a CBHG module
[38] to produce the final encoder representation. The effectiveness of CBHG stems from its ability
to learn context-dependent representations at a high level. CBHG’s architecture consists of a 1-D
convolutional bank, highway networks [39], and Bidirectional Gated Recurrent Unit (Bi-GRU) [40]
layers.

We define a sequence of PPG features P = (py,...,p2, pn) of length N as the encoder input,
where P € RN*Pr. Here, N represents the number of frames and D, is the PPG dimension. The
Pre-Net layer produces a set of output vectors denoted as R = [r1,7y,...,7n], where R € RN*Pr,

The encoder outputs sequence H = [hy,hy, ..., hy] (i.e. the hidden representations) are obtained,
where H € RN*Pr, Dy, is the dimension of the encoder output vectors.

For the decoder, we use an attention-based decoder which is an autoregressive RNN model. This
means that it predicts a sequence of acoustic features using the encoder outputs. The architecture
consists of an attention layer, an LSTM layer, and a Pre-Net layer. The attention layer employs a
"Bahdanau" attention mechanism, which compresses the encoder output into a fixed-length context
vector. This context vector is then combined with the output of the attention layer and used as input
for the LSTM layer.

We define the sequence of acoustic features representing the decoder output as O =
(01,02,...,0N), where O € RN*Do  First, at each step t, the attention layer generates a fused
representation, denoted as f; € R*D, which is computed by concatenating the previous acoustic
feature 0; 1 € R'*Po with the encoder output i € R*Pr using the following formulas:

ft= ‘thtct ()

where C; € R?*D is the concatenated representations as:
Ct = [0p-1Wo; hi W] ®3)
The attention vectors noted w € R2*1, are computed as follows:
P softmax(waf) 4)

Pf = tanh(Cth) (5)

where W, € RP*D W, € RP«*D and Wf € RP*D are trainable parameters used to equalize the
different feature dimensions of all inputs to size D. tanh is the hyperbolic tangent activation function.
Secondly, the LSTM layer is initialized using two inputs: the generated fusion representation
denoted f;, and the decoder hidden state from the previous step denoted h‘f_l. The decoder LSTM

output of is produced as:
of = LSTM(fi, hy_1) (6)

The LSTM output of is then fed into the pre-net layer to generate the decoder output. The Pre-Net
serves as bottleneck information needed to learn the autoregressive decoder.
The acoustic feature vector o; € R1*De representing the decoder output is finally generated.

3.3. Waveform synthesizer

To generate the converted speech, a waveform synthesizer based on a variant of WaveRNN
vocoder [25] is used. We chose LPCNet vocoder [26], an efficient neural vocoder, which combines
linear prediction with RNN to considerably improve the audio quality of the resynthesized speech.
LPCNet generates speech from Bark-Frequency Cepstral Coefficients (BFCCs) [41] and two pitch
(period, correlation) parameters. This presents a high-level control of the spectral shape outputs as it
directly depends on the shape of the linear predictive coding filter.
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To implement the model, we were inspired by open-source code made available by both the
Mozilla and Google LLC teams [26]. In order to achieve better control over high-frequency features, we
increased the dimension of the input features from 18-D Bark-Frequency Cepstral Coefficients (BFCCs)
to 30-D BFCCs. This resulted in the extraction of 32-D acoustic features comprising 30-D BFCCs, 1-D
pitch period, and 1-D pitch correlation.

3.4. Model Training

In the training stage, acoustic features are first extracted from the target speech signals. PPGs
are then computed using the SI-ASR model from the MFCC features. Speaker embeddings are also
computed from the target speech as auxiliary features through a speaker encoder neural network.
These embeddings will then serve as a reference for all subsequent real-time conversions to the target
speaker. The conversion model takes PPG features and speaker embeddings as inputs and predicts
acoustic features as outputs.

All parameters of the conversion model are optimized using the mean squared error (MSE) loss
between the ground truth and the predicted acoustic feature vectors through the back-propagation
algorithm (BP).

At run-time conversion, the PPG features are extracted from the source speech. These features
are then concatenated with the previously calculated speaker embeddings of the target speaker and
fed into the conversion model to predict acoustic features. Finally, the LPCNet vocoder utilizes the
predicted features to generate the speech waveform. This process is shown in Figure 1.

4. Experiments

The following subsections outline the experimental datasets, implementation details, and the
various experiments conducted to evaluate the proposed method.

4.1. Database

We use the American CMU-ARCTIC database [42] for VC experiments. The multi-speaker TIMIT
corpus [43] was used to train the SI-ASR system. The CMU-ARCTIC database is a collection of parallel
recordings of seven professional speakers of different genders and accents. Each speaker recorded a
set of 1132 sentences in the form of ".wav" audio files. All the speech signals are sampled at a sampling
rate of 16 kHz, windowed by a 25 ms Hamming window, and shifted every 5 ms. In this paper, only
the utterances of native US English speakers were taken into account: two females (SLT and CLB) and
two males (BDL and RMS). 500 utterances were selected for each speaker to form the non-parallel
training set. A further 50 non-overlapping utterances are selected for testing and evaluation. In our
experiments, we performed an any-to-one speech conversion, using the female speaker SLT as the
target speaker and two male speakers (BDL, CLB), and a female speaker (RMS) as the source speakers
as follows: BDL to SLT, CLB to SLT, and RMS to SLT.

4.2. Implementation Details

For each input utterance, the PPGs are obtained using a DNN-based SI-ASR model with 4 hidden
layers. This model is implemented using the Kaldi speech recognition toolkit [37] and trained on TIMIT
corpus [43]. For DNN-ASR training, we use 40-dimensional filterbank acoustic features extracted
every 10 ms frameshift with 25 ms window size as input. The output of this model is the sequence
of PPG feature vectors. For each waveform input, PPG feature vectors of dimension 512 (D, = 512)
are extracted. The conversion model takes as input a sequence of 512-D PPG features and speaker
embeddings which are used as additional features to better capture different aspects of the target
speaker’s characteristics. The speaker embeddings are derived from a DNN-based speaker encoder
that has been trained for multi-speaker classification as applied in the [35] study. To compute speaker
embeddings for the target speaker, we choose a reference recording with a long duration from the
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training data. We also extract 39th-order mel-cepstral coefficients (MCCs) from spectral envelopes
which are utilized as spectral features for objective evaluation.

To train the conversion model, we choose a batch size of 32, an Adam optimizer with 1 = 0.9,
B> = 0.999, and an initial learning rate of 0.001. We used Mean Square Error (MSE) as the loss
function. Firstly, we used a Pre-Net, which consisted of a dense layer with a dropout rate of 0.5, and an
output dimension of 512. Secondly, we incorporated a CBHG module with a 1-D convolutional bank
comprising 16 sets of 1-D convolutional filters, each with 128 output channels and ReLU activation.
These convolutional outputs were then fed into a highway network (consisting of 4 fully-connected
layers) followed by a Bi-GRU (with 128 units per direction) to extract 256-dimensional context-feature
representations (where Dy, = 256) as encoder outputs. In the third step, the 256-dimensional encoder
outputs were combined with previously predicted acoustic features through an attention RNN layer.

The fused representations were then passed through an LSTM layer of 512 cells. Finally, the
outputs of the LSTM layer were fed into a decoder Pre-Net with a dropout rate of 0.5 to predict acoustic
features (where D, = 32) to be used by LPCNet for speech synthesis.

The LPCNet operates at a 16 kHz sampling rate and a frame rate network that processes 10 ms
frames. We use 32-D acoustic features including 30-D Bark-scale frequency cepstral coefficients, 1-D
pitch period, and 1-D pitch correlation. The LPCNet is trained for 200 epochs, the batch size is 32, and
the learning rate is set to 1 x 10°.

4.3. Compared methods

To evaluate the effectiveness of our proposed system (Proposed) on the VC task, four recent
state-of-the-art systems (S1, S2, §3, S4) designed for VC were chosen for comparison using parallel
and non-parallel training data. Note that all systems were tested under the same conditions for a fair
and complete evaluation. The details are described below:

* Baseline system 1 (S1): Refers to parallel VC system [11] based on ASR and text-to-speech
(TTS)-oriented pretraining strategy using Transformer models for sequence-to-sequence VC. This
method provides a significant improvement in performance in terms of intelligibility and speech
quality, even when training data is limited.

* Baseline system 2 (S2): Refers to parallel baseline VC system [10] based on sequence-to-sequence
mapping model with attention, which achieved better performance on naturalness and speaker
similarity when compared with conventional methods.

¢ Baseline system 3 (S3): Refers to non-parallel VC system [44] based on a variant of the GAN
model called StarGAN. This system can generate converted speech signals at a high speed,
allowing for real-time applications and requiring only a few minutes of training to produce
realistic speech.

* Baseline system 4 (S4): Refers to non-parallel baseline VC system [36] aims to jointly train
conversion model and WaveNet vocoder using mel-spectrograms and Phonetic Posteriorgrams.

5. Results and Discussion

Objective and subjective evaluations were performed to assess the performance of our systems
in terms of speech quality and speaker similarity. The assessment utterances are taken from the 25
utterances in the test set.

Audio samples from this work are depicted in https://techtech-solution.com/Kadria/20221215/
index.php.

5.1. Objective evaluations

We objectively evaluated the similarity between the target and converted speech by using Mel
Cepstral Distortion (MCD), a widely used metric for spectral distortion in speech conversion, calculated
using Equation 7. The MCD results of both our proposed and baseline methods were evaluated.


https://techtech-solution.com/Kadria/20221215/index.php
https://techtech-solution.com/Kadria/20221215/index.php
https://doi.org/10.20944/preprints202310.1231.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 October 2023 doi:10.20944/preprints202310.1231.v1

8 of 16

10 Do
MCD[dB] = |2 Y (!9 — ) @)

where C(9); and Clgt) represent the k' coefficient of the converted and target MCCs vectors,
respectively. D denotes the dimension of MCCs (39-dimensional features), calculated with a 25ms
window size and 10ms window shift.

To measure the intelligibility of the speech generated by the different systems we also calculated
the Word Error Rates (WER) from the ASR transcriptions. We used the Word Error Rate Matlab toolbox
[45] to calculate the Levenstein distance [46] between the hypothesis sentence (ASR transcription
output) and the reference sentence (original utterance). The Levenstein distance WER considers
insertions, deletions, and substitutions observed in the ASR transcription output. The WER formula is

given in the following Equation 8. The smaller the WER scores, the better the speech intelligibility.

WER — Substitutions + Inser?fions + Deletions < 100 ®)
Total number of words in reference sentence

The MCDs results obtained with the proposed and baseline methods on the validation set are
summarized in Table 1. A lower MCD value signifies the better performance of the VC system.

Table 1. Mel Cepstral Distortion (dB) results of baseline and proposed methods.

MCD (dB)
Methods
BDL—>SLT CLB—>SLT RMS—->SLT Average

S1[11] 7.08 6.63 6.88 6.86
Para

S2 [10] 7.22 6.64 7.34 7.06

S3 [44] 6.57 6.47 6.40 6.48
N-Para

S4 [36] 7.17 7.31 7.11 7.19

Proposed 6.53 6.49 6.37 6.46

Comparing the proposed method to the baseline methods S3 et S4, which are based on non-parallel
training data, the results clearly show that the proposed method performs better for all conversion
pairs. The average MCD values obtained by the method we propose are significantly lower than those
obtained by 54, namely 6.46 dB vs. 7.19 dB but almost equivalent to those obtained by S2 i.e. 6.46 vs.
6.48. We can explain this by using the autoregressive structure that incorporates the outputs from the
previous step to predict the outputs of the next step, which results in smoother waveforms. We can
confirm this by using the efficient LPCNet vocoder to generate waveforms, while S3 and 5S4 adopt the
WORLD [47] and WaveNet vocoders respectively.

On the other hand, by comparing the proposed method to the baseline methods based on parallel
training data, we can show that our system produces considerably better MCD values than those
obtained by S2 for all conversion pairs. For example, for the RMS-to-SLT conversion pair, a relative
reduction of 0.98 is noted. Furthermore, we compare the baseline S1 and our method based on parallel
and non-parallel voice conversion. We observe that the proposed method gives slightly better MCD
values than S1, i.e. an average of 6.86 vs.6.46.
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Table 2 gives the WER scores obtained for our VC method and the state-of-the-art methods. Note
that these WERs are achieved when ASR is trained using converted data for male and female speakers.

Table 2. ASR Word error rate (WER) (%) scores for source speech (Source), converted speech from
proposed and baseline (S1, S2, S3, S4) methods for male and female speakers.

Methods WER in (%)

BDL (Male) CLB (Female) Average
Source 8.56% 7.46% 8.01%

Proposed 28.89% 27.69% 28.29%
S1 37.39% 34.19% 35.79%
S2 32.67% 29.87% 31.54%
S3 41.33% 43.03% 42.18%
S4 50.6% 48.76% 49.68%

The proposed method demonstrated lower WER scores (i.e. better intelligibility) compared to
state-of-the-art methods for both male and female speakers.

From the female speaker’s WER, it can be seen that our method notably reduces errors compared
to the male speaker’s WER. Specifically, when comparing the WER from baseline S4 with our proposed
method, there was a substantial relative reduction of 21.07%. However, there was a slight degradation
in the WER from baseline 52, amounting to 3.98%.

These results demonstrate that the conversion model trained on a non-parallel corpus performs
comparably, and in some cases better, than its counterparts trained on a parallel corpus. This shows the
effectiveness of our method in improving speech quality and reducing pronunciation errors. However,
it is essential to note that the direct comparison of parallel and non-parallel VC methods is not entirely
fair, as the non-parallel VC only uses the target speaker’s data during training.

Figure 2 illustrates improvements in spectrogram visualization by comparing the converted
speech between the proposed and baseline (S1) systems. Our observations indicate that the proposed
method effectively mitigates speech artifacts. However, for the S1 system, the reconstructed speech
exhibits audible artifacts, occasionally appearing within non-speech segments.
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Figure 2. Spectrograms of the target speech, the converted speech from the proposed system and the
S1 baseline system of the same sentence "Beyond refusing to sell us food, they left us to ourselves".

5.2. Subjective evaluations

We perform subjective listening tests to assess the performance of our systems in terms of speech
quality and speaker similarity of the generated speech from the 5 conversion methods (proposed, S1,
52,53, and S4). It should be noted that all tests were performed under the same conditions.

We first conduct the Mean Opinion Score (MOS) test, admittedly the most pertinent subjective
test. For each conversion pair, 10 pairs (sentences) were randomly selected from the 25 paired samples
of the test set. A group of fifteen listeners (five males and ten females) took part in the listening tests
where each participant had to listen to 10 speech samples converted according to each of the systems
mentioned above. In this experiment, each converted sample was randomly presented to listeners who
were asked to independently judge the quality of the speech in terms of speech quality and naturalness
on a five-level scale (ranging from 1, for the lowest quality, to 5 for the best quality). Each participant
has the chance to replay each stimulus before giving his/her note.

We then perform an ABX similarity test to evaluate the recognition of the target speaker. The setup
is similar to the MOS test. X was the converted sample in each pair, and A and B were the source and
target samples, respectively. Listeners are requested to judge the proximity of the converted sample X
to both source sample A and target sample B by giving a score of either 0 or 1 (0 for the choice of source
speaker and 1 point for the choice of target speaker) after each listening session. The final result is
given as a percentage for the converted voices X that is recognized as the target speaker. In the case of
Male-to-Female and Female-to-Male conversion, the inter-gender conversions were easily recognized.

The results of the subjective MOS and ABX tests obtained on the validation set are depicted in
Figure 3 and Figure 4, respectively.


https://doi.org/10.20944/preprints202310.1231.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 October 2023 doi:10.20944/preprints202310.1231.v1

110f16

MOS Test (with 95% confidence intervals)

H51 E52 W53 E54 MProposed

BDL-5LT CLB-5LT RMS-SLT Average

Conversion pairs

45

3,

(53}

MOS value
(45 ]

2,

[

=]

1,

(53}

1

Figure 3. MOS results with 95% confidence intervals on naturalness obtained from all conversion pairs.

From Figure 3, it can be observed that the S4 system yields lower MOS values than the other three
methods, which confirms the results of the objective experiments. In the RMS-to-SLT conversion pair,
we notice that the method we propose proved to be close and has slightly lower efficiency compared
to the S2 system. Respective MOS values are 3.86 and 3.89. In all conversion pairs performed, we can
further see that the MOS scores of our proposed method are higher than those of the 54 method on

naturalness.
Figure 4 presents the results of the similarity test obtained from the Male-to-Male and

Female-to-Female conversion pairs. As can be seen, listeners preferred the proposed system and
the baseline S3 since the stimuli provided by both methods seem to them more similar and closer to
the target than those provided by the other methods.

ABX Test (with 95% confidence intervals)
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20 40 &0 BO 100
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Figure 4. ABX results with 95% confidence intervals on similarity obtained from Female-to-Female

and Male-to-Male conversion pairs.

In order to evaluate the degree of preference for the different conversion systems, we also conduct
an AB preference test to compare between proposed methods (designated A) and baseline methods
(designated B). Similar to the ABX test, 10 pairs were randomly selected from the 25 paired test samples.
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For every pair of samples, listeners were asked to listen to utterances presented in a random order and
decide which of the two samples was better in terms of speech quality.

The obtained results of the AB test on naturalness and similarity are respectively presented in
Figure 5 along with the average of the scores with 95% confidence interval.

AB Test (with 95% confidence intervals) AB Test (with 95% confidence intervals)
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Figure 5. Results of AB preference test on naturalness and similarity between the proposed and (a)
baseline system 1 S1, (b) baseline system 2 (S2), (c) baseline system 3 (S3), and (d) baseline system 4
(54).

Overall, we can see in Figure 5 (b) et (d) that the proposed method outperforms the baseline
S2 and 54 in terms of naturalness and speaker similarity of the converted speech. In Figure 5 (a),
comparing the baseline S1 to our proposed system, we see that 50.34% of the listeners prefer the
proposed method, 44.66% prefer the baseline method, and the remaining 5% show no significant
preference between the two converted samples. In Figure 5 (b) we clearly see the preference of our
system by the listeners, i.e. 60.67% against 11.67% average score. This proves that our proposed system
has higher naturalness and similarity scores than the S2 and 54 baseline systems.

Therefore, based on the above test results, it can be concluded that our non-parallel VC system
significantly outperforms the baseline non-parallel methods and can achieve a level of conversion
performance comparable to that of parallel VC methods, both in terms of speech quality and similarity
to the target speaker.

6. Conclusion

In this work, we propose a non-parallel voice conversion framework using an autoregressive
model, linguistic PPG features, and an LPCNet vocoder for any-to-one speech conversion. In contrast
to data-parallel approaches, our system does not require parallel training data, can be easily adapted to
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real-time applications, and is exceptionally flexible for any-to-one voice conversion tasks. Experimental
results demonstrate that our proposed method improves the naturalness of the converted speech
and its similarity to the target speaker. In our future work, we intend to explore techniques aimed at
stabilizing and expediting the learning process in non-parallel VC. Additionally, we aspire to extend
our approach to cross-lingual speech conversion and investigate the influence of linguistic diversity on
the performance of our model.
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