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Abstract: Since smoke usually occurs before a flame arises, fire smoke detection is especially
significant for early warning systems. In this paper, a DSATA(Depthwise Separability And Target
Awareness) algorithm based on depthwise separability and target awareness is proposed. Existing
deep learning methods with convolutional neural networks pretrained by abundant and vast datasets
are always used to realize generic object recognition tasks. In the area of smoke detection, collecting
large quantities of smoke data is a challenging task for small sample smoke objects. The basis is that
the objects of interest can be arbitrary object classes with arbitrary forms. Thus, deep feature maps
acquired by target-aware pretrained networks are used in modelling these objects of arbitrary forms
to distinguish them from unpredictable and complex environments. In this paper, this scheme is
introduced to deal with smoke detection. The depthwise separable method with a fixed convolution
kernel replacing the training iterations can improve the speed of the algorithm to meet the enhanced
requirements of real-time fire spreading for detecting speed. The experimental results demonstrate
that the proposed algorithm can detect early smoke, is superior to the state-of-the-art methods in
accuracy and speed, and can also realize real-time smoke detection.

Keywords: Wildfire smoke detection; Target-aware; Depthwise separable; Fixed convolution kernel;
DSATA

0. Introduction

Smoke detection is a promising method for fire alarm systems, especially in wide-open forest
environments. Automatic fire detection systems play an important role in the early detection and
response of unpredictable scenes[1]. Smoke video detection and analysis tasks often have difficulty
obtaining ideal performance because of the multiformity of form, swing, changing smoke colour
tones, environmental illumination, and low-resolution images of forest scenes. Traditional video
smoke detection methods based on pattern recognition[2] and digital image processing[3] techniques
depend on obtaining ample dynamic texture[4], colour features[5] [6], optical flows[7] and spatial
features[8][9]. Gubbi et al.[10] adopted a pattern recognition method that manually divides the smoke
video frame into 32x32 pixels to detect smoke from datasets based on wavelets[11] and support
vector machines[12]. In [13], a CIELAB colour space was used to perform a smoke chromatic feature
clustering method to analyse smoke colour features. In [14], histogram of oriented gradient (HOG)[15]
[16] descriptors were used to extract spatial features of smoke. Xiong et al.[17] used the adaptive
Gaussian mixture model (GMM) to approximate background modelling. The values that did not match
background Gaussian pixels were grouped as moving blobs using connected component analysis to
detect smoke. In recent years, many machine vision tasks have made great progress in the application of
realistic scenarios, gaining performance across public benchmark datasets by deep learning approaches.
Video smoke detection using a relatively deep network has attracted a large number of researchers.
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Smoke detection methods based on deep learning adopt the mainstream deep learning framework. In
[18], the normalization and convolutional neural network (DNCNN) were applied to detect smoke
in smoke video. In [19], a multichannel convolutional neural network was proposed to extract deep
features of fire for fire detection. Sharma [20] pretrained two convolutional neural networks (CNNs),
VGG16 and Resnet50, to detect early fires. Muhammad [21] proposed a cost-effective CNN to balance
complex computations and accuracy. Xu [22] applied synthetic smoke images to solve the lack of CNN
training data. In [23], a background subtraction algorithm was proposed to preprocess smoke video to
significantly display smoke areas, and a deep belief network was used to classify smoke.

The deep learning framework based on the proposal of interest is a class of CNN architectures
combined with a region proposal method. The region-based CNN (RCNN)[24] is a CNN extension
that combines selective search to detect objects. A region proposal network (RPN) is added to a typical
CNN to anchor the object region of interest. Faster R-CNN[25] was proposed for pretraining VGG16
combined with RPN to classify objects and regress bounding boxes. In [26], a Faster R-CNN was
adopted to crudely extract smoke areas, and a 3D-CNN was used to classify smoke video.

The deep saliency network for smoke detection is a novel method that aims to emphasize the
most important object regions in video frames. In [27], salient convolutional neural networks based on
pixel-level and object-level extracted smoke saliency map information were used. In [28], a saliency
detection model was applied to segment a smoke region based on pixel colour and motion features.
In this paper, an end-to-end framework for video smoke detection is proposed. In the framework of
the correlation filter, deep features extracted by CNN are processed by target awareness to realize
dimension reduction. To meet the real-time requirements of smoke detection, a depthwise separable
method with a fixed convolution kernel is applied to replace the traditional convolution. In the
response image, the maximum value is used to predict the position of the detection area. A multiscale
scheme can be used to determine the rectangle of the smoke area. This paper is organized as follows.
In section 2, the related works are reviewed. In section 3, DSATA is introduced. The experimental
results are presented in section 4, and the conclusion is presented in section 5.

1. Related work

Smoke detection based on deep learning methods is different from traditional image processing
methods. A deep learning algorithm can extract multiclass features that are not limited to one or two
typical image processing features. In [29], fully convolutional networks (FCNs) were used to realize
semantic segmentation. A deep smoke segmentation network was also proposed to segment blurry
smoke images via training high-quality segmentation masks. Traditional vision-based smoke video
detection methods[30][31][32] always divide each video frame into blocks and extract stable features
in each block to classify smoke or nonsmoke. The highlighted performance of these methods usually
relies on robust visual object forms that can obviously distinguish smoke from video scenes with
clear background differentiation. However, fires are always accompanied by complex background
effects and fuzzy real-time video data, which can hardly supply high-quality video and high-contrast
video. Existing technical conditions cannot strictly meet the requirements of video detection for large
quantities of data for small sample objects. [33] proposed synthetic smoke images to meet dataset
requirements. However, in visual detection, the objects of interest can be arbitrary object classes with
arbitrary forms. This means that it is impossible to complete all realistic scenarios. As a result, deep
feature maps for pretraining are weak in modelling these objects of arbitrary forms for distinguishing
them from unpredictable and complex environments.

In this paper, according to the target-aware deep tracking (TADT) algorithm[34], DSATA is
proposed with a target-aware strategy to select useful deep features for object representation. Target
awareness is realized according to regression loss. In [35], the T-SNE model showed the difference
between target-aware features and original features. Pretrained deep features are less effective than
target-aware deep features for discriminating the same semantic label but different objects. The main
contributions of DSATA are as follows:
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o adaptive target-aware deep features for object detection do not need to require the complex
pretraining of CNNs. This means that a few datasets can realize object detection using deep
learning networks. The TADT algorithm compensates for the deficiency of the pretrained deep

model being unable to consider arbitrary forms in visual detection.
o we adopt the depthwise separable method to reduce the number of computations associated

with the correlation of each frame. The speed of the algorithm is significantly improved.
o we use a fixed depthwise separable convolutional kernel to avoid wasted time in the iteration of

backpropagation.

2. DSATA

2.1. Target-aware deep tracking

The TADT algorithm introduces the target-aware method to compute weights to express the
degree of importance of deep features for object detection. Ridge loss-based gradients are trained to
obtain a proportion to distinguish deep features, and ranking loss combined with the ridge component
is used to represent the scale-sensitive building 3 scale for variation in smoke shape. The TADT
algorithm includes 4 parts: pretraining CNNs, target-aware, correlation filtering, and a Siamese
matching network. Fig.1 shows the framework of TADT.
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VGG16 has 16 layers, which include 13 convolutional layers, 5 maxpooling layers, 3 fully
connected layers, an input layer and output layers. In the VGG16 model, smoke video frames
are treated as input. As a result, 512 deep feature maps can be acquired as target-aware model input.
Target awareness uses ridge loss to distinguish the importance degree of 512 deep feature maps and
filters 300 deep features in 512 maps.

Target awareness uses ridge loss to research different object convolution kernels to extract
particular characteristic information. These convolutional kernel filters provide a certain object ratio to
classify object categories. In the target-aware model, feature weights acquired by minimizing ridge
loss reflect the importance of the 512 feature maps captured from the pretrained VGG16. This means
that we cannot train the VGG16 network to extract effective feature map representations for arbitrary
objects in unknown scenes and avoid unnecessary bulk smoke video collection and complex network
training. The ridge loss is defined as follows:

Figure 1. Framework of TADT.
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where ¢ is kernel width, * represents a convolution, and W is the weight of regression training to
compute the contribution of feature maps. Backpropagation update weights represent the importance
of feature maps, and the chain rule is used to compute the derivation of Ly to x; ; for backpropagation.
The derivation using the chain rule is defined as follows:

ang Z OLreg o 9Xo(if)
an l] Bxi,]-

_Z-ij( (i,7) — Xo (i,7)) x W 3)

where X,(i,j) is W * x;; as efficiently output feature maps. The pretrained model extracts 512
feature maps. These feature maps are sent to a regression net to obtain the feature maps, which
are characterized by the degree of importance. Each pixel gradient is acquired. Finally, the global
gradient average pooling layer is used to obtain the instant of weights to select 300 useful feature maps
according to comparison with these weights. The global gradient average pooling function is defined
as follows:

_ OLreg
W; = GAP ( oz ) 4)

reg

where GAP is the global average pooling function. agz is the derivation of the loss function Ly.g with
respect to the i — th out feature map z; obtained by training the convolutional model of regression loss.

Fire smoke shows movement and irregular shape under the influence of wind and other
environmental climates. These characteristics require the algorithm to add a scale-sensitive divisor to
train the sensitive kernel filter to adapt the scale changes. In [36], a ranking loss is proposed as follows:

Lygnk =log | 1+ Z of ) =f (%)) (5)
(xi,x]-)GQ

where (xi, x]-) is the scale-pairs with 2 pixel stride adjusting frames. L, loss is minimized to match
the variation in smoke shape. ) is a set of (x;, x;).

In TADT, a training model is created to train the scale filter to close the complexity of the extraction
computation for sensitive scale selection. Stochastic gradient descent (SGD) is adopted to train the
rank loss to select 80 scale-sensitive deep features according to the rank loss model. The chain rule is
used to compute the gradient defined as follows:

OLiank _ OLpank aXO(Z])

ax,-,j - aXo(i,j) ax,]
(6)
— aLrank
= Xoli)) < Wiank
where W is the convolutional kernel weight of the rank loss model. X (7, ]) is Wygux % Xij- a’; “Z ) is

defined as the gradient of L, relative to f (xi,j). In this section, scale-sensitive features are extracted
from the rank net of smoke, 80 deep feature maps for smoke video are selected, and 380 deep feature
maps are extracted by combining regression and rank loss to represent the object characteristic and
scale-sensitive expression.

2.2. Depth-wise separable convolutions

In [37][38][39], MobileNets were proposed for slight mobile embedded vision detection. A
depthwise separable strategy was built, and two depthwise convolutional kernels were created
to balance the latency and accuracy. MobileNet is a streamlined architecture in which depthwise
separable construction is designed by a kind of factorized convolution. It is composed of a normal
convolutional kernel called depthwise used to convolute input images and a 1x1 convolutional
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kernel called pointwise applied in the output of normal convolutions. The depthwise convolution is
divided into depthwise and pointwise. The depthwise filters input maps, and the pointwise combines
the output feature maps of the depthwise convolutions. The factorization can greatly reduce the
computations and decrease model complexity. Fig. 2 shows the typical convolution operation. The
depthwise separable algorithm factorizes the kernel filter into a depthwise branch in Fig. 3 and a 1x1
pointwise branch in Fig. 4.

6

Figure 2. Typical convolution filters.

A typical convolutional layer obtains input maps as Dr X Df X N, and a typical convolution
kernel filter extracts output deep features as F, x F, x C. The computational consumption of typical
convolutions is defined as follows:

WxHxMxCxF,xF, )

where W is the width of the typical convolutional kernel, H is the height of the typical convolutional
kernel, M is the channel of the typical convolutional filter, and N is the number of output feature maps.
Fig. 3 shows the depthwise convolution, and the pointwise convolution is shown in Fig. 4.

1
Y 4
H

Figure 3. Depth-wise convolution filters.

N,

Figure 4. 1x1 point-wise convolution filters.

M

where the depthwise computational cost is defined as follows:

WxHXMx1xF,xF (8)
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The pointwise computational cost is defined as follows:
1x1xMxCxFE, xF, 9)
The total computational cost of depthwise separable convolutions is defined as follows:
WXxHXMX1IXFyXxF4+1x1XxMxCXxF,XxF, (10)

The computation reduction according to depthwise and pointwise streamline combinations can be

obtained as follows:
WXHXMX1XFy X Fy+1Xx1xMxCxFyXF,

WxHXMXCXFyXF,

(11)
=4+l

In TADT, the cross-correlation filter[40] method is applied to speed up the computations using the
fast Fourier transform (FFT) to change the convolutional kernel and the input feature to the frequency
domain to realize array multiplication instead of matrix operations. In this way, mathematical
transformation can speed up computations. Because of the high dimensionality of multifeature
maps for each frame correlation according to FFT, mathematical transformation cannot change the
dimensionality of the matrix, which requires considerable computational cost. The depthwise separable
algorithm reduces the convolution computations by a streamlining operation by combining two steps
to decrease the dimensionality of the kernel via depthwise and pointwise operations. Additionally,
the cross-correlation method is used to speed up the computations. This paper applies depthwise
separability to reduce the dimensionality of the kernel to improve the architecture. Fig. 5 shows the
framework of DSATA.

C

Figure 5. Framework of DSATA.

In Fig. 5, the depthwise separable algorithm is used to divide the example sample, which is
the first frame smoke image in DSATA, into two steps: a depthwise convolutional kernel and a
pointwise convolutional kernel. The convolutional operation first correlates the follow-up frames by
extracting depthwise feature maps and then correlates the depthwise feature maps pointwise. In TADT,
M xNx512 feature maps are extracted by VGG16. Three scales are added to the input smoke video.
Therefore, MxN x 512 x 3 feature maps are extracted by VGG16. The target-aware method processes the
feature maps to obtain M xN x 380 x 3 scale-sensitive and representational feature maps. In DSATA, we
use average pooling to average the 380 example feature maps extracted from the target-aware strategy
to MxNx1x3 feature maps as the depthwise kernel and average each feature map to 1x1x512x3
as the pointwise kernel. We process the example target-aware feature maps to segment these feature
maps into depthwise filters and pointwise filters. Once the example sample is selected in TADT, it
will not be changed again. Therefore, we can fix the depthwise filter and pointwise filter instead of
training by deep neural networks. The fixed depthwise separable kernel pairs can also avoid the
computational consumption of training of the depthwise and pointwise filters. Experimental results
show that fixed depthwise separable convolutional kernel pairs can not only realize the expected
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conclusion of approximately the same detection accuracy but also achieve a significant increase in
detection speed.

3. Experiments

3.1. Fire smoke video datasets

In this section, we select 8 fire smoke video sequences to verify the performance of the proposed
algorithm of the depthwise separable method of DSATA. Smoke video samples are shown in Fig.
6. These smoke videos are collected from web sources and standard datasets. Some of them are
chosen in different conditions to verify the algorithm performance. The selection of smoke videos of
fires considers many factors, including climatic conditions, the resolution of the camera acquisition
equipment and approximate interference, coupled with the fact that smoke swings violently due to the
influence of wind. The fire smoke video sequences are selected according to the above requirements,
and the smoke video information is shown in Table 1.

Frame #2000 FRG 1657

Figure 6. Samples of smoke videos.

Table 1. Parameters of the fire smoke video datasets.

Videos | Frame Number Size

Videol 303 352%x288x3
Video2 262 320%240x3
video3 284 720x576x3
video4 284 720x576x3
video5 323 352%x288x3
videob 173 320x240x3
video?7 215 320x240%3
video8 250 320%240x3

These smoke video datasets are fully considered to have similar background interference. In video
1, the fuzzy video frames are collected by the low-cost image acquisition device, and the influence of
similar objects, such as white clouds, is added to verify the performance. In video 4, long-distance
image acquisition exacerbates the degree of image blurring. At very low pixel resolution, it is still
necessary to accurately detect the smoke position, which increases the experimental difficulty of the
algorithm. The selection of other recognized datasets considers the effects of different experimental
environments on smoke detection.
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3.2. Experimental performance analysis

The experiment operation is implemented in Ubuntu 16.04 with TensorFlow on a PC with 32 G
memory, an Intel i7 3.7 GHz CPU, and a GTX 1080 GPU. Smoke video collection and pre-processing
is implemented in Win10 with MATLAB 2018a. In this section, we use smoke videos to compute the
precision of TADT and DSATA. The experimental visualization results of TADT are shown in Fig. 7.
These frame demos are chosen from the smoke videos that are selected when the algorithm runs. The
visualization of DSATA is shown in Fig. 8.

rame: 129 frame: 219

frame: 24
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Figure 7. Detection results visualization of TADT.
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Figure 8. Detection results visualization of DSATA.
Table 2 shows the precision of TADT and DSATA. In Table 2, the precision is defined as follows:

Tp

_— 12
Tp—+Fp (12)

Precision =
where Tp is the number of frames with true positives and Fp is the number of frames with false
positives. According to Table 2, DSATA achieves the best performance on Videos 1, 2, 3, and 5. The
improved TADT used in smoke detection achieves the best performance on Videos 4, 6, 7, and 8. There
is a large difference in detection accuracy between the TADT and DSATA in Video 5 and Video 6. In
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Table 2. Detection precision of TADT and DSATA.

Videos | Precision of TADT(%) | Precision of DSATA(%)
Videol 99.17 99.97
Video2 87.40 90.45
video3 98.94 99.65
video4 96.48 96.13
videob 79.57 98.76
videob 98.27 75.72
video?7 95.8 93.95
video8 98.8 97.2
Mean 94.3 93.98

Video 5,the accuracy of TADT is lower than that of DSATA,which maybe due to the difference both in
the deep features extracted by VGG16 of example and the other frames of smokeing images.In Video
6,the accuracy of TADT is more higher than the accuracy of DSATA. The reason for this is that the
distinguish deep features between example of smoke and the others is affected by the wind. Except for
Video 5 and Video 6, the difference in detection accuracy in the other videos is not large. The difference
in the mean detection accuracy between the TADT and DSATA is also not large. In other words, the
difference in detection accuracy between the TADT and DSATA is not large because the algorithms use
the same feature extraction strategy. Target-aware deep features are extracted to collect robustness and
semantic information. The target-aware deep features are robust to appearance and scale changes.

Table 3 shows the precision of some smoke detection algorithms using the deep learning
architecture and traditional pattern recognition. In table 3, the accuracy of DSATA is similar to TADT,
but higher than the other algorithm, such as the 93.4% of DBN and the 91.88% of Faster-RCNN.etc.
The data of table 3 shows that the DSATA can get excellent performance than other deep learning
algorithms and traditional smoke detection algorithms. The superiority of DSATA is that DSATA can
get effectively deep features without training network of deep learning. The Faster-RCNN and the
Saliency Detection should be train by a large number of datasets. Table 3 shows the higher accuracy of
DSATA than TADT for the blur and interference factors of video 3. According to this DSATA can be
used to realize smoke detection settings in real scenes. In Fig. 9, a curve describing the TADT algorithm
and the DSATA algorithm by the depthwise separable algorithm is given to show that our method
can obtain better performance. In Fig. 9, the DSATA curve is smoother than the TADT curve because
we use depthwise separability to sharply reduce the computations instead of performing complete
computations, which may create more nondeterminacy for the computation of response feature maps.
In Fig. 9, the location error threshold is the centre Euclidean distance between the prediction bounding
box and the ground truths, which are standard centres of the bounding box.
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Figure 9. The Location error threshold-Precision curve of TADT and DSATA .

Table 3. Precision of smoke detection algorithms.

Algorithm Precision(%)
TADT 98.94
DSATA 99.65
HSV+KSVM 64.8
DBN 93.4
3DCNN 93.74
Faster-RCNN 91.88
Saliency Detection 93.72

Table 4 shows a speed comparison between DSATA and TADT on the smoke video dataset.
DSATA performs favourably against improved TADT on this dataset. Table 4 shows the speed of
smoke detection of DSATA and TADT. According to table 4, the FPS of DSATA is approximately twice
that of the TADT because DSATA introduces the depthwise separable method to enhance real-time
performance. The minimum frame rate of DSATA can achieve approximately 86 FPS. The experimental
results show that DSATA can realize real-time smoke detection. This demonstrates the effectiveness of
DSATA proposed in this paper. Overall, all experimental results demonstrate that DSATA performs
well in terms of accuracy, robustness, and running speed.

Table 4. Speed comparison of TADT and DSATA.

Videos |Speed of TADT(FPS) |Speed of DSATA(FPS)
Videol 66.414 124.73
Video2 43.512 103.004
video3 75.841 139.666
video4 49.679 132.084
video5 37.843 89.870
videob 32.988 86.354
video7 59.377 124.770
video8 46.327 97.200

4. Conclusion

In this paper, we propose an algorithm with a target-aware and depthwise separable mechanism
to realize fire smoke detection. The target-aware method can extract the most useful deep features
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that are robust to appearance and scale changes. The depthwise separable mechanism is composed of
depthwise and pointwise convolutions to enhance real-time performance. We attempt a new method
different from the mainstream methods, such as CNN, the region of proposal interest method, and
saliency detection pattern recognition, which apply target-tracking algorithms to object detection.
Target-aware methods can reduce the work of dataset collection, and adaptive target-aware deep
features for object detection do not require the complex pretraining of CNN. We adopt the depthwise
separable method to reduce the number of computations associated with the correlation of each frame.
The speed of the algorithm has been significantly improved. We use a fixed depthwise separable
convolutional kernel to avoid wasted time in backpropagation iterations. The experimental results
show that our DSATA algorithm has excellent performance compared with other detection algorithms.
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