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Abstract 

Cognitive  flexibility,  the ability  to adapt behavior  to changing environmental demands,  is a core 

deficit in schizophrenia (SZ), that predicts disease progression. This review synthesizes findings on 

the neural substates of cognitive flexibility by using a framework that distinguishes animal model 

tasks by their motivational valence: aversive versus appetitive. While human studies using tasks like 

the Wisconsin Card Sorting Test (WCST) reveal significant cognitive inflexibility in SZ, particularly 

in set‐shifting,  rodent models provide  important mechanistic  insights. Current  literature suggests 

that  aversive  tasks,  such  as  water  mazes,  and  appetitive  tasks,  such  as  the  Birrel‐Brown 

discrimination task, engage distinct neural circuits, despite assessing supposedly similar cognitive 

processes. Aversive  paradigms  primarily  rely  on  hippocampal‐medial  prefrontal  cortex  (mPFC) 

pathways, whereas appetitive tasks heavily involve orbitofrontal cortex (OFC)‐striatal circuits, with 

significant modulation by dopamine and serotonin. Both valences seem to require an intact balance 

of  glutamate  and  GABA  transmission  within  prefrontal  regions.  This  framework  helps  clarify 

inconsistencies  in  the  literature  and  underscores  how  motivational  context  shapes  the  neural 

substrates of cognitive flexibility. 

Keywords: reversal learning; attentional set shifting; intra‐dimensional set shifting;   

extra‐dimensional set shifting; cognitive deficits; animal models 

 

1. Introduction 

The  ability  to  change  behavior  in  line  with  changing  environmental  demands,  known  as 

cognitive flexibility, is deficient in many psychiatric and neurological disorders such as Parkinson’s 

disease [1], obsessive‐compulsive disorder [2] and schizophrenia (SZ) [3]. In SZ, cognitive flexibility 

deficits are associated with other cognitive abnormalities that emerge in adolescence [4], and serve 

as a predisposing factor to psychosis and a predictor of disease progression [5]. Although cognitive 

abilities decline with age in both healthy individuals [6] and those with SZ [7], the decline in cognitive 

flexibility  is  more  pronounced  in  SZ  pointing  to  underlying  disease‐specific  processes  in  this 

particular cognitive capacity [8]. 

Cognitive flexibility is commonly assessed in both humans and animals using reversal learning 

and  attentional  set‐shifting  tasks.  In  reversal  learning  tasks,  also  called  intra‐dimensional  (ID) 

shifting, subjects learn a stimulus–reward association that is subsequently reversed—e.g., a reward 

initially associated with the color red is now associated with the color green [9]. In attentional set‐

shifting, or extra‐dimensional set shifting (EDSS) tasks, subjects are required to shift their response 

across  stimulus dimensions—e.g.,  from  color  to odor—posing  a greater  cognitive  challenge  than 

shifts within the same dimension [10]. 

Error types in reversal learning or attentional set‐shifting, in both human and animal studies, 

can reveal distinct patterns of cognitive inflexibility. Perseverative errors involve repeated selection 
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of a previously rewarded option before ever choosing the new correct one, while regressive errors 

occur when reverting back to the old choice after initially selecting the correct one. These error types 

are qualitatively distinct and may involve different neural mechanisms [11,12]. 

In this review, we present a comprehensive overview of tasks commonly used to assess intra‐ 

and  extra‐dimensional  set  shifting  in  humans,  highlighting  key  findings  from  studies  involving 

individuals with  schizophrenia. We  then  describe  animal  research  ‐primarily  from  the  last  two 

decades  ‐  that enables a mechanistic  investigation of  cognitive  flexibility  capacities. A distinctive 

feature of our approach is the categorization of animal cognitive flexibility tasks according to their 

motivational valence  ‐ aversive or appetitive—a  framework  that has received  limited attention  in 

prior reviews. By distinguishing these task types, we aim to clarify how different motivational and 

emotional contexts engage distinct neural circuits. We then synthesize current evidence on the neural 

and  neurochemical  substrates  underlying  these  capacities,  emphasizing  how  neurotransmitter 

systems may  differentially  contribute  to  performance  in  aversive  versus  appetitive  paradigms. 

Finally, we  identify  critical gaps  in  the  literature and propose new directions  for  future  research 

informed by this motivational dichotomy. 

2. Assessing Cognitive Flexibility Deficits in Schizophrenia 

The Wisconsin Card Sorting Test (WCST) is the most prevalent neurocognitive test for assessing 

EDSS  in  humans  [13].  In  this  task,  participants  are  presented with  cards  that  vary  along  three 

dimensions:  color,  shape and number, and are  required  to deduce  the  correct  sorting dimension 

through trial and error. After reaching a predefined correct trial criterion, the sorting dimension is 

changed without notice, requiring the participant to re‐engage in trial‐and‐error learning to identify 

the  new  rule  [13].  A  closely  related  assessment  is  the more  structred  Intra‐Dimensional/Extra‐

Dimensional  (ID/ED)  Set  Shift  Task,  which  is  part  of  the  commonly  used  Cambridge 

Neuropsychological  Test Automated  Battery  (CANTAB)  [3].  In  both  tasks,  individuals with  SZ 

perform  comparably  to healthy  controls  in  stages  requiring  simple discrimination or  ID  shifting. 

However, they exhibit a higher error rate and lower success in reaching criterion in stages requiring 

ED shifting [14]. 

In a different task, the Trail Making Test, participants are first instructed to connect a sequence 

of numbered circles  (1  to 25) as quickly as possible, assessing processing speed and visual search 

capabilities (TMT‐A). In TMT‐B, they are instructed to connect a sequence that alternates between 

numbers and letters (e.g., 1‐A‐2‐B‐3‐C), requiring cognitive flexibility. Deficient performance on the 

TMT‐B  is observed  in  individuals with SZ as well as  in  their unaffected  siblings,  indicating  that 

cognitive inflexibility may be an endophenotype of SZ and is not secondary to illness [15,16]. 

Cognitive  flexibility  in  valuing  reward  has  also  been  assessed,  e.g.,  in  tasks  that  require 

probabilistic  reversal  learning  (PRL).  Participants  are  initially  trained  to  choose  between  two 

unevenly rewarded stimuli. Once  they  learn  to  favor  the more  frequently rewarded stimulus,  the 

reward contingencies are reversed, making the previously less‐rewarded option the one now more 

likely to yield a reward. Patients with SZ are comparable to healthy controls in their ability to learn 

the  initial  discrimination  contingencies,  but  perform  significantly worse when  contingencies  are 

reversed [17]. Additional tasks measuring cognitive flexibility in humans have been described, and 

are largely similar to the tasks described above with some variations on stimulus type and response 

requirement [18,19]. 

Human  studies  link  cognitive  flexibility  to  the  prefrontal  cortex  (PFC)  and  striatum, with 

glutamate and dopamine as key neurotransmitters [14]. However, insight into causal mechanisms is 

limited. Animal models, most commonly in mice and rats, offer a constantly expanding toolbox for 

manipulating specific genes, receptors, brain regions, cell populations and neural circuits. This level 

of experimental control provides insights into the biological basis of reversal learning and set‐shifting 

and  allows  researchers  to  establish  causal  links  between  synaptic  mechanisms  and  cognitive 

flexibility. 
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3. Assessing Cognitive Flexibility Deficits in Rodents: Methodology, Neural 

Circuits and Neurotransmitters 

Assessing cognitive flexibility in rodent models has been performed in the context of different 

pathologies,  including SZ  [20–22], autism  [23], drug addiction  [24], Alzheimer’s disease  [25], and 

obsessive‐compulsive  disorder  [26].  In  these  different  contexts,  aversive  or  appetitive  learning 

paradigms  have  been  used  to  assess  reversal  learning  and  set  shifting.  Below,  we  define  the 

similarities and differences between these categories, describe some of the key tasks in each category 

(Figure 1) and examine the neural substrates involved. 

3.1. Aversive Learning Tasks 

Aversive tasks for measuring cognitive flexibility use negative reinforcement or punishment as 

a motivating  factor. Commonly, aversive  tasks  in rodents are performed using water maze‐based 

paradigms, e.g., the Morris Water Maze (MWM) [27] or water T‐maze task [28], with platform finding 

as negative reinforcement. These tasks are ‘ecological’ in the sense that they leverage rodents’ innate 

swimming and spatial navigation abilities, rely on their intrinsic motivation to escape from water, 

and do not require behaviors beyond the animal’s natural repertoire. In both the MWM and water T‐

maze, rodents first learn the location of a hidden platform during the Acquisition stage. Once they 

reach a specific learning criterion, e.g., 6 consecutive correct trials, the platform is relocated to a new 

position, initiating the Reversal stage. Finally, in the EDSS stage the animal must shift strategy and 

rely on non‐spatial cues, e.g., a visual signal, to locate the platform. To reach criterion in the EDSS 

stage, animals must inhibit their spatial search strategy and acquire a new strategy based on, e.g., 

visual cues [22,29]. 

Flexibility in aversive tasks can be extended to other paradigms requiring a contingency change; 

for example, fear conditioning tasks where footshock is the aversive reinforcer that elicits an innate 

fear response. For example, animals are first taught to discriminate between two different contexts, 

one  predicting  a  safe  environment  and  the  other  signaling  an  aversive  stimulus;  in  such  tasks, 

flexibility is defined as the ability to reverse the ‘safe’/’unsafe’ contingencies [30]. A variation of this 

task  requires mice  to  shift  from  reward  to punishment  learning  [31]. Cognitive  flexibility  is also 

required in latent inhibition tasks, where an animal is taught to ignore a stimulus which then becomes 

relevant  in predicting  an aversive  event  [32,33], and  in  fear  extinction  tasks, where  a previously 

meaningful  cue  loses  its  significance  [34]. However,  these  paradigms  primarily  assess  learning 

abilities rather than cognitive flexibility, and are therefore beyond the scope of this review. 

3.2. Appetitive Learning Tasks 

Appetitive  tasks  use  positive  reinforcement  to  drive  behavior  and  rely  on  discrimination 

between  sensory  cues  or  modalities.  Such  tasks  generally  require  a  longer  acquisition  period 

compared to aversive tasks, and usually necessitate food or water restriction to enhance motivation. 

The Birrell‐Brown Attentional Set‐Shifting Task (ASST) involves a sequence of discrimination 

and reversal learning trials in which rodents use either the digging medium or odor cues to locate a 

food reward hidden in one of two bowls. Across task stages, the relevant stimulus dimension guiding 

correct choices changes. In the ID shift ( reversal) phase, the rodent is required to choose a new cue 

within the same dimension (e.g., switching from one odor to another, regardless of the medium). In 

the EDSS phase, the rodent must shift attention to a different stimulus dimension altogether (e.g., 

from odor to digging medium), reflecting a higher demand on cognitive flexibility. 

Other appetitive tasks assessing cognitive flexibility rely on visual cues and require either lever 

pressing or touchscreen activation. Such operant  learning tasks commonly assess reversal but not 

EDSS, since the latter is more difficult to measure is visual cue‐based tasks. For example, Dickson et 

al. [35] reported an exceptionally high error rate ‐ between 400 and 1000‐ in the EDSS phase of a lever‐

pressing  task.  Such  outcomes may  reflect  not  only  cognitive  flexibility  deficits  but  also  species‐

specific limitations in processing visual stimuli, making it difficult to isolate the cognitive component. 
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As an alternative approach, strategy‐shifting  tasks assess cognitive  flexibility across different 

domains, reducing reliance on visual discrimination and allowing for broader evaluation of shifting 

abilities. For example, a task introduced by Ragozzino et al. [36] requires the rodent to shift from a 

spatial strategy (‘reward is in the North arm’) to a response strategy (‘turn Right to obtain reward’) 

in a cross‐maze apparatus with food reward. Similar studies have since been described, requiring 

shifting between different strategies (e.g., between a response and a visual cue strategy (‘reward is 

where the visual cue is’) [37]. These tasks enable testing both ID and ED shifts (e.g., response‐response 

or place‐response, respectively) and support a range of protocol variations, including shifts between 

visual, spatial, non‐spatial visual, and non‐spatial auditory tasks. 

Appetitive tasks offer the advantage of precise control over stimuli and reinforcement. However, 

lever pressing and  touchscreen‐based tasks require rodents to  learn behaviors that are not  innate, 

necessitating acclimation, auto‐shaping and pretraining before discrimination  learning  can begin. 

Furthermore,  both  lever  pressing  and  digging‐based  tasks  require  food  restriction;  animals  are 

usually kept at 80%‐85% of body weight, which may alter the motivational state compared to non‐

restricted  animals.  These  technical  details  prompt  theoretical  questions  about  the  nature  of 

reinforcement  and  the  impact of motivational  states on  learning. For  example, one may wonder 

whether food reward in food‐restricted animals is indeed positive reinforcement or the removal of 

threat, playing  the same role as  the platform  in water‐maze  tasks. Moreover, aversive  tasks often 

evoke stress or fear responses, which can either impair or enhance cognitive flexibility depending on 

intensity  and  context.  In  contrast,  appetitive  tasks  rely  on  reward‐seeking  behavior, which may 

engage  different  neural  circuits  and  learning  strategies,  potentially  influencing  how  flexibly  an 

animal can shift between rules or contingencies. 

 

Figure 1. Tasks commonly used to assess cognitive flexibility in rodents. Left: Water T‐Maze tasks. Rodents 

are required to learn the spatial location of a platform (top), which is then reversed (middle), and finally have to 

locate  the platform according  to a visual  cue  (bottom). Middle: Attentional Set‐Shifting  (Birrel‐Brown)  task. 

Rodents  are  required  to  locate  a  food  award  according  to  an odor A  (top),  and  after  reaching  criterion  the 

rewarded  odor  is  reversed  (middle).  In  the  EDSS  phase  (bottom),  rodents  have  to  locate  the  food  reward 
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according to the digging media (right). Right: Operant learning tasks. Rodents are trained to acquire an operant 

response (lever press) to a (visual) cue (top). The rewarded cue is then reversed (middle). In the EDSS phase, the 

reward is obtained when the animal responds to a cue from a different dimension which was not previously 

rewarded (bottom). 

4. The Neural Substrates of Cognitive Flexibility 

While aversive and appetitive tasks presumably tap into the same cognitive capacity, differences 

in  learning  contingencies, paradigm  specifics, and motivational  states may  recruit distinct neural 

circuits  and  neurotransmitter  systems.  Below, we  outline  the  neural  substrates  of  aversive  and 

appetitive reversal and set‐shifting tasks, aiming to highlight both their shared and distinct features. 

Classical lesion studies and more recent chemogenetic investigations implicate three main brain 

structures in aversive, water maze‐based tasks: the dorsal hippocampus, which is required for spatial 

learning [38–40], the caudate nucleus of the striatum which is associated with cue‐response learning 

[41],  and  the medial  PFC  (mPFC), which  plays  a  pivotal  role  in  reversal  learning  and  strategy 

switching [42,43]. Similar brain regions are also engaged in appetitive tasks, such as the Birrell‐Brown 

attentional set‐shifting task, though the specific contributions of PFC subregions differ depending on 

the cognitive demands. In this task, intact hippocampal function is required for reversal and EDSS 

learning; Marquis et al.  [44] showed  that  juvenile rats with early‐life ventral hippocampal  lesions 

show intact acquisition but disrupted EDSS and late‐phase reversal performance. Within the PFC, 

different subregions mediate distinct aspects of the task: lesions to the anterior cingulate impair both 

compound  discrimination  and  reversal,  increasing  regressive  and  total  errors  [45]. OFC  lesions 

produce selective deficits in reversal learning, whereas mPFC damage specifically disrupts EDSS [46]. 

Data  from  operant  learning  tasks  reinforce  this  functional  dissociation  within  the  PFC. 

Boulougouris et al. [47] showed that lesions to the OFC, infralimbic or prelimbic mPFC impair the 

reversal  of  reward  contingencies,  but  leave  the  retention  of  previously  acquired  spatial 

discrimination  intact. Further studies using an appetitive visual/spatial alternation task are in  line 

with these findings, and show that temporary OFC inactivation selectively disrupts reversal learning 

while leaving acquisition and EDSS unaffected [48]. 

Beyond the PFC, the dorsomedial striatum, which  is  innervated by both the mPFC and OFC, 

contributes  to  spatial  and non‐spatial  appetitive  reversal  learning  [49]. This  region  is  thought  to 

support the consistent execution of a selected strategy, while the inhibition of the previously relevant 

strategy or the generation of a new one are mainly attributed to the PFC. Another region found to 

play a role in cognitive flexibility is the locus coeruleus (LC); optogenetic inhibition of this region – a 

major source of noradrenergic input to the mPFC [50] – impairs reversal learning and EDSS in the 

Birrel‐Brown  task  [51].  Furthermore, pharmacological deafferation  of  noradrenergic  input  in  the 

mPFC  selectively  impairs EDSS  [52], providing  further  support  for  the  importance  of LC‐mPFC 

projections in cognitive flexibility. 

4.1. Glutamate 

The most  commonly  investigated  neurotransmitter  in  the  context  of  cognitive  flexibility  is 

glutamate. Research has  focused particularly on  the NMDA  receptor, which plays a  role  in basic 

learning processes [53], and is implicated in disorders associated with poor attentional set‐shifting 

abilities such as SZ [54] and autism [55]. 

Pharmacological studies show that acute administration of the non‐competitive NMDA receptor 

blocker MK‐801 impairs reversal learning at doses that leave acquisition learning intact. For example, 

Bardgett et al [56] found that reversal is selectively impaired by MK‐801, injected subcutaneously at 

0.05 mg/kg to adolescent mice (PND 35‐42) before both acquisition and reversal, in a water T‐maze 

task; a higher dose (or 0.10 mg/kg) impaired both acquisition and reversal. Similar dose‐dependent 

disruption of reversal was found in juvenile and peri‐adolescent rats (PND 21, 26, or 30) tested in an 

appetitive T‐maze task [57]. Acute administration of the NMDA receptor blocker PCP also induced 

selective  reversal  deficits  in  rats  tested  in  an  operant  lever‐pressing  task  [58,59].  Interestingly, 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 June 2025 doi:10.20944/preprints202506.1865.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1865.v1
http://creativecommons.org/licenses/by/4.0/


  6  of  20 

 

optogenetic  stimulation  of  parvalbumin  (PV)‐positive  GABAergic  interneurons  in  the  PFC  and 

ventral hippocampus rescued EDSS deficits following acute MK‐801 [60], implying that attentional 

set shifting relies on an intact excitatory/inhibitory (E/I) balance in these regions.   

Chronic NMDA receptor blockade also differentially affects acquisition and reversal learning. 

Administration of MK‐801 (0.1‐0.4 mg/kg) for several weeks in either juvenile [61] or adult rats [62] 

disrupted reversal learning but not spatial acquisition in the MWM. Interestingly, chronic MK‐801 

treatment also affected the quality of performance during reversal learning, leading to perseverative 

behaviors and inefficient spatial strategy use [62]. 

Not  surprisingly,  intra‐cortical  administration  of MK‐801  selectively  and  dose‐dependently 

impaired reversal learning [63], and similar findings were reported in water maze tasks following 

systemic or intra‐mPFC blockade of the NMDA receptor GluN2B subunit with Ro25‐6981 [64], which 

impairs reversal learning and increases the rate of perseverative errors [65]. In an appetitive plus‐

maze task requiring a switch between brightness and texture discrimination strategies, intra‐mPFC 

MK‐801  led  to  increased  perseverative  response  and  impaired  shifting  between  discrimination 

strategies, whereas intra‐mPFC administration of the AMPA receptor antagonist LY293558 impaired 

acquisition [66]. 

Several studies examined the impact of genetically‐induced glutamatergic deficits on cognitive 

flexibility in spatial aversive tasks. Constitutive mutations affecting the NMDA NR1 subunit [67] or 

the AMPA GRIA1 subunit [68] lead to deficient acquisition in a spatial alternation task. Inactivation 

of the NR1 subunit limited to dorsal striatum neurons, however, had a specific impact on strategy 

shifting in the U‐shaped water maze task, without affecting spatial acquisition or reversal learning 

[69]. 

Complementary  evidence  from  appetitive paradigms  reinforces  the  role  of NMDA  receptor 

function  in cognitive  flexibility, highlighting  that  the deficit may depend on  the specific  receptor 

subunit,  brain  region  targeted,  and  task  demands.  For  example,  constitutive  deletion  of  Grin2a 

impaired set‐shifting but not acquisition or reversal  in a Birrel‐Brown‐like task [70]. Homozygous 

deletion of  cortical Grin2b, or OFC‐specific Grin2b blocking by bilateral  infusions of  the  selective 

GluN2B  antagonist  Ro  25‐6981,  resulted  in  specific  reversal  learning  deficits  in  an  operant 

conditioning task, without affecting acquisition [71].   

While NMDA  receptor  blockers  impair  cognitive  flexibility, NMDA  receptor  co‐agonists  – 

which  increase  glutamate  transmission  at  the NMDA  receptor  – were  shown  to  enhance  it.  For 

example, DAO1G181R mice, with  genetic  inactivation  of D‐serine  catabolic  enzyme D‐amino  acid 

oxidase  (DAO),  exhibit  increased D‐serine  levels  and  thus  increased NMDA  receptor  activation. 

These mice show normal acquisition and substantially improved reversal learning in the MWM [72]. 

Interestingly,  these mice  also demonstrate  an  increased  rate  of  extinction  in  the MWM, perhaps 

pointing to enhanced reversal learning of reward contingencies. Similarly, subcutaneous injection of 

D‐serine (600 mg/kg; [65] to C57BL/6J mice did not alter acquisition, but improved reversal learning. 

Taken  together,  these  studies  support  the  notion  that  upregulation  of NMDA  receptor  function 

facilitates cognitive flexibility. 

Although most  research  on  glutamate’s  role  in  cognitive  flexibility has  centered  on NMDA 

receptors,  recent  studies  have  also  implicated  other  glutamate  receptor  subtypes,  as  well  as 

presynaptic  processes  involved  in  glutamate  synthesis,  recycling,  and  release,  as  important 

contributors  to  this  cognitive  function. For  example, genetic ablation of mGluR5, a metabotropic 

glutamate receptor involved in presynaptic and postsynaptic aspects of glutamatergic transmission 

that affect both neurons and astrocytes [73,74] impairs reversal learning in an operant touchscreen‐

based task, leading to increased perseverative errors [75,76]. Conversely, increasing mGluR5 activity 

using positive allosteric modulators (PAMs) improved adaptive learning and reversal performance 

in the MWM [77], and rescued drug‐ or environmentally induced abnormalities in reversal learning 

[78,79]. 

On  the  presynaptic  side,  studies  of  vesicular  glutamate  transporters  (VGLUTs)  reveal  that 

heterozygous  deletion  of  Slc17a7,  mainly  expressed  in  the  cerebral  cortex,  hippocampus  and 
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cerebellar  cortex  [80,81],  leads  to  reduced  glutamate  packaging  and  release  along with  selective 

reversal learning deficits in the MWM [82] and in an operant conditioning task [83]. 

Another  pathway  affecting  synaptic  glutamate  levels  involves  the  enzyme  Glutamate 

Dehydrogenase 1 (Glud1), which catalyzes the deamination of glutamate into α‐ketogluterate and is 

downregulated in the CA1 of patients with schizophrenia [29]. Our group has shown that mice with 

CNS‐specific  reduction  in Glud1  exhibit  increased  hippocampal  glutamate  levels  and  pyramidal 

neuron activity, along with cognitive flexibility deficits in a 3‐stage water T‐maze task. In this task, 

mice first learn a spatial rule, then undergo reversal learning, and finally shift to finding the platform 

using a visual cue during  the EDSS stage  (Fig 1). Homozygous CNS‐Glud1‐/‐ mice show  impaired 

reversal and EDSS performance. Interestingly, heterozygous CNS‐Glud1+/‐ mice show intact reversal 

learning unless challenged with mild stress. Furthermore, performance in the reversal stage of this 

task correlates with mPFC transcription of glutamate‐ and GABA‐associated genes, so that increased 

expression of glutamate markers and decreased expression of GABA markers is associated with more 

trials required to complete the task [22,84]. 

Consistent  with  these  findings,  multiple  studies  suggest  that  disruptions  in  the 

excitatory/inhibitory (E/I) balance are linked to impaired cognitive flexibility. For example, a higher 

ratio of inhibitory to excitatory neurons (i.e., a reduced E/I balance) in the dentate gyrus has been 

associated with  faster  reversal  learning,  suggesting  that  enhanced  local  inhibition may  support 

flexible  updating  [85].  In  contrast,  optogenetic  activation  of  glutamatergic  neurons  in  in  the  rat 

vmOFC resulted in deficient reversal learning in an operant conditioning paradigm, while inhibition 

of  glutamatergic  firing  improved  reversal  learning  [86]. While  these  findings  imply  that  excess 

glutamate release impairs flexibility, studies with VGLUT1‐deficient mice (described above) indicate 

that diminished glutamate also impairs this cognitive capacity. This suggests that optimal levels of 

cortical and hippocampal glutamate are required for intact cognitive flexibility. 

In SZ, higher hippocampal glutamate levels [87] and an abnormal mPFC glutamine/glutamate 

ratio [88] were correlated with compromised performance in the WCST. Notably, a recent study in 

healthy  young  adults  did  not  find  a  correlation  between  striatal  and  ACC  concentrations  of 

glutamate/glutamine (Glx) levels and cognitive flexibility [89], so this association may be region‐ or 

disease‐specific. 

4.2. GABA 

Further support for the centrality of the E/I balance in cognitive flexibility comes from studies 

involving manipulation of GABA  transmission. Thus, acute administration of TPA‐023, a GABAA 

partial agonist, significantly reversed PCP‐induced deficits  in reversal  learning  [90]  in an operant 

reversal  learning  task.  Studies  in  genetically  modified  mice  point  to  OFC  PV  interneurons  as 

particularly  critical  for  reversal  learning  [91,92].  In  support  of  the  association  between  GABA 

transmission and reversal learning, parallel deficits  in prefrontal GABA transmission and reversal 

learning in an operant task were found in mice heterozygous for a mutation in the reelin gene, a SZ 

risk gene [93]. Similar selective deficits in reversal learning were found in mice with a homozygous 

deletion  of  the  cytoskeletal protein Radixin, which  regulates  the  receptor density  of  the GABAA 

receptors containing the α5‐subunits [94]. However, blocking GABAA receptors in the PFC left visual‐

cue discrimination and reversal intact, but impaired the shift to a new egocentric response strategy. 

Interestingly,  the  nature  of  the  deficit  depended  on  when  GABA  transmission  was  disrupted, 

producing either perseverative errors or novel, non‐reinforced errors. Thus, PFC GABA disruption 

can induce ID or ED shift deficits, depending on task and timing of GABA disruption [95]. In SZ, an 

MRS study revealed a negative correlation between PFC GABA levels and perseverative responding 

in patients with early‐stage schizophrenia [96], further supporting the importance of tight E/I balance 

regulation for this cognitive domain. 
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4.3. Dopamine 

There  are  five  metabotropic  dopamine  receptors,  classified  according  to  structural  and 

functional  similarities. D1  and D5  receptors  are  structurally  similar  and  primarily  postsynaptic, 

typically exerting excitatory or modulatory effects. In contrast, D2, D3, and D4 receptors also share 

structural  features but generally produce  inhibitory  effects  and  can be  located on both pre‐  and 

postsynaptic  sites  [97].  Other  components  of  the  dopaminergic  system  include  the  dopamine 

transporter  (DAT),  encoded by  the Slc6a3 gene  [98]. Dopaminergic  signaling plays  a key  role  in 

antipsychotic drug action [97], and was also shown to modulate the E/I balance [99–101]. 

Dopamine  involvement  in cognitive flexibility has been  investigated mainly  in the context of 

non‐spatial operant and digging tasks. Dopamine agonists, i.e., the dopamine releaser amphetamine, 

the D2/D3 receptor agonist quinpirole [102] and the selective D1‐like agonist SKF81297 [103] disrupt 

reversal learning in lever‐pressing tasks. Amphetamine also disrupts reversal learning in the Birrel‐

Brown  task, where  its effects are  reversed by D4  receptor antagonists L‐745,870  [104]. Curiously, 

manipulations that hinder dopamine receptor function also disrupt flexibility. For example, chronic 

treatment with  the  typical antipsychotic D2  receptor blocker haloperidol  impairs  reversal and set 

shifting  [105].  Likewise, mice  lacking  the D2  receptor  exhibit  impairments  in  olfactory  reversal 

learning  [106,107]  and  knockout  of  the D2  long  receptor  subtype  impairs  both  acquisition  and 

reversal in a visual discrimination task [108]. Selective knockout of D2, but not D1, receptors from 

GABA  interneurons  also  selectively  impairs  reversal. However,  transient  overexpression  of  D2 

receptors in the striatum leads to selective deficits in reversal learning in olfactory reversal learning 

task, leaving acquisition unaffected [109]. In conclusion, as with glutamate and GABA signaling, it 

seems that cognitive flexibility is enabled under conditions of optimal dopamine transmission. In SZ 

patients, dopamine D2/3 receptors binding affinity in the caudate nucleus and putamen correlates 

with TMT‐B performance [110]. While all currently prescribed antipsychotic drugs target dopamine 

receptors,  their  impact on cognitive  flexibility  in patients with SZ  is unclear, and may depend on 

genetic predisposition [111]. 

4.4. Serotonin 

The  serotonergic  system  consists  of  7  receptor  subtypes  (5‐HT1  to  7),  located  pre‐  or  post‐

synaptically, which can inhibit (5‐HT1B or 5‐HT1A, respectively) or potentiate transmission (e.g., 5‐

HT2A)  [112].  The  serotonin  transporter  5‐HTT  is  encoded  by  the  Slc6a4  (SERT)  gene  [113]. 

Importantly, as with dopamine, there is evidence to suggest that serotonergic signaling can modulate 

the E/I balance [114,115]. 

As with dopamine, the involvement of serotonin in cognitive flexibility was mainly investigated 

using appetitive tasks. For example, pharmacological blockade or genetic deletion (either partial or 

complete) of the serotonin transporter 5‐HTT resulted in fewer errors in reversal learning in a lever 

pressing  task  [116].  Interestingly,  the  selective  5‐HTT  inhibitor  fluoxetine,  commonly used  as  an 

antidepressant, improved performance in an operant learning task, specifically reducing the rate of 

impulsive and perseverative errors [117]. 

The complexity of the serotonergic system is reflected in the various contrasting findings. For 

example,  systemic  administration  of  either  a  5‐HT2A  agonist  [118]  or  antagonist  [119]  impaired 

reversal learning in appetitive tasks. Interestingly, different receptors, e.g., 5‐HT2A and 5‐HT2C may 

be associated with different error types, i.e., regressive or perseverative and have opposite effects on 

flexibility measures [118]. In other studies, both systemic [119] or OFC‐specific [120] 5‐HT2C receptor 

blockade improved reversal learning.   

In sum, the serotonergic system plays a role in cognitive flexibility, but its precise contribution 

is obstructed by the variability in behavioral tasks and the lack of methodological approach regarding 

different manipulations affecting serotonin synaptic levels. In SZ, patients with polymorphisms in 

the genes  encoding  the  5‐HT2A  receptor  [121],  or  the  serotonin  transporter  5‐HTT  [122], 

demonstrated significantly worse performance in the WCST. 
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4.5. Environmental Manipulations 

Environmental manipulations,  in particularly social stress, affect reversal  learning and EDSS. 

Han et al [123] showed that a 2‐week social isolation period in juvenile rats (PND 21–34) resulted in 

selectively impaired reversal learning without affecting acquisition in the MWM, and our group [124] 

similarly found that a 3‐week social isolation period starting in mid‐adolescence (PND 38), but not in 

adulthood  (PND  60),  impaired  reversal  and  EDSS  in  the  water  T‐maze  while  increasing  the 

expression of glutamate markers in the mPFC. 

Non‐social stress was also investigated in the context of cognitive flexibility and was found to 

have detrimental effects. Butts et al [125] and Thai et al [126] both found that acute stress  impairs 

cognitive  flexibility, but  the affected stage differed depending on  task design and  timing.  In both 

studies, stress impacted the final stage of testing—set‐shifting in Butts et al. and reversal in Thai et 

al.—suggesting that task order and experimental design (between‐ vs. within‐subjects) may influence 

the  observed  effects  of  stress.  Differences  in  methodology  likely  account  for  the  variation  in 

performance outcomes between the two studies. 

Early life stress led to selective deficits in reversal learning in adult mice, and decreased PV and 

GAD67 in OFC. Interestingly, the behavioral effect and changes in GAD67 were found in female mice 

only, and were mimicked by optogenetic silencing of PV cells in OFC, but not in the mPFC [127]. This 

suggests  that  certain  environmental  factors may  influence  cognitive  flexibility by altering  the E/I 

balance.   

Gestational manipulations,  such as  treatment with  the viral mimic PolyI:C,  impair  cognitive 

flexibility in adult animals. For example, maternal PolyI:C treatment in rodents resulted in impaired 

reversal in offspring [128,129]. The effect of this manipulation has been attributed to the activation of 

the immune system during gestation, which impacts the development the hippocampus and mPFC 

circuitry [130,131] as well as dopamine neurotransmission [132]. 

Some  environmental  changes  can  enhance  performance  in  cognitive  flexibility  tasks.  For 

example,  environmental  enrichment  improved  reversal  learning  in  operant  tasks  [133,134]. 

Environmental enrichment also improved reversal learning in a 4‐radial arm water maze, and led to 

a higher c‐Fos expression in the mPFC (specifically the cingulate cortex) and the OFC [135]. In some, 

some changes to the environment – some of which, e.g., immune activation during pregnancy [136] 

and  social  stress  [137]  have  been  associated  with  SZ  psychopathology  –  lead  to  perseverative 

behavior in cognitive flexibility task, while other manipulations can have a beneficial impact on this 

cognitive capacity. 

5. Summary and Conclusions 

This  review  summarizes  current  research  on  cognitive  flexibility,  focusing  particularly  on 

insight emerging from rodent models. We examined reversal learning and set shifting across both 

aversive and appetitive paradigms, recognizing that while these paradigms may assess comparable 

cognitive processes, they engage distinct neural circuits. As a result, findings across paradigms may 

appear inconsistent or contradictory, as summarized in Table 1. 

Table 1. The neural substrates of cognitive flexibility depend on whether the task requires ID or ED shifting, and 

on the motivational valence of the task. 

Flexibility 

requirement 
Valence  Implicated Brain Structures  Neurotransmitters Involved 

ID Shift  Aversive  Hippocampus, mPFC  Glutamate, GABA 

  Appetitiv

e 
OFC, mPFC, Striatum  Glutamate, GABA, Serotonin, Dopamine 

EDSS  Aversive  mPFC  Glutamate, GABA 

  Appetitiv

e 

mPFC, Ventral Hippocampus, 

ACC 

Glutamate, GABA, Serotonin, 

Noradrenaline   
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Reversal learning. Aversive reversal tasks, typically based on spatial paradigms, primarily engage 

hippocampal–medial prefrontal cortex (mPFC) circuitry. In contrast, appetitive reversal tasks—often 

involving non‐spatial cues—rely heavily on the orbitofrontal cortex (OFC), which is key for adjusting 

to changes  in  reward contingencies. Although  the mPFC contributes  to both  task  types,  the OFC 

appears especially crucial in appetitive contexts. Additionally, the striatum is frequently implicated 

in appetitive but not aversive reversal tasks. Across both paradigms, glutamate and GABA signaling 

in  the  PFC  are  essential  for  successful  reversal  learning.  In  appetitive  tasks,  serotonergic  and 

dopaminergic systems, especially within the striatum, also play a prominent role. 

EDSS.  In aversive  spatial  tasks, EDSS  typically  involves  switching  from a  spatial  to a visual 

strategy and depends on an intact mPFC. In appetitive paradigms, EDSS requires shifting attention 

between distinct sensory modalities (e.g., olfactory to tactile), engaging a broader network including 

the mPFC, ventral hippocampus, and anterior  cingulate cortex  (ACC). As with  reversal  learning, 

glutamatergic and GABAergic transmission support EDSS across both contexts, though serotonergic 

and noradrenergic pathways have been specifically implicated in appetitive EDSS tasks. 

Several points should be made regarding the interpretation of findings in aversive and appetitve 

paradigms. First, neural substrates that appear to differ between aversive and appetitive tasks may 

be due to inherent differences between these two types of paradigms. However, these differences in 

circuitry may partly be due to conventions in the field of learning. For example, the striatum is not 

commonly assessed  in spatial aversive EDSS  tasks whereas hippocampal‐mPFC circuitry  is often 

examined, and the hippocampus may be overlooked in appetitive‐based paradigms. 

A second important consideration is whether the observed deficits truly reflect impairments in 

the targeted cognitive domain—such as reversal learning or attentional set‐shifting—or are instead 

due to increased task difficulty or memory demands. For example, when EDSS deficits are found in 

a water T‐maze task, these deficits may not be due to compromised extra‐dimensional shifting but 

rather  to  the  fact  that  this  stage  is  simply more  challenging  than  the  previous  reversal  stage. 

Alternatively,  apparent difficulties  in  attentional  set  shifting may  reflect  sensory  limitations of  a 

particular  modality.  For  example,  rodents  are  poor  visual  discriminators,  and  compromised 

performance in visual discrimination tasks may be modality specific. An alternative explanation for 

apparent  cognitive  flexibility  deficits  changes  in  motivational  state;  for  example,  dopamine 

manipulations may influence motivation – especially in reward‐based tasks – potentially leading to 

misinterpretation of selective reversal learning deficits. A possible way to address these concerns is 

to control for task difficulty by counterbalancing modalities or by testing rodents in additional tasks 

with increasing task difficulty or using different motivational states but no flexibility demands. 

Third, most rodent studies ‐ with few exceptions ‐ were performed in males, despite evidence of 

sex  differences  in  cognitive  flexibility  abilities  in  human  studies  [138]. A mouse  study  that  did 

examine sex differences found that while male and female mice do not differ in number of trials to 

reach criterion in the reversal stage, the type of errors made are sex‐dependent, with males making 

more perseverative errors than females [139]. This suggests that the neural mechanisms supporting 

cognitive flexibility may differ between sexes, with potential implications for both the diagnosis and 

treatment of flexibility‐related impairments in humans. 

Relatedly, many of the reviewed rodent studied assessed the number of trials required to reach 

criterion or the time to respond, but did not evaluate error types, e.g., perserverative vs. regressive 

errors. Different error types may reflect different neural circuitry affected by disease processes or by 

specific manipulations, and should be assessed along with commonly used measures such as error 

rate or trials to criterion. 

In  sum,  cognitive  flexibility  is  a  core  executive  function  that  relies  on  the  integrity  of 

hippocampal‐prefrontal circuitry and proper  striatal  function. Future studies should consider  the 

motivational valence of the task, as it can significantly influence the neural circuits involved. Animal 

and human studies should also control for task difficulty and potential sex differences. A translational 

framework that bridges findings across species may improve the diagnosis and treatment of cognitive 

impairment in SZ and other conditions characterized by deficits in cognitive flexibility. 
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