

Review

Autism spectrum disorder pathogenesis – a cross-sectional literature review

Agata Horecka-Lewitowicz ¹, Olga Adamczyk-Gruszka ¹, Dorota Koziel ², Hyebin Lim ³, Wojciech Lewitowicz ³ and Piotr Lewitowicz ^{1,*}

¹ Institute of Medical Sciences, Jan Kochanowski University, Kielce, Poland. Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland ahorecka@ujk.edu.pl, oadamczyk@ujk.edu.pl, piotr.lewitowicz@ujk.edu.pl

² Institute of Health Sciences, Jan Kochanowski University, Kielce, Poland Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland dorota.koziel@ujk.edu.pl

³ Student Scientific Society at Collegium Medicum, Jan Kochanowski University, Kielce, Poland. Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland; hyebin3530@gmail.com; woj9742@gmail.com

* Correspondence: ahorecka@ujk.edu.pl

Abstract: The etiology of autism spectrum disorder (ASD) has not yet been completely elucidated. Through time, multiple attempts have been made to uncover the causes of ASD. Different theories have been proposed, such as that it is caused by "Gods Wrath," alternations in the gut–brain axis with an emphasis on gut dysbiosis, post vaccine complications, and genetic or even autoimmune causes. In this review we present data covering over 170 000 participants at age ranging from 2 to 14 years focusing on human cell changes rather than using animal models found in previous studies. The male/female ratio was 4:1. Data collection occurred in many countries covering ethnically diversified subjects. Moreover, we aim to show how the progress in genetic techniques influence the explanation found in medical White Papers based on the human genetic samples we have observed from our studies

Keywords: keyword ASD; autism; Asperger syndrome; molecular sequencing

1. Introduction

Autism spectrum disorder (ASD) mechanism still remains unclear. Currently it is suspected to have multi-lineage etiology. The increasing incidence of these disorders represent a significant medical problem associated with a surge of both medical and social care costs. Current progress of regarding our understanding of the genetic basis of ASD made an invisible progress of comprehension, and screening of ASD risk. ASD prevalence has been measured by special education and administrative records [1-4]. Generally the frequency of the occurrence of ASD in children is approximately 1.5%– 2%. A cross-sectional study by Christiansen et al. covering the years 2010, 2012, and 2014 showed that the estimated prevalence of ASD (per 1,000) among children aged 4 years was 13.4 in 2010, 15.3 in 2012, and 17.0 in 2014 [2]. However, the results of a screening study by Saito et al. (2020) covering 2013–2016 noted a higher ASD incidence with an adjusted ASD prevalence of 3.22%. The estimated male-to-female ratio of the prevalence was estimated at 2.2 [5].

2. Materials and Methods

This narrative review focuses on peer-reviewed literature. All reviewed sixty eight studies, reviews and experimental studies, ranging from 1998 to 2020, were obtained by means of systematic browsing of Pubmed and the Web of Science. Conducted searches included the following keywords: autism, ASD, Asperger syndrome, genetic profile, gut–brain axis, food intolerance, microbiota, cell migration, brain development. Reviewed studies contained demographically diverse samples originating from a wide range of

Western cultural contexts. The research papers covered 171,345 participants. Four researches studied 135 post-mortem cases and samples from the Tissue Bank of Neurodevelopment Disorders, and two experimental researches were based on an animal model. Other cases were based on humans using laboratory tests, microbiological tests and finally molecular analyses.

3. Results

The collected materials allowed us to present a multilineage approach to explain of ASD pathogenesis. All that we know to date about ASD has been provided by research conducted in Western high-income countries. It is believed that the majority of ASD patients live in low- and middle-income regions where access to modern medicine is still heavily restricted. There are multicultural differences in behavior norms, culture-specific approaches, beliefs, mental health literacy, or even stigmas [6]. To the present day the etiology of ASD is still enigmatic. Many researchers tried to explain the driving abnormality but there is still no hard evidence. Looking from a time perspective there is a evident change of ASD etiology perception. The first highlighted idea was the gut-brain axis theory with emphasis on gut microbiota and especially the fungal colonization of the colon mucosa. The parallel theory centered around the influence of environmental changes, especially environmental pollution. Subsequently the advancements made in laboratory technology allowed for studies with their focus on stem cell pathways and molecular abnormalities.

The problem overview - from past to present day

3.1. Gut-Brain Axis

The discussion about the ASD pathway has been focused on the gut-brain axis for many years. A recent review by Fattorosso et al. (2019) presented a dependence of ASD symptoms with the gut dysbiota. Generally, intestinal dysbiosis and frequent gastrointestinal (GI) symptoms would partially explain the role of probiotics and other para-pharmaceuticals in the care on children. The microbiota composition built by colonies of Bacteroidetes, Firmicutes, and Actinobacteria, is much more concentrated in children with ASD than in controls. The ASD patients showed a abnormally high ratio of *Faecalibacterium* and *Phascolarctobacterium* and a decreased number of *Coprococcus* and *Bifidobacterium* species. The authors concluded that the administration of probiotics would be the most promising treatment for neurobehavioral symptoms, however there is still a need of well-designed trials in this field [7-8]. Other recent systematic review by Ho et al. (2020) discredits gut-dysbiosis as a leading cause of ASD symptoms. According to the authors there are ambiguous conclusions in reports and consequently its causality cannot be confirmed [9]. Another proposed aspect in gut dysfunction caused by diet intolerance. It is believed that a gluten-free diet or other food-intolerance restriction that could reduce severity of ASD symptoms [10]. A controversial thesis studying the mother's glucose abnormalities during pregnancy was reported recently. The authors hypothesized that a glucose-rich diet by the mother a day before delivery would be a cause of fetal ischemic brain injury. Within the published study (Hoirisch-Clapauch and Nardi, 2019), meta-analysis and Swedish research were included as evidence of linkage of maternal hyperglycemia to ASD. However, initial findings were observed in animal models the authors found a deep need for future controlled studies to confirm a close correlation on maternal hyperglycemia and the risk of ASD [11].

3.2. Role of the Environment

A few studies investigating other ASD causes in diet or environment associations focus on mercury and biphenyl poisoning as a potential ASD cause. A review by McCaulley (2019) suggests the neurotoxicity of a common heavy metal, via genetic and epigenetic alterations [12]. The fact that the industrial progress has led to severe environmental pollution is not negotiable. In the list of the most harmful chemicals there are

polychlorinated biphenyls (PCBs) and heavy metals with their proven neurotoxicity. The reported research highlighted the evidence of PCBs alternating dopamine (DA) neurotransmission. In addition, in vitro studies using the pheochromocytoma cells lines being exposed to the PCBs presented a significant reduction of dopamine concentrations (Pessah et al, 2019). Furthermore, the molecular mechanism underlying reduced cognition, attention, behavior, attention deficit, hyperactivity disorder, or ASD has been also highlighted. All these have been found to impact dopaminergic neurotransmission, hypothyreosis, calcium dyshomeostasis, or oxidative stress especially in early childhood presenting ASD specific symptoms [13]. Recently, it has been reported that high levels of reactive oxygen species (ROS) leading to oxidative stress, could also be a possible mechanism resulting in ASD. This pro-inflammatory state caused by the ROS results in dysregulation of the central nervous system and immune system which has been acknowledged as contributing factors of ASD development. Moreover, it is thought that reduced resources of free-radical scavengers as decreased glutathione level makes individuals more vulnerable to neurons injury. The contribution of the ROS toxicity has been highlighted in the autism animal model by alleviating the brain neuroinflammatory via overactivation of microglia [14]. Another metabolic route concerning L-carnitine deficiency was considered as a unique subgroup of ASD patients on the basis of suggesting mitochondrial dysfunction leading to first autistic symptoms. Recently published two randomized clinical trials suggest that carnitine administration could extinguish severe symptoms in non-syndromic ASD. Unfortunately, in both trials, dose-dependent adverse reactions have been observed, but the same beneficial effect has also been reported for other comorbid disorders, such as intellectual disability and increased muscle tone. Authors concluded that following studies are necessary, however, the beneficial features of carnitine treatment on the basis of mitochondrial dysfunction may alleviate the symptoms in non-syndromic ASD [15].

3.3. Stem Cells

A fresh, innovative thesis presented by Bankaitis et al. concerning L-carnitine impact was discussed last year. The authors coined the neural stem cell (NSC)/carnitine malnutrition hypothesis. According to the authors the ASD risk factor would be a diminished capacity for carnitine-dependent long-chain fatty acid β -oxidation in the neural stem cells of the developing central nervous system. The authors concluded that fetal carnitine status is a significant metabolic component in determining NSC vulnerability and further could contribute in abnormal cell maturation and dysfunction [16].

With obvious reason the study of glial cells in ASD affected patients is impossible. The hope are cellular models providing us a way to uncover disease mechanisms and develop novel therapeutic strategies. The ability of induced pluripotent stem cells (iPSCs) to generate diverse brain cell types offers great opportunity to study neurodevelopmental disorders.

This iPSC-based model was used to understand the neuronal and glial contributions to neurodevelopmental disorders, including ASD, Rett syndrome, bipolar disorder (BP), and schizophrenia. For example, many molecular hot-points have been shown to influence cellular phenotypes in three-dimensional iPSC-based models in patients with ASD. Delays in the differentiation of astrocytes and morphological changes of neurons are associated with Rett syndrome. In bipolar disease and schizophrenia, patient-derived models helped identify cellular phenotypes associated with neuronal deficits and mutation-specific abnormalities in oligodendrocytes [17].

3.4. Genetic Puzzle

The last three decades is a time of a significant progress in genetic studies concerning neurobehavioral syndromes including ASD. First results provided a huge amount of molecular data that would be used to verify many hypotheses, models, and finally genetic pathway of ASD. To present day, several lines of evidence support the view that structural and genomic variation play a pivotal roles in ASD. All sophisticated molecular techniques

for genome sequencing, including array comparative genome hybridization and single nucleotide polymorphism analysis, has allowed for the detection of a large number of autism-related loci. Copy number variants (CNVs) are the most common form of molecular abnormality and are seen as very important contributors to the pathogenesis of neurodevelopmental disorders. Because of the complex synaptic architecture, deciphering the functional impact of ASD associated variants is an extremely arduous task. Currently, it is believed that at least hundreds of loci are associated with ASD. That complexity makes it difficult to identify singular potential causative pathway and then therapeutic approach. Analysing the databases we can find the huge number of researches based on diversified genetic material and used molecular assay. That is why we are still far behind in interpreting the main causative molecular sequences in ASD. The system biology/network analysis approaches would provide new insights into the molecular driving pathway. To help with these analyses the animal models, in vitro studies, and experimental approaches would contribute as well. It is suggested that comparison of these data on a multilevel plane would allow to create a ASD template model and then to explain both psychiatric dysfunction and other somatic problems [18]. Previously mentioned CNVs are particularly important in the cases of complex syndromes, such as when ASD symptoms occur in association with intellectual disability and/or congenital malformations (e.g., Angelman syndrome, Phelan–McDermid syndrome). The model proposed by Bourgeron to explain the complex genetic landscape in ASD appears to be very reasonable. Because of massive molecular heterogeneity in affected subjects the authors try to focus on to the interplay between a genetic background with a low- to high-risk predisposition to ASD onset. Moreover, there are pointed new rare or ultra-rare variants with low to high-risk potential which can contribute in ASD as well. The combination of these different categories of variants in the population results in the massive phenotypic heterogeneity of ASD. Reported data provided an evidence concomitance of different models of inheritance in the heterogeneous ASD population but there is still lack of driving core. Here we can find monogenic in subjects carrying ultra rare or de novo variants, extremely deleterious and highly penetrating mutations; oligogenic with the concomitance of medium/high-risk predisposing variants; and, finally, a polygenic presence of multiple low-risk genetic variants [18-19]. The subtyping would explain clinical ASD types and symptoms diversity and severity. During the last two decades, the launching of high throughput sequencing revolutionized genetic research and allowed studying ASD on significantly wider molecular landscape. The early documentation on karyotype chromosomal abnormalities shed a light on susceptible loci screening on those highly involved genomic regions such as chromosome 7q, 1p, 3q, 16p, and 15q [20]. Sequencing technology undoubtedly confirmed that the etiology of ASD is multigenic and highly heterogeneous. At this moment it is known that any ASD patient bears various CNVs variations raising ASD susceptibility and provides an additional proof of the multigenic etiology. Although there is no clearly defined biomarker nor the driving molecular route identified, the fresh research studied DNA methylation present other genes involvement in ASD. Only a little handful of ASD-related diseases have monogenic cause, such as Rett syndrome, tuberous sclerosis, fragile X syndrome, and Schuurs–Hoeijmakers syndrome [20-23]. All of that very well sign in Bourgeron hypothesis.

The complexity of neurodevelopment and signal transduction makes for the possible multilevel neurocyte dysfunction. Genes output as a functional proteins, contribute in synapse formation, transcription regulation, and even chromatin remodeling. In the group, there were included of synapse-related risk genes were included those coding especially cell-adhesion proteins and ion channel. The synapsin family proteins contribute to synaptogenesis and release of neurotransmitters. Mutations in synapsin-1 (SYN1) and synapsin-2 100 (SYN2) gene are common in neuropsychiatric disorders including ASD. Another problem observed in ASD is the changed signal transduction and influence on neurotransmitter secretion. Reported data highlighted a high ratio of mutations in genes encoding ion channel protein as sodium voltage-gated channel alpha subunit 2 (SCN2A), potassium voltage-gated channel subfamily D member 2 (KCND2) calcium voltage-gated

channel subunit alpha1 E (CACNA1E), Ankyrin a protein encoded by multiple ankyrin repeat domains 3 (SHANK3) play important role in synaptogenesis, maintenance of membrane channels and clearing of synaptic cleft. [24-30]. Clinical observation and key-ASD symptoms confirm an implication of synapse dysfunction and abnormal dendritic network in ASD. A wide gene panel sequencing allowed to find an increased number of de novo mutation (DNM) in regulatory genes. However, correlation of DNM elements within the targeted genes on neuropsychiatric disorders was not identified yet, the DNMs were found to be specifically upregulated in early prenatal brain development [31-33]. Another no less meaning aspect in ASD genesis is chromatin-remodeling pathways. Into this gene group were included methyl CpG binding protein 2 (MeCP2) working as activator or inhibitor other genes. Ubiquitin Protein Ligase E3A (UBE3A), chromodomain helicase DNA binding protein 8 (CHD8) is an enzyme contributing in proteasome degradation of proteins via connection their with ubiquitine. Mechanically, the UBE3A silencing could be activated by methylation as imprinting what was proofed in Angelman and Prader-Willi syndrome. Tran and co-workers recently showed that fragile X mental retardation protein (FMRP) and fragile X related protein 1 (FXRP1) mutations could lead to abnormal RNA editing enzyme activity leading to hypoediton of adenosine–inosine transformation in neurons [34-36].

It is thought that disease-causing gene mutation are germinal and are present in almost all somatic cell. Obviously, post zygotic acquired mutation could lead to a somatic mosaicism, which is common in neurodevelopmental diseases, including autism. Neurogenesis is a crucial period in tissue development and maturation where acquired SNVs could lead to gene polymorphism. It was especially observed on example of the sodium channel alpha-1 subunit, SCN1A [37-39]. Generally, according to many reported data the acquired mutation prevalence is calculated about 5%–7%. However the frequency of post zygotic mutation in autism is unknown, some reaserches highlight its role as important pathway in ASD genesis [40-41]. Most reported mutations are not pathogenic or are classified as unknown meaning, but some exons polymorphism could be extremely detrimental. All of that have been associated with ASD, Rett syndrome, tuberous sclerosis, and intellectual disability. Until next-generation sequencing, our understanding of somatic mosaicism in ASD was created only by simple molecular tests and were reported as case reports. The whole-exome sequencing (WES) data from large cohorts have been milestone in understanding of the somatic mosaicism role. According to Krupp et al. and Lim et al. studies the mosaicism prevalence is estimated on 3%–5%. Other research based on large cohort covering 5,947 families affected by ASD studied the meaning of critical exons variations which were much more common in ASD children than in unaffected siblings. In addition, the authors pointed that these exons variants showed higher expression in the amygdala—an area critical for emotional response and social awareness [42]. Similar report showed that acquired cerebellum located genes could be a cause of coordination difficulty that could be related to gait disorders typical for ASD patients [43]. A similar large cohort WES study by Freed and colleagues reported similar conclusion concerning somatic mosaicism as a significant factor in ASD etiology [44].

Currently, CNV is now seen as a critical driving factor in ASD susceptibility. Additionally, there is a thesis that these variations directly cause about 10% of all ASD cases. The molecular tests pointed 16p11.2 duplications as a very important region of DNA chain. In this region are located at least 25 genes involved in neurodevelopment and maturation. Golzio et al. hypothesized that only one gene in this region—potassium channel tetramerization domain containing 13 (KCTD13)—is a pivotal driver for neuropsychiatric disease [45]. That strand undergo further deeper investigation. There was observed that CNVs in 16p11.2 region makes wrong synaptic transmission through altered regulation of Ras homolog family member A (RhoA) [46]. In addition, Escamilla et al. concluded that KCTD13 deletions are crucial in ASD genesis but in contrary to Golzio concluded that this mutation alone are not likely to be sufficient to cause the disease. Likely, the real driver of disease in 16p11.2 duplications or deletions is not from just one gene but from an interaction of all 25 genes contributing to susceptibility. Iyer et al. systematically investigated

the interaction between genes in the 16p11.2 region, using RNAi in *Drosophila* to test 565 pairwise knockdowns. Moreover, they presented 24 interactions between pairs of genes within the 16p11.2 region, and Additionally 46 interactions between 16p11.2 genes and others ASD related genes. This information would be crucial in searching for a leading pathway in ASD genesis. Data suggest that interactions within CNVs result in the ASD [47]. The other CNVs loci are less frequently studied. The most common ASD-related region, such as 15q11-13 as well as 16p11.2, are present in only approximately 1% of cases [48].

Working with the heterogeneity, we can see that paying attention to common affected functional networks proves to be a useful method of study. It is a prevalent outcome in numerous studies, that autistic people have deletions in synaptic genes, namely SHANK3, dipeptidyl peptidase-like 10 (DPP10), neuroligins, and neurexins [49-51]. Among gene sets with rare CNVs, it is usual to see those related to cell development and proliferation, chromatin regulation, and ubiquitin pathways. In cases of some CNVs, copy number dosage seems to have an influence on disease phenotype. Stefansson et al. looked at 15q11.2 CNV region of autistic people and discovered that there were two areas of the brain with dose dependent structural and functional effects [52]. It is a curious thing to see, that non ASD/schizophrenic, dyslexic and dystaxic controls manifested the very same structural changes. Girirajan et al. (2010) found a dose dependent effect based on the microarray analysis with identified CNVs in genes associated with ASD. The reported correlation was one between duplication size increase and autism severity. However, there was not found any relation between duplication size and non verbal IQ [52-54]. The question to ask here is that how come non-causative modifiers play a part in modulating CNV pathogenicity? Epigenetic gene modulating functions have a great deal of involvement in ASD. There was a study which proposed that highly penetrative ASD risk related genes were usually located in the nucleus and that they have an involvement in modulation of either expression or silencing of the protein-protein network, key for CNS development [55]. Different studies show how the deep epigenetic changes could modify disease phenotype As an example, there was a study of 50 pairs of monozygotic twins discordant of ASD, who were reported to have many autism associated differentially methylated regions, some patterns of CpG sites in line with symptom groups. Even though there still remains a great amount of knowledge to be grasped about the epigenetic modulation of ASD, the large scale epigenomic studies have already provided the scientific and medical communities with valuable patterns. It is believed that methylation of KMT2C, lysine methyltransferase 5-6B, MeCP2, CHD8, and POGZ, FMRP and the RBFOX family, UBE3A and E3 ubiquitin-protein ligase 1 would seriously improved the ASD susceptibility [24]. These proteins are varied function wise and often include pathways seen in autism, for example the synaptic formation. In order to see how single epigenetic regulator mutation could account for the modification of numerous other risk genes, we could focus on the two leading susceptibility genes, namely MeCP2 and UBE3A. MeCP2 is a chromatin modifier which is with no doubt involved in ASD). It is seen in a case of a healthy individual that the binding action of MeCP2 regulates numerous synaptic function genes, GABRB3, brain-derived neurotrophic factor (BDNF), distal-less homeobox 5 (DLX5), insulin-like growth factor-binding protein 3 (IGFBP3), cyclin dependent kinase-like 1 (CDKL1), protocadherin beta 1 (PCDHB1), protocadherin 7 (PCDH7), and lin-7 homolog A (LIN7A) [57]. The E3 ubiquitin protein ligase UBE3A is the second crucial epigenetic regulator closely related to ASD. It is modulated by MeCP2 but it can also be causative itself.

UBE3A's location is 15q11-13, regularly duplicated in autism cases. Dose dependent effects correlated positively with decreased excitatory synaptic transmission speech delay and psychomotor regression [60-61]. Lee et al. (2014) identified four proteosome-related UBE3A direct substrates proteins. UBE3A and substrate proteasome 26S subunit, non-ATPase 4 (Rpn10) caused the growth in accumulation of ubiquitinated proteins, hinting at a proteostatic imbalance. Proteosome health is strongly implicated in dendritic spine outgrowth, making for a connection between UBE3A and abnormal neurocytes as seen in autism cases [63]. Additionally, its involvement in Wnt signalling could also cause for a

serious perturbation during development period. [64]. MeCP2 and UBE3A are two fine examples of a gene mutation causing very extensive effects. It was the wide ranging epigenetic studies that have provided us with a broad view of epigenetic disregulation seen in ASD. Ladd-Acosta et al. (2014) measured above 485,000 CpG loci in 40 individuals' post mortem brain tissue finding four differentially methylated regions. Three methylated regions were found to be located in the cortical tissue: the proline-rich transmembrane protein 1 (PRRT1) 3' UTR, promoter regions of tetraspanin 32 (TSPAN32), and C11orf21. The other site was identified in the cerebellar tissue, an alternative promoter for succinate dehydrogenase complex flavoprotein subunit A pseudogene 3 (SDHAP3) [65]. The evidence of abnormal DNA methylation in ASD cases exists in numerous aspects, ranging from genetic mutations in epigenetic machinery to loci specific and genome wide changes. Epimutations in DNA methylation are possible to be acquired, methylation reprogramming and imprinting are active during early embrogenesis and postnatal peak synaptogenesis. [66]. Mor et al. approached the matter using small RNA sequencing data, relating the results to genome wide DNA methylation in order to find disregulated miRNAs. The result proved to be in line with many other studies, the significantly expressed miRNAs in ASD patients' brains were related to synaptic activity. There was also a mention of a connection to the oxytocin receptor OXTR gene, which hints at attenuated OXTR expression in the autistic brain. A study of preterm birth fetal membranes supports this conclusion, showing hypermethylated OXTR and suggesting a potential environmental factor to be linked to this pathological process [67]. Homeobox 2 (EN2) is another epigenetic function risk gene, its patterns of methylation in ASD cases are found to be unusual, the gene is speculated to cause abnormal cerebellar Purkinje growth and maturation. The list of epigenetic function ASD risk genes is a vast one, the mechanism of broad gene expression disregulation could rely on just a few mutations [68].

In Table 1 we collected studied genes and their main function.

Table 1. A presentation of studied mutations in ASD cases according to its function.

Function	Gene
nucleus	KDM5B, MAGEL2, SMARCB1, KMT2A, MYT1L, KMT2C, CHD8, CTNND2, CHD7, CHD2, AAAS, PHF8, SYNE1, RAI1, NIPBL, NSD1, DMD, HOXA1, PCDHA2, MBD5, RBFOX1, CDKL5, CRADD, ATRX, DYRK1A, HUWE1, EN2, ASH1L, ARID1A, SMARCA2, ASPM, KANSL1, SETBP1, TBL1XR1, ASXL3, BCOR, ADNP, CC2D1A, ZNF674
plasma membrane	NRXN1, CACNA1C, CACNA1F, GRIP1, RAB40A, RELN, PCDHA1, PCDHA4, SCN7A, PCDHA3, DMD, PCDHA9, ATP7A, PCDHA8, MICA, PCDHAC1, SCN1A, KIRREL3, KCNJ10, ABCC8, ATP6AP2, CACNA2D3, ANK3, GABRG3, PRSS12, GRIN1, DLG3, SLC9A9, CNTN3, CNTN4, CDH15, SHANK3, SHANK2
transcription, DNA-templated	KDM5B, MAGEL2, SMARCB1, MYT1L, KMT2C, CHD8, CTNND2, ATRX, CHD7, ARID1A, CHD2, SMARCA2, MED13L, PHF8, TBL1XR1, NSD1, ASXL3, KMT5B, HOXA1, BCOR, ADNP, CC2D1A, ZNF674
nucleoplasm	KDM5B, SMARCB1, CDKL5, KMT2A, KMT2C, CHD8, DYRK1A, HUWE1, FANCB, ASH1L, ARID1A, CHD2, AAAS, SMARCA2, SYNE1, PHF8, RAI1, NIPBL, KANSL1, TBL1XR1, NSD1, MCPH1

nervous system development	MBD5, RBFOX1, SMARCB1, MYT1L, DYRK1A, SMARCA2, PCDHA10, DLG3, PCDHA1, OPHN1, PCDHA5, PCDHA4, CNTN3, PCDHA3, CNTN4, PCDHA2, NDP, PCDHA8, PCDHAC1
DNA binding	KDM5B, MBD5, SMARCB1, KMT2A, MYT1L, KMT2C, CHD8, ATRX, HUWE1, ASH1L, ARID1A, CHD2, SETBP1, ASXL3, ADNP, ZNF674
cell adhesion	LAMC3, CTNND2, PCDHA10, RELN, PCDHA1, PCDHA5, PCDHA4, CNTN3, PCDHA3, CNTN4, PCDHA2, CDH15, PCDHA8, PCDHAC1
calcium ion binding	NRXN1, PCDHA10, GRIN1, PCDHA1, PCDHA5, OTOF, FAM20C, PCDHA4, PCDHA3, PCDHA2, CDH15, PCDHA9, PCDHA8, PCDHAC1
integral component of plasma membrane	KCNJ10, NRXN1, PCDHA10, GRIN1, PCDHA1, PCDHA5, PCDHA4, PCDHA3, PCDHA2, SLC16A2, ATP7A, PCDHA8, MICA, PCDHAC1
positive regulation of transcription from RNA polymerase II promoter	IGBP1, SMARCB1, KMT2A, CHD8, ATRX, CHD7, EN2, ASH1L, SMARCA2, GRIN1, RAI1, NIPBL, TBL1XR1
homophilic cell adhesion via plasma membrane adhesion molecules	KIRREL3, PCDHA1, PCDHA5, PCDHA4, PCDHA3, PCDHA2, CDH15, PCDHA9, PCDHA8, PCDHA10, PCDHAC1
chromatin binding	MBD5, NIPBL, KMT2A, CHD8, NSD1, ATRX, CHD7, ADNP, ASH1L, SMARCA2, PHF8
positive regulation of transcription, DNA-templated	GRIP1, RAI1, KMT2A, TBL1XR1, CHD8, NSD1, NDP, ARID1A, SMARCA2, CDK5RAP2, PHF8
postsynaptic membrane	GRIP1, DLG3, DMD, ANK3, GABRG3, DLGAP2, SHANK3, SHANK2, SYNE1, GRIN1
cell junction	GRIP1, OPHN1, NRXN1, OTOF, GABRG3, DLGAP2, SHANK3, SHANK2, GRIN1, CDK5RAP2
negative regulation of transcription from RNA polymerase II promoter	IGBP1, NIPBL, TBL1XR1, WFS1, CHD8, NSD1, BCOR, ARID1A, SMARCA2, CC2D1A
endoplasmic reticulum	GRIP1, PCDHA1, RPL10, WFS1, NRXN1, ANK3, PCDHA2, DHCR7, ATP7A, GRIN1
dendrite	KIRREL3, GRIP1, RELN, WFS1, CTNND2, ANK3, ADNP, PRSS12, GRIN1
brain development	NIPBL, RELN, CHD8, CNTN4, CDK5RAP2, PHF8, AFF2
neuron projection	GRIP1, TPH2, ANK3, ATP7A, SHANK3, SHANK2, GRIN1
cell surface	NRXN1, DMD, ANK3, NDP, PPFIA4, MICA, GRIN1
regulation of ion transmembrane transport	KCNJ10, CACNA2D3, SCN7A, CACNA1F, CACNA1H, SCN1A
covalent chromatin modification	SMARCB1, CHD8, ATRX, CHD7, ARID1A, CHD2
sensory perception of sound	NIPBL, WFS1, CHD7, OTOF, HOXA1, NDP
postsynaptic density	DLG3, CACNA1C, DLGAP2, SHANK3, SHANK2, GRIN1
neuronal cell body	DLG3, NRXN1, ADNP, ATP7A, SHANK2, SCN1A
chromatin remodeling	SMARCB1, ATRX, CHD7, ARID1A, SMARCA2

histone binding	TBL1XR1, CHD8, ATRX, CHD2, SMARCA2
calcium ion transmembrane transport	CACNA2D3, CACNA1C, CACNA1F, CACNA1H, GRIN1
axon guidance	RELN, OPHN1, NRXN1, ANK3, CNTN4
basolateral plasma membrane	KCNJ10, DLG3, OTOF, ANK3, ATP7A
protein C-terminus binding	GRIP1, RBFOX1, NIPBL, DLG3, SHANK3
calmodulin binding	ASPM, WFS1, CACNA1C, GRIN1, CDK5RAP2
visual perception	KCNJ10, WFS1, LAMC3, NDP, CACNA1F
transcription regulatory region DNA binding	KMT2A, TBL1XR1, BCOR, SMARCA2, CDK5RAP2
actin binding	OPHN1, DMD, TNS4, SHANK3, SYNE1
positive regulation of synaptic transmission, glutamatergic	RELN, NRXN1, SHANK3, SHANK2
positive regulation of excitatory postsynaptic potential	RELN, NRXN1, SHANK3, GRIN1
ionotropic glutamate receptor binding	OPHN1, DLG3, SHANK3, SHANK2
voltage-gated calcium channel complex	CACNA2D3, CACNA1C, CACNA1F, CACNA1H
membrane depolarization during action potential	SCN7A, CACNA1F, CACNA1H, SCN1A
histone-lysine N-methyltransferase activity	KMT2A, NSD1, KMT2C, KMT5B
social behavior	NRXN1, SHANK3, SHANK2, GRIN1
cerebral cortex development	ASPM, ATIC, MCPH1, GRIN1
learning	NRXN1, AAAS, SHANK3, SHANK2
synapse assembly	KIRREL3, NRXN1, SHANK3, SHANK2
post-embryonic development	KDM5B, ALDH5A1, KMT2A, DHCR7
beta-catenin binding	GRIP1, TBL1XR1, CHD8, CTNND2
multicellular organism growth	STIL, TBL1XR1, ATRX, DHCR7
helicase activity	ATRX, CHD7, CHD2, SMARCA2
dendritic spine	OPHN1, SHANK3, SHANK2, GRIN1
neuron migration	KIRREL3, ASPM, RELN, CDKL5
Z disc	DMD, ANK3, CACNA1C, SCN1A
negative regulation of neuron apoptotic process	WFS1, EN2, ADNP, GRIN1
NMDA glutamate receptor clustering	RELN, NRXN1, SHANK3
receptor localization to synapse	RELN, DLG3, NRXN1
npBAF complex	SMARCB1, ARID1A, SMARCA2
nBAF complex	SMARCB1, ARID1A, SMARCA2
SWI/SNF complex	SMARCB1, ARID1A, SMARCA2
vocalization behavior	NRXN1, SHANK3, SHANK2
histone methyltransferase activity (H3-K4 specific)	KMT2A, KMT2C, ASH1L
histone H3-K4 methylation	KMT2A, KMT2C, ASH1L

ATP-dependent chromatin remodeling	SMARCB1, CHD8, ARID1A
adult behavior	NRXN1, SHANK3, SHANK2
MLL1 complex	KMT2A, KANSL1, CHD8
neuronal action potential	SCN7A, ANK3, SCN1A
adult walking behavior	KCNJ10, CHD7, SCN1A
long-term synaptic potentiation	RELN, SHANK3, SHANK2
cognition	NIPBL, CHD7, HOXA1
DNA duplex unwinding	CHD8, ATRX, CHD2
cardiac conduction	CACNA2D3, CACNA1C, CACNA1F
neuromuscular process controlling balance	RBFOX1, NRXN1, SHANK3
forebrain development	STIL, ATRX, ARID1A
neuron projection morphogenesis	KIRREL3, DMD, ATP7A
methylated histone binding	CHD8, ATRX, PHF8
negative regulation of neuron differentiation	ASPM, CNTN4, CDK5RAP2
terminal bouton	OPHN1, PRSS12, GRIN1
presynapse	KCNJ10, NRXN1, OTOF
canonical Wnt signaling pathway	TBL1XR1, CHD8, NDP
guanylate kinase-associated protein clustering	NRXN1, SHANK3
GKAP/Homer scaffold activity	SHANK3, SHANK2
axon initial segment	ANK3, SCN1A

5. Conclusions

This review increases our knowledge concerning ASD, but there are further challenges ahead. There is no evidence-based single pathway that results in symptoms of ASD. Patient management is constantly only symptomatic, and there is no ASD screening apart from the symptom-based diagnosis and parent-mediated interventions. Multi-gene sequencing or epigenetic alterations hold promise in solving the disjointed molecular puzzle. Further research is needed, especially in the field of biogenetics, because young children constitute the patient group most affected by ASD.

Author Contributions: “Conceptualization, AHL, and PL.; methodology, AHL; software, HL.; investigation, OAG.; resources, OAG, and PL.; writing—original draft preparation, AHL, and PL, and HL.; supervision, PL.; project administration, PL.; funding acquisition, Y.Y. All authors have read and agreed to the published version of the manuscript.

Funding: Project financed under the program the Minister of Education and Science called “Regional Initiative of Excellence” in the years 2019-2023, project No. 024/RID/2018/19, amount of financing 11 999 000,00 PLN

Conflicts of Interest: “The authors declare no conflict of interest.”

References

1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: American Psychiatric Association; 2013.

2. Christensen DL, Maenner MJ, Bilder D, et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 4 Years - Early Autism and Developmental Disabilities Monitoring Network, Seven Sites, United States, 2010, 2012, and 2014. *MMWR Surveill Summ.* 2019;68(2):1-19. Published 2019 Apr 12. doi:10.15585/mmwr.ss6802a1
3. Croen LA, Grether JK, Hoogstrate J, Selvin S. The changing prevalence of autism in California. *J Autism Dev Disord.* 2002; 32:207-15. doi:10.1023/A:1015453830880
4. Newschaffer CJ, Falb MD, Gurney JC. National autism prevalence trends from United States special education data. *Pediatrics.* 2005;115: e277-82. doi:10.1542/peds.2004-1958 s: changes in the California caseload, an update: June 1987– June 2007. Sacramento, CA: California Health and Human Services Agency, Department of Developmental Services; 2007.
5. Saito M, Hirota T, Sakamoto Y, Adachi M, Takahashi M, Osato-Kaneda A, Kim YS, Leventhal B, Shui A, Kato S, Nakamura K. Prevalence and cumulative incidence of autism spectrum disorders and the patterns of co-occurring neurodevelopmental disorders in a total population sample of 5-year-old children. *Mol Autism.* 2020 May 14;11(1):35. doi: 10.1186/s13229-020-00342-5. PubMed PMID: 32410700.
6. de Leeuw A, Happé F, Hoekstra RA. A Conceptual Framework for Understanding the Cultural and Contextual Factors on Autism Across the Globe. *Autism Res.* 2020 Feb 21. doi: 10.1002/aur.2276. [Epub ahead of print] Review. PubMed PMID: 32083402.
7. Fattorusso A, Di Genova L, Dell'Isola GB, Mencaroni E, Esposito S. Autism Spectrum Disorders, and the Gut Microbiota. *Nutrients.* 2019 Feb 28;11(3). pii: E521. doi:10.3390/nu11030521. Review. PubMed PMID: 30823414; PubMed Central PMCID: PMC6471505.
8. Iglesias-Vázquez L, Van Ginkel Riba G, Arija V, Canals J. Composition of Gut Microbiota in Children with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. *Nutrients.* 2020 Mar 17;12(3). pii: E792. doi: 10.3390/nu12030792. Review. PubMed PMID: 32192218; PubMed Central PMCID: PMC7146354.
9. Ho LKH, Tong VJW, Syn N, Nagarajan N, Tham EH, Tay SK, Shorey S, Tambyah PA, Law ECN. Gut microbiota changes in children with autism spectrum disorder: a systematic review. *Gut Pathog.* 2020 Feb 3; 12:6. doi: 10.1186/s13099-020-0346-1. eCollection 2020. Review. PubMed PMID: 32025243; PubMed Central PMCID: PMC6996179.
10. Sumathi T, Manivasagam T, Thenmozhi AJ. The Role of Gluten in Autism. *Adv Neurobiol.* 2020; 24:469-479. doi: 10.1007/978-3-030-30402-7_14. Review. PubMed PMID: 32006368.
11. Hoirsch-Clapauh S, Nardi AE. Autism spectrum disorders: let's talk about glucose? *Transl Psychiatry.* 2019 Jan 31;9(1):51. doi: 10.1038/s41398-019-0370-4. Review. PubMed PMID: 30705254; PubMed Central PMCID: PMC6355780.
12. McCaulley ME. Autism spectrum disorder and mercury toxicity: use of genomic and epigenetic methods to solve the etiologic puzzle. *Acta Neurobiol Exp (Wars).* 2019;79(2):113-125. Review. PubMed PMID: 31342948.
13. Pessah IN, Lein PJ, Seegal RF, Sagiv SK. Neurotoxicity of polychlorinated biphenyls and related organohalogens. *Acta Neuropathol.* 2019 Sep;138(3):363-387. doi: 10.1007/s00401-019-01978-1. Epub 2019 Apr 11. Review. PubMed PMID: 30976975; PubMed Central PMCID: PMC6708608.
14. Alessio N, Brigida AL, Peluso G, Antonucci N, Galderisi U, Siniscalco D. Stem Cell Derived Exosomes in Autism Spectrum Disorder. *Int J Environ Res Public Health.* 2020 Feb 4;17(3). pii: E944. doi: 10.3390/ijerph17030944. Review. PubMed PMID: 32033002; PubMed Central PMCID: PMC7037429.
15. Malaguarnera M, Cauli O. Effects of L-Carnitine in Patients with Autism Spectrum Disorders: Review of Clinical Studies. *Molecules.* 2019 Nov 22;24(23). pii: E4262. doi: 10.3390/molecules24234262. Review. PubMed PMID: 31766743; PubMed Central PMCID: PMC6930613.
16. Bankaitis VA, Xie Z. The neural stem cell/carnitine malnutrition hypothesis: new prospects for effective reduction of autism risk? *J Biol Chem.* 2019 Dec 13;294(50):19424-19435. doi: 10.1074/jbc.AW119.008137. Epub 2019 Nov 7. Review. PubMed PMID: 31699893; PubMed Central PMCID: PMC6916470.
17. Lee KM, Hawi ZH, Parkington HC, Parish CL, Kumar PV, Polo JM, Bellgrove MA, Tong J. The application of human pluripotent stem cells to model the neuronal and glial components of neurodevelopmental disorders. *Mol Psychiatry.* 2020 Feb;25(2):368-378. doi: 10.1038/s41380-019-0495-0. Epub 2019 Aug 27. Review. PubMed PMID: 31455859.
18. Vicari S, Napoli E, Cordeddu V, Menghini D, Alesi V, Loddo S, Novelli A, Tartaglia M. Copy number variants in autism spectrum disorders. *Prog Neuropsychopharmacol Biol Psychiatry.* 2019 Jun 8; 92:421-427. doi: 10.1016/j.pnpbp.2019.02.012. Epub 2019 Feb 20. Review. PubMed PMID: 30797015.
19. Bourgeron, T. 2016. Current knowledge on the genetics of autism and propositions for future research. *C. R. Biol.* 339 (7-8), 300-307. <https://doi.org/10.1016/j.crvi.2016.05.004>.
20. Rylaarsdam L, Guemez-Gamboa A. Genetic Causes and Modifiers of Autism Spectrum Disorder. *Front Cell Neurosci.* 2019 Aug 20; 13:385. doi: 10.3389/fncel.2019.00385. eCollection 2019. Review. PubMed PMID: 31481879; PubMed Central PMCID: PMC6710438.
21. Yoon SH, Choi J, Lee WJ, Do JT. Genetic and Epigenetic Etiology Underlying Autism Spectrum Disorder. *J Clin Med.* 2020 Mar 31;9(4). pii: E966. doi: 10.3390/jcm9040966. Review. PubMed PMID: 32244359.
22. Al-Dewik N, Alsharshani M. New Horizons for Molecular Genetics Diagnostic and Research in Autism Spectrum Disorder. *Adv Neurobiol.* 2020; 24:43-81. doi: 10.1007/978-3-030-30402-7_2. Review. PubMed PMID: 32006356.
23. Nakanishi M, Anderson MP, Takumi T. Recent genetic and functional insights in autism spectrum disorder. *Curr Opin Neurol.* 2019 Aug;32(4):627-634. doi: 10.1097/WCO.0000000000000718. Review. PubMed PMID: 31135459; PubMed Central PMCID: PMC6959126.

24. 24. De Rubeis, S., He, X., Goldberg, A. P., Poultney, C. S., Samocha, K., Cicek, A. E., et al. (2014). Synaptic, transcriptional and chromatin genes disrupted in autism. *Nature* 515, 209–215. doi:10.1038/nature13772.

25. 25. Durand, C. M., Perroy, J., Loll, F., Perrais, D., Fagni, L., Bourgeron, T., et al. (2012). SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an action-dependent mechanism. *Mol. Psychiatry* 17, 71–84. doi:10.1038/mp.2011.57.

26. 26. Giovedí, S., Corradi, A., Fassio, A., and Benfenati, F. (2014). Involvement of Synaptic Genes in the Pathogenesis of Autism Spectrum Disorders: The Case of Synapsins. *Front. Pediatr.* 2. doi:10.3389/fped.2014.00094

27. 27. Jamain, S., Quach, H., Betancur, C., Råstam, M., Colineaux, C., Gillberg, I. C., et al. (2003). Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. *Nat. Genet.* 34, 27–29. doi:10.1038/ng1136.

28. 28. Schmunk, G., and Gargus, J. J. (2013). Channelopathy pathogenesis in autism spectrum disorders. *Front. Genet.* 4. doi:10.3389/fgene.2013.00222

29. 29. Stessman, H. A. F., Xiong, B., Coe, B. P., Wang, T., Hoekzema, K., Fenckova, M., et al. (2017). Targeted sequencing identifies 91 neurodevelopmental disorder risk genes with autism and 1094 developmental disability biases. *Nat. Genet.* 49, 515–526. doi:10.1038/ng.3792.

30. 30. Jiao J, Zhang M, Yang P, Huang Y, Hu X, Cai J, Yang C, Si-Tu M, Zhang H, Fu L, Guo K, Huang Y. [Analysis of common genetic variants associated with neuro synapse development among 60 family trios affected with sporadic autism spectrum disorders]. *Zhonghua Yi Xue Yi Chuan Xue Za Zhi.* 2020 Jan;10;37(1):1-4. doi: 10.3760/cma.j.issn.1003-9406.2020.01.001. Chinese. PubMed PMID: 31922584.

31. 31. Short, P. J., McRae, J. F., Gallone, G., Sifrim, A., Won, H., Geschwind, D. H., et al. (2018). De novo mutations in regulatory elements in neurodevelopmental disorders. *Nature* 555, 611–616. 1072 doi:10.1038/nature25983.

32. 32. Turner, T. N., Coe, B. P., Dickel, D. E., Hoekzema, K., Nelson, B. J., Zody, M. C., et al. (2017). Genomic patterns of de novo mutation in simplex autism. *Cell* 171, 710–722.e12. doi: 10.1016/j.cell.2017.08.047.

33. 33. Turner, T. N., Hormozdiari, F., Duyzend, M. H., McClymont, S. A., Hook, P. W., Iossifov, I., et al. (2016). Genome Sequencing of Autism-Affected Families Reveals Disruption of Putative Noncoding Regulatory DNA. *Am. J. Hum. Genet.* 98, 58–74. doi: 10.1016/j.ajhg.2015.11.023.

34. 34. Carney, R. M., Wolpert, C. M., Ravan, S. A., Shahbazian, M., Ashley-Koch, A., Cuccaro, M. L., et al. (2003). Identification of MeCP2 mutations in a series of females with autistic disorder. *Pediatr. Neurol.* 28, 205–211.C

35. 35. Stessman, H. A. F., Xiong, B., Coe, B. P., Wang, T., Hoekzema, K., Fenckova, M., et al. (2017). Targeted sequencing identifies 91 neurodevelopmental disorder risk genes with autism and developmental disability biases. *Nat. Genet.* 49, 515–526. doi:10.1038/ng.3792.

36. 36. Tran, S. S., Jun, H.-I., Bahn, J. H., Azghadi, A., Ramaswami, G., Van Nostrand, E. L., et al. (2019). Widespread RNA editing dysregulation in brains from autistic individuals. *Nat. Neurosci.* 22, 113325–36. doi:10.1038/s41593-018-0287-x. 38.

37. 37. D'Gama, A. M., and Walsh, C. A. (2018). Somatic mosaicism and neurodevelopmental disease. *Nat. Neurosci.* 21, 1504. doi:10.1038/s41593-018-0257-3.

38. 38. Poduri, A., Evrony, G. D., Cai, X., and Walsh, C. A. (2013). Somatic Mutation, Genomic Variation, and Neurological Disease. *Science* 341, 1237758. doi:10.1126/science.1237758.

39. 39. Ronemus, M., Iossifov, I., Levy, D., and Wigler, M. (2014). The role of de novomutations in the genetics of autism spectrum disorders. *Nat. Rev. Genet.* 15, 133–141. doi:10.1038/nrg3585

40. 40. Krupp, D. R., Barnard, R. A., Duffourd, Y., Evans, S. A., Mulqueen, R. M., Bernier, R., et al. (2017). Exonic Mosaic Mutations Contribute Risk for Autism Spectrum Disorder. *Am. J. Hum. Genet.* 100, 369–390. doi: 10.1016/j.ajhg.2017.07.016.

41. 41. Lim, E. T., Uddin, M., De Rubeis, S., Chan, Y., Kamumbu, A. S., Zhang, X., et al. (2017). Rates, distribution, and implications of postzygotic mosaic mutations in autism spectrum disorder. *Nat. Neurosci.* 20, 1217–1224. doi:10.1038/nn.4598.

42. 42. Rasia-Filho, A. A., Londero, R. G., and Achaval, M. (2000). Functional activities of the amygdala: an overview. *J. Psychiatry Neurosci.* 25, 14–23.

43. 43. Dou, Y., Yang, X., Li, Z., Wang, S., Zhang, Z., Ye, A. Y., et al. (2017). Postzygotic single-nucleotide mosaisms contribute to the etiology of autism spectrum disorder and autistic traits and the origin of mutations. *Hum. Mutat.* 38, 1002–1013. doi:10.1002/humu.23255

44. 44. Freed, D., and Pevsner, J. (2016). The Contribution of Mosaic Variants to Autism Spectrum Disorder. *PLoS Genet.* 12, e1006245. doi: 10.1371/journal.pgen.1006245.

45. 45. Golzio, C., Willer, J., Talkowski, M. E., Oh, E. C., Taniguchi, Y., Jacquemont, S., et al. (2012). KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. *Nature* 485, 363–367. doi:10.1038/nature11091.726

46. 46. Escamilla, C. O., Filonova, I., Walker, A. K., Xuan, Z. X., Holehonnur, R., Espinosa, F., et al. (2017). Kctd13 deletion reduces synaptic transmission via increased RhoA. *Nature* 551, 227–231. doi: 10.1038/nature24470.680Este

47. 47. Iyer, J., Singh, M. D., Jensen, M., Patel, P., Pizzo, L., Huber, E., et al. (2018). Pervasive genetic interactions modulate neurodevelopmental defects of the autism associated 16p11.2 deletion in *Drosophila melanogaster*. *Nature Communications* 9, 2548. doi:10.1038/s41467-018-04882-6.782

48. 48. Schroer, R. J., Phelan, M. C., Michaelis, R. C., Crawford, E. C., Skinner, S. A., Cuccaro, M., et al. (1998). Autism and maternally derived aberrations of chromosome 15q. *Am. J. Med. Genet.* 76, 1055327–336.

49. 49. Glessner, J. T., Wang, K., Cai, G., Korvatska, O., Kim, C. E., Wood, S., et al. (2009). Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. *Nature* 459, 569–573. doi:10.1038/nature07953.

50. 50. Marshall, C. R., and Scherer, S. W. (2012). Detection and characterization of copy number variation in autism spectrum disorder. *Methods Mol. Biol.* Clifton NJ838, 115–135. doi:10.1007/978-1-61779-507-7_5.

51. 51. Pinto, D., Pagnamenta, A. T., Klei, L., Anney, R., Merico, D., Regan, R., et al. (2010). Functional impact of global rare copy number variation in autism spectrum disorders. *Nature* 466, 368–372. doi:10.1038/nature09146.

52. 52. Stefansson, H., Meyer-Lindenberg, A., Steinberg, S., Magnusdottir, B., Morgen, K., Arnarsdottir, S., et al. (2014). CNVs conferring risk of autism or schizophrenia affect cognition in controls. *Nature* 1085505, 361–366. doi:10.1038/nature12818.

53. 53. Girirajan, S., Rosenfeld, J. A., Cooper, G. M., Antonacci, F., Siswara, P., Itsara, A., et al. (2010). A recurrent 16p12.1 micro-deletion supports a two-hit model for severe developmental delay. *Nat. Genet.* 42, 203–209. doi:10.1038/ng.534.

54. 54. Girirajan, S., Rosenfeld, J. A., Cooper, G. M., Antonacci, F., Siswara, P., Itsara, A., et al. (2010). A recurrent 16p12.1 micro-deletion supports a two-hit model for severe developmental delay. *Nat. Genet.* 42, 203–209. doi:10.1038/ng.534.

55. 55. Casanova, E. L., Sharp, J. L., Chakraborty, H., Sumi, N. S., and Casanova, M. F. (2016). Genes with high penetrance for syndromic and non-syndromic autism typically function within the nucleus and regulate gene expression. *Mol. Autism* 7. doi:10.1186/s13229-016-0082-z.

56. 56. Wong, C. C. Y., Meaburn, E. L., Ronald, A., Price, T. S., Jeffries, A. R., Schalkwyk, L. C., et al. (2014). Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioural traits. *Mol. Psychiatry* 19, 495–503. doi:10.1038/mp.2013.41.

57. 57. Kubota, T., and Mochizuki, K. (2016). Epigenetic Effect of Environmental Factors on Autism Spectrum Disorders. *Int. J. Environ. Res. Public. Health* 13. doi:10.3390/ijerph13050504.

58. 58. Nagarajan, R. P., Hogart, A. R., Gwyne, Y., Martin, M. R., and LaSalle, J. M. (2006). Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. *Epigenetics* 1, e1–11.

59. 59. Nagarajan, R. P., Patzel, K. A., Martin, M., Yasui, D. H., Swanberg, S. E., Hertz Picciotto, I., et al. (2008). MECP2 promoter methylation and X chromosome inactivation in autism. *Autism Res.* 1, 169–178. doi:10.1002/aur.24.

60. 60. Smith, S. E. P., Zhou, Y.-D., Zhang, G., Jin, Z., Stoppel, D. C., and Anderson, M. P. (2011). Increased Gene Dosage of Ube3a Results in Autism Traits and Decreased Glutamate Synaptic Transmission in Mice. *Sci. Transl. Med.* 3, 103ra97. doi:10.1126/scitranslmed.3002627.

61. 61. Xu, X., Li, C., Gao, X., Xia, K., Guo, H., Li, Y., et al. (2018). Excessive UBE3A dosage impairs retinoic acid signaling and synaptic plasticity in autism spectrum disorders. *Cell Res.* 28, 48–68. doi:10.1038/cr.2017.132

62. 62. Lee, S. Y., Ramirez, J., Franco, M., Lectez, B., Gonzalez, M., Barrio, R., et al. (2014). Ube3a, the E3 ubiquitin ligase causing Angelman syndrome and linked to autism, regulates protein homeostasis through the proteasomal shuttle Rpn10. *Cell. Mol. Life Sci.* 71, 2747–2758. doi:10.1007/s00018-867_013-1526-7.

63. 63. Puram, S. V., Kim, A. H., Park, H.-Y., Anckar, J., and Bonni, A. (2013). The ubiquitin receptor S5a/Rpn10 links centrosomal proteasomes with dendrite development in the mammalian brain. *Cell Rep.* 4, 19–30. doi:10.1016/j.celrep.2013.06.006.

64. 64. Yi, J. J., Paranjape, S. R., Walker, M. P., Choudhury, R., Wolter, J. M., Fragola, G., et al. (2017). The autism-linked UBE3A T485A mutant E3 ubiquitin ligase activates the Wnt/β-catenin pathway by inhibiting the proteasome. *J. Biol. Chem.* 292, 12503–12515. doi:10.1074/jbc.M117.788448.

65. 65. Ladd-Acosta, C., Hansen, K. D., Briem, E., Fallin, M. D., Kaufmann, W. E., and Feinberg, A. P. (2014). Common DNA methylation alterations in multiple brain regions in autism. *Mol. Psychiatry* 19, 862–871. doi:10.1038/mp.2013.114.

66. 66. Tremblay MW, Jiang YH. DNA Methylation and Susceptibility to Autism Spectrum Disorder. *Annu Rev Med.* 2019 Jan 27; 70:151-166. doi: 10.1146/annurev-med 120417-091431. Review. PubMed PMID: 30691368; PubMed Central PMCID: PMC6597259.

67. 67. Mor, M., Nardone, S., Sams, D. S., and Elliott, E. (2015). Hypomethylation of miR 142 promoter and upregulation of microRNAs that target the oxytocin receptor gene in the autism prefrontal cortex. *Mol. Autism* 6. doi:10.1186/s13229-015-0040-1.

68. 68. James, S. J., Shpyleva, S., Melnyk, S., Pavliv, O., and Pogribny, I. P. (2013). Complex epigenetic regulation of Engrailed-2 (EN-2) homeobox gene in the autism cerebellum. *Transl. Psychiatry* 3, e232. doi:10.1038/tp.2013.8.