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Abstract: Ice thickness is a key parameter for glacier mass estimations and glacier dynamics
simulations. Multiple physical models have been developed by glaciologists to estimate glacier ice
thickness. However, obtaining internal and basal glacier parameters required by physical models is
challenging, often leading to simplified models that struggled to capture the nonlinear characteristics
of ice flow and resulting in significant uncertainties. To address this, this study proposes a
convolutional neural network (CNN) -based deep learning model for glacier ice thickness estimation,
named the Coordinate-Attentive Dense Glacier Ice Thickness Estimate Model (CADGITE). Based on
in situ ice thickness measurements in the Swiss Alps, a CNN is designed to estimate glacier ice
thickness by incorporating a new architecture that includes Residual Coordinate Attention Block
together with Dense Connected Block, using distance to glacier boundaries as a complement of inputs
that include surface velocity, slope, and hypsometry. Taking ground-penetrating radar (GPR)
measurements as reference, the proposed model achieves a mean absolute deviation (MAD) of
24.28 m and a root mean square error (RMSE) of 37.95 m in Switzerland, outperforming mainstream
physical models. When applied to 14 glaciers in High Mountain Asia, the model achieves an MAD
of 20.91 m and an RMSE of 27.26 m compared to reference measurements, also exhibiting better
performance than mainstream physical models. These comparisons demonstrate the good accuracy
and cross-regional transferability of our approach, highlighting the potential of using deep-learning-
based methods for larger-scale glacier ice thickness estimation.

Keywords: Glacier ice thickness; Deep learning; CNN; Swiss; High Mountain Asia

1. Introduction

Ice thickness data are crucial for estimating glacier mass storage, as well as constraining glacier
basal topography and ice deformation in dynamic models [1]. Traditional methods such as ground
drilling and GPR can provide accurate point measurements, but their high cost and low efficiency
limit large-scale application. By combining surface remote sensing observations and digital elevation
models, glacier ice thickness can be estimated through physical models. The Ice Thickness Models
Intercomparison eXperiment (ITMIX) compared 17 glacier ice thickness estimation methods and
revealed significant differences among the results [2]. These models can be mainly categorized into:
1) minimization approaches [3,4]: constructing forward ice flow models to simulate observable
quantities, in which model parameters are iteratively optimized to infer ice thickness by minimizing
a cost function that quantifies the mismatch between observations and simulations; 2) mass-
conserving approaches [5-7]: using estimates of surface mass balance and elevation change rates to
calculate ice fluxes, from which ice thickness can be derived; 3) shear-stress-based approaches [8-10]:
assuming a constant basal shear stress across the glacier and apply the Shallow Ice Approximation
to estimate ice thickness; 4) velocity-based approaches [11,12]: employing Glen’s flow law to directly
compute ice thickness by using surface velocity and slope as key inputs. To estimate ice thickness
over the entire glacier, some methods also incorporate spatial interpolation techniques to extrapolate
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localized results across the full glacier extent. However, due to the scarcity of direct observations
beneath and within glaciers, all these models introduce varying degrees of simplification during their
development, such as linear approximations of ice flow dynamics and empirically derived
parameters. These simplifications and assumptions are major sources of model uncertainty, making
current models struggle to fully capture the nonlinear dynamics of ice flow, which in turn limits the
overall accuracy and applicability for ice thickness estimation.

Deep learning methods can integrate multi-source remote sensing data, glacier topographic
information, and in situ GPR measurements to automatically learn complex nonlinear relationships
between glacier ice thickness and its influencing factors, leveraging their strong feature extraction
and pattern recognition capabilities. Several studies have explored the use of neural networks for
glacier ice thickness estimation and subglacial topography reconstruction. In 2009, Clark et al.
assumed that ice-free areas surrounding glaciers were formerly ice-covered and used the terrain data
of these areas to train an artificial neural network (ANN) for glacier ice thickness prediction [13]. In
2020, Wei Ji et al. developed a generative adversarial network (GAN) integrating multi-source data
for super-resolution reconstruction of Antarctic subglacial topography [14]. Haq et al. (2021)
combined DEM data and ANN to estimate the ice thickness of the Chhota Shigri Glacier [15]. Lopez
Uroz et al. (2024) combined convolutional networks with multi-source data to simulate glacier ice
thickness in Switzerland [16]. Monnier and Zhu (2021), as well as Steidl et al. (2025), used physics-
informed artificial neural networks (ANNs) for subglacial topography reconstruction and glacier ice
thickness estimation [17,18]. These data-driven methods can, to some extent, capture nonlinear ice
flow features that physical models fail to represent. When sufficient data are available, data-driven
methods can achieve higher accuracy than physical models.

However, existing deep learning-based methods for glacier ice thickness estimation continue to
face challenges in effectively extracting multi-scale spatial features, and network architecture that
could potentially influence the accuracy of thickness estimations still needs further optimization. In
details, ice thickness shows varying sensitivity to different input glacier characteristics, making it
crucial to accurately learn the weight of different semantic information in thickness estimation.
Furthermore, the selected model needs to be capable to capture the distinct spatial distribution
characteristics of different input features. Currently, a variety of structural modules such as attention
mechanisms [19,20] have been developed to enhance feature representation capabilities, offering
diverse components and strategies for network architecture design. Moreover, the input glacier
features are limited. Although surface velocity, slope, and elevation data are commonly used, other
important features related to glacier ice thickness have not yet been incorporated into model training.
For example, glacier ice thickness tends to increase with distance from the glacier boundary, and
valley glacier cross-sections are often “U” shaped, such geometric characteristic shows significant
correlations with ice thickness. Therefore, by improving network architectures and optimizing input
features, multi-source data-driven deep learning methods have the potential to produce more
accurate and robust glacier ice thickness estimations.

This study develops a multi-branch network architecture that incorporates surface velocity,
slope, hypsometry, and newly added distance to the boundary as input features for training. A
coordinate attention mechanism is introduced to enhance the spatial feature modeling capability of
the deep convolutional neural network. The features from each branch were fused using a dense
block that employs cross-layer connections to enhance feature reuse and gradient propagation. This
fusion enables the model to capture complex nonlinear interactions among multi-source physical
parameters influencing glacier ice thickness. The proposed deep network model (CADGITE) is
trained on high-precision glacier ice thickness data from the Swiss Alps and further applied to
glaciers in various sub-regions of High Mountain Asia to evaluate its generalization capability and
applicability across diverse glacial environments.

2. Study Area and Data
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2.1. Overview of Glaciers in Switzerland and High Mountain Asia

Figure 1 illustrates the distribution of glaciers in Switzerland. Glacier boundaries are derived
from the Swiss Glacier Inventory 2016 (SGI2016) [21]. This region contains 1,400 glaciers, covering a
total area of 961 km?2. Most glaciers are relatively small, with approximately 82% having an area of
less than 0.5 km?. There are 46 glaciers with an area greater than 5 km?, and they account for 52% of
Switzerland’s total glacier area. The median elevation of Swiss glaciers is 2938 m. Between 2016 and
2020, researchers conducted ice thickness measurements using the AIR-ETH helicopter-based GPR
platform, covering all large and most medium-sized glaciers in Switzerland to obtain high-precision
ice thickness data [22]. This survey covered 251 glaciers, representing 81% of the total glacier area in
Switzerland, with a cumulative GPR profile length of approximately 2500 kilometers.

The High Mountain Asia (HMA) region, including the Tibetan plateau and its surrounding
regions, raised more than 100000 glaciers within its extent according to the Randolph Glacier
Inventory version 6.0 (RGI6.0) [23]. These glaciers are a critical component of the “Asian Water
Tower”, providing a stable source of runoff to major rivers such as the Yangtze, Yellow, and Ganges.
They are primarily distributed across the Himalayas, Pamir Plateau, Karakoram, Tien Shan, and
Kunlun Mountains. To evaluate the generalization ability of the proposed model, in total 14 glaciers
with publicly available GPR measurements from the Glacier Thickness Database (GlaThiDa) [24]
were selected for ice thickness estimation. Twelve of these glaciers have an area of less than 10 km?2.
[23]Among them, the largest glacier is identified as RGI60-13.24602, with an area of 15.96 km?, while
the smallest glacier is RGI60-13.31356, with an area of 0.54 km?.

7°0'E 8°0'E 9°0'E 10°0'E

47°0'N

Switzerland

46°30°'N

46°0'N

I Glaciers for training
[ Glaciers for test
—~— GPR profile

Figure 1. Distribution of glaciers in Switzerland from the SGI2016. Glaciers shown in red were used as the
training set, while those in blue were used as the validation set in this study. Black lines represent GPR survey

profiles.

2.2. Data

In this study, the model training data include glacier ice thickness, east-west and north-south
surface flow velocity components, ice surface slope, hypsometry, and distance to the glacier
boundary (the minimum distance from a point within the glacier to the boundary). The data sources
are as follows:

1.  Ice Thickness: we utilized the 10 m resolution ice thickness distribution data in the Swiss Glacier
region presented by Grab et al. (2021) as the baseline thickness data. This dataset is generated
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by combining measured data with two glacier modeling methods (GlaTE [25,22] and ITVEO [6]).
Their approach, benefited from the combination between in situ measurements and models,
could reduce interpolation errors and improved the robustness of the ice thickness results.
Thanks to the large volume of measured data, the uncertainty of the obtained ice thickness
distribution is lower compared to previous studies. This study uses these ice thickness results to
train the neural network;

2. Glacier Surface Velocity: The ice deformation, one of the two components of ice flow, is mainly
controlled by shear stress, which varies with depth and is strongly related to ice thickness.
Glacier velocity is a key parameter in physical models used to estimate ice thickness. The surface
velocity data used in this study is generated from Millan et al. [26], which is represented by the
vectors in east-west and north-south directions. These velocity products were obtained by
matching Landsat 8, Sentinel-2, and Sentinel-1 images acquired between 2017 and 2018. The
velocity resolution is 50m, with an accuracy of approximately 10 m/a;

3. Ice Surface Slope: Ice surface slope is influenced to some extent by the underlying topography,
affects the glacier's internal shear stress, and serves as a key parameter in physical models used
to estimate glacier ice thickness. Slope is calculated based on the SwissALTI3D DEM. The
SwissALTI3D DEM is a digital elevation model (DEM) created using photogrammetric
techniques, with a spatial resolution of 2 m. The vertical accuracy is approximately 0.5 m for
areas below 2000 m, and between 1 and 3m for areas above 2000 m [27]. The DEM data is
updated every 6 years, with the version used in this study being released in 2019 [27];

4.  Hypsometry: The median glacier elevation can serve as an approximation of the equilibrium line
altitude [28]. We used the hypsometry of glaciers as an input parameter for network learning
[16]. The elevation value at each surface point is normalized as the proportion of the glacier area
(or number of points) below that elevation relative to the total glacier area (or total points),
resulting in a normalized distribution from the lowest point (0) to the highest point (1). For stable
glaciers, the “contour line” at a value of 0.5 divides the glacier into two equal-area parts, which
can coincide with the equilibrium line altitude. The incoporation of hypsometry can help
mitigate ice thickness underestimation and reduces the standard deviation of training [16];

5. Distance to Boundary: The profiles of most valley glaciers are "U"-shaped, with glacier ice
thickness gradually increasing from the edge to the center flow lines [29]. Thus, ice thickness is
typically correlated with the distance to the boundary. This study incorporates the minimum
distance of selected point to the boundary as an input parameter for the training model.

2.3. Training and Test Datasets Generation

The division of the test dataset follows the scheme proposed by Lopez Uroz et al. [16], as
illustrated in Figure 1, resulting in a glacier area ratio of approximately 1.68:1 between the training
and test datasets. The training dataset was partitioned using K-fold cross-validation (K=4) to ensure
a uniform distribution of glacier area and size within each fold. Specifically, to mitigate potential data
imbalance issues, the Alestch glacier, which possesses the largest thickness and area, was always
included in the training set across all folds. This partitioning yielded four cross-validation datasets,
each with a training-to-validation area ratio of 3.6:1. Individual data samples are collected using 400m
spatial slices, with velocity slices of 8x8 and other slices of 32x32. This study uses a certain spatial
overlap to generate slices, with adjacent slices overlapping by no more than 3/4, resulting in over
19000 training sample pairs.

3. Estimation Method

3.1. Conwvolutional Neural Network Architecture

The input data for CADGITE includes east-west surface velocity (V,), north-south surface
velocity (1), slope (Slope), hypsometry (Hypsometry), and distance to the boundary (Distance), while
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the output is the ice thickness at the center of each tile (Thickness). These input data are sourced from
different modalities and have distinct physical meanings, resulting in multi-modal feature
representations. To effectively integrate these, an appropriate data fusion strategy is necessary.
Current mainstream multi-modal fusion methods can be categorized as early fusion, intermediate
fusion, and late fusion [30,31]. Given the differences in spatial resolution across the modalities (with
velocity data at 50 m resolution and the others at 12.5 m), and based on the basic network structure
presented by Lopez Uroz et al. [16], this study adopts an intermediate fusion strategy. Fusion during
the feature extraction stage allows for the preservation of the original representations of each
modality while effectively capturing their complementarity and correlation. Specifically, each
modality is processed by an independent convolutional branch. After unifying the feature map size
to 8x8, the features are concatenated along the channel dimension, resulting in a unified feature
tensor. To further enhance the interaction among the fused features, a DenseNet [32] Dense Block
structure is introduced for subsequent processing. Dense Block concatenates the output of each layer
along the channel dimension, allowing each layer to directly access the feature representations from
all preceding layers. This structure not only enhances feature interaction between different modalities
but also effectively retains the integrity of the original features. Compared to traditional ResNet [33]
architectures, DenseNet significantly reduces the number of model parameters while maintaining or
even improving performance.

Considering the distinct chatasterics of the input glacier features, we introduces a Coordinate
Attention (CA) mechanism [20] to rebuild both channel and spatial weights in the model.

1) Overall Network Architecture

The overall architecture of the CADGITE network is illustrated in Figure 2. The various input
parameters are first processed through separate network branches without feature fusion. Due to the
relatively low resolution of the velocity data, it undergoes only a single round of feature extraction
in the initial layers of the network. Once its feature map reaches the same spatial scale as the others,

feature fusion is performed. The output feature map size of the velocity branch is denoted as Fy €
R32X8><8.

The branches for slope, hypsometry, and distance follow the same network structure. First, the
original image tiles are input into a Residual Coordinate Attention Block (ResCA Block), which does
not perform downsampling. The ResCA Block expands the channel dimension of the input while
effectively capturing rich spatial information from the original low-level features. The resulting
feature maps are then input into a 2x2 average pooling layer. Pooling helps reduce the local noise
[34], which is particularly beneficial for handling local variations in surface slope. At this stage, the

output feature map size is denoted as F; € R16*16%16

, where i represents each branch. The feature
maps F; are then passed to the next feature extraction block, which applies similar convolution,

attention, and pooling operations to produce feature maps of size Fj,,, € R1¢*8*8,

All output feature maps from the branches are concatenated along the channel dimension to
form a mixed high-level feature map of size F,,;, € R39*16*1¢ Since simple concatenation does not
guarantee effective feature fusion, the fused feature map is then input into a Dense Block, enabling
cross-fusion of features with different semantic meanings. Two Dense Blocks are employed to
enhance feature fusion. As the Dense Blocks increase the number of feature channels, an additional
convolutional layer is used to reduce the channel dimensionality. The resulting feature map then
passes through an average pooling layer for downscaling. Afterward, two more Dense Blocks and
one Residual Block are applied to extract deeper-level features. At this point, the feature map size
becomes F € R**4*%,

Finally, the feature map is passed through two fully connected layers with 640 and 256 neurons,
respectively, to output the estimated ice thickness at the center of each tile. The total number of
parameters in the network is 393417.
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Figure 2. Overall architecture of the CADGITE network. (a) illustrates the detailed structure of the Residual
Block (Res Block), and (b) shows the detailed structure of the Residual Coordinate Attention Block (ResCA

Block).

2) Residual Coordinate Attention Block (ResCA Block)

Traditional channel attention modules, such as the Squeeze-and-Excitation (SE) block [35],
model inter-channel relationships using global average pooling to generate channel weights.
However, they fail to capture spatial information. The Convolutional Block Attention Module
(CBAM) [19] addresses this by sequentially applying a channel attention module (similar to SENet)
and a spatial attention module (which uses max/average pooling followed by convolution). While
CBAM'’s spatial attention uses a 7x7 convolution to coarsely encode spatial dependencies, the
Coordinate Attention (CA) mechanism introduces spatial positional information by decomposing
attention into horizontal and vertical directions. This enables the model to be sensitive to object
positions while simultaneously enhancing channel importance.

To capture salient spatial features in the shallow layers, this study embeds the CA module into
a residual block, forming the Residual Coordinate Attention Block (ResCA Block), as shown in Figure
2(b). The input feature map is first passed through a 3x3 convolutional layer with stride 1 and
padding 1 to expand the number of channels, followed by batch normalization and activation. The
resulting feature map is then processed by the CA module (see Figure 3).

_____________________________________________________________________ H @ Concat

® Elementwise multiplication
(C, 1, H+W) ,; % ?
-
5 e
- 6 M
\Q )

(C,H, W) (C, 1, H) (C/r,1,H) (C,H, 1)

A
K

Conv 1x1
+
Sigmoid
+

Figure 3. Architecture of the Coordinate Attention (CA) Block.

The input feature map F of the CA module has dimensions (C, H, W). The input feature map is
first subjected to global average pooling along the x- and y-directions, generating two direction-
sensitive descriptors, X, € R“H*1 and X, € R&W*1 which are then combined via dimension

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.1620.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 May 2025 d0i:10.20944/preprints202505.1620.v1

7 of 20

transposition and concatenation to form a joint positional encoding, X, € R*H*W) = Thig
encoding is reduced in dimensionality through a 1x1 convolution, changing the number of channels
from C to C/r, followed by batch normalization and ReLU activation, after which it is decomposed
into horizontal and vertical components, X%, € R“™>H and Xy, € R&/™>W _Next, a 1x1
convolution layer replaces the fully connected layer to reconstruct the channel dimensions, followed
by a Sigmoid activation to generate spatial attention weight matrices, S, € [0,1]**! and S, €
[0,1]©**W_Finally, the weight matrices are broadcasted to the original spatial size and element-wise
multiplied with the input features to achieve position-adaptive feature calibration. This process can
be expressed as:

Fout=F®Sh®Sw (1)

This design transforms two-dimensional global pooling into a pair of one-dimensional encoding
processes through a coordinate decomposition strategy, which reduces computational complexity
while preserving precise positional information, enabling the network to capture long-range spatial
dependencies and accurately locate key regions, thus effectively fusing contextual information from
both channel and spatial domains and enhancing feature representation.

3) Densely Connected Block (Dense Block)

Compeared to the residual block in ResNet [33], the connection mechanism in the Dense Block is
more densely structured. The Dense Block employs dense connections based on feature reuse and
progressive growth along the channel dimension, with connections also implemented through
element-wise addition. Compared to residual block, the Dense Block achieves more extensive feature
reuse. Figure 4 illustrates the structure of a Dense Block. The input to the I-th layer is the channel-
wise concatenation of all preceding outputs, denoted as x; = [xg,xy,...,%,_1] € REn*>XW wwhere
Cin = Co+ (I —1) -k, Cy is the initial number of channels, and k is the growth rate. The composite
function H,;(x) of this layer performs nonlinear transformation and channel compression on the
high-level features through batch normalization, LeakyReLU activation, and a 1x1 convolution. This
is followed by a second 3x3 convolution with the same normalization operations, generating a new
k-channel feature map, x; € R¥*¥*W_The process is defined as follows:

Hy = Conv,»,(6(BN(")))
H, = Convsy3(a(BN(Y))) 2)
x1 = Hy(H1(x0))
Finally, x, and x; are fused through channel-wise concatenation to form the output [,. In this
study, the growth rate is set to 20 and the number of layers is set to 4.

[Xo, X1, Xz, X3] | || **°°°*

ConvBlock
ConvBlock
ConvBlock

Ly

|
BN
v
Relu
v
Convl x1
v
BN
v
Relu
v
Conv3x3
|

ConvBlock

Figure 4. Structure of the Dense Block.

3.2. Training and Metrics

CADGITE was implemented and trained in a computing environment consisting of an AMD
Ryzen 9 5900X 12-core processor, 64 GB of RAM, and an NVIDIA GeForce RTX 3060 GPU. The model
was trained using the Adam optimizer to compute gradients and update network parameters. The

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.



https://doi.org/10.20944/preprints202505.1620.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 May 2025 d0i:10.20944/preprints202505.1620.v1

8 of 20

initial learning rate was set to 0.01. A Reduce on Plateau strategy was used to reduce the learning rate
based on the validation loss. When the validation loss did not decrease for a predefined number of
epochs, the learning rate was automatically reduced by a preset factor. An L2 weight decay with a
coefficient of 0.01 was applied. During training, the batch size was set to 64, and the model was
trained on the training set for 100 epochs. The L1 loss function was used for backpropagation.

4. Result
4.1. Model Performance: Glacier Ice Thickness Estimation in Switzerland

4.1.1. Comparison Between CADGITE with and Without Distance Input

To illustrate the effectiveness of our newly added feature Distance in estimating ice thickness,
we conducted a set of comparative experiments, with one group including Distance as an input and
the other excluding it. The training and validation losses are shown in Figure 5 using the L1 loss as
the metric. The curves labeled Result 1-4 correspond to the four folds 1-4. The loss curves show that
the training loss stabilized after around 80 epochs, and the validation loss exhibited a similar trend.
The validation loss for Result 2 showed slight fluctuations, while the other folds demonstrated good
convergence. The overall training loss stabilized at approximately 10 m. Both experiments exhibited
similar loss reduction trends and comparable performance across the different cross-validation folds.
However, overfitting was more pronounced in the training results without the Distance input.

(a) Training without Distance Input (b) Training with Distance Input

— Result I Train — Result 1 Train

Result 1 Valid I Result 1 Valid

161 — Result 2 Train L — Result 2 Train

Result 2 Valid Result 2 Valid

15 — Result3 Train | [ — Result 3 Train

Result 3 Valid Result 3 Valid

% B —— Result 4 Train | [ —— Result 4 Train

;:t.: 13 Result4 Valid | | ’ Result 4 Valid
=

0 20 40 60 80 100 0 20 40 60 80 100
Epoch

Figure 5. Training and validation losses of the four folds. Panels (a) correspond to inputs without Distance, while

panels (b) correspond to inputs with Distance.

The quantitative statistics of the two experimental groups on the test set is shown in Table 1.
After adding the distance input, the L1 loss were reduced in three of the four folds, with only one
fold showing a slight increase. As shown in Table 1, CADGITE's loss on the test set is approximately
7 m higher than on the training set (~17 m vs. ~10 m).

Table 1. Loss results on the test glaciers for CADGITE from four-fold cross-validation.

Groups Result 1 Result 2 Result 3 Result 4
CADGITE without Distance 18.40 18.07 18.01 17.05
CADGITE 17.28 18.14 17.44 16.49

We also compared the ice thickness estimation results from the two models on the test set with
the in situ GPR measurements to validate their performance. As shown in Figure 6A and 6C, after
incorporating Distance as an input, both the MAD and the RMSE of the four results trained on the
cross-validation dataset decreased on the test glaciers, with average reductions of approximately 1.67
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m and 3.25 m, respectively. Analysis of model performance across different thickness ranges revealed
that for ice thicknesses between 0-100 m, the frequency of underestimations decreased. In the 100-200
m range, overestimations were less prevalent, but the model showed a tendency towards
underestimation. For thicknesses exceeding 250 m, the model consistently exhibits underestimation.
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Figure 6. Comparison between the ice thickness estimated by the models and that measured by GPR on the four
folds of test glaciers. (A) CADGITE without distance to boundary input; (B) CADGITE with distance to boundary

input.

4.1.2. Comparison Between CADGITE and Original Approach

Based on preceding comparisons, we introduced the Distance feature into the feature branch of
the network model (LLUM) proposed by Lopez Uroz et al. and then compared its performance with
CADGITE's. Both models used the same four cross-validation folds. Table 2 presents the loss values
of LLUM on the test glaciers. LLUM exhibits higher mean absolute error than CADGITE on two cross-
validation folds, but achieves lower loss on the other two. Furthermore, we analyzed the model
performance based on deviation compared to GPR measurements, as shown in Figure 7. Compared
to LLUM with the Distance feature, CADGITE achieved lower MAD on folds 1, 2, and 3, showing
improvements of approximately 0.2 m to 0.4 m compared to LLUM's MAD values. While LLUM
recorded a marginally lower MAD on fold 4 (23.77 m vs. 23.82 m), CADGITE consistently exhibited
lower RMSE across all four cross-validation sets. Specifically, CADGITE's RMSE values ranged from
36.30 m to 40.26 m, while LLUM's ranged from 37.80 m to 40.51 m, demonstrating CADGITE's
superior ability to minimize larger prediction errors. This indicates higher prediction accuracy near
the GPR observation points for CADGITE.

Table 2. Loss results on the test glaciers for LLUM from four-fold cross-validation.

Group Result 1 Result 2 Result 3 Result 4
LLUM with Distance 17.51 17.89 17.85 16.37
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Figure 7. Comparison between the ice thickness estimated by the LLUM model with Distance input and the GPR
measurements on the four folds of the test glaciers.

4.1.3. Comparison Between CADGITE and Physics-Based Models

We also conducted a systematic comparison between our model and traditional physical-based
models to assess the performance of the deep-learning approach. The glacier ice thickness estimates
on the test set produced by CADGITE were compared with those from three well-known physical
models (Millan et al. [26], H&F model [6,36] and Glabtop2 model [8,36]) and GPR measurements, as
shown in Figure 8. Before the comparison, all data from the cross-validation set were incorporated
into the model training to enhance its generalization ability. The final MAD loss on the test set was
16.64 m. Figure 9 shows the estimated ice thickness for several glaciers.
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Figure 8. Comparison between GPR measurements and ice thickness estimates from four models: Millan, H&F,
GlabTop2, and CADGITE. Panel (A) shows the results on all test glacier samples, while panel (B) presents the

results on test glacier samples excluding Unteraargletscher.

The MAD of CADGITE is 24.28 m, which is lower than those of the other three models, with
MAD values of 34.26 m, 39.21 m, and 27.18 m, respectively. For the RMSE, CADGITE achieves a value
of 37.95 m, which is lower than two of the other models (47.84 m for Millan’s and 39.80 m for H&F),
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and slightly higher than the Glabtop2 (36.05 m). In regions where the ice thickness exceeds 250 m, all
four models tend to underestimate the ice thickness compared to the GPR measurements. As shown
in Figure 9, CADGITE significantly underestimates the ice thickness on the Unteraargletscher. After
excluding the Unteraargletscher, the comparison between CADGITE outputs and GPR
measurements is shown in Figure 8B. The comparison between Figures 8A and 8B indicates that, after
excluding the Unteraargletscher, the MAD and RMSE of CADGITE are both reduced.

In the results produced by CADGITE, most glaciers show similar thickness distribution patterns
to the “ground truth” values. The ice thickness generally increases from the boundaries to the center,
which is consistent with the typical distribution pattern of ice thickness. The spatial pattern of
estimated ice thickness exhibits a clear correlation with topographic features. Specifically, thinner ice
is typically found in regions with steeper slopes, whereas thicker ice tends to occur in areas with
lower slope gradients. This observed relationship highlights the significant influence of terrain slope
on the distribution of ice thickness. In some steep areas where the flow velocity is several times higher
than that of the surrounding regions, the model does not significantly overestimate the ice thickness,
indicating that topography is the dominant factor controlling ice thickness.

46°36'N

Thickness? mﬁ

0 200 400

Figure 9. Ice thickness of a part of the glaciers in Switzerland. (a) Ice thickness reference values (Grab et al., 2021),
(b) and (c) show the ice thickness results modelled in this study.

4.2 Model Transferability: Glacier Ice Thickness Estimation in HMA

The transferability of our CADGITE method for estimating glacier ice thickness in other regions
was assessed by implementing it to the complex HMA glaciers by taking all reference measurements
in Switzerland as training data. For ice thickness estimation in HMA, the glacier surface ice velocity
data were obtained from the global velocity dataset by Millan et al. (2022) [26], and the topography
data from the Copernicus GLO-30 product (COPDEM). The thickness estimates for the 14 glaciers are
shown in Figure 10. Figure 11 shows the deviation distribution of our model compared with the three
physics-based models across the 14 glaciers. Compared to the GPR measurements, different models
generally exhibit similar deviation distributions.

However, all models show relatively large deviations in their estimates on the RGI60-14.15990
glacier. We attribute this bias to two reasons: first, this glacier is the second largest valley glacier
among the 14 and has a maximum measured thickness of 296 m, which exceeds that of most glaciers
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in the training dataset; second, glaciers in this region may exhibit characteristics and environmental
backgrounds that differ significantly from those in the training glaciers. Such regional differences
may involve the glacier's geometric configuration, thermal regime, and basal sliding conditions. This
heterogeneity may be uncommon among the glaciers in the Swiss Alps that are included in the
training dataset. As a result, the ice dynamics of this glacier are likely to differ substantially in both
driving mechanisms and flow behavior compared to those in the training set. These physical
differences may fall outside the feature space learned by the model, which reduces its ability to
identify and model region-specific mechanisms and ultimately affects the accuracy of the thickness
estimation.

RG160-10.00604 ' RGI60-13.45335 , RGI60-13.45334 R(anJ 3.45233

RGI60-13.31356)
N :

AV "}
oI
Figure 10. The thickness estimation results of the CADGITE for 14 glaciers in HMA with available GPR

observations.
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Figure 11. Comparison of ice thickness estimates from the CADGITE model and three other models with GPR

measurements across 14 Asian glaciers.

Table 3 presents quantitative accuracy metrics of glacier ice thickness estimates for our model
and three physics-based models across 14 glaciers. Generally, CADGITE model performs best among
the tested models, especially on glaciers with smaller areas. Our model achieved the lowest mean
deviation (MD) on 7 glaciers, the lowest MAD on 8 glaciers, and the lowest RMSE on 8 glaciers.

Table 3. Deviation statistics of the four models compared with GPR measurements across 14 glaciers within

HMA.
RGIId Error Metrics Millan H&F GlabTop2 CADGITE
MD 4.56 29.37 -0.25 -0.27
RGI60-10.00604 MAD 13.62 30.78 9.62 8.88
RMSE 16.89 34.96 12.45 10.53
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MD 30.67 4.10 4.66 -3.77

RGI60-13.08055 MAD 47.47 28.23 32.21 22.39
RMSE 57.31 33.18 37.34 27.03

MD 34.30 23.60 2391 10.18

RGI60-13.08624 MAD 37.70 30.81 31.02 18.05
RMSE 48.98 36.50 37.43 22.58

MD -0.49 -28.33 -10.55 -3.41

RGI60-13.24602 MAD 22.48 31.41 19.17 17.87
RMSE 28.59 37.82 23.65 21.06

MD 29.56 31.70 22.50 1.67

RGI60-13.24874 MAD 35.82 35.11 23.45 15.75
RMSE 43.03 41.40 29.61 19.88

MD -6.36 4.74 -13.36 -0.86

RGI60-13.31356 MAD 16.83 11.83 14.97 9.18
RMSE 20.24 15.11 18.66 11.08
MD -17.03 -22.42 -31.87 -38.12

RGI60-13.32330 MAD 22.40 24.89 32.99 38.51
RMSE 26.61 29.65 36.59 41.93

MD 146.57 40.80 45.02 42.50

RGI60-13.43165 MAD 146.84 41.12 46.23 47.37
RMSE 161.16 49.80 55.37 53.07

MD -9.91 19.45 18.79 26.00

RGI60-13.45233 MAD 22.00 21.88 2211 27.96
RMSE 26.62 25.86 28.39 33.45
MD -30.22 -30.62 -43.64 -23.67

RGI60-13.45334 MAD 35.61 36.96 46.50 32.79
RMSE 40.24 41.07 50.83 36.26

MD -22.54 -26.08 -35.58 -5.55

RGI60-13.45335 MAD 31.07 29.92 38.03 20.53
RMSE 35.72 35.52 44.43 24.98

MD 13.72 3.09 2.90 18.83

RGI60-13.47247 MAD 22.14 18.87 13.19 23.74
RMSE 27.70 22.89 16.08 3073

MD 6.39 48.20 76.63 -2.50

RGI60-13.48211 MAD 27.60 51.64 81.61 29.56
RMSE 36.72 61.76 95.67 37.75
MD -17.82 -16.48 -8.82 -49.90

RGI60-14.15990 MAD 47.07 56.23 50.19 61.28
RMSE 55.16 63.00 55.42 73.31

Based on the estimation results of 14 glaciers, the CADGITE shows an overall deviation of 3.91
m, a MAD of 20.91 m, and a RMSE of 27.26 m (Figure 12). The three physical models all have a MAD
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higher than 30 m and a RMSE exceeding 38 m. The CADGITE demonstrates the best overall

performance.
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Figure 12. A comprehensive comparison of ice thickness estimates from four models at GPR measurement points
on 14 glaciers within HMA.

5. Discussion

5.1. Advantages of our Methodology

In this study, we employ flow velocity, slope, and hypsometry as input features for neural
network-based ice thickness estimation. To enhance the model’s understanding of glacial spatial
structures, we introduce “distance to boundary” as an additional input feature in the training of
CADGITE. The inclusion of this feature improves the model’s performance on test datasets. A
comparative analysis against GPR measurements shows that it reduces the MAD and RMSE by
approximately 1.67 m and 3.25 m, respectively. This variable quantitatively describes the geometric
relationship between internal glacier points and their boundaries, which provides an explicit spatial
prior functioning as an implicit regularization mechanism. By introducing spatial constraints, this
enhances the model’s generalization capability while effectively mitigating overfitting.

CADGITE is designed as a lightweight convolutional neural network. Compared to the residual
block-based architecture proposed by Lopez Uroz et al. (2024), CADGITE incorporates multiple
efficient feature enhancement modules in both its backbone and branch structures to improve local
and global feature representation. These architectural innovations significantly optimize feature
extraction performance and maintain training efficiency, with a total parameter count of 393417.
Experimental results demonstrate that CADGITE outperforms conventional networks in modeling
the spatial distribution of ice thickness, indicating that the structural improvements substantially
enhance estimation accuracy.

Moreover, CADGITE exhibits robust cross-regional generalization capability. Despite being
trained exclusively on Swiss glacier data, the model achieves stable thickness estimation performance
for the HMA region that encompass much larger extent and more complex environment,
demonstrating notable adaptability to regional variations. Compared with classical physics-based
models, CADGITE yields lower estimation errors for HMA glaciers, with MAD and RMSE values of
20.91 m and 27.26 m, respectively, when validated against GPR measurements. In comparative
experiments across 14 glaciers, CADGITE achieved the lowest MAD for 8 glaciers and the lowest
RMSE for 8 glaciers, demonstrating superior overall performance relative to conventional physical
models. These results confirm that the network, through the combined effects of physically-guided
input features and architectural optimization, possesses excellent generalization capability and offers
a reliable methodological framework for extra-regional glacier ice thickness estimation.

5.2. Interpretation of the Performance of CADGITE
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Temporal differences between the input data of the training and test sets are one of the sources
of error in the model estimates. The GPR ice thickness measurements span several decades, with the
earliest data collected in 1958 and the most recent in 2020 [22]. The Swiss glacier topography is
derived from swissALTI3D generated between 2008 and 2011, while the topography of Asian glaciers
is based on COPDEM data produced from TanDEM-X bistatic imagery collected between 2011 and
2015. Glacier velocity data are primarily derived from satellite imagery acquired during 2017-2018.
The temporal inconsistencies in the training data are a major source of uncertainty in ice thickness
estimates. Significant glacier changes across different time periods may introduce larger estimation
erTors.

This performance difference between CADGITE and LLUM may be attributed to the pseudo-
real nature of the ice-thickness dataset labeling. The dataset was generated by fusing and calibrating
physical model estimates with actual GPR measurements. Although certain processing steps
improved label consistency, systematic biases may still exist, rendering them not fully equivalent to
real observations. Such an error structure may cause the model to learn statistical patterns that
deviate from the true ice thickness during training. In this pseudo-labeling context, LLUM may tend
to fit the systematic errors in the fused labels, thereby performing better in cross-validation. In
contrast, CADGITE demonstrates advantages in feature extraction and local spatial modeling,
particularly near GPR measurement points, leading to a more accurate representation of the true ice
thickness distribution.

The results show that CADGITE performs better on glaciers with smaller thicknesses and less
effectively on those with larger thickness. An examination of the input thickness data used for model
training (Figure 13) reveals that 22620 samples fall within the 0-100 m range, 1567 within 100-200 m,
438 within 200-300 m, and 339 exceed 300 m. In other words, the majority of input thickness data are
concentrated in the 0-100 m range, while values above 250 m are relatively scarce. Therefore, the
model performs better at locations where the ice thickness is below 200 m. The thickness distribution
of the Unteraargletscher deviates from that of the training data, resulting in relatively large model
deviations. Enhancing the diversity of glacier samples in future work may further improve the
model’s generalization ability on mountain glaciers.

Input Label (Thickness) Distribution
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Density
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0.005
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0 100 200 300 400 500 600 700 800
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Figure 13. The thickness distribution of the input for model training.

In addition to the influence of the training sample distribution on estimation capability, the
abnormal distribution of input features may also introduce systematic bias. The estimated glacier ice
thickness results in most valleys exhibit a "U" shape distribution, which aligns with prior knowledge.
This is because glaciers typically exhibit deeper ice thickness at the central flowlines. However, the
thickness estimates near the central flowline of the Unteraargletscher are lower than those on either
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side of the central flowline. To investigate this phenomenon, we examined the slope input data at
these locations. At the Unteraargletscher, the central flowline has significantly higher slopes due to
the presence of more moraines, leading to a notable underestimation of ice thickness near the central
flowline. As shown in Figure 14, the reference thickness values (Grab et al., 2021) exhibit a similar
distribution pattern to the thickness estimates from CADGITE shown in Figure 9, with thickness near
the central flowline being lower than that on either side. We observed that the physically based model
Glabtop2, which is sensitive to slope, also yields similar thickness results for certain glaciers. This
phenomenon indicates that slope-based thickness estimation methods are sensitive to moraine
interference. Terrain data in moraine areas may not accurately reflect the underlying bedrock
morphology.

“e i

Slope(°)
30

0_ ) i (a) Slope

l (b) Grab et al. Thickness(2021)

-

Figure 14. (a) Slope input values for the Unteraargletscher; (b) Reference thickness values for the
Unteraargletscher (Grab et al., 2021).

5.3 Limitations and Outlooks of Deep-Learning for Ice Thickness Estimation

Although CADGITE incorporates features such as surface velocity, slope, hypsometry, and
distance from glacier boundaries, which account for several key factors influencing ice thickness
distribution, it may still miss some potentially important variables. For example, glacier type, surface
temperature, snow cover extent, and basal friction characteristics may significantly affect the spatial
distribution of ice thickness. If such information is not included in the model inputs, it may limit the
model’s generalization ability and its capacity to characterize complex glacier systems.

In addition, high-precision ice thickness training datasets with broad spatial coverage and strong
spatio-temporal consistency are still lacking. Most observed ice thickness data, such as those from
GPR or drilling, are sparsely distributed and cannot fully represent the diversity of glacier ice
thickness. This limitation not only affects the model's ability to learn the relationship between input
features and ice thickness during training, but also reduces its extrapolation capability in unobserved
regions and may even introduce systematic biases. Developing standardized ice thickness datasets
that cover various glacier types and climate zones is essential for improving the accuracy and
generalization of deep learning models.

CADGITE does not explicitly incorporate glacier physical constraints but instead relies on deep
neural networks to learn the spatial distribution patterns of ice thickness from multi-source input
features. The input variables of the model are physically related to ice thickness. Surface velocity can
be regarded as an indicator of the internal stress field of glaciers and is influenced by multiple factors,
including ice thickness, temperature, and basal sliding conditions. Slope controls the driving force
acting on the glacier. Relative elevation and distance to glacier boundaries help characterize the
glacier’s accumulation and ablation states and reflect its dynamic environment. Although these input
features partially represent the physical mechanisms underlying glacier ice thickness distribution,
the model itself remains purely data driven. This approach may lead the model to favor learning
statistical correlations in the training data rather than the relationships between ice thickness and
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glacier dynamics, potentially resulting in unstable and physically inconsistent estimates, especially
when data quality is limited or the model is applied across regions.

In the future, deep learning methods can be further integrated with glacier physical models,
combining the fitting capabilities of data-driven approaches with the constraining power of physical
models. This synergistic approach would contribute to enhancing model stability and physical
consistency. Concurrently, building more comprehensive glacier feature databases by combining
remote sensing, multi-source observations, and regional climate data will also provide better training
support for deep learning models, expanding their application prospects in ice thickness estimation.

6. Conclusions

High-precision glacier ice thickness data are available in Switzerland, which can be used for
model training and validation. Based on these data, this study developed a deep convolutional neural
network model, CADGITE, to estimate regional glacier ice thickness. Coordinate attention modules
and densely connected networks were introduced to capture spatial features and integrate multi-
source input data. K-fold cross-validation was employed on a limited dataset to verify the stability
of the deep learning-based glacier ice thickness estimation model. Compared with previous studies,
this work introduced distance to boundary as an input variable, which significantly improved
model performance. The new model outperformed classical glacier ice thickness estimation models
on the test dataset. When applied to 14 glaciers across Asia, the model demonstrated better
performance than other models, highlighting the potential of CADGITE for large-scale glacier ice
thickness estimation. Errors in input data, including glacier velocity, surface DEM, and the Swiss
glacier ice thickness data used for training, are the main factors limiting model performance. In the
future, improving the accuracy, resolution, and numerical distribution of input data, as well as
introducing appropriate physical constraints, may enable the model to achieve more accurate
estimates across a broader range of thicknesses, thereby enhancing its applicability in diverse glacier
environments.
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