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Abstract:  Ice  thickness  is  a  key  parameter  for  glacier  mass  estimations  and  glacier  dynamics 

simulations. Multiple physical models have been developed by glaciologists to estimate glacier ice 

thickness. However, obtaining internal and basal glacier parameters required by physical models is 

challenging, often leading to simplified models that struggled to capture the nonlinear characteristics 

of  ice  flow  and  resulting  in  significant  uncertainties.  To  address  this,  this  study  proposes  a 

convolutional neural network (CNN) ‐based deep learning model for glacier ice thickness estimation, 

named the Coordinate‐Attentive Dense Glacier Ice Thickness Estimate Model (CADGITE). Based on 

in  situ  ice  thickness measurements  in  the Swiss Alps,  a CNN  is designed  to  estimate glacier  ice 

thickness by  incorporating a new architecture  that  includes Residual Coordinate Attention Block 

together with Dense Connected Block, using distance to glacier boundaries as a complement of inputs 

that  include  surface  velocity,  slope,  and  hypsometry.  Taking  ground‐penetrating  radar  (GPR) 

measurements  as  reference,  the  proposed model  achieves  a mean  absolute  deviation  (MAD)  of 

24.28 m and a root mean square error (RMSE) of 37.95 m in Switzerland, outperforming mainstream 

physical models. When applied to 14 glaciers in High Mountain Asia, the model achieves an MAD 

of  20.91 m  and  an RMSE of  27.26 m  compared  to  reference measurements,  also  exhibiting better 

performance than mainstream physical models. These comparisons demonstrate the good accuracy 

and cross‐regional transferability of our approach, highlighting the potential of using deep‐learning‐

based methods for larger‐scale glacier ice thickness estimation. 

Keywords: Glacier ice thickness; Deep learning; CNN; Swiss; High Mountain Asia 

 

1. Introduction 

Ice thickness data are crucial for estimating glacier mass storage, as well as constraining glacier 

basal topography and ice deformation in dynamic models [1]. Traditional methods such as ground 

drilling and GPR can provide accurate point measurements, but their high cost and low efficiency 

limit large‐scale application. By combining surface remote sensing observations and digital elevation 

models, glacier ice thickness can be estimated through physical models. The Ice Thickness Models 

Intercomparison  eXperiment  (ITMIX)  compared  17  glacier  ice  thickness  estimation methods  and 

revealed significant differences among the results [2]. These models can be mainly categorized into: 

1) minimization  approaches  [3,4]:  constructing  forward  ice  flow models  to  simulate  observable 

quantities, in which model parameters are iteratively optimized to infer ice thickness by minimizing 

a  cost  function  that  quantifies  the  mismatch  between  observations  and  simulations;  2)  mass‐

conserving approaches [5–7]: using estimates of surface mass balance and elevation change rates to 

calculate ice fluxes, from which ice thickness can be derived; 3) shear‐stress‐based approaches [8–10]: 

assuming a constant basal shear stress across the glacier and apply the Shallow Ice Approximation 

to estimate ice thickness; 4) velocity‐based approaches [11,12]: employing Glen’s flow law to directly 

compute ice thickness by using surface velocity and slope as key inputs. To estimate ice thickness 

over the entire glacier, some methods also incorporate spatial interpolation techniques to extrapolate 
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localized results across  the  full glacier extent. However, due  to  the scarcity of direct observations 

beneath and within glaciers, all these models introduce varying degrees of simplification during their 

development,  such  as  linear  approximations  of  ice  flow  dynamics  and  empirically  derived 

parameters. These simplifications and assumptions are major sources of model uncertainty, making 

current models struggle to fully capture the nonlinear dynamics of ice flow, which in turn limits the 

overall accuracy and applicability for ice thickness estimation. 

Deep  learning methods  can  integrate multi‐source  remote  sensing data, glacier  topographic 

information, and in situ GPR measurements to automatically learn complex nonlinear relationships 

between glacier  ice thickness and  its influencing factors,  leveraging their strong feature extraction 

and pattern recognition capabilities. Several studies have explored  the use of neural networks for 

glacier  ice  thickness  estimation  and  subglacial  topography  reconstruction.  In  2009,  Clark  et  al. 

assumed that ice‐free areas surrounding glaciers were formerly ice‐covered and used the terrain data 

of these areas to train an artificial neural network (ANN) for glacier ice thickness prediction [13]. In 

2020, Wei Ji et al. developed a generative adversarial network (GAN) integrating multi‐source data 

for  super‐resolution  reconstruction  of  Antarctic  subglacial  topography  [14].  Haq  et  al.  (2021) 

combined DEM data and ANN to estimate the ice thickness of the Chhota Shigri Glacier [15]. Lopez 

Uroz et al. (2024) combined convolutional networks with multi‐source data to simulate glacier ice 

thickness in Switzerland [16]. Monnier and Zhu (2021), as well as Steidl et al. (2025), used physics‐

informed artificial neural networks (ANNs) for subglacial topography reconstruction and glacier ice 

thickness estimation [17,18]. These data‐driven methods can, to some extent, capture nonlinear ice 

flow features that physical models fail to represent. When sufficient data are available, data‐driven 

methods can achieve higher accuracy than physical models.   

However, existing deep learning‐based methods for glacier ice thickness estimation continue to 

face challenges  in effectively extracting multi‐scale spatial  features, and network architecture  that 

could potentially influence the accuracy of thickness estimations still needs further optimization. In 

details,  ice  thickness shows varying sensitivity  to different  input glacier characteristics, making  it 

crucial  to  accurately  learn  the weight  of  different  semantic  information  in  thickness  estimation. 

Furthermore,  the  selected model  needs  to  be  capable  to  capture  the distinct  spatial  distribution 

characteristics of different input features. Currently, a variety of structural modules such as attention 

mechanisms  [19,20] have been developed  to  enhance  feature  representation  capabilities, offering 

diverse  components  and  strategies  for  network  architecture  design. Moreover,  the  input  glacier 

features are limited. Although surface velocity, slope, and elevation data are commonly used, other 

important features related to glacier ice thickness have not yet been incorporated into model training. 

For example, glacier  ice  thickness  tends  to  increase with distance  from  the glacier boundary, and 

valley glacier cross‐sections are often “U” shaped, such geometric characteristic shows significant 

correlations with ice thickness. Therefore, by improving network architectures and optimizing input 

features, multi‐source  data‐driven  deep  learning methods  have  the  potential  to  produce more 

accurate and robust glacier ice thickness estimations. 

This  study develops  a multi‐branch  network  architecture  that  incorporates  surface  velocity, 

slope, hypsometry,  and newly  added distance  to  the  boundary  as  input  features  for  training. A 

coordinate attention mechanism is introduced to enhance the spatial feature modeling capability of 

the deep convolutional neural network. The  features  from each branch were  fused using a dense 

block that employs cross‐layer connections to enhance feature reuse and gradient propagation. This 

fusion enables  the model  to capture complex nonlinear  interactions among multi‐source physical 

parameters  influencing  glacier  ice  thickness.  The  proposed  deep  network model  (CADGITE)  is 

trained  on  high‐precision  glacier  ice  thickness  data  from  the  Swiss Alps  and  further  applied  to 

glaciers in various sub‐regions of High Mountain Asia to evaluate its generalization capability and 

applicability across diverse glacial environments. 

2. Study Area and Data 
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2.1. Overview of Glaciers in Switzerland and High Mountain Asia 

Figure 1  illustrates the distribution of glaciers  in Switzerland. Glacier boundaries are derived 

from the Swiss Glacier Inventory 2016 (SGI2016) [21]. This region contains 1,400 glaciers, covering a 

total area of 961 km². Most glaciers are relatively small, with approximately 82% having an area of 

less than 0.5 km². There are 46 glaciers with an area greater than 5 km², and they account for 52% of 

Switzerland’s total glacier area. The median elevation of Swiss glaciers is 2938 m. Between 2016 and 

2020, researchers conducted ice thickness measurements using the AIR‐ETH helicopter‐based GPR 

platform, covering all large and most medium‐sized glaciers in Switzerland to obtain high‐precision 

ice thickness data [22]. This survey covered 251 glaciers, representing 81% of the total glacier area in 

Switzerland, with a cumulative GPR profile length of approximately 2500 kilometers. 

The High Mountain Asia  (HMA)  region,  including  the Tibetan plateau  and  its  surrounding 

regions,  raised more  than  100000  glaciers  within  its  extent  according  to  the  Randolph  Glacier 

Inventory version  6.0  (RGI6.0)  [23]. These  glaciers  are  a  critical  component  of  the  “Asian Water 

Tower”, providing a stable source of runoff to major rivers such as the Yangtze, Yellow, and Ganges. 

They are primarily distributed across  the Himalayas, Pamir Plateau, Karakoram, Tien Shan, and 

Kunlun Mountains. To evaluate the generalization ability of the proposed model, in total 14 glaciers 

with publicly available GPR measurements  from  the Glacier Thickness Database  (GlaThiDa)  [24] 

were selected for ice thickness estimation. Twelve of these glaciers have an area of less than 10 km². 

[23]Among them, the largest glacier is identified as RGI60‐13.24602, with an area of 15.96 km², while 

the smallest glacier is RGI60‐13.31356, with an area of 0.54 km². 

 

Figure 1. Distribution of glaciers  in Switzerland  from  the SGI2016. Glaciers  shown  in  red were used as  the 

training set, while those in blue were used as the validation set in this study. Black lines represent GPR survey 

profiles. 

2.2. Data 

In this study, the model training data include glacier ice thickness, east‐west and north‐south 

surface  flow  velocity  components,  ice  surface  slope,  hypsometry,  and  distance  to  the  glacier 

boundary (the minimum distance from a point within the glacier to the boundary). The data sources 

are as follows: 

1. Ice Thickness: we utilized the 10 m resolution ice thickness distribution data in the Swiss Glacier 

region presented by Grab et al. (2021) as the baseline thickness data. This dataset is generated   
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by combining measured data with two glacier modeling methods (GlaTE [25,22] and ITVEO [6]). 

Their approach, benefited  from  the combination between  in  situ measurements and models, 

could  reduce  interpolation  errors  and  improved  the  robustness  of  the  ice  thickness  results. 

Thanks  to  the  large volume of measured data,  the uncertainty of  the obtained  ice  thickness 

distribution is lower compared to previous studies. This study uses these ice thickness results to 

train the neural network; 

2. Glacier Surface Velocity: The ice deformation, one of the two components of ice flow,    is mainly 

controlled by  shear  stress, which varies with depth  and  is  strongly  related  to  ice  thickness. 

Glacier velocity is a key parameter in physical models used to estimate ice thickness. The surface 

velocity data used in this study is generated from Millan et al. [26], which is represented by the 

vectors  in  east‐west  and  north‐south  directions.  These  velocity  products were  obtained  by 

matching Landsat 8, Sentinel‐2, and Sentinel‐1  images acquired between 2017 and 2018. The 

velocity resolution is 50m, with an accuracy of approximately 10 m/a; 

3. Ice Surface Slope: Ice surface slope is influenced to some extent by the underlying topography, 

affects the glacierʹs internal shear stress, and serves as a key parameter in physical models used 

to  estimate  glacier  ice  thickness.  Slope  is  calculated  based  on  the  SwissALTI3D DEM.  The 

SwissALTI3D  DEM  is  a  digital  elevation  model  (DEM)  created  using  photogrammetric 

techniques, with a spatial resolution of 2 m. The vertical accuracy  is approximately 0.5 m for 

areas below  2000 m,  and between  1  and  3m  for  areas  above  2000 m  [27]. The DEM data  is 

updated every 6 years, with the version used in this study being released in 2019 [27]; 

4. Hypsometry: The median glacier elevation can serve as an approximation of the equilibrium line 

altitude [28]. We used the hypsometry of glaciers as an input parameter for network learning 

[16]. The elevation value at each surface point is normalized as the proportion of the glacier area 

(or number of points) below  that elevation  relative  to  the  total glacier area  (or  total points), 

resulting in a normalized distribution from the lowest point (0) to the highest point (1). For stable 

glaciers, the “contour line” at a value of 0.5 divides the glacier into two equal‐area parts, which 

can  coincide with  the  equilibrium  line  altitude.  The  incoporation  of  hypsometry  can  help 

mitigate ice thickness underestimation and reduces the standard deviation of training [16]; 

5. Distance  to  Boundary:  The  profiles  of most  valley  glaciers  are  ʺUʺ‐shaped, with  glacier  ice 

thickness gradually increasing from the edge to the center flow lines [29]. Thus, ice thickness is 

typically correlated with the distance to the boundary. This study  incorporates the minimum 

distance of selected point to the boundary as an input parameter for the training model. 

2.3. Training and Test Datasets Generation 

The  division  of  the  test dataset  follows  the  scheme  proposed  by  Lopez Uroz  et  al.  [16],  as 

illustrated in Figure 1, resulting in a glacier area ratio of approximately 1.68:1 between the training 

and test datasets. The training dataset was partitioned using K‐fold cross‐validation (K=4) to ensure 

a uniform distribution of glacier area and size within each fold. Specifically, to mitigate potential data 

imbalance  issues,  the Alestch glacier, which possesses  the  largest  thickness and area, was always 

included in the training set across all folds. This partitioning yielded four cross‐validation datasets, 

each with a training‐to‐validation area ratio of 3.6:1. Individual data samples are collected using 400m 

spatial slices, with velocity slices of 8×8 and other slices of 32×32. This study uses a certain spatial 

overlap to generate slices, with adjacent slices overlapping by no more than 3/4, resulting  in over 

19000 training sample pairs. 

3. Estimation Method 

3.1. Convolutional Neural Network Architecture 

The  input  data  for  CADGITE  includes  east‐west  surface  velocity  (𝑉௫ ),  north‐south  surface 
velocity (𝑉௬), slope (Slope), hypsometry (Hypsometry), and distance to the boundary (Distance), while 
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the output is the ice thickness at the center of each tile (Thickness). These input data are sourced from 

different  modalities  and  have  distinct  physical  meanings,  resulting  in  multi‐modal  feature 

representations.  To  effectively  integrate  these,  an  appropriate  data  fusion  strategy  is  necessary. 

Current mainstream multi‐modal fusion methods can be categorized as early fusion,  intermediate 

fusion, and late fusion [30,31]. Given the differences in spatial resolution across the modalities (with 

velocity data at 50 m resolution and the others at 12.5 m), and based on the basic network structure 

presented by Lopez Uroz et al. [16], this study adopts an intermediate fusion strategy. Fusion during 

the  feature  extraction  stage  allows  for  the  preservation  of  the  original  representations  of  each 

modality  while  effectively  capturing  their  complementarity  and  correlation.  Specifically,  each 

modality is processed by an independent convolutional branch. After unifying the feature map size 

to 8×8,  the  features are  concatenated  along  the  channel dimension,  resulting  in  a unified  feature 

tensor. To further enhance the interaction among the fused features, a DenseNet [32] Dense Block 

structure is introduced for subsequent processing. Dense Block concatenates the output of each layer 

along the channel dimension, allowing each layer to directly access the feature representations from 

all preceding layers. This structure not only enhances feature interaction between different modalities 

but also effectively retains the integrity of the original features. Compared to traditional ResNet [33] 

architectures, DenseNet significantly reduces the number of model parameters while maintaining or 

even improving performance. 

Considering the distinct chatasterics of the input glacier features, we introduces a Coordinate 

Attention (CA) mechanism [20] to rebuild both channel and spatial weights in the model. 

1）Overall Network Architecture 

The overall architecture of the CADGITE network is illustrated in Figure 2. The various input 

parameters are first processed through separate network branches without feature fusion. Due to the 

relatively low resolution of the velocity data, it undergoes only a single round of feature extraction 

in the initial layers of the network. Once its feature map reaches the same spatial scale as the others, 

feature fusion  is performed. The output feature map size of the velocity branch  is denoted as  𝐹௏ ∈
ℝଷଶൈ଼ൈ଼. 

The branches  for  slope, hypsometry, and distance  follow  the same network structure. First,  the 

original image tiles are input into a Residual Coordinate Attention Block (ResCA Block), which does 

not perform downsampling. The ResCA Block expands  the channel dimension of  the  input while 

effectively  capturing  rich  spatial  information  from  the  original  low‐level  features.  The  resulting 

feature maps are then input into a 2×2 average pooling layer. Pooling helps reduce the local noise 

[34], which is particularly beneficial for handling local variations in surface slope. At this stage, the 

output feature map size is denoted as  𝐹௜ ∈ ℝଵ଺ൈଵ଺ൈଵ଺, where  𝑖  represents each branch. The feature 
maps  𝐹௜   are  then passed  to  the next  feature  extraction block, which applies  similar  convolution, 

attention, and pooling operations to produce feature maps of size  𝐹௜௢௨௧ ∈ ℝଵ଺ൈ଼ൈ଼. 

All output  feature maps  from  the branches are concatenated along  the channel dimension  to 

form a mixed high‐level feature map of size  𝐹௠௜௫ ∈ ℝ଼଴ൈଵ଺ൈଵ଺. Since simple concatenation does not 

guarantee effective feature fusion, the fused feature map is then input into a Dense Block, enabling 

cross‐fusion  of  features with  different  semantic meanings.  Two  Dense  Blocks  are  employed  to 

enhance feature fusion. As the Dense Blocks increase the number of feature channels, an additional 

convolutional  layer  is used  to reduce  the channel dimensionality. The resulting  feature map  then 

passes through an average pooling layer for downscaling. Afterward, two more Dense Blocks and 

one Residual Block are applied to extract deeper‐level features. At this point, the feature map size 

becomes  𝐹 ∈ ℝସ଴ൈସൈସ. 

Finally, the feature map is passed through two fully connected layers with 640 and 256 neurons, 

respectively,  to output  the  estimated  ice  thickness at  the  center of  each  tile. The  total number of 

parameters in the network is 393417. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 May 2025 doi:10.20944/preprints202505.1620.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1620.v1
http://creativecommons.org/licenses/by/4.0/


  6  of  20 

 

 

Figure 2. Overall architecture of  the CADGITE network.  (a)  illustrates  the detailed structure of  the Residual 

Block  (Res Block), and  (b)  shows  the detailed  structure of  the Residual Coordinate Attention Block  (ResCA 

Block). 

2）Residual Coordinate Attention Block (ResCA Block) 

Traditional  channel  attention modules,  such  as  the  Squeeze‐and‐Excitation  (SE)  block  [35], 

model  inter‐channel  relationships  using  global  average  pooling  to  generate  channel  weights. 

However,  they  fail  to  capture  spatial  information.  The  Convolutional  Block  Attention Module 

(CBAM) [19] addresses this by sequentially applying a channel attention module (similar to SENet) 

and a spatial attention module (which uses max/average pooling followed by convolution). While 

CBAM’s  spatial  attention  uses  a  7×7  convolution  to  coarsely  encode  spatial  dependencies,  the 

Coordinate Attention  (CA) mechanism  introduces  spatial positional  information by decomposing 

attention  into horizontal  and vertical directions. This  enables  the model  to be  sensitive  to object 

positions while simultaneously enhancing channel importance. 

To capture salient spatial features in the shallow layers, this study embeds the CA module into 

a residual block, forming the Residual Coordinate Attention Block (ResCA Block), as shown in Figure 

2(b). The  input  feature map  is  first  passed  through  a  3×3  convolutional  layer with  stride  1  and 

padding 1 to expand the number of channels, followed by batch normalization and activation. The 

resulting feature map is then processed by the CA module (see Figure 3). 

 

Figure 3. Architecture of the Coordinate Attention (CA) Block. 

The input feature map F of the CA module has dimensions (C, H, W). The input feature map is 

first  subjected  to global average pooling along  the x‐ and y‐directions, generating  two direction‐

sensitive  descriptors,  X௛ ∈ ℝେൈୌൈଵ   and  X௪ ∈ ℝେൈ୛ൈଵ ,  which  are  then  combined  via  dimension 
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transposition  and  concatenation  to  form  a  joint  positional  encoding,  Xୡୟ୲ ∈ ℝେൈଵൈሺୌା୛ሻ .  This 

encoding is reduced in dimensionality through a 1×1 convolution, changing the number of channels 

from C to C/r, followed by batch normalization and ReLU activation, after which it is decomposed 

into  horizontal  and  vertical  components,  X௦௣௟௜௧
௛ ∈ ℝେ/୰ൈଵൈୌ   and  X௦௣௟௜௧

௪ ∈ ℝେ/୰ൈଵൈ୛ .  Next,  a  1×1 

convolution layer replaces the fully connected layer to reconstruct the channel dimensions, followed 

by  a  Sigmoid  activation  to  generate  spatial  attention weight matrices,  S௛ ∈ ሾ0,1ሿେൈୌൈଵ   and  S௪ ∈
ሾ0,1ሿେൈଵൈ୛. Finally, the weight matrices are broadcasted to the original spatial size and element‐wise 

multiplied with the input features to achieve position‐adaptive feature calibration. This process can 

be expressed as: 

𝐹୭୳୲ ൌ 𝐹 ⊗ S୦ ⊗ S୵  (1)

This design transforms two‐dimensional global pooling into a pair of one‐dimensional encoding 

processes  through a coordinate decomposition strategy, which reduces computational complexity 

while preserving precise positional information, enabling the network to capture long‐range spatial 

dependencies and accurately locate key regions, thus effectively fusing contextual information from 

both channel and spatial domains and enhancing feature representation. 

3）Densely Connected Block (Dense Block) 

Compared to the residual block in ResNet [33], the connection mechanism in the Dense Block is 

more densely structured. The Dense Block employs dense connections based on feature reuse and 

progressive  growth  along  the  channel  dimension,  with  connections  also  implemented  through 

element‐wise addition. Compared to residual block, the Dense Block achieves more extensive feature 

reuse. Figure 4 illustrates the structure of a Dense Block. The input to the  𝑙‐th layer is the channel‐
wise  concatenation  of  all  preceding  outputs,  denoted  as  𝑥௟ ൌ ሾ𝑥଴, 𝑥ଵ, . . . , 𝑥௟ିଵሿ ∈ ℝ஼౟౤ൈுൈௐ , where 

𝐶୧୬ ൌ 𝐶଴ ൅ ሺ𝑙 െ 1ሻ ⋅ 𝑘,  𝐶଴  is the initial number of channels, and  𝑘  is the growth rate. The composite 

function  𝐻௟ሺ𝑥ሻ  of  this  layer performs nonlinear  transformation  and  channel  compression on  the 

high‐level features through batch normalization, LeakyReLU activation, and a 1×1 convolution. This 
is followed by a second 3×3 convolution with the same normalization operations, generating a new 

𝑘‐channel feature map,  𝑥ଵ ∈ ℝ௞ൈுൈௐ. The process is defined as follows: 

𝐻ଵ ൌ 𝐶𝑜𝑛𝑣ଵൈଵሺ𝜎ሺ𝐵𝑁ሺ∙ሻሻሻ
𝐻ଶ ൌ 𝐶𝑜𝑛𝑣ଷൈଷሺ𝜎ሺ𝐵𝑁ሺ∙ሻሻሻ
𝑥ଵ ൌ 𝐻ଶሺ𝐻ଵሺ𝑥଴ሻሻ

  (2)

Finally,  𝑥଴  and  𝑥ଵ  are fused through channel‐wise concatenation to form the output  𝑙ଶ. In this 
study, the growth rate is set to 20 and the number of layers is set to 4. 

 

Figure 4. Structure of the Dense Block. 

3.2. Training and Metrics 

CADGITE was  implemented and trained  in a computing environment consisting of an AMD 

Ryzen 9 5900X 12‐core processor, 64 GB of RAM, and an NVIDIA GeForce RTX 3060 GPU. The model 

was trained using the Adam optimizer to compute gradients and update network parameters. The 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 May 2025 doi:10.20944/preprints202505.1620.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1620.v1
http://creativecommons.org/licenses/by/4.0/


  8  of  20 

 

initial learning rate was set to 0.01. A Reduce on Plateau strategy was used to reduce the learning rate 

based on the validation loss. When the validation loss did not decrease for a predefined number of 

epochs, the learning rate was automatically reduced by a preset factor. An L2 weight decay with a 

coefficient of 0.01 was applied. During  training,  the batch  size was  set  to 64, and  the model was 

trained on the training set for 100 epochs. The L1 loss function was used for backpropagation. 

4. Result 

4.1. Model Performance: Glacier Ice Thickness Estimation in Switzerland 

4.1.1. Comparison Between CADGITE with and Without Distance Input   

To illustrate the effectiveness of our newly added feature Distance in estimating ice thickness, 

we conducted a set of comparative experiments, with one group including Distance as an input and 

the other excluding it. The training and validation losses are shown in Figure 5 using the L1 loss as 

the metric. The curves labeled Result 1‐4 correspond to the four folds 1‐4. The loss curves show that 

the training loss stabilized after around 80 epochs, and the validation loss exhibited a similar trend. 

The validation loss for Result 2 showed slight fluctuations, while the other folds demonstrated good 

convergence. The overall training loss stabilized at approximately 10 m. Both experiments exhibited 

similar loss reduction trends and comparable performance across the different cross‐validation folds. 

However, overfitting was more pronounced in the training results without the Distance input. 

 

Figure 5. Training and validation losses of the four folds. Panels (a) correspond to inputs without Distance, while 

panels (b) correspond to inputs with Distance. 

The quantitative statistics of the two experimental groups on the test set is shown in Table 1. 

After adding the distance input, the L1 loss were reduced in three of the four folds, with only one 

fold showing a slight increase. As shown in Table 1, CADGITEʹs loss on the test set is approximately 

7 m higher than on the training set (~17 m vs. ~10 m). 

Table 1. Loss results on the test glaciers for CADGITE from four‐fold cross‐validation. 

Groups  Result 1  Result 2  Result 3  Result 4 

CADGITE without Distance  18.40  18.07  18.01  17.05 

CADGITE  17.28  18.14  17.44  16.49 

We also compared the ice thickness estimation results from the two models on the test set with 

the in situ GPR measurements to validate their performance. As shown in Figure 6A and 6C, after 

incorporating Distance as an input, both the MAD and the RMSE of the four results trained on the 

cross‐validation dataset decreased on the test glaciers, with average reductions of approximately 1.67 
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m and 3.25 m, respectively. Analysis of model performance across different thickness ranges revealed 

that for ice thicknesses between 0‐100 m, the frequency of underestimations decreased. In the 100‐200 

m  range,  overestimations  were  less  prevalent,  but  the  model  showed  a  tendency  towards 

underestimation. For thicknesses exceeding 250 m, the model consistently exhibits underestimation. 

 

 

Figure 6. Comparison between the ice thickness estimated by the models and that measured by GPR on the four 

folds of test glaciers. (A) CADGITE without distance to boundary input; (B) CADGITE with distance to boundary 

input. 

4.1.2. Comparison Between CADGITE and Original Approach 

Based on preceding comparisons, we introduced the Distance feature into the feature branch of 

the network model (LLUM) proposed by Lopez Uroz et al. and then compared its performance with 

CADGITEʹs. Both models used the same four cross‐validation folds. Table 2 presents the loss values 

of LLUM on the test glaciers. LLUM exhibits higher mean absolute error than CADGITE on two cross‐

validation  folds, but achieves  lower  loss on  the other  two. Furthermore, we analyzed  the model 

performance based on deviation compared to GPR measurements, as shown in Figure 7. Compared 

to LLUM with the Distance feature, CADGITE achieved lower MAD on folds 1, 2, and 3, showing 

improvements of approximately 0.2 m  to 0.4 m compared  to LLUMʹs MAD values. While LLUM 

recorded a marginally lower MAD on fold 4 (23.77 m vs. 23.82 m), CADGITE consistently exhibited 

lower RMSE across all four cross‐validation sets. Specifically, CADGITEʹs RMSE values ranged from 

36.30 m  to  40.26 m, while LLUMʹs  ranged  from  37.80 m  to  40.51 m, demonstrating CADGITEʹs 

superior ability to minimize larger prediction errors. This indicates higher prediction accuracy near 

the GPR observation points for CADGITE. 

Table 2. Loss results on the test glaciers for LLUM from four‐fold cross‐validation. 

Group  Result 1  Result 2  Result 3  Result 4 

LLUM with Distance  17.51  17.89  17.85  16.37 
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Figure 7. Comparison between the ice thickness estimated by the LLUM model with Distance input and the GPR 

measurements on the four folds of the test glaciers. 

4.1.3. Comparison Between CADGITE and Physics‐Based Models 

We also conducted a systematic comparison between our model and traditional physical‐based 

models to assess the performance of the deep‐learning approach. The glacier ice thickness estimates 

on the test set produced by CADGITE were compared with those from three well‐known physical 

models (Millan et al. [26], H&F model [6,36] and Glabtop2 model [8,36]) and GPR measurements, as 

shown in Figure 8. Before the comparison, all data from the cross‐validation set were incorporated 

into the model training to enhance its generalization ability. The final MAD loss on the test set was 

16.64 m. Figure 9 shows the estimated ice thickness for several glaciers. 

Figure 8. Comparison between GPR measurements and ice thickness estimates from four models: Millan, H&F, 

GlabTop2, and CADGITE. Panel (A) shows the results on all test glacier samples, while panel (B) presents the 

results on test glacier samples excluding Unteraargletscher. 

The MAD of CADGITE  is 24.28 m, which  is lower than those of the other three models, with 

MAD values of 34.26 m, 39.21 m, and 27.18 m, respectively. For the RMSE, CADGITE achieves a value 

of 37.95 m, which is lower than two of the other models (47.84 m for Millan’s and 39.80 m for H&F), 
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and slightly higher than the Glabtop2 (36.05 m). In regions where the ice thickness exceeds 250 m, all 

four models tend to underestimate the ice thickness compared to the GPR measurements. As shown 

in Figure 9, CADGITE significantly underestimates the ice thickness on the Unteraargletscher. After 

excluding  the  Unteraargletscher,  the  comparison  between  CADGITE  outputs  and  GPR 

measurements is shown in Figure 8B. The comparison between Figures 8A and 8B indicates that, after 

excluding the Unteraargletscher, the MAD and RMSE of CADGITE are both reduced. 

In the results produced by CADGITE, most glaciers show similar thickness distribution patterns 

to the “ground truth” values. The ice thickness generally increases from the boundaries to the center, 

which  is  consistent with  the  typical  distribution  pattern  of  ice  thickness.  The  spatial  pattern  of 

estimated ice thickness exhibits a clear correlation with topographic features. Specifically, thinner ice 

is  typically  found  in regions with steeper slopes, whereas  thicker  ice  tends  to occur  in areas with 

lower slope gradients. This observed relationship highlights the significant influence of terrain slope 

on the distribution of ice thickness. In some steep areas where the flow velocity is several times higher 

than that of the surrounding regions, the model does not significantly overestimate the ice thickness, 

indicating that topography is the dominant factor controlling ice thickness. 

 

Figure 9. Ice thickness of a part of the glaciers in Switzerland. (a) Ice thickness reference values (Grab et al., 2021), 

(b) and (c) show the ice thickness results modelled in this study. 

4.2 Model Transferability: Glacier Ice Thickness Estimation in HMA 

The transferability of our CADGITE method for estimating glacier ice thickness in other regions 

was assessed by implementing it to the complex HMA glaciers by taking all reference measurements 

in Switzerland as training data. For ice thickness estimation in HMA, the glacier surface ice velocity 

data were obtained from the global velocity dataset by Millan et al. (2022) [26], and the topography 

data from the Copernicus GLO‐30 product (COPDEM). The thickness estimates for the 14 glaciers are 

shown in Figure 10. Figure 11 shows the deviation distribution of our model compared with the three 

physics‐based models across the 14 glaciers. Compared to the GPR measurements, different models 

generally exhibit similar deviation distributions.   

However, all models show relatively large deviations in their estimates on the RGI60‐14.15990 

glacier. We attribute  this bias  to  two reasons:  first,  this glacier  is  the second  largest valley glacier 

among the 14 and has a maximum measured thickness of 296 m, which exceeds that of most glaciers 
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in the training dataset; second, glaciers in this region may exhibit characteristics and environmental 

backgrounds that differ significantly from  those  in the  training glaciers. Such regional differences 

may involve the glacierʹs geometric configuration, thermal regime, and basal sliding conditions. This 

heterogeneity may be uncommon  among  the glaciers  in  the Swiss Alps  that  are  included  in  the 

training dataset. As a result, the ice dynamics of this glacier are likely to differ substantially in both 

driving mechanisms  and  flow  behavior  compared  to  those  in  the  training  set.  These  physical 

differences may  fall outside  the  feature  space  learned by  the model, which  reduces  its ability  to 

identify and model region‐specific mechanisms and ultimately affects the accuracy of the thickness 

estimation. 

 

Figure  10.  The  thickness  estimation  results  of  the  CADGITE  for  14  glaciers  in HMA with  available  GPR 

observations. 
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Figure 11. Comparison of ice thickness estimates from the CADGITE model and three other models with GPR 

measurements across 14 Asian glaciers. 

Table 3 presents quantitative accuracy metrics of glacier ice thickness estimates for our model 

and three physics‐based models across 14 glaciers. Generally, CADGITE model performs best among 

the tested models, especially on glaciers with smaller areas. Our model achieved the  lowest mean 

deviation (MD) on 7 glaciers, the lowest MAD on 8 glaciers, and the lowest RMSE on 8 glaciers. 

Table 3. Deviation statistics of  the  four models compared with GPR measurements across 14 glaciers within 

HMA. 

RGIId  Error Metrics  Millan  H&F  GlabTop2  CADGITE 

RGI60‐10.00604 

MD  4.56  29.37  ‐0.25  ‐0.27 

MAD  13.62  30.78  9.62  8.88 

RMSE  16.89  34.96  12.45  10.53 
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RGI60‐13.08055 

MD  30.67  4.10  4.66  ‐3.77 

MAD  47.47  28.23  32.21  22.39 

RMSE  57.31  33.18  37.34  27.03 

RGI60‐13.08624 

MD  34.30  23.60  23.91  10.18 

MAD  37.70  30.81  31.02  18.05 

RMSE  48.98  36.50  37.43  22.58 

RGI60‐13.24602 

MD  ‐0.49  ‐28.33  ‐10.55  ‐3.41 

MAD  22.48  31.41  19.17  17.87 

RMSE  28.59  37.82  23.65  21.06 

RGI60‐13.24874 

MD  29.56  31.70  22.50  1.67 

MAD  35.82  35.11  23.45  15.75 

RMSE  43.03  41.40  29.61  19.88 

RGI60‐13.31356 

MD  ‐6.36  4.74  ‐13.36  ‐0.86 

MAD  16.83  11.83  14.97  9.18 

RMSE  20.24  15.11  18.66  11.08 

RGI60‐13.32330 

MD  ‐17.03  ‐22.42  ‐31.87  ‐38.12 

MAD  22.40  24.89  32.99  38.51 

RMSE  26.61  29.65  36.59  41.93 

RGI60‐13.43165 

MD  146.57  40.80  45.02  42.50 

MAD  146.84  41.12  46.23  47.37 

RMSE  161.16  49.80  55.37  53.07 

RGI60‐13.45233 

MD  ‐9.91  19.45  18.79  26.00 

MAD  22.00  21.88  22.11  27.96 

RMSE  26.62  25.86  28.39  33.45 

RGI60‐13.45334 

MD  ‐30.22  ‐30.62  ‐43.64  ‐23.67 

MAD  35.61  36.96  46.50  32.79 

RMSE  40.24  41.07  50.83  36.26 

RGI60‐13.45335 

MD  ‐22.54  ‐26.08  ‐35.58  ‐5.55 

MAD  31.07  29.92  38.03  20.53 

RMSE  35.72  35.52  44.43  24.98 

RGI60‐13.47247 

MD  13.72  3.09  2.90  18.83 

MAD  22.14  18.87  13.19  23.74 

RMSE  27.70  22.89  16.08  3073 

RGI60‐13.48211 

MD  6.39  48.20  76.63  ‐2.50 

MAD  27.60  51.64  81.61  29.56 

RMSE  36.72  61.76  95.67  37.75 

RGI60‐14.15990 

MD  ‐17.82  ‐16.48  ‐8.82  ‐49.90 

MAD  47.07  56.23  50.19  61.28 

RMSE  55.16  63.00  55.42  73.31 

Based on the estimation results of 14 glaciers, the CADGITE shows an overall deviation of 3.91 

m, a MAD of 20.91 m, and a RMSE of 27.26 m (Figure 12). The three physical models all have a MAD 
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higher  than  30 m  and  a  RMSE  exceeding  38 m.  The  CADGITE  demonstrates  the  best  overall 

performance. 

 

Figure 12. A comprehensive comparison of ice thickness estimates from four models at GPR measurement points 

on 14 glaciers within HMA. 

5. Discussion 

5.1. Advantages of our Methodology 

In  this  study, we  employ  flow velocity,  slope,  and hypsometry  as  input  features  for neural 

network‐based  ice  thickness  estimation. To  enhance  the model’s understanding of glacial  spatial 

structures, we  introduce “distance  to boundary” as an additional  input  feature  in  the  training of 

CADGITE.  The  inclusion  of  this  feature  improves  the model’s  performance  on  test  datasets. A 

comparative  analysis  against GPR measurements  shows  that  it  reduces  the MAD  and RMSE  by 

approximately 1.67 m and 3.25 m, respectively. This variable quantitatively describes the geometric 

relationship between internal glacier points and their boundaries, which provides an explicit spatial 

prior functioning as an  implicit regularization mechanism. By  introducing spatial constraints, this 

enhances the model’s generalization capability while effectively mitigating overfitting. 

CADGITE is designed as a lightweight convolutional neural network. Compared to the residual 

block‐based  architecture proposed  by Lopez Uroz  et  al.  (2024), CADGITE  incorporates multiple 

efficient feature enhancement modules in both its backbone and branch structures to improve local 

and  global  feature  representation.  These  architectural  innovations  significantly  optimize  feature 

extraction performance  and maintain  training  efficiency, with a  total parameter  count of 393417. 

Experimental results demonstrate that CADGITE outperforms conventional networks in modeling 

the  spatial distribution of  ice  thickness,  indicating  that  the  structural  improvements  substantially 

enhance estimation accuracy. 

Moreover, CADGITE  exhibits  robust  cross‐regional  generalization  capability. Despite  being 

trained exclusively on Swiss glacier data, the model achieves stable thickness estimation performance 

for  the  HMA  region  that  encompass  much  larger  extent  and  more  complex  environment, 

demonstrating notable adaptability  to regional variations. Compared with classical physics‐based 

models, CADGITE yields lower estimation errors for HMA glaciers, with MAD and RMSE values of 

20.91 m  and  27.26 m,  respectively, when  validated  against GPR measurements.  In  comparative 

experiments across 14 glaciers, CADGITE achieved the  lowest MAD  for 8 glaciers and the  lowest 

RMSE for 8 glaciers, demonstrating superior overall performance relative to conventional physical 

models. These results confirm that the network, through the combined effects of physically‐guided 

input features and architectural optimization, possesses excellent generalization capability and offers 

a reliable methodological framework for extra‐regional glacier ice thickness estimation. 

5.2. Interpretation of the Performance of CADGITE 
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Temporal differences between the input data of the training and test sets are one of the sources 

of error in the model estimates. The GPR ice thickness measurements span several decades, with the 

earliest data  collected  in  1958  and  the most  recent  in  2020  [22]. The Swiss glacier  topography  is 

derived from swissALTI3D generated between 2008 and 2011, while the topography of Asian glaciers 

is based on COPDEM data produced from TanDEM‐X bistatic imagery collected between 2011 and 

2015. Glacier velocity data are primarily derived from satellite imagery acquired during 2017–2018. 

The temporal inconsistencies in the training data are a major source of uncertainty in ice thickness 

estimates. Significant glacier changes across different time periods may introduce larger estimation 

errors. 

This performance difference between CADGITE and LLUM may be attributed to the pseudo‐

real nature of the ice‐thickness dataset labeling. The dataset was generated by fusing and calibrating 

physical  model  estimates  with  actual  GPR  measurements.  Although  certain  processing  steps 

improved label consistency, systematic biases may still exist, rendering them not fully equivalent to 

real  observations.  Such  an  error  structure may  cause  the model  to  learn  statistical  patterns  that 

deviate from the true ice thickness during training. In this pseudo‐labeling context, LLUM may tend 

to  fit  the  systematic  errors  in  the  fused  labels,  thereby  performing  better  in  cross‐validation.  In 

contrast,  CADGITE  demonstrates  advantages  in  feature  extraction  and  local  spatial  modeling, 

particularly near GPR measurement points, leading to a more accurate representation of the true ice 

thickness distribution. 

The results show that CADGITE performs better on glaciers with smaller thicknesses and less 

effectively on those with larger thickness. An examination of the input thickness data used for model 

training (Figure 13) reveals that 22620 samples fall within the 0–100 m range, 1567 within 100–200 m, 

438 within 200–300 m, and 339 exceed 300 m. In other words, the majority of input thickness data are 

concentrated  in  the 0–100 m range, while values above 250 m are relatively scarce. Therefore,  the 

model performs better at locations where the ice thickness is below 200 m. The thickness distribution 

of the Unteraargletscher deviates from that of the training data, resulting in relatively large model 

deviations.  Enhancing  the  diversity  of  glacier  samples  in  future work may  further  improve  the 

model’s generalization ability on mountain glaciers. 

 

Figure 13. The thickness distribution of the input for model training. 

In addition  to  the  influence of  the  training  sample distribution on  estimation  capability,  the 

abnormal distribution of input features may also introduce systematic bias. The estimated glacier ice 

thickness results in most valleys exhibit a ʺUʺ shape distribution, which aligns with prior knowledge. 

This is because glaciers typically exhibit deeper ice thickness at the central flowlines. However, the 

thickness estimates near the central flowline of the Unteraargletscher are lower than those on either 
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side of the central flowline. To investigate this phenomenon, we examined the slope input data at 

these locations. At the Unteraargletscher, the central flowline has significantly higher slopes due to 

the presence of more moraines, leading to a notable underestimation of ice thickness near the central 

flowline. As shown in Figure 14, the reference thickness values (Grab et al., 2021) exhibit a similar 

distribution pattern to the thickness estimates from CADGITE shown in Figure 9, with thickness near 

the central flowline being lower than that on either side. We observed that the physically based model 

Glabtop2, which  is sensitive to slope, also yields similar thickness results for certain glaciers. This 

phenomenon  indicates  that  slope‐based  thickness  estimation methods  are  sensitive  to moraine 

interference.  Terrain  data  in moraine  areas may  not  accurately  reflect  the  underlying  bedrock 

morphology. 

 

Figure  14.  (a)  Slope  input  values  for  the  Unteraargletscher;  (b)  Reference  thickness  values  for  the 

Unteraargletscher (Grab et al., 2021). 

5.3 Limitations and Outlooks of Deep‐Learning for Ice Thickness Estimation 

Although CADGITE  incorporates  features  such  as  surface  velocity,  slope,  hypsometry,  and 

distance  from glacier boundaries, which account  for  several key  factors  influencing  ice  thickness 

distribution, it may still miss some potentially important variables. For example, glacier type, surface 

temperature, snow cover extent, and basal friction characteristics may significantly affect the spatial 

distribution of ice thickness. If such information is not included in the model inputs, it may limit the 

model’s generalization ability and its capacity to characterize complex glacier systems. 

In addition, high‐precision ice thickness training datasets with broad spatial coverage and strong 

spatio‐temporal consistency are still lacking. Most observed ice thickness data, such as those from 

GPR  or  drilling,  are  sparsely  distributed  and  cannot  fully  represent  the  diversity  of  glacier  ice 

thickness. This limitation not only affects the modelʹs ability to learn the relationship between input 

features and ice thickness during training, but also reduces its extrapolation capability in unobserved 

regions and may even introduce systematic biases. Developing standardized ice thickness datasets 

that  cover  various  glacier  types  and  climate  zones  is  essential  for  improving  the  accuracy  and 

generalization of deep learning models. 

CADGITE does not explicitly incorporate glacier physical constraints but instead relies on deep 

neural networks  to  learn  the spatial distribution patterns of  ice thickness  from multi‐source  input 

features. The input variables of the model are physically related to ice thickness. Surface velocity can 

be regarded as an indicator of the internal stress field of glaciers and is influenced by multiple factors, 

including ice thickness, temperature, and basal sliding conditions. Slope controls the driving force 

acting on  the glacier. Relative  elevation  and distance  to glacier boundaries help  characterize  the 

glacier’s accumulation and ablation states and reflect its dynamic environment. Although these input 

features partially represent the physical mechanisms underlying glacier  ice thickness distribution, 

the model  itself remains purely data driven. This approach may  lead the model  to favor  learning 

statistical correlations  in  the  training data rather  than  the relationships between  ice  thickness and 
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glacier dynamics, potentially resulting in unstable and physically inconsistent estimates, especially 

when data quality is limited or the model is applied across regions. 

In  the  future, deep  learning methods can be  further  integrated with glacier physical models, 

combining the fitting capabilities of data‐driven approaches with the constraining power of physical 

models.  This  synergistic  approach would  contribute  to  enhancing model  stability  and  physical 

consistency. Concurrently, building more  comprehensive glacier  feature databases by  combining 

remote sensing, multi‐source observations, and regional climate data will also provide better training 

support for deep learning models, expanding their application prospects in ice thickness estimation. 

6. Conclusions 

High‐precision glacier  ice  thickness data are available  in Switzerland, which can be used  for 

model training and validation. Based on these data, this study developed a deep convolutional neural 

network model, CADGITE, to estimate regional glacier ice thickness. Coordinate attention modules 

and densely connected networks were  introduced  to capture spatial  features and  integrate multi‐

source input data. K‐fold cross‐validation was employed on a limited dataset to verify the stability 

of the deep learning‐based glacier ice thickness estimation model. Compared with previous studies, 

this work  introduced distance    to  boundary  as  an  input variable, which  significantly  improved 

model performance. The new model outperformed classical glacier ice thickness estimation models 

on  the  test  dataset. When  applied  to  14  glaciers  across  Asia,  the  model  demonstrated  better 

performance  than other models, highlighting  the potential of CADGITE  for  large‐scale glacier  ice 

thickness estimation. Errors  in  input data,  including glacier velocity, surface DEM, and  the Swiss 

glacier ice thickness data used for training, are the main factors limiting model performance. In the 

future,  improving  the  accuracy,  resolution,  and  numerical distribution  of  input  data,  as well  as 

introducing  appropriate  physical  constraints,  may  enable  the  model  to  achieve  more  accurate 

estimates across a broader range of thicknesses, thereby enhancing its applicability in diverse glacier 

environments. 
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