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Abstract: This study investigates a severe sandstorm event in northern China during 21‐23 March 

2023 using a three‐dimensional variational (3D‐Var) aerosol data assimilation system coupled with 

the WRF‐Chem model. By assimilating FY‐4B geostationary satellite aerosol optical depth  (AOD) 

retrievals  and  surface  PM2.5/PM10  mass  concentration  observations,  the  research  evaluates 

improvements  in  aerosol  initialization  and  quantifies  aerosol‐meteorology  feedback  through 

radiative impacts on brightness temperature (BT). A novel approach integrates the Rapid Radiative 

Transfer Model (RTTOV) to simulate FY‐4A satellite infrared BT, enabling independent validation of 

aerosol‐radiation interactions. Results demonstrate that aerosol assimilation significantly enhances 

initial field accuracy, reducing PM2.5 and PM10 root mean square errors (RMSE) by 56.3% and 63.4%, 

respectively,  with  forecast  improvements  persisting  over  40  hours.  For  meteorological  fields, 

assimilation optimizes aerosol  radiative  effects,  reducing BT biases  in dust‐affected  regions  (e.g., 

Beijing‐Tianjin‐Hebei). Statistical metrics reveal a 11.5% decrease in BT RMSE and an increase in the 

index  of  agreement  (IOA)  from  0.533  (control)  to  0.812  (assimilation),  highlighting  enhanced 

representation of aerosol scattering‐absorption coupling for coarse‐mode dust particles. The study 

underscores that constraining aerosol fields through multi‐source data assimilation not only refines 

pollutant predictions but also indirectly improves meteorological simulations via radiation‐mediated 

pathways.  These  findings  advance  understanding  of  bidirectional  aerosol‐meteorology  feedback 

mechanisms and demonstrate the value of geostationary satellite BT products in validating coupled 

chemistry‐climate models. 
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1. Introduction 

Despite China’s remarkable achievements in aerosol pollution control in recent years, regional 

pollution events remain frequent, with sandstorm activities in northern regions showing a significant 

intensification  trend.  Furthermore,  aerosol  particles  profoundly  influence  climate  systems  and 

weather  processes  through  direct  and  indirect  radiative  effects,  influencing  key meteorological 

elements  such  as  surface  solar  radiation  flux,  atmospheric  boundary  layer  structure,  thermal 

stratification stability, and regional heavy precipitation [1–4]. Accurate simulation and forecasting of 

three‐dimensional  pollutant  fields  using  atmospheric  chemistry models  are  not  only  crucial  for 

implementing emergency pollution control measures but also essential  for advancing research on 

aerosol‐cloud‐precipitation  interactions  [5–11].  However,  uncertainties  in  emission  inventories, 
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initial conditions, and physicochemical parameterizations continue to pose significant challenges to 

the  accuracy of  aerosol pollution modeling  and  forecasting. Data  assimilation  techniques, which 

optimize model  initial  fields  by  integrating multi‐source  observations,  have  proven  effective  in 

enhancing pollutant prediction accuracy [12,13]. 

Researchers  have  systematically  integrated  a  variety  of  observational  datasets—including 

ground‐based aerosol  concentration measurements, multi‐satellite‐derived Aerosol Optical Depth 

(AOD)  products,  and  lidar‐derived  vertical  extinction  coefficients—into  coupled  atmospheric 

chemistry models using advanced assimilation algorithms such as the Ensemble Kalman Filter, 3D‐

Var, and hybrid variational‐ensemble methods [14–27]. These studies demonstrate that aerosol data 

assimilation  significantly  improves  the  accuracy of model  initial  aerosol  fields  and  enhances  the 

reliability  of  concentration  forecasts.  For  example, Wang  et  al.  (2020)  [22]  developed  a  3D‐Var 

assimilation framework  for  the MOSAIC aerosol scheme  in WRF‐Chem, assimilating both aerosol 

and  gaseous  pollutant  concentrations,  which  resulted  in  improved  initial  fields  and  forecast 

performance for multiple pollutants. Similarly, Ye et al. (2021) [28] developed a Mie‐scattering‐based 

observation operator to assimilate CAPILSO lidar extinction coefficients into the MOSAIC scheme, 

leading to notable  improvements  in PM2.5 forecasts and better representation of vertical structure. 

Furthermore,  geostationary  satellite  observations,  with  their  extensive  coverage  and  high 

spatiotemporal resolution, have played a critical role in optimizing chemical initial fields and refining 

aerosol pollution simulations [20,29,30]. 

Despite  the  significant  advancements  in  aerosol  assimilation,  current  studies predominantly 

focus on optimizing initial aerosol fields and improving chemical forecast accuracy [12,22]. However, 

a critical knowledge gap remains in understanding the bidirectional feedback mechanisms between 

aerosols and meteorology triggered by assimilation processes, as well as their subsequent impacts on 

meteorological  fields.  While  aerosol  radiative  forcing  is  known  to  influence  boundary  layer 

thermodynamics and atmospheric stability [31], these  interactions are still not  fully explored. The 

Advanced Geostationary Radiation  Imager  (AGRI) aboard China’s FY‐4A satellite provides high‐

resolution multispectral data  (visible  to  longwave  infrared),  offering  unprecedented  potential  to 

advance both meteorological monitoring and model evaluation. 

This study  investigates a severe sandstorm event  in northern China from March 21–24, 2023. 

Using a multi‐scale 3D‐Var assimilation system, we  integrate high‐resolution FY‐4B geostationary 

satellite AOD products and ground‐based aerosol monitoring network observations into the WRF‐

Chem model. We then systematically evaluate  improvements  in aerosol  initialization and forecast 

performance.  Additionally,  by  using  FY‐4B’s  longwave  infrared  brightness  temperature  (BT) 

observations as  independent validation data—a novel approach—we  couple  the Rapid Radiative 

Transfer Model (RTTOV) to quantify how aerosol assimilation impacts radiative BT simulations. This 

study provides a quantitative assessment of aerosol assimilation’s effect on radiative BT simulations 

and  highlights  how  it  improves  the  representation  of  meteorological  fields  through  radiation‐

mediated pathways. 

2. Materials and Methods 

2.1. WRF‐Chem Model 

The Weather Research and Forecasting Model with Chemistry (WRF‐Chem) is a next‐generation 

regional  meteorology‐chemistry  coupled  model  jointly  developed  by  the  National  Centers  for 

Environmental  Prediction  (NCEP),  the National Center  for Atmospheric Research  (NCAR),  and 

several universities and  research  institutions. As a key extension of  the WRF model, WRF‐Chem 

achieves full coupling between meteorological and chemical processes. The model comprehensively 

incorporates  critical  physicochemical  processes  of  atmospheric  chemical  transport,  including 

advection,  turbulent diffusion, convective  transport, dry and wet deposition mechanisms, aerosol 

chemical  transformations,  as  well  as  radiative  feedback  and  photolysis  reactions,  making  it  a 

powerful numerical simulation tool for atmospheric environmental research. [32,33]. 
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The simulation domain utilizes a  two‐way nested configuration with  two grids, as shown  in 

Figure 1. The outer grid has a horizontal resolution of 27 km, while the inner grid has a resolution of 

9 km, both discretized into 41 vertical layers. Centered at (36°N, 109.4°E), the inner grid spans 175×166 

grid points. The adopted physical and chemical parameterization schemes are summarized in Table 

1. For meteorological forcing, the model is driven by 6‐hourly NCEP Global Forecast System (GFS) 

reanalysis  data  (0.25°×0.25°  resolution), which  provides  initial  and  boundary  conditions  for  the 

meteorological fields. Chemical initial conditions are based on outputs from previous simulations. 

Anthropogenic  emissions  are  specified  using  the Multi‐resolution  Emission  Inventory  for China 

(MEIC, http://www.meicmodel.org), developed by Tsinghua University [34]. 

Table 1. Physical and chemical parameterization schemes implemented in WRF‐Chem. 

Physical or chemical parameterization scheme  Option 

Cloud Microphysics  WSM 5‐class scheme [35] 

Longwave Radiation    RRTMG[36] 

Shortwave Radiation    RRTMG[36] 

Cumulus Convection  Grell‐3[37] 

Land Surface Model  Noah[38] 

Planetary Boundary  YSU[39] 

Chemical Mechanism  CBMZ[40] 

Aerosol  MOSAIC_4bin[41] 

Photolysis Calculation  Fast‐J[42] 

Dust scheme  Shao (2011)[43] 

 

Figure 1. Spatial distribution of the model domain. 

2.2. 3D‐VAR 

Aerosol data assimilation optimally  constrains atmospheric  chemistry models by  integrating 

observational  data,  enhancing  the  spatiotemporal  accuracy  of  aerosol  distributions  and  refining 

simulations and forecasts. The aerosol 3D‐Var system used in this study follows the methodological 

framework  established  in  our  previous  work[22,45].  From  a  mathematical  implementation 

perspective, 3D‐Var formulates the data assimilation problem as the minimization of a cost functional, 

constructed as follows: 
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𝐽ሺ𝑥ሻ ൌ  
1
2

 ሺ𝑥 െ 𝑥௕ሻᵀ 𝐵ିଵሺ𝑥 െ 𝑥௕ሻ ൅
1
2
ሺ𝐻𝑥 െ  𝑦ሻᵀ 𝑅ିଵሺ𝐻𝑥 െ  𝑦ሻ 

Here,  x  represents  the  control  variable  (or  analysis  variable)  in  the  assimilation  system, 

𝑥௕denotes the model background field, and y is the observation field. B and R are the background 

error covariance matrix and observation error covariance matrix, respectively. The H operator is the 

observation operator, which maps variables from model space to observation space. 

This study adopts the National Meteorological Center (NMC) method to estimate background 

error covariance, a well‐established approach originally proposed by Derber and Parrish[44]. The 

methodology involves computing differences between 48‐hour and 24‐hour forecasts from the same 

initial time, with these difference fields statistically approximating background errors. We implement 

this by running WRF‐Chem for one month, performing daily 48‐hour forecasts initialized at 00 UTC, 

and systematically collecting  the differences between corresponding 48‐hour and 24‐hour  forecast 

fields to build a robust error covariance matrix. For a more detailed description of the construction 

of the B matrix, the observation operator, and the minimization solution, please refer to Wang et al. 

(2022) [45]. 

2.3. RTTOV Model 

RTTOV (Radiative Transfer for TOVS) is an atmospheric radiative transfer model developed by 

the European Centre for Medium‐Range Weather Forecasts (ECMWF), primarily used to simulate 

satellite‐observed brightness  temperatures. By  solving  the  radiative  transfer  equation,  the model 

accurately simulates the absorption and scattering effects of atmospheric gases, clouds, aerosols, and 

other  components on  electromagnetic waves,  covering a broad  spectral  range  from ultraviolet  to 

microwave[46–49].  RTTOV  efficiently  retrieves  top‐of‐atmosphere  upwelling  radiance  and 

brightness temperatures using input atmospheric profiles (from model output), surface parameters 

(from model output), and satellite viewing geometry.  In  this study, we use RTTOV version 13  to 

simulate the FY4A radiance. 

2.4. Data 

This  study  assimilates AOD  data  from  the  Fengyun‐4B  (FY‐4B)  satellite  along with  surface 

pollutant observation data. The FY‐4B AOD data, sourced from the Level‐2 Land Aerosol Product 

(LDA) of its Advanced Geostationary Radiation Imager (AGRI), are retrieved using the “dark target” 

algorithm. This product provides AOD, Ångström exponent, and columnar mass concentration of 

suspended particles, with a spatial resolution of 4 km and a temporal resolution of 15 minutes. The 

study  specifically  utilizes  AOD  data  at  550  nm  from  the  LDA  product, which  is  available  for 

download from the National Satellite Meteorological Center (NSMC) website. Surface pollutant data 

are collected from over 2,000 monitoring stations of the China National Environmental Monitoring 

Centre,  updated  hourly,  and  include  concentrations  of  PM2.5,  PM10,  SO2, NO2, CO,  and O3.  The 

validation of assimilation uses FY‐4B AGRI data, while PM10 and PM2.5 are validated against surface 

observations. 

This study employs the blackbody brightness temperature (TBB) data, a Level‐2 product from 

the  Fengyun‐4A  (FY‐4A)  satellite,  as  a  validation  dataset  to  assess  the  improvement  effects  of 

assimilating  aerosol  optical  depth  (AOD)  and  ground‐level  particulate matter  concentrations  on 

meteorological  fields. As  a  standard  product  of  the Advanced Geostationary  Radiation  Imager 

(AGRI), the TBB data are derived through rigorous onboard radiometric calibration processes and 

represent the equivalent blackbody temperature corresponding to Earth’s outgoing radiation. The 

dataset has a spatial resolution of 4 km, is stored in NetCDF format, and has update frequencies of 

60 minutes, 15 minutes, or irregular intervals depending on observation modes.In terms of radiative 

characteristics,  visible  and  near‐infrared  bands  (corresponding  to AGRI  channels  1‐6)  primarily 

measure solar radiation and are typically expressed as reflectance, while infrared bands (channels 7‐

14) mainly detect thermal emissions from Earth’s surface and atmosphere, thus represented by black 
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body temperature. The TBB product only contains black body temperature data for channels 7‐14, 

with channels 1‐6 being null values. This study selects channel 8 black body temperature observations 

from  the  AGRI  Level‐2  TBB  product  as  ground  truth  data  to  evaluate  the WRF‐Chem model 

performance under different assimilation conditions. Comparative analysis between assimilation and 

non‐assimilation  scenarios  aims  to  reveal  the  impact mechanisms  of data  assimilation  on model 

simulation performance. 

This study utilizes the TBB observations from Channel 10 (central wavelength 7.1 μm) of the 

AGRI Level‐2 product as the validation benchmark. The selection of this specific channel is based on 

its pronounced sensitivity to the scattering‐absorption coupling effects of coarse‐mode aerosols such 

as  dust  particles,  owing  to  its  distinctive  infrared  spectral  characteristics.  By  systematically 

comparing the deviation characteristics between WRF‐Chem simulated brightness temperatures and 

satellite observations under assimilation and non‐assimilation scenarios,  this study quantitatively 

elucidates  the  impact mechanisms of aerosol data assimilation on  improving meteorological  field 

simulation accuracy. 

2.5. DA Experimental Design 

This  study  conducts  numerical  experiments  to  evaluate  the  improvement  of  3D‐Var  data 

assimilation on dust weather forecasting, with the following experimental design (Table 2): Control 

experiment: Without data  assimilation,  initialized  at  00:00 UTC  on  21 March  2023  for  a  54‐hour 

forecast;Assimilation  experiment: Assimilates FY‐4B LDA aerosol products  and  surface pollutant 

observations (with 6‐hourly cycling assimilation) in D01/D02 domains, using the final analysis field 

as initial conditions for a 54‐hour forecast. 

This  study  conducts  numerical  experiments  to  evaluate  the  improvement  of  3D‐Var  data 

assimilation on aerosol and FY‐4A radiance simulations. The experimental design is as follows (Table 

2): 

Control experiment: No data assimilation, initialized at 00:00 UTC on 21 March 2023, with a 54‐

hour forecast. 

Assimilation  experiment:  Assimilates  FY‐4B  AOD  and  PM2.5/PM10  (with  6‐hourly  cycling 

assimilation) in the D01/D02 domains, using the final analysis field as the initial condition for a 54‐

hour forecast. 

Table 2. Numerical experiment design. 

Experiment 

Name 

Assimilation 

Domain 
Assimilated Data  Forecast Time 

Forecast 

Hour 

Control  No assimilation  No assimilation 

2023‐03‐21T00:00Z   

To 

2023‐03‐23T06:00Z 

54h 

Analysis  D01/D02 

1. FY‐4B AOD data 

2. PM2.5 and PM10 data 

(Data assimilated every 6 

hours) 

54h 

To  quantitatively  evaluate  the  improvement  of data  assimilation  on model  forecasting,  this 

study employs four key statistical metrics:Root Mean Square Error (RMSE)、Mean Fractional Error 

(MFE)、Correlation Coefficient (CORR).The evaluation criteria are defined as follows: Smaller RMSE 

and MFE  values  indicate  higher  simulation  accuracy;  larger CORR  values  reflect  better model‐

observation consistency. The specific calculation formulas are as follows: 

RMSE ൌ ൥
1
𝑁
෍  

ே

௜ୀଵ

 ሺ𝑃௜ െ 𝑂௜ሻଶ൩

ଵ
ଶ
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MFE ൌ
1
𝑁
෍ 

ே

௜ୀଵ

|𝑃௜ െ 𝑂௜|
ሺ𝑃௜ ൅ 𝑂௜ሻ/2

 

 CORR =
∑  ே
௜ୀଵ  ሺP௜ െ P‾ሻሺ𝑂௜ െ 𝑂‾ሻ

ට∑  ே
௜ୀଵ  ሺP௜ െ P‾ሻଶ ∑  ே

௜ୀଵ  ሺ𝑂௜ െ 𝑂‾ሻଶ
 

where  𝑂௜   represents  the  observed  value,  𝑃௜   denotes  the  model  value  interpolated  to  the 

observation location, 𝑂௜  is the observed value,  𝑃‾   is the mean of  𝑃௜  , 𝑂‾   is the mean of 𝑂௜  , and N 
indicates the total number of samples. 

This  study  additionally  employs  the  Index  of Agreement  (IOA)  to  quantitatively  assess  the 

improvement of brightness temperature simulation through data assimilation. The IOA ranges from 

0 to 1, with its value directly  indicating the degree of consistency between model predictions and 

observations: An IOA of 1 denotes perfect agreement, while 0 indicates complete disagreement. The 

mathematical formulation of this index is defined as follows: 

IOA ൌ 1 െ
∑  ே
௜ୀଵ  ሺ𝑂௜ െ 𝑃௜ሻଶ

∑  ே
௜ୀଵ ሺabsሺ𝑂௜ െ 𝑂‾ሻ ൅ absሺP௜ െ 𝑂‾ሻሻଶ

 

where  𝑂௜   represents  the  observed  value,  𝑃௜   denotes  the  model  value  interpolated  to  the 

observation location , 𝑂‾   is the mean of 𝑂௜  , and N indicates the total number of samples. 

3. Result 

3.1. Weather Field and Pollution Process Analysis 

Figure 2 demonstrates the spatiotemporal evolution of surface PM10 concentrations and 10‐m 

wind fields within the D02 modeling domain during 21‐22 March 2023. The analysis reveals that at 

00 UTC  on  21 March,  significantly  elevated  PM10  levels  first  emerged  in  northern Ningxia  and 

southern Inner Mongolia, with peak concentrations reaching 681 μg/m³, indicating the initial impact 

of the dust weather system on the study area. The surface wind field at this time exhibited prevailing 

northwesterly winds  across  the  entire  domain, with wind  speeds maintained  between  4‐6 m/s, 

establishing  favorable meteorological  conditions  for  southeastward  dust  transport. As  the  event 

progressed,  sustained  northwesterly  flow  facilitated  the  gradual  formation  of  a  distinct  PM10 

pollution belt over North China. By 12 UTC on 22 March, this pollution belt had expanded to cover 

extensive  areas  including Beijing, Tianjin,  central‐northern Hebei, northern Shanxi,  and northern 

Shandong, with  regional  average  PM10  concentrations  exceeding  500  μg/m³  and  localized  peaks 

reaching 695 μg/m³. This spatial distribution pattern shows strong consistency with observed dust 

weather processes,  confirming  the model’s  capability  to  reasonably  reproduce  the dust  transport 

pathways and intensity variations. 
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Figure 2.    Surface PM10 mass concentration and 10‐meter wind field from 21 to 22 March 2023. 

Figure 3 displays  the  spatial distribution of  surface PM2.5  concentrations and 10‐meter wind 

fields at different time points within the D02 region on 21‐22 March 2023. The figure shows that at 

00:00 UTC on 21 March, high PM2.5 concentration areas appeared in the Beijing‐Tianjin‐Hebei region 

and northern Ningxia, with peak concentrations reaching 195 μg/m³, indicating severe dust weather 

conditions. Most  areas of North China  also  exhibited  elevated PM2.5  levels,  averaging  above  100 

μg/m³, suggesting PM2.5 was the dominant pollutant, forming a haze pollution belt across northern 

China. By  12:00 UTC  on  22 March,  the high PM2.5  concentration  zone had  shifted  southward  to 

western Shandong. Combining the evolution of both PM2.5 and PM10 concentrations, we conclude that 

during the weather event from 00:00 UTC 21 March to 00:00 UTC 22 March, PM10 gradually spread 

from northwestern to southeastern regions. 
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Figure 3.    Surface PM2.5 mass concentration and 10‐meter wind field from 21 to 22 March 2023. 

Figure 4 presents the spatial distribution of aerosol optical depth (AOD) observations at 00:00 

UTC on 21 March 2023. The maximum AOD values (up to 2) were observed in central and eastern 

Hebei province. A comparison with Figure 3 reveals a significant spatial consistency between PM2.5 

concentrations and AOD distributions, indicating a strong correlation between these two parameters. 

This  suggests  that AOD  data  can  effectively  characterize  the  spatial  patterns  of  PM2.5 pollution. 

Furthermore, AOD measurements offer more comprehensive spatial coverage and higher resolution 

compared  to ground‐based PM2.5 monitoring.  In  regions with  sparse  surface monitoring  stations, 

AOD data can serve as a valuable supplement to fill the gaps in PM2.5 observations. 
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Figure 4.   AOD observations at 00:00 UTC on 21 March 2023. 

3.2. Initial Condition Field Analysis for Data Assimilation 

Upon  completion  of  the  assimilation  process,  the  system  generates  an  analysis  field  by 

combining  the  increment  field  (derived  from  observational  data  assimilation) with  the  original 

background field. This analysis field subsequently serves as the initial field for the next assimilation 

cycle. Notably,  the  increment  field  quantitatively  demonstrates  the  improvements made  to  the 

background field through data assimilation. In this experiment, we performed the assimilation of FY‐

4B satellite data and surface pollutant observations based on the initial field at 00:00 UTC on 21 March 

2023. 

Figure  5  presents  scatter plots  comparing  PM2.5  and  PM10 mass  concentrations  between  the 

Control (blue) and Analysis (red) experiments in Domain 2 (D02) of the initial field. The plots reveal 

that while data points from both experiments are distributed on both sides of the reference line, most 

Control experiment points fall below the line, indicating systematic underestimation of both PM2.5 

and PM10  concentrations by  the model.  In  contrast,  the Analysis  experiment  results  show  closer 

clustering around the reference line.Quantitatively, for PM2.5, the Analysis experiment demonstrated 

significant  improvements over  the Control: RMSE decreased  from  56.912  to  24.854  (reduction of 

32.058 or 56.3%), MFE decreased from 0.8 to 0.184 (reduction of 0.616 or 77%), and CORR increased 

from 0.292 to 0.793 (improvement of 0.501). Similar improvements were observed for PM10: RMSE 

decreased from 123 to 45 (reduction of 78 or 63.4%), MFE decreased from 0.787 to 0.215 (reduction of 

0.572 or 72.7%), and CORR increased from 0.099 to 0.872 (improvement of 0.773).These comparative 

metrics  clearly  demonstrate  that  the  analysis  field  generated  through  data  assimilation  better 

approximates the true atmospheric conditions and more accurately represents the spatial distribution 

of PM2.5 and PM10  in  the  initial  field. Utilizing  this  improved analysis  field as  the model’s  initial 

conditions will consequently enhance the overall forecasting performance of the model. 
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Figure 5. Scatter plots of simulated versus observed PM₂.₅ concentrations in Domain 2 at 00:00 UTC on the 21st 

for  control  (blue)  and  assimilation  (red)  experiments.  Dashed  lines  show  2:1,  1:1,  and  1:2  observation‐to‐

simulation ratios. 

Figures 6 and 7 display the spatial distributions of initial fields and assimilation increments for 

PM2.5  and  PM10  at  00:00  UTC  on  21  March  2023  in  both  Control  and  Analysis  experiments. 

Comparative  analysis  reveals:  (1) The  initial PM2.5  concentrations  in  the Analysis  experiment are 

significantly  higher  than  those  in  the Control  experiment, with  the most  pronounced  increases 

(exceeding 180μg/m³) occurring in southern Shaanxi, the Beijing‐Tianjin‐Hebei region, and Shandong 

province; (2) PM10 exhibits similar spatial variation patterns, but its peak values are primarily located 

in  northern  Ningxia  and  southern  Inner  Mongolia,  which  is  directly  related  to  the  observed 

maximum PM10 concentrations at surface stations in these regions, while the concentration changes 

in northwestern China are mainly attributed to the assimilation of surface PM10 observations. 

 

Figure  6. Spatial distribution of  initial PM₂.₅  fields:  (a) Control  experiment,  (b) Assimilation  experiment,  (c) 

Increment field. 
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Figure  7.  Spatial distribution  of  initial PM10  fields:  (a) Control  experiment,  (b) Assimilation  experiment,  (c) 

Increment field. 

Figure 8 Spatial distribution of initial AOD fields, showing maximum increments (up to 1.8) in 

central Hebei  (panel  c).  The  assimilation  experiment  accurately  reproduces AOD  patterns, with 

spatial  variations  consistent  with  PM₂.₅/PM₁₀  changes  (Figs.  6‐7),  demonstrating  effective 

observational data integration for improved initial field generation. 

 

Figure  8. Spatial distribution of  initial AOD  fields:  (a) Control  experiment,  (b) Assimilation  experiment,  (c) 

Increment field. 

3.3. Comparative Analysis of the Effect of Assimilation on Aerosol Forecasting 

Figures 9 and 10 display the comparative results of PM2.5 and PM10 simulations at monitoring 

stations in Domain 2 between the two experiments, including RMSE, MFE, and CORR statistics along 

with  time  series  curves. Comprehensive  analysis  demonstrates  that  the  assimilation  experiment 

exhibits significantly better performance across all metrics, showing closer agreement with station 

observations. Notably, the CORR displays cyclic variations due to the 6‐hourly cycling assimilation 

scheme, with  immediate  improvement  followed by gradual decay after each assimilation, clearly 

reflecting  the  continuous enhancement  from assimilated data. Furthermore,  the optimized effects 

persist for over 40 hours before the metrics gradually converge toward the control experiment levels. 
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Figure 9. Temporal variations of PM10 statistical metrics during the 54‐hour forecast initialized at 00:00 UTC 21 

March 2023: assimilation experiment (blue) vs control experiment (red). 
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Figure 10. The same as Figure 9, but PM2.5. 

3.4. Simulation of Bright Temperature Using RTTOV 

This study evaluates the impact of aerosol assimilation on brightness temperature simulations 

by  leveraging  the distinct  sensitivity of  coarse dust particles  to  longwave  infrared  radiation. The 

analysis utilizes brightness temperature observations from Channel 10 (central wavelength 7.1 μm) 

of the FY‐4A satellite. Figure 11 shows the adjustment characteristics of the assimilation experiment 

on the brightness temperature field at the initial time: in key dust pollution areas (northern Ningxia, 

Beijing‐Tianjin‐Hebei,  and  southern  Henan),  the  control  experiment  shows  significant  positive 

brightness temperature deviations, with maximum deviations reaching 40 K; in most northern areas 

of the study region, the brightness temperature deviations are relatively small, with increment field 

fluctuations mainly ranging between  ‐10 K and 10 K. Notably,  the high‐value areas of brightness 

temperature  deviations  show  spatial  consistency  with  the  high‐value  areas  of  PM10/PM2.5 

concentration  changes  (Figure  11d).  The  assimilation  experiment  results  demonstrate  that  after 

assimilating multi‐source aerosol observation data, the agreement between the simulated brightness 

temperature field and FY‐4A actual observations is significantly improved. 
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Figure 11. Spatial distributions of Channel 10 TBB at 00:00 UTC 21 March 2023:  (a) Control experiment,  (b) 

Assimilation experiment, (c) Increment field, and (d) FY‐4A TBB observations. 

Figure 12 presents the comparison between simulated and observed brightness temperatures 

(Channel 10) at 00:00 UTC on 21 March 2023. The analysis  reveals  that  compared  to  the Control 

experiment, the Assimilation experiment produces brightness temperature simulations that are more 

tightly  clustered  and  closer  to  the  y=x  reference  line  in  the  scatter  plot. Quantitative  evaluation 

demonstrates  that  assimilation  reduces  RMSE  from  6.863  to  6.074  (a  decrease  of  0.789,  11.5% 

reduction),  lowers MFE  from  0.02178  to  0.02062  (a  decrease  of  0.00116,  5.32%  reduction),  and 

significantly improves IOA from 0.533 to 0.812. It is noteworthy that the improvements show distinct 

temperature‐dependent characteristics: significant accuracy enhancement in the 220‐240 K range but 

systematic underestimation in the 240‐250 K range. Compared to the remarkable improvements in 

PM2.5 and PM10 simulations,  the progress  in brightness  temperature simulation appears  relatively 

limited,  primarily  due  to  the  susceptibility  of  brightness  temperature  signals  to  atmospheric 

interference such as cloud effects. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 April 2025 doi:10.20944/preprints202504.0186.v1

https://doi.org/10.20944/preprints202504.0186.v1


  15  of  20 

 

 

Figure 12. Scatter plots of simulated versus observed brightness  temperatures  (Channel 10) at 00:00 UTC 21 

March for control (red) and assimilation (blue) experiments. 

Figure  13 presents  the  temporal  evolution of RMSE, MFE,  and  IOA  statistics  for brightness 

temperature simulations over Domain 2. Comparative analysis demonstrates superior performance 

of  the  assimilation  experiment  across  all metrics,  showing  closer  agreement with FY‐4A  satellite 

observations. The results exhibit distinct temporal characteristics: during 0‐24 forecast hours, both 

experiments show  increasing RMSE/MFE and decreasing  IOA, while 24‐48 hours  reveal opposite 

trends (decreasing RMSE/MFE and increasing IOA). This pattern aligns with PM10/PM2.5 simulations, 

validating the cycling assimilation system’s efficacy—the 6‐hourly assimilation updates consistently 

improve initial field quality, leading to periodic enhancements in simulation performance after each 

assimilation cycle. 
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Figure 13. Temporal evolution of brightness temperature statistics during the 48‐hour forecast initialized at 00:00 

UTC 21 March 2023: assimilation experiment (blue) versus control experiment (red). 

4. Conclusion and Discussion 

This study employed a 3D‐Var aerosol data assimilation system that integrates FY‐4B satellite 

AOD retrievals and surface aerosol observations to improve dust event simulations. The assimilation 

system  demonstrates  remarkable  success  in  enhancing  both  aerosol  initial  fields  and  forecast 

accuracy. Notably, the incorporation of aerosol observations not only optimizes particulate matter 

predictions  but  also  indirectly  improves  meteorological  field  simulations  by  refining  radiative 
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transfer processes, as evidenced by significant advancements in FY‐4A brightness temperature (BT) 

simulations. Key findings are as follows: 

Assimilation of FY‐4B AOD and surface aerosol mass concentrations markedly improved initial 

field quality  for PM₂.₅ and PM₁₀. For PM₂.₅, RMSE decreased by 56.3%, MFE by 77%, and CORR 

increased by 0.501;  for PM10, RMSE dropped by 63.4%, MFE by 72.7%, and CORR  rose by 0.773. 

Spatial  consistency  between  AOD  adjustments  and  PM  concentration  changes  confirmed  the 

effectiveness  of  assimilation  in  generating  realistic  initial  conditions.  Forecast  improvements 

persisted for over 40 hours, underscoring the sustained impact of assimilation. 

By coupling the RTTOV radiative transfer model, this study quantitatively assesses the impact 

of  aerosol  assimilation  on  brightness  temperature  (BT)  simulations. The  assimilation  experiment 

revealed significant improvements in BT simulations, reducing the RMSE of Channel 10 BT by 11.5% 

and  increasing  the  IOA  from  0.533  to  0.812.  These  enhancements  are  spatially  consistent with 

increases in aerosol concentration, particularly in dust‐affected regions like northern Ningxia and the 

Beijing‐Tianjin‐Hebei  area, where BT  biases  are  reduced  by  as much  as  40 K. The  improved BT 

simulations reflect a better representation of aerosol radiative effects, as the assimilated aerosol fields 

may more accurately capture the scattering and absorption interactions of coarse‐mode dust particles 

in  the  longwave  infrared spectrum. Also,  the BT  improvements validate  that aerosol assimilation 

indirectly  enhances  meteorological  simulations  through  radiation‐mediated  pathways.  By 

constraining aerosol  initial conditions,  the assimilation system reduces errors  in radiative  transfer 

calculations, leading to more realistic simulations of near‐surface meteorological variables, as well as 

temperature and specific profiles. This mechanism explains the persistent positive forecast impacts 

observed  over  40  hours, where  refined  aerosol  fields  drive  better‐coupled  aerosol‐meteorology 

interactions. These improvements not only validate the assimilation’s accuracy but also emphasize 

its critical role in refining aerosol‐radiation interactions within numerical models. 

While  the  improvements  in BT  confirm  the  system’s  ability  to  enhance aerosol‐meteorology 

feedback modeling, the extent of these gains remains moderate in comparison to the improvements 

in PM concentration. This discrepancy is due to confounding atmospheric factors, especially cloud 

contamination and uncertainties in the parameterization of aerosol optical properties. Future work 

should  focus  on  assimilating  hyperspectral  infrared  observations  and  developing  cloud‐aware 

assimilation  algorithms  to  better  resolve  aerosol‐cloud‐radiation  interactions.  Furthermore, 

extending the evaluation to a wider range of meteorological variables (e.g., boundary layer height, 

vertical  temperature gradients) will provide a more comprehensive understanding of  the broader 

impacts of aerosol assimilation on weather forecasting. 
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