
(MN LATEX style file v2.2)

Effective apsidal precession in oblate coordinates
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ABSTRACT
We use oblate coordinates to study its resulting orbit equations. Their related solutions
of Einstein’s vacuum equations can be written as a linear combination of Legendre
polynomials of positive definite integers l. Starting from solutions of the zeroth order
l = 0 in a nearly newtonian regime, we obtain a non-trivial formula favoring both
retrograde and advanced solutions for the apsidal precession depending on parame-
ters related to the metric coefficients, particularly applied to the apsidal precessions
of Mercury and asteroids (Icarus and 2 Pallas). As a realization of the equivalence
problem in general Relativity, a comparison is made with the resulting perihelion shift
produced by Weyl cylindric coordinates and the Schwarzschild solution analyzing how
different geometries of space-time influence on solutions in astrophysical phenomena.
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INTRODUCTION1

Since the explanation of the perihelion advance of Mer-
cury by Einstein in 1915 as application of general Relativity
(GR), and it has been considered one of the fundamental
laboratories for testing extensions of standard GR and other
gravitational models such as, e.g, the modification of New-
tonian Dynamics (MOND)(Schmidt 2008), Kaluza-Klein
five-dimensional gravity (Lim and Wesson 1992), Yukawa-
like Modified Gravity (Iorio 2008a), Horava-Lifshitz gravity
(Harko, 2011), brane-world models and variants (Mak and
Harko 2004; Maia, Capistrano and Muller 2009; Cheung and
Xu 2013; Chakraborty and Sengupta 2014; Jalalzadeh et al.
2009; Iorio 2009a,b) and in the parametric post-Newtonian
(PPN) framework and beyond and approaches in the weak
field/slow motion limits (Avalos-Vargas and Ares de Parga
2012; Arakida 2013; Adkins and McDonnell 2007; Biswas
and Mani 2005; D’Eliseo 2012; Deng and Xie 2014; Feldman
2013; Li et al. 2014; Iorio 2005, 2006, 2008b, 2011; Ruggiero
2014; Wilhelm and Dwivedi 2014).

This paper aims at showing the comparison of different
geometries and on how it inflicts on the underlying physics
to describe the same astrophysical phenomenon. This has a
particular relevance for astrophysical phenomena where the
form of the objects plays a central role to obtain a more
realistic description and a departure from a spherical ge-
ometry may give more insight on the physical phenomena.
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† E-mail:paola.seidel@gmail.com
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This solution has to do with the shape, the topology or the
symmetry aspects of the gravitational field. To do so, the ar-
bitrary (diffeomorphic) transformations of GR cannot hap-
pen. This is a fine example of the equivalence problem in
GR on how to know that solutions of Einstein’s equations
in different coordinates do not describe the same gravita-
tional field. The application of Cartan’s equivalence method
(Cartan, 1927) solves this situation based on the fact that
the Riemann tensors and their covariant derivatives up to
the tenth order must be equal. However, another method
also solves that issue using covariant derivatives up to the
seventh order (Karlhede 1980). In the second section, we
make a brief review of Zipoy’s work on oblate static metric
and the “monopole” solution that resides on the zeroth de-
gree of Legendre polynomials. Moreover, an orbit equation
is obtained. In the third section, the calculations of a non-
standard expression for the perihelion shift are shown with
a comparison with the standard Einstein result and Weyl’s
axial metric. We also apply the model to asteroid in inner
(Icarus) and outer solar system (2 Pallas). Finally, we make
the final remarks in the conclusion section.

ZIPOY OBLATE METRIC2

Form and general solution of Zipoy’s metric2.1

An interesting work published by Zipoy (1966) investigates
some topological properties on oblate spheroidal and pro-
late coordinates by calculating the vacuum Einstein’s equa-
tions to study general properties of the metrics such as their
asymptotic behaviour, singularities and stability. Moreover,
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he found that those metrics present a nearly newtonian1

solution resulting a linear combination of Legendre poly-
nomials. Bearing in mind that the astrophysical phenom-
ena depend on the form of objects, then different metrics
must provide different aspects of the inner physics of the
phenomena, once the diffeomorphic group of general rela-
tivity is broken, and diffeomorphic transformations cannot
be allowed and new prospects may be found particularly on
applications in astrophysics.

On the mechanism we are going to show, we consider the
effects in a single plane of orbit. This consideration is com-
patible with the observed movement of the planets around
the Sun limited to the plane of orbits. Considering the Sun
in the center of the circular base of a cylinder and a planet
(or a small celestial object) as a particle with mass m or-
biting its edge, it can be described by Weyl’s line element
(Weyl, 1917)

ds2 = −e2(λ−σ)
(
dρ2 + dz2

)
− ρ2e−2σdφ2 + e2σdt2 , (1)

where the coefficients λ = λ(ρ, z) and σ = σ(ρ, z) are
the Weyl potentials. Moreover, this metric is diffeomor-
phic to the Schwarzschild’s one, and it does not lose
its asymptotes and is asymptotically flat (Weyl, 1917;
Rosen, 1949; Zipoy 1966; Gautreau, Hoffman and Armenti,
1972; Stephani et al., 2003). Differently from the works of
(González, Gutiérrez-Piñeres and Ospina, 2008; Gutiérrez-
Piñeres, González and Quevedo, 2013; Ujevic and Letelier,
2004, 2007) and (Vogt and Letelier, 2008) where the au-
thors use a mass distribution with Weyl’s exact of Einstein
equations, we studied approximate solutions of this metric
for a test particle by expanding the metric coefficient func-
tions (or potentials) into a Taylor’s series and as a result the
obtained perihelion shift was about 43.105 arcsec/century
(Capistrano, Roque and Valada, 2014).

To obtain the oblate coordinates, a change of variable
can be applied in such a form ρ = a cosh v cos θ and z =
a sinh v sin θ, and a is a length parameter. The resulting line
element is given by

ds2 = −a2e2(λ−σ)(sinh2 v + sin2 θ)
(
dv2 + dθ2

)
−a2e−2σ cosh2 v cos2 θdφ2 + e2σdt2 , (2)

where (v, θ) are the oblate coordinates, being the variation
of v producing ellipsoids intertwined by hyperboloids built
by the coordinate θ. In this case, the situation is physically
more interesting, for instance, we can consider the Sun in one
focus of the elliptical base in the plane of the orbit and the
planets moving in this plane. Moreover, the exterior gravi-
tational field in the cylinder outskirts is given by Einstein’s
vacuum equations

σ,vv + σ,θθ + σ,v tanh v − σ,θ tan θ = 0 , (3)

1 We use the term nearly newtonian in the sense of Misner,

Thorne and Wheeler (1973), and Infeld and Plebanski (1960),
as an intermediate gravitational field between the general Rela-

tivity and Newtonian gravitational field in such a way that there

is no a priori constraints on the field strength but only on the re-
lated movement (geodesic) equations. Needless to say, whenever

the presuppositions of the weak field regime and the slow mo-
tion condition are applied and the expansion parameters of the

metric are set, it leads naturally to the post-newtonian regime

(Capistrano, 2018).

σ2
,v − σ2

,θ − λ,v tanh v − λ,θ tan θ = 0 , (4)

2σ,vσ,θ + λ,v tan θ − λ,θ tanh v = 0 , (5)

λ,vv + λ,θθ + σ2
,v + σ2

,θ = 0 . (6)

where the notation (, v), (, θ) and (, vv), (, θθ) denote re-
spectively the first and the second derivatives with respect
to the variables v and θ. Noting that eq.(3) is just Laplace’s
equation in oblate coordinates, a solution of the coefficient
σ can be found. Firstly, a change of variables can be made
with x = sinh v and y = sin θ, and after using the method of
separation of variables, one can write σ(x, y) = P (x)Q(y),
and find

∂

∂x

[
(x2 + 1)

∂σ

∂x

]
+

∂

∂y

[
(1− y2)

∂σ

∂y

]
, (7)

and their resulting separated equations

∂

∂x

[
(x2 + 1)

∂P (x)

∂x

]
− l(l + 1)P (x) = 0 , (8)

∂

∂y

[
(1− y2)

∂Q(y)

∂y

]
+ l(l + 1)Q(y) = 0 ,

where l are the degree of Legendre polynomials. The solu-
tions P (x) and Q(y) are given by the Legendre polynomi-
als of first kind and both Legendre polynomials of first and
(the complex) second kind, respectively. Due to the struc-
ture of the line element eq.(2), we only need the coefficient
σ to produce a nearly newtonian gravitational regime by
the component g44 (Misner, Thorne and Wheeler 1973). For
this reason, we are only interested in the solution for the
coefficient σ. Following the results in Zipoy (1966), for the
“monopole” solution l = 0, one can obtain:

e2ν =

(
r2 + a2 sin θ2

r2 + a2

)β2+1

, (9)

and the σ(r) potential is given by

σ(r) = −β arctan
a

r
, (10)

being 0 6 arctan a
r

6 π, β = m
a

and r = a sinh v. The
quantities a and m are length parameters, being β a di-
mensionless quantity. Hereon, we consider only a and β as
fundamental parameters for our further analysis. This new
change of variable leads to the line element

ds2 = −e2(ν−σ)dr2 − e2(ν−σ)(r2 + a2)dθ2

−e−2σ(r2 + a2) cos2 θdφ2 + e2σdt2 . (11)

As a realization of the diffeomorphism invariance, Zipoy
showed when r → ∞, the equation (11) turns into an
isotropic Schwarzschild line element and the set of coordi-
nates (r, θ, φ) turns the usual spherical coordinates.

2.2 Orbit equation for the “monopole” solution
l = 0

To start with, we consider a constraint to restrain the move-
ment of a particle to the plane of the orbit setting the coordi-
nate θ = 0 that imposes a constraint on the diffeomorphism
invariance. Hence, we have a constraint on velocities

~v · ~v = gαβv
αvβ = −1 , (12)

where we denote vα = dα
dτ

. Thus, we also denote the quanti-

ties vr = dr
dτ

, vφ = dφ
dτ

, and vt = dt
dτ

. Moreover, using eq.(11)

c© 0000 RAS, MNRAS 000, 000–000

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 November 2018                   doi:10.20944/preprints201811.0257.v1

http://dx.doi.org/10.20944/preprints201811.0257.v1


Effective apsidal precession in oblate coordinates 3

and (12), one can obtain the following expression

−
(

r2

r2 + a2

)β2+1

e−2σ(r)

(
dr

dτ

)2

−e−2σ(r)(r2 + a2)

(
dφ

dτ

)2

+ e2σ(r)
(
dt

dτ

)2

= −1 . (13)

To proceed further, we need to know the conserved
quantities. This can be obtained using the functional L =
1
2
gµν ẋ

µẋν and the Euler-Lagrange equations,

∂L
∂xµ

− d

dτ

(
∂L
∂ẋµ

)
= 0, (14)

and for the interested case, we set the dependence of ẋµ for
the coordinates φ and t. Hence, one finds(
dφ

dτ

)2

=
L2e4σ(r)

(r2 + a2)2
, (15)

and also(
dt

dτ

)2

= E2e−4σ(r) , (16)

where we denote the conserved quantities L for the specific
orbital angular momentum and E for the specific orbital
energy. With those previous results, we can rewrite eq.(13)
in a form

−
(

r2

r2 + a2

)β2+1

e−2σ(r)

(
dr

dτ

)2

−
(
L2e2σ(r)

r2 + a2

)
+e−2σ(r)E2 = −1 , (17)

and after a little algebra, one finds(
dr

dφ

)2

=

[
1− L2e2σ(r)

(r2 + a2)
+ e−2σ(r)E2

]
e−2σ(r)

L2

(
r2 + a2

r2

)β2+1

(r2 + a2)2 . (18)

Taking a change of variable u = 1
r
, we can find an orbit

equation(
du

dφ

)2

= −u2(1 + a2u2)β
2+2

+
e−2σ(u)

L2

(
1 + a2u2)β2+3

[
1 + E2e−2σ(u)

]
. (19)

and developing the previous equation, we have(
du

dφ

)2

= −u2(1 + 2a2u2 + a4u4)(1 + a2u2)β
2

+
e−2σ(u)C(u)

L2
(1 + a2u2 + 2a2u2 + 2a4u4)

(
1 + a2u2)β2

+
e−2σ(u)C(u)

L2
(a4u4 + a6u6)

(
1 + a2u2)β2

. (20)

where we denote C(u) = 1 + E2e−2σ(u). Equivalently, we
can write (

du

dφ

)2

= α(u)u2

[
3a2C(u)

e2σ(u)L2
− 1

]
+α(u)a2u4

[
3a2C(u)

e2σ(u)L2
− 2

]
+ α(u)a4u6

[
a2C(u)

e2σ(u)L2
− 1

]
+
α(u)C(u)

e2σ(u)L2
, (21)

where we denote α(u) = (1 + a2u2)β
2

. Hence, a more con-
venient form for the resulting orbit equation can be written
as (

du

dφ

)2

+ u2 = α(u)u2

[
3a2C(u)

e2σ(u)L2
− 1

]
+α(u)a2u4

[
3a2C(u)

e2σ(u)L2
− 2

]
+ α(u)a4u6

[
a2C(u)

e2σ(u)L2
− 1

]
+
α(u)C(u)

e2σ(u)L2
+ u2 . (22)

It is noteworthy to point out that this equation is a highly
non linear type, even in the simplest “monopole” case with
l = 0 and θ = 0.

3 ANALYSIS ON APSIDAL PRECESSION

To work with eq.(22), we attenuate the field strength by
analyzing the decaying terms and by the magnitude of the
β parameter, which is related to the coefficient σ by eq.(10).
Firstly, we start truncating high orders of the variable u
constrained to u4, since the effects O(u5) in solar system
scale are negligible (Yamada and Asada, 2012). Hence,(
du

dφ

)2

+ u2 = α(u)u2

[
3a2C(u)

e2σ(u)L2
− 1

]
+ α(u)a2u4 (23)[

3a2C(u)

e2σ(u)L2
− 2

]
+
α(u)C(u)

e2σ(u)L2
+ u2 .

Due to the fact that the previous orbit equation still remains
strongly nonlinear, we can study approximate solutions if
we impose that the parameter β is small, then the length
parameter a must be large. Moreover, for small values of
the β parameter, the term α(u) can be expanded as α(u) =
1 + β2a2u2 + O(u)3. We point out that for orders of u3

and on, it will produce terms of orders higher than u4 in
the main equation in eq.(23), so the expansion in the term
α(u) is limited to u2. On the other hand, since E should be
the specific orbital energy, from the term C(u) we find that
E2e−2σ(u)>>1. These two considerations lead us to a more
treatable orbit equation in such a form(
du

dφ

)2

+ u2 = u2

[
3a2E2

e4σ(u)L2
− 1

]
+ u4a2β2

[
3a2E2

e4σ(u)L2
− 1

]
+a2u4

[
3a2E2

e4σ(u)L2
− 2

]
+

(1 + a2u2β2)E2

e4σ(u)L2
+ u2 .

With the fact that the variable u can be related with the
oblate angles in such a way r = ax = a sinh v, from eq.(10),
we can write e−4σ(v) = e 4β arctan(csch v). This allows us to
study a closed positive infinite endpoints of the orbit where
v = [0,+∞]. At v → +∞, the ellipsoid approaches to a
circular orbit and at v → 0 it approaches to a ring singu-
larity (Zipoy 1966), as illustrated in fig.(1). Then elliptic
trajectories can be studied in-between from their respective
endpoints, since the potential σ does remain finite. Hence,
using eq.(10) and examining the tendencies, close to circular
orbits with v → +∞, then σ(u) approaches 0, and the expo-
nential term e−4σ(v) approaches 1. On the other hand, close
to singularity, one can expand the related functions around
zero (v → 0) of the argument of the exponential that leads
to −4σ(v) = −2βsgn(1/v)π − v = −2βsgn(+∞)π = −2βπ,
and the exponential term approaches e−2βπ, where sgn is
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Figure 1. Pictorial view of the oblate coordinates int the plane

(v, θ) with a hyperboloid and centered ellipsoid. In the right fig-

ure, it is shown a reduction of the oblate coordinates into a two
dimensional plane with θ = 0. In this case, we have a two dimen-

sional ellipsoid where r → 0 is transformed into a singular ring (in

the sense of Riemann invariants are infinite). In the case r →∞,
the elliptical plane approaches to a circular plane.

the sign function. Thus, one can obtain two orbit equations
in such a limits, respectively,(

du

dφ

)2

+ u2 =
E2

L2
+ u2 a

2E2

L2
(3 + β2) (24)

+u4a2
(
β2

[
3a2E2

L2
− 1

]
+

[
3a2E2

L2
− 2

])
,

(
du

dφ

)2

+ u2 =
E2

L2
e−2βπ + u2 a

2E2

L2
e−2βπ(3 + β2) (25)

+u4a2
(
β2

[
3a2E2

L2
e−2βπ − 1

]
+

[
3a2E2

L2
e−2βπ − 2

])
.

Using the method as shown in (Harko, 2011), we can
work with the previous orbit equations analytically. In the
first case with v → +∞ close to circular orbits, we can write(
du

dφ

)2

+ u2 = u2A+ u4B +D = G(u), (26)

where A, B and D are respectively

A =
a2E2

L2
(3 + β2), (27)

B = a2β2

[
3a2E2

L2
− 1

]
+ a2

[
3a2E2

L2
− 2

]
(28)

D =
E2

L2
, (29)

where the deviation angle δφ can be found using

δφ = π
dF (u)

du
|u0 , (30)

with the constraint F (u0) = u0 and F (u) is denoted by

F (u) =
1

2

dG(u)

du
. (31)

With those informations at hand, we can evaluate F (u)
straightforwardly

F (u) =
1

2

dG(u)

du
=

1

2
(2uA+ 4u3B) = uA+ 2u3B , (32)

and the related algebraic equation

u0A+ 2u0
3B = u0 , (33)

with solution

u0 =

√
1−A

2B
. (34)

By using eq.(30), we find a deviation from a closed circular
orbit as

δφ = −2π

(
a2E2

L2
(3 + β2)

)
. (35)

Likewise, for the second case, close to singularity (v → 0),
we can find the deviation angle δφ∗ by the orbit equation in
a form(
du

dφ

)2

+ u2 = u2H + u4J +N , (36)

with H, J and N respectively

H =
a2E2

L2
(3 + β2)e−2βπ , (37)

J = a2β2

[
3a2E2

L2
e−2βπ − 1

]
+ a2

[
3a2E2

L2
e−2βπ − 2

]
, (38)

and

N =
E2

L2
e−2βπ . (39)

Conversely,

F (u) =
1

2

dG(u)

du
=

1

2
(2uH + 4u3J) = uH + 2u3J , (40)

and the associated algebraic equation

u0H + 2u0
3J = u0 , (41)

with a similar solution

u0 =

√
1−H

2J
,

implies the resulting deviation angle δφ∗ from a closed cir-
cular orbit that is given by

δφ∗ = −2π

(
a2E2

L2
(3 + β2)

)
e−2βπ. (42)

A good estimate of the effective deviation angle can
be obtained by the asymptotic matched expansions between
eq.(42) and eq.(35) given by

δφeff = δφ+ δφ ∗ −δφoverlapped ,

where δφoverlapped denotes the resulting angle when the so-
lutions δφ and δφ∗ are overlapped, and it occurs when β = 0.
As a result, it lead us to the “Zipoy’s precession formula”
given by the deviation angle in the elliptical plane of the
orbits

δφ(zip) = −2π
a2E2

L2
(3e−2βπ + β2(1 + e−2βπ)) . (43)
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Table 1. Comparison between the values for secular precession of Mercury in units of arcsec/century(′′.cy−1)

of the standard (Einstein) perihelion precession δφsch (Wilhelm and Dwivedi 2014) and the Weyl confor-

mastatic solution δφWeyl. The δφobs stands for the secular observed perihelion precession in units of arc-
sec/century. In the fourth column, some observational values of perihelion precession are available. The first

data point was adapted from (Nambuya 2010) by adding a supplementary precession calibrated with the

Ephemerides of the Planets and the Moon (EPM2011) (Pitjeva and Pitjev 2013; Pitjev and Pitjeva 2013).

δφsch δφWeyl δφZipoy δφobs References

42.9781 43.105 42.9696

43.098 ± 0.503

43.20 ± 0.86
43.11 ± 0.22

43.11 ± 0.22

42.98 ± 0.09
43.13 ± 0.14

42.98 ± 0.04
43.03 ± 0.00

43.11 ± 0.45

(Nambuya 2010; Pitjeva and Pitjev 2013; Pitjev and Pitjeva 2013)

(Shapiro et al., 1972)
(Shapiro, Counselmann III and King, 1976)

(Anderson et al. 1978)

(Shapiro et al., 1990)
(Anderson et al. 1991)

(Nobili and Will 1986; Will, 2006)

(Clemence, 1964)
(Duncombe 1956; Morton 1956)

Table 2. Comparison between the observational values δφobs for secular precession in units of arcsec/century

and the values from the standard (Einstein) perihelion precession and the Zipoy solution δφmodel for selected
1566 Icarus asteroid and 2 Pallas.

Object δφobs (′′.cy−1) δφsch(′′.cy−1) δφmodel(
′′.cy−1)

1566 Icarus 10.05 10.0613 10.029

2 Pallas -133.534 - -133.52

Interestingly, the solution provides a retrograde precession
besides the advanced one and the result is set by the con-
served quantities and parameters initially considered. It is
noteworthy to point out that the hyperbolic term persists in
the result evincing the propagation of the non linear effects
from the Einstein equations even with the breakage of the
diffeomorphic coordinate transformations.

To obtain the correct physical units, we use the known
forms for the specific orbital energy E = −GM

2γ
and the

specific orbital momentum L2 = µp, with µ = GM and
p = γ(1 − ε2). The terms M , γ and ε denote the central
Sun mass, the semi-major axis and the orbital eccentricity,
respectively. The Newton’s universal gravitational constant
is denoted by G. Since β is small, the hyperbolic exponential
can be approximated to e−2βπ ∼ 1 − 2βπ. It is important
to stress that high orders on β are neglected. Accordingly,
using eq.(43), one can obtain

δφ(zip) = −3

2
π

a2GM

c2γ3(1− ε2)
(1− 2βπ) . (44)

A more familiar expression for apsidal precession can be
obtained by using the orbital period P in days in such a
way we have the final form

δφ(zip) =
−6π3a2

c2(1− ε2)P 2
(1− 2βπ) , (45)

which resembles the standard Schwarzschild formula. For
the physical quantities, we adopt the international sys-
tem of measurement Bureau International des Poids et
Mesures (Bureau International des Poids et Mesures 2006)
setting one year 1yr = 365.256d, the speed of light c =
299792458m/s (Wilhelm and Dwivedi 2014; Bureau Inter-

national des Poids et Mesures 2006) and the mass of sun
M� = 1.98853 × 1030kg. The period P is given by P =
T (24)(3600) and T is the sidereal orbital period in days.
In the case of Mercury, we use T = 87.969 days (NASA
Mercury Fact Sheet. https://nssdc.gsfc.nasa.gov).

We use 9 data points concerning observations on the
perihelion advance of Mercury in units of arcsecond per cen-
tury (′′.cy−1) as shown in table 01. We denote δφsch for stan-
dard (Einstein) perihelion precession and δφWeyl for the re-
sulting perihelion advance using the Weyl conformastatic so-
lution (Capistrano, Roque and Valada, 2014), which comes
from an axially-symmetric motion of a test particle in Weyl’s
line element (Weyl, 1917). To control the systematics, we use
GnuPlot 5.2 software to compute non-linear least-squared
fitting by using the Levenberg-Marquardt algorithm for the
goodness-of-fitting to data. The obtained values for the pa-
rameters and the related reduced chi-squared (χ2

red). Since
eq.(45) has a negative sign, and to obtain an advanced pre-
cession solution, we calculate its absolute value. We observed
that running the parameters without any priors, we find
that the a parameter has the same magnitude of the plan-
etary semi-major axis as it provides a ∼ −1.15806 × 1011,
which its absolute value is roughly close to observational
value of Mercury’s semi-major axis and β = 8.86038× 10−6

and the resulting value for the shift angle is 42.9696′′.cy−1

for a χ2
red = 0.0166 and a probability p > 0.95, which repre-

sents a good fitting. It is worth noting that the negative sign
for the length parameter a is a relic from the hyperbolic ge-
ometry that passed through the non linear effects from the
initially strong gravitational field.

In table (1), the secular precession of Mercury in units of
arcsec/century, comparing with standard Schwarzschild and
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cylindric Weyl solutions for the perihelion shift, the obtained
perihelion shift δφZipoy reproduces closely the observed per-
ihelion shift with a bonus that it naturally provides elliptical
orbits which makes this solution a better physical descrip-
tion for astrophysical purposes according to the shape, the
topology and the symmetry aspects of the gravitational field.

Departing from a spherical geometry, we are able to
study precession of two asteroids. The first one corresponds
to the Icarus asteroid. This asteroid is a near-Earth object
(NEO) of the Apollo group with a very elliptical orbit. It
has been regarded as a relativistic asteroid with an approxi-
mation even close to the Sun than Mercury and also a Venus
and Mars-crosser. Its observational value for the perihelion
precession is 10.05 arcseconds per century with semi-major
axis 1.61258 × 1011m and a large eccentricity 0.82695 for
an orbital period T = 408.781 days (Wilhelm and Dwivedi
2014). As a result, we obtained the values for the parameters
a ∼ −3.21987 × 1011 and β = 8.0222 × 10−6 that provide
a value for the shift angle 10.029′′.cy−1 for χ2

red = 0.00272
and p > 0.95.

In addition, as an example of retrograde precession,
which is not accounted for Einstein standard perihelion
formula, we studied the 2 Pallas protoplanet, even though
the available information on 2 Pallas are still scarce. The
2 Pallas asteroid is one of the largest asteroids in asteroid
belt and is a Jupiter-crosser. Its observational value for the
perihelion precession is −1333.534 arcseconds per century
with semi-major axis 4.14520×1011m and a large eccentric-
ity 0.2812 for an orbital period T = 1686.43 days (available
at http://hamilton.dm.unipi.it/astdys/index.php?pc=0,
Asteroids Dynamic Site- AstDyS ). As a result, we obtained
the values for the parameters a ∼ −1.680 × 1013 and
β = 8.0222 × 10−6 that provide a value for the shift angle
−133.481′′.cy−1 for χ2

red = 1245.46 and p > 0.95. In the two
previous cases, the value of the β parameter remains the
same and unless we find a counterproof, its value around
∼ 10−6 must remain the same for any large object in Solar
system.

It reinforces the main aspect of this paper on “equiv-
alence problem” in GR. As commented previously, the
Weyl and Zipoy metric are asymptotically convergent to
Schwarzschild coordinates but once the diffeomorphic invari-
ance is not allowed, the produced gravitational fields are not
the same, and they can be adjusted to a specific ending. In
this case, the Zipoy seems to be a more physically appropri-
ate solution as compared to the standard Einstein or PPN
solution.

4 FINAL REMARKS

Our results in this paper is a fine example that the non-
linearities of a system of equations imprint qualitative effects
on the orbits of their solutions. We have studied solutions
of vacuum Einstein’s equation of an oblate metric obtaining
a set of solutions that depends on the Legendre Polynomi-
als, as shown by Zipoy in his seminal paper (Zipoy 1966).
In hindsight, the simplest studied solution was the so-called
“monopole” solution for the zeroth order of Legendre poly-
nomials l = 0. Starting from the related Lagrange equations,
we have obtained the orbit equations, which revealed to be a
highly non linear equation. To obtain an analytical solution,

we have studied a closed positive infinite interval to obtain
the elliptical pattern of the orbits in-between. As a result, we
have obtained a non-standard expression for the perihelion
precession depending on the dimensionless parameter β and
the length parameter a. The β parameter was primarily fixed
as a low magnitude to allow us to study the orbit equation.
It is worth noting to point out that no a priori assumptions
concerning the strength of the field (as a weak field) were
imposed. Moreover, the values of the length parameter a
were adjust numerically using the Chi-square statistics for 9
observational data sets. We have shown the length param-
eter, as posed by Zipoy, can be attributed to it a physical
meaning since it is close related to semi-major axis. Interest-
ingly, the values converged to the same order of magnitude
of semi-major axis of Mercury. Differently from the standard
Einstein’s solution and the Weyl cylindrical one, the preces-
sion formula from oblate coordinates provides naturally both
retrograde and advanced solutions for the perihelion preces-
sion besides the fact that elliptical orbits are also native in
those coordinates, which reinforces the idea that the topo-
logical nature of the problem is now an important character
and the strength of the gravitational field is constrained by
this topology. In summary, this analysis was made in the
realm of RG in a nearly newtonian limit with no need of ad-
ditional extensions or modifications of the standard gravity.
As future perspectives, the extended analysis of the devia-
tion of light, radar echo and gravitational lens in oblate and
prolate metrics are currently in progress.
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