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Abstract: Regenerative agriculture has emerged as an alternative approach to food production, 

offering the potential to achieve reduced or even positive environmental and social outcomes 

compared to the soil degradation and greenhouse gas emissions of conventional agriculture. 

Simultaneously, a sophisticated dual-use system combining solar energy generation from 

photovoltaics with agricultural production called agrivoltaics is rapidly expanding. Combining these 

approaches into regenerative agrivoltaics offers a promising solution to the food challenge in a rapidly 

warming world. This review theoretically examines the compatibility and mutual benefits of 

combining agrivoltaics and regenerative agriculture, while also identifying the challenges, 

opportunities, and pathways for implementing this system. A foundation for advancing regenerative 

agrivoltaics is made by identifying areas for research, which include: 1) carbon sequestration, 2) soil 

health and fertility, 3) soil moisture, 4) soil microbial activity, 6) soil nutrients, 7) crop performance, 

8) water-use efficiency, and 9) economics. By addressing the intersection of agriculture, renewable 

energy, and sustainability, regenerative agrivoltaics emphasizes the transformative potential of 

integrated systems in reshaping land use and resource management. This evaluation underscores the 

importance of policy and industry collaboration in facilitating adoption of regenerative agrivoltaics, 

advocating for tailored support mechanisms to enable widespread implementation of low-cost, zero-

carbon, resilient food systems. 

Keywords: agrivoltaics; agriculture; regenerative agriculture; photovoltaics; sustainability; 

renewable energy; land use 

 

1. Introduction 

As the world population continues to grow so does the agricultural system that feeds humanity. 

To meet this need, farmers rely on fertilizers, pesticides, and land expansion, leading to a more than 

60% rise in methane emissions from agriculture over the past four decades [1,2]. Although modern 

techniques have boosted productivity, they have also contributed to soil degradation, nutrient 

depletion, and pollution [3]. Practices including monoculture and excessive chemical application, 

have led to declining soil health, water contamination, and biodiversity loss, threatening ecological 

stability [4]. Agriculture remains a primary driver of greenhouse gas emissions (GHGs), responsible 

for over 11% of global anthropogenic emissions from direct sources [5].  If GHG emissions remain 

unchanged until 2100, crop yields will be reduced approximately by 45%, wheat yields by 50%, and 

rice yields by 30% [6]. These alarming projections highlight the urgent need to explore sustainable 

food production systems that can mitigate environmental impacts while ensuring long-term 

agricultural resilience. 

1.1. Regenerative Agriculture: A Sustainable Approach to Food Production 
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Regenerative agriculture (RA) has emerged as an alternative approach to food production, 

offering the potential to achieve reduced or even positive environmental and social outcomes [7]. 

Schreefel et al. defined RA as “an approach to farming that uses soil conservation as the entry point 

to regenerate and contribute to multiple provisioning, regulating and supporting ecosystem services, 

with the objective that this will enhance not only the environmental, but also the social and economic 

dimensions of sustainable food production” [8]. It is increasingly recognized as a method to promote 

sustainability in food systems, with the added potential of contributing to climate change mitigation 

[9]. Project Drawdown [10], a nonprofit organization, with the aim to help the world stop climate 

change, emphasizes that RA improves soil health by replenishing carbon content, leading to greater 

productivity—an outcome that contrasts sharply with conventional farming practices [11]. Key 

agronomic challenges linked to RA include rebuilding soil health, capturing carbon to combat climate 

change, and reversing biodiversity loss [12]. With its numerous co-benefits, such as the production 

of nutritious food, RA is seen as a vital component in addressing the challenges posed by escalating 

climate instability [13]. 

1.2. Agrivoltaics: Integrating Energy and Agriculture 

Clean energy technologies are taking a central role to achieving global sustainability goals [14]. 

Among these, solar photovoltaics (PV) has gained prominence as a cost-effective and rapidly 

expanding energy solution [15,16]. The extensive land requirements for traditional PV installations 

to meet the growing energy demands of an expanding global population often result in land use 

conflicts [17]. This is a particular problem if PV systems displace food production on agricultural land 

thereby running the risk of repeating the ethanol debacle and increasing food prices and global 

hunger [18]. 

Agrivoltaics, a dual-use system combining solar energy generation with agricultural production, 

offers a promising solution to this challenge [19]. Thie agrivoltaics approach provides numerous 

benefits, including lower greenhouse gas emissions (GHGs) [20], increased economic and 

environmental advantages [21], enhanced water-use efficiency [22–25], better land use efficiency [26] 

and perhaps most importantly increased crop yields of a wide variety of human food crops (basil 

[27], broccoli [28], celery [29], chiltepin peppers [26], lettuce [30,31], tomatoes [26], corn [32], 

strawberries [33,34], pasture grass [35,36], potatoes [37], Swiss chard [38–40], kale [38–40], and 

common bean [38–40], and grapes [40,41]). 

Beyond agricultural productivity, agrivoltaics delivers multiple co-benefits, including 

protection of crops from environmental stressors such as wind [42], mitigation of soil erosion [43], 

and reversal of desertification [44]. Furthermore, the system improves solar module efficiency 

because of plant transpiration cooling the modules [45–47], alleviate agricultural displacement for 

energy requirements [48–50], localizes food production [51–53], improves health due to reduced 

pollution [54], acts as a hedge against inflation [55], provides energy for computing [56] and 

opportunities for integrating renewable fuel production, such as hydrogen [57–59], anhydrous 

ammonia [60] as well as the production of on-farm nitrogen fertilizers [61]. In addition improved 

nutrients (protein content) was also observed for spinach and basil under agrivoltaics configuration 

[27], which can further help to feed everyone [62]. 

The differences between regenerative agrivoltaics and conventional agriculture are summarized 

in Figure 1. 
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Figure 1. A comparison of conventional farming and regenerative agrivoltaics. 

1.3. Economics and Market Growth of Agrivoltaics 

From an economic perspective, agrivoltaics generates dual revenue streams through agricultural 

outputs and energy sales, enhancing farmers’ financial stability [63]. For instance, spinach grown 

under agrivoltaic systems demonstrated financial gains of up to 35% alongside improved nutritional 

value [27]. Similarly, grazing sheep beneath PV arrays, not only creates a better environment for 

sheep but is highly profitable for solar shepherds that earn additional income from controlling 

vegetation on the solar farm [64]. These opportunities have been driving rapid growth in agrivoltaics, 

whose market is valued at over $3.64 billion in 2022 and is projected to grow at a compound annual 

growth rate (CAGR) of 38% between 2024 and 2030 [65]. As a strategy addressing both food security 

and energy sustainability, agrivoltaics holds significant potential to tackle critical global challenges, 

[66,67], highlighting the need for continued research and development in this area. 

1.4. Combining Regenerative Farming and Agrivoltaics 

Despite the growing interest in agrivoltaics and regenerative agriculture as independent 

approaches to sustainable land management, no prior research has explored the integration of these 

two systems. The potential synergy between agrivoltaics and regenerative agriculture remains 

largely unexplored, leaving a significant gap in understanding how these approaches could 

complement one another. This mini-review aims to theoretically examine the compatibility and 

mutual benefits of agrivoltaics and regenerative agriculture, while also identifying the challenges, 

opportunities, and pathways for implementing this innovative dual-use system. By bridging these 

fields, this article seeks to lay the groundwork for future research and practical applications in 

sustainable food and energy systems. 

2. Fostering Resilience: Agrivoltaics Meets Regenerative Agriculture – 

Regenerative Agrivoltaic 

The integration of agrivoltaics and regenerative agriculture offers a unique opportunity to 

enhance the environmental and economic benefits of each system. 

By leveraging the complementary strengths of these approaches, society can address pressing 

challenges in sustainable agriculture and energy production. Agrivoltaics not only provides a means 

of clean energy generation, but also creates microclimatic conditions [68] that can bolster regenerative 
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practices [69] such as cover cropping, composting, and organic annual cropping. Similarly, 

regenerative agriculture principles [70] scan enhance the sustainability of agrivoltaic systems by 

improving soil health, reducing chemical inputs, and increasing biodiversity. This convergence 

represents a holistic approach to land management that prioritizes resilience, productivity, and 

ecological health, creating a pathway to achieve multiple sustainability goals simultaneously. 

Specifically the U.N. Sustainable Development Goals [71] of : 2. Zero hunger, 3. Good health and 

well-being and 7. Affordable and clean energy, 14. Climate action, and 15. Life on land. 

The following sections explore key areas of synergy between these two approaches, focusing on 

their potential to integrate cover cropping, composting, increasing crop diversity, and organic annual 

cropping within agrivoltaic systems. These innovations provide insights into how dual-use systems 

can be optimized to maximize co-benefits and establish a sustainable future for food and energy 

production. 

3. Innovative Agrivoltaic Strategies for Regenerative Agriculture 

Cover cropping, as highlighted in regenerative agriculture frameworks, has the potential to 

capture atmospheric carbon dioxide (CO2) and sequester it in the form of soil organic matter [72]. 

This practice enhances soil biology, contributes essential nutrients to the soil [73], and mitigates soil 

erosion [74], thereby promoting healthier and more sustainable agroecosystems [75]. 

Agrivoltaics can bolster the efficacy of cover cropping, particularly under extreme weather 

conditions where the PV modules can act as shields for hail, for example. The shade provided by 

solar modules enhances the resilience of cover crops, preventing heat stress during high temperatures 

[76]. This might improve the ability of cover crops to build soil organic matter and sequester carbon. 

The combination of agrivoltaic systems and cover cropping can contribute to improved soil structure, 

and a reduction in erosion, furthering the goals of regenerative agriculture. 

3.1. Cover Cropping 

Cover cropping, as highlighted in regenerative agriculture frameworks, has the potential to 

capture atmospheric carbon dioxide (CO2) and sequester it in the form of soil organic matter [72]. 

This practice enhances soil biology, contributes essential nutrients to the soil [73], and mitigates soil 

erosion [74], thereby promoting healthier and more sustainable agroecosystems [75]. 

Agrivoltaics can bolster the efficacy of cover cropping, particularly under extreme weather 

conditions where the PV modules can act as shields for hail, for example. The shade provided by 

solar modules enhances the resilience of cover crops, preventing heat stress during high temperatures 

[76]. This might improve the ability of cover crops to build soil organic matter and sequester carbon. 

The combination of agrivoltaic systems and cover cropping can contribute to improved soil structure, 

and a reduction in erosion, furthering the goals of regenerative agriculture. 

3.2. Increasing Crop Diversity 

Agrivoltaic systems can facilitate intercropping and polyculture practices by providing a 

modular layout that supports diverse planting configurations. This design enhances biodiversity 

[77,78] and builds resilience against climate variability [79,80]. Moreover, the microclimatic effects of 

agrivoltaics, such as moderated temperatures [29,45,81,82] and improved water efficiency [29,83,84], 

create favorable conditions for a variety of crops to thrive simultaneously. The integration of crop 

diversity into agrivoltaic systems aligns with regenerative goals of enhancing ecosystem services and 

increasing farm productivity. 

3.3. Organic Annual Cropping 

The integration of organic annual cropping into agrivoltaic systems offers a dual benefit of 

sustainable land use and environmental health. Organic farming practices, which rely on natural soil 

amendments and reduced chemical inputs [85,86], seems inherently compatible with agrivoltaics. 
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The absence of synthetic pesticides and fertilizers minimizes the risk of PV module contamination or 

corrosion, reducing maintenance needs and associated costs. Additionally, the shade from modules 

can support crops prone to heat stress [87,88], aligning with the principles of low-impact, sustainable 

agriculture. 

3.4. Composting 

Enhancing soil organic matter is fundamental to restoring degraded soils [89]. Regenerative 

agriculture emphasizes the importance of incorporating composted biological materials, including 

crop residues, food scraps, and animal waste, to enrich soil health and fertility [90,91]. 

3.5. Animal Integration 

Solar grazing presents an ideal opportunity for on-site soil improvement creating a closed-loop 

system for nutrient recycling. Animal waste from solar grazing can contribute significantly to 

enhance soil nutrients. The shade from solar modules can facilitate animal grazing [92], making the 

soil enrichment process more efficient in extreme climates as more animals would graze and benefit 

from shade [92]. Compost application within these systems not only improves soil fertility [93] but 

also reduces the need for external chemical fertilizers [94], contributing to energy-efficient and waste-

reducing food production. This approach provides an avenue that enhances both soil health and 

environmental sustainability, while also lowering operational costs for farmers. 

Agrivoltaics offer opportunities for livestock integration, combining vegetation management 

with enhanced soil fertility. Animals used on solar farms include sheep [64,83,95], rabbits [96,97] and 

now cows [92,98]. Grazing animals can maintain under-module vegetation, reducing the need for 

mechanical mowing [96], while their manure enriches soil organic content [99,100]. Furthermore, the 

shade provided by solar modules improves animal welfare by protecting livestock from heat stress 

[19,92,101], which can enhance productivity and health [95]. Integration of pasture based agrivotlaics 

systems have resulted in 69.3% less emission and 82.9% less energy requirements indicating highly 

sustainable food-energy system [97]. This synergy exemplifies a holistic approach to regenerative 

agriculture, optimizing land use for food, energy, and livestock production. 

3.6. Managed Grazing 

Rotational grazing under solar modules presents a viable strategy for pasture regeneration and 

carbon storage [102]. By controlling grazing patterns, farmers can ensure even vegetation coverage, 

and reducing overgrazing risks [96]. The shade from modules creates microclimate that promote 

diverse forage growth [35,103], supporting livestock nutrition and ecosystem health. Managed 

grazing within agrivoltaic systems offers a scalable solution contributing to dual-use land 

management. 

3.7. Reduced/No-Till Farming Practices 

Undisturbed soils foster an increase in both the abundance and diversity of soil microbial 

communities, contributing to enhanced soil structure and overall microbiome health [104]. Farmers 

who implement reduced or no-till practices can experience numerous advantages that not only 

improve soil health but also provide long-term economic benefits [105]. These practices enhance 

water infiltration and retention, improve nutrient retention and availability for crops, reduce soil 

crusting, and lead to a gradual accumulation of soil organic matter, collectively promoting more 

sustainable and resilient agricultural systems [105,106]. 

Pairing no-till farming with agrivoltaic systems presents significant potential to enhance soil 

health and water retention. The partial shade provided by solar modules reduces soil surface 

temperatures [33,68,107], minimizing water evaporation and fostering a microclimate conducive to 

moisture retention [84,108]. This synergy supports no-till practices by reducing the likelihood of soil 

compaction, especially as the shade mitigates the direct impact of heavy rain. Furthermore, the 
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reduced soil disturbance inherent in no-till systems aligns with the fixed nature of agrivoltaic 

infrastructure, promoting long-term soil stability and resilience. From the PV side, reduced tilling 

would also reduce the risk of module soiling, which can cause a decrease in energy conversion 

efficiency [109]. 

3.8. Silvopasture/Agroforestry 

Integrating silvopasture or agroforestry with agrivoltaics presents a promising avenue for long-

term sustainability. Integrating agrivoltaics with apple trees have shown reduced water needs [108]. 

Designs that incorporate trees, solar modules, and grazing animals create a multi-layered system 

capable of delivering carbon sequestration [110,111], soil fertility [111], and diversified farm incomes 

[27,80,112–114]. The shade from trees and modules moderates temperature extremes, improving 

animal welfare [19,92,101] and forage quality [103]. Additionally, the long-term carbon storage 

provided by trees [115] complements the renewable energy benefits of agrivoltaics, positioning these 

systems as a cornerstone of sustainable land-use practices. 

4. Unlocking the Potential of Regenerative Agrivoltaics: Synergies, Challenges, 

and Theoretical Contributions 

4.1. Synergies and Opportunities 

Agrivoltaics serves as a powerful catalyst for advancing regenerative agricultural practices by 

addressing land-use competition while enhancing economic viability. By integrating solar energy 

systems with farming, agrivoltaics enables dual land use, reducing the need to dedicate vast areas 

solely for energy production. This synergy creates opportunities to scale regenerative practices, 

fostering climate resilience through improved soil health, water retention, and carbon sequestration. 

Additionally, agrivoltaics enhances ecosystem services by supporting biodiversity, providing shade, 

and creating microclimates conducive to crop growth. With the potential to diversify farm outputs 

and generate renewable energy, agrivoltaics not only bolsters farm income but also strengthens the 

sustainability and resilience of agricultural landscapes. 

4.2. Challenges and Barriers 

Despite its promise, agrivoltaics faces significant challenges in aligning system design and 

operations with regenerative agricultural goals. The complexities of optimizing dual-use systems to 

balance energy production, crop growth, and ecological benefits require innovative engineering and 

site-specific solutions. For instance, specialized racking solutions may be required for integrating 

solar PV modules with agriculture on which limited work/research has so far been performed [116–

118]. Furthermore, the absence of tailored financial models and incentives for dual-use regenerative 

systems hinders widespread adoption, as farmers and developers often lack the economic support 

necessary to transition. 

The absence of well-defined government policies integrating sustainable agriculture and 

renewable energy development presents another barrier to the widespread adoption of regenerative 

agrivoltaics. Establishing clear policy frameworks could provide crucial guidance and incentives, 

encouraging stakeholders to adopt practices that enhance both food production and clean energy 

generation. These policies, however, should be informed by empirical research exploring the 

intersection of agrivoltaics and regenerative agriculture. 

Future experimental studies could focus on addressing the knowledge gaps to generate 

empirical evidence that demonstrates the long-term viability and benefits of agrivoltaics. Assessing 

soil health and fertility under agrivoltaic systems, evaluating carbon sequestration potential, and 

analyzing the benefits of incorporating animal and crop waste as soil amendments are important 

parameters to examine during such experiments. Additionally, trials could investigate the impacts of 

shading from solar modules on soil moisture retention, microbial activity, and nutrient cycling. 
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Evaluating crop performance under varying solar modules configurations and transparency levels, 

as well as measuring water-use efficiency and microclimatic modifications, would further contribute 

to optimizing system design. These research efforts are essential for generating the empirical 

evidence needed to shape effective policies and scale regenerative agrivoltaics as a viable solution for 

sustainable food and energy production. Addressing these challenges is crucial for unlocking its full 

potential as a sustainable farming and energy solution. 

5. Conclusions 

This review lays a critical foundation for advancing regenerative agrivoltaics by identifying key 

areas ripe for innovation and development, which include: 1) carbon sequestration, 2) soil health and 

fertility, 3) soil moisture, 4) soil microbial activity, 6) soil nutrient, 7) crop performance, 8) water-use 

efficiency, and 9) regenerative-agrivotlaics economics. By addressing the intersection of agriculture, 

renewable energy, and sustainability, regenerative agrivoltaics emphasizes the transformative 

potential of integrated systems in reshaping land use and resource management. Furthermore, the 

evaluation underscores the importance of policy and industry collaboration in facilitating the 

adoption of regenerative agrivoltaics, advocating for tailored support mechanisms to enable 

widespread implementation. By bridging knowledge gaps (soil health impacts, optimal module 

configuration, water-use and microclimate effects, biodiversity implications, livestock and 

composting integration effects, economic feasibility, policy gaps, long term empirical field studies, 

farmer engagement research) and highlighting opportunities (biodiversity benefits, enhancement of 

soil regeneration, improving water efficiency, increasing farm revenue streams) for synergies, this 

research provides a framework to guide future studies and inform practical applications in dual-use 

agricultural systems. 
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