
Article Not peer-reviewed version

Numerical Coupling between a FEM

Code and the FVM Code OpenFOAM by

Using the MED Library

Sandro Manservisi * , Giacomo Barbi , Antonio Cervone , Federico Giangolini , Lucia Sirotti

Posted Date: 3 April 2024

doi: 10.20944/preprints202404.0229.v1

Keywords: CFD; Code coupling; Conjugate Heat Trasfer

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

Article

Numerical Coupling between a FEM Code and the
FVM Code OpenFOAM by Using the MED Library

Giacomo Barbi † , Antonio Cervone † , Federico Giangolini † , Sandro Manservisi †,* and
Lucia Sirotti †

Department of Industrial Engineering, Lab. of Montecuccolino, University of Bologna, Via dei Colli 16, 40136 Bologna, Italy;
* Correspondence: sandro.manservisi@unibo.it;
† These authors contributed equally to this work.

Abstract: This paper investigates a numerical code coupling technique to tackle multi-physics and multi-scale

simulations using state-of-the-art software packages that typically address some specific modeling domain. The

coupling considers the in-house FEM code, FEMuS, and the FVM code OpenFOAM, by exploiting the MED

library from the SALOME platform. The present approach is tested on a buoyancy-driven fluid flow within a

square cavity, where the buoyancy force constitutes the coupling term. In uncoupled scenarios, momentum and

temperature equations are solved both in FEM and FVM codes without data exchange. In the coupled setting, only

the OpenFOAM velocity and the FEMuS temperature fields are solved separately and shared at each time step

(or vice versa). The MED library handles the coupling with the addition of suitable ad-hoc data structures that

perform the field transfer between codes. Different Rayleigh numbers are investigated, comparing the outcomes of

coupled and uncoupled cases with reference literature results. Additionally, a boundary data transfer application

is presented to extend the capabilities of the coupling algorithm to coupled applications with separate domains.

In this problem, the two domains share interfaces and boundary values on specific fields as fluxes are exchanged

between the two numerical codes.

Keywords: CFD; code coupling; Conjugate Heat Trasfer

1. Introduction

In the last few decades, the performance increase of computational tools has gained more and
more attention from the scientific community. In Computational Fluid Dynamics (CFD), accuracy
and efficiency remain challenging, especially when dealing with complex systems. Thus, interest in
using multi-scale and multi-physics numerical tools to conduct complex and realistic simulations has
grown. The evaluation of the whole system requires a modeling effort for all the various scales and
interactions associated with its different components together with the development of numerical tools
capable of analyzing phenomena across multiple scales and physics [1–3].

Nowadays, several computational codes have been developed to solve problems involving
different engineering aspects, from physics (at every scale), chemistry, biology to mathematics. In this
context, the concept of High-Performance Computing (HPC) assumes a central role as it enables the
possibility to address complex and sophisticated problems by using additional computational power.

On the other hand, the simulation of very complex systems is still challenging due to the different
phenomena scales. For this reason, the existing codes are developed to address, in general, only a
family of problems. For instance, we can find, in the open-source framework, a plethora of simulation
software that can tackle a subset of the physical systems we are interested in. We can refer to codes
such as OpenFOAM [4], TrioCFD [5], and code_Saturne [6] for fluid-dynamics simulations. These
codes can solve the Navier-Stokes equations, in their incompressible and compressible variations,
multiphase flow, turbulence phenomena (at different scales, through RANS, LES or DNS), and so
on. Several solvers are available in the thermomechanical field, including elasticity problems and
fracture propagation. Among them, we can mention Code-Aster [7] or TFEL/MFront [8]. Codes such
as Dragon/Donjon have been developed to tackle neutronic problems. Additionally, other open-source

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2024 doi:10.20944/preprints202404.0229.v1

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

2 of 23

FEM-based numerical platforms such as libMesh [9], Deal-II [10], and FEniCS [11] are widely used to
solve generic PDE problems.

For the simulation of highly complex problems, the capability of modeling different physics
coming from various application domains is necessary. However, none of the cited codes can manage
the full complexity of any given physics phenomena. Two main strategies have been explored
to simulate these complex multi-scale and multi-physics problems. One way is to develop a new
numerical code to model all the relevant physical phenomena. This strategy is commonly referred
to as monolithic approach. Alternatively, one can choose to couple existing and validated codes.
This second approach is a technique that can integrate multiple codes to leverage their respective
strengths and enhance simulation capabilities. For instance, we can think about the simulation of a
nuclear reactor, for which every physics is tightly coupled to all the others (i.e., the neutronics, the
thermal-hydraulics, the heat exchange, and thermal-mechanics behavior, and possibly the presence of
multiphase issue). The code coupling technique can be a reasonable strategy to exploit the different
code peculiarities and avoid the necessity to develop a new computational tool that incorporates all the
necessary features. By doing so, we can benefit from using codes that have already been extensively
validated and from their expertise developed over many years. Therefore, this strategy focuses on a
framework suitable coupling between different codes by exchanging efficiently output and input data
(i.e., directly coupling the codes in memory and not through writing and reading from external files)
[12].

This paper presents a coupling strategy by exploiting the open-source MED and MEDCoupling
library to link the in-house FEMuS code with the well-established OpenFOAM software. FEMuS
is a multigrid finite element code that contains solvers for many different physical problems [13].
We use two multi-physics examples to show the code coupling methodology, where some physical
output variables are taken from the first code and are considered input data for the second code and
vice-versa.

The paper is organized as follows. A brief introduction to the computational environment and
an insight into the two codes adopted for this work is given in the next section. Then, the coupling
strategy for the involved codes is introduced with a detailed description of the numerical algorithm.
Finally, two examples of numerical code coupling between FEMuS and OpenFOAM are discussed: a
coupled application with the exchange of volumetric fields and another where the exchange is limited
to some boundary fields. Numerical results are provided and compared with literature data of the
same physical problems performed with the monolithic approach.

2. The NumericalPlatform Environment

A numerical platform has been developed at the Department of Industrial Engineering of the
University of Bologna to enhance numerical codes’ portability and communication. The NumericPlat-
form [14] for engineering applications is based on PDE models in the field of FEM (Finite Element
Methods) and FVM (Finite Volume Methods). The platform integrates different physical models that
deal with fluids and solids using finite elements (FE) and finite volumes (FV) discretization techniques.
It also provides for the coupling of algebraic and differential PDE models implemented on different
domains, typical of system and CFD simulations for multiscale coupling. The purpose of the platform
is to create a numerical environment for multiphysics and multiscale simulations, such as nuclear
reactor systems, through the FEMuS computational capabilities and communication with other solvers.
This latter feature of coupling and data exchange allows exploiting the code’s strengths in simulating
different physical aspects, avoiding the necessity to write new solvers for physics that are not (yet)
supported and instead making use of highly validated ones, saving time and resources that are crucial
when dealing with highly complex simulations.

The NumericPlatform has been developed with several environments for different levels of users:
one suitable for the development and coupling of the FEMuS in-house code and another ready for
the deployment of engineering applications. In the latter case, this environment provides data entry

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2024 doi:10.20944/preprints202404.0229.v1

3 of 23

for input/output using CAD/Mesh Generators and visualization/post-processing with tools typical
of the SALOME [15] computational platform (i.e., Paraview [16]). In particular, the input/output
data are managed by the MED and HDF5 libraries. Implementations of the PDE models on FE and
FV discretization are available from different codes. Among others, the OpenFOAM and FEMuS
libraries, which have been augmented with a suitable set of routines supporting the MED libraries
usage paradigm, are the codes of interest for this application.

In the following, brief introductions on the finite element FEMuS and finite volume OpenFOAM
codes are given, as well as on the SALOME platform and the MED library functionalities.

2.1. FEM Code: FEMuS

The Numeric Platform computational environment revolves around the in-house multigrid
finite element library FEMuS, a C++ code exploiting different open-source libraries, such as PETSc
[17] for linear algebra and LibMesh [9] for the creation and handling of a hierarchy of meshes. It
contains several solvers for the incompressible Navier-Stokes equations, heat transfer, Fluid-Structure
Interaction, multiphase flows, and optimal control with the adjoint method [13]. The FEMuS code
has, among others, the advantage of easy implementation of new models by directly encoding the
constitutive equations, suitably discretized according to the FEM paradigm, through direct C++ code.
This approach streamlines the process of integrating novel formulations, enhancing the versatility and
adaptability of the simulation framework. For example, an anisotropic four-parameter turbulence
model has been implemented, including nonlinear thermal models for the closure of the turbulent
heat flux, to simulate low Prandtl number fluids with the RANS methodology. In this framework, it is
possible to effectively simulate new physical phenomena like the complex dynamics of turbulent flows
in non-conventional fluids such as liquid metals. Interested readers can find further FEMuS solvers
and applications in [18–23].

Apart from its solver capabilities, the FEMuS library has been extended to support the coupling of
the finite element library outcomes with external codes with a MED-compatible C++ interface relying
on the SALOME platform.

2.2. FVM Code: OpenFOAM

The OpenFOAM software is a well-known open-source and object-oriented C++ library mainly
developed for computational fluid dynamic simulation purposes, separately maintained by ESI and the
OpenFOAM foundation [4]. Its versatility, scalability, and extensive suite of solvers and libraries make
it one of the most used codes in computational frameworks, enhancing researchers and engineers to
simulate a wide range of phenomena with relatively high fidelity. OpenFOAM offers a comprehensive
and robust platform for modeling complex fluid dynamics scenarios across several disciplines, ranging
from aerodynamics and multiphase flows to turbulence and the intricate interplay of heat transfer
phenomena. Its modular architecture ensures strong adaptability, allowing expert users to integrate
new modules, functionalities, and models tailored to their research needs. Moreover, the active and
engaged community surrounding OpenFOAM fosters a collaborative environment for developing new
ideas and solving problems. This collective effort ensures continual development and optimization,
keeping the code at the forefront of scientific research and engineering innovation while providing
access to community resources such as tutorials and user-contributed enhancements.

The OpenFOAM software package exploits the well-known Finite Volume modeling technique
(FVM), widely adopted in the numerical modeling of fluid flow. By implementing library routines for
linear systems discretization, the computational domain is divided into discrete elements, commonly
referred to as cells, where the system(s) of PDEs is solved. In addition to its solver capabilities,
the software is distributed with auxiliary tools for static and dynamic mesh manipulations, library
functions for pre/post-processing, and utilities for the parallelization of the computational effort.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2024 doi:10.20944/preprints202404.0229.v1

4 of 23

2.3. The MED and MEDCoupling Library from the SALOME Platform

A coupling procedure has been implemented by leveraging the MED and MEDCoupling libraries
to exploit the FEM and FVM strengths, enhancing the result accuracy. This library is a specific
module of the SALOME platform for data retrieving, manipulation and sharing at a memory level,
thereby avoiding the slowness connected to the use of on-disk files. The MED library is a low-level
implementation of an abstraction layer for data structures that can be manipulated and stored in the
HDF5 format. The MEDCoupling library, on the other hand, is one of the available modules of the
SALOME platform environment and the core library on which this coupling work relies on. It leverages
on the MED coupling for the exchange format and implements algorithms for the distribution and
interpolation of fields.

SALOME is a numerical platform developed by CEA and EDF with the aim to provide an
advanced open-source platform for Computer Aided Engineering (CAE) purposes [24]. This platform
is equipped with several modules (GUI, Shaper, Geometry, Mesh, Fields, YACS, HexaBlock, Homard,
ADAO, EFICAS, JobManager, ParaViS, SOLVERLAB, etc.) able to handle every step of the simulation
process and the integration of external codes. In fact, the platform is envisioned by its authors as “a
powerful open source parametric CAD modeler, a multi-algorithm mesh generator/editor, a computational code
supervisor, and many data analysis and processing tools”[15].

Here, we are mainly interested in exploiting the MESH module of SALOME for the mesh creation
(exported in MED format), as well as its communication capabilities and ability to handle meshes
and fields. To achieve this, we can leverage the MED-file library module, a C++ library designed for
reading and writing MED files. Additionally, the SALOME environment offers additional capabilities
targeted to coupling procedures. These include the supervisor, which generates simulation workflows
connecting the different computational units, and the FIELDS and MEDCoupling library. The latter
plays a significant role in data communication by providing powerful tools for the manipulation of
input and output data resulting from simulations performing data movement, analysis, conversion,
and optimization. Among its functionalities, the crucial ones are reading/writing from/to files,
aggregating and exchanging data, performing interpolation, format conversion, and renumbering
or partitioning data for multiprocess workflows. In the following, we will refer to the MED and
MEDCoupling libraries with only the MED name for simplicity.

3. Coupling Procedure through the MED Library

This section explains in detail the coupling approach implemented between the two CFD codes,
FEMuS and OpenFOAM that will be used for the numerical demonstrations in the following sections.
This procedure can easily be generalized to additional software with minimum modifications, mainly
by translating the internal data structures into the MED format. It is essential to point out that this
framework scales optimally with the number of computational codes that are connected: adding
a new library implies the development of a single wrapper of its data fields in the MED coupling
format instead of developing specific procedures to couple the new code to each of the other libraries
in the platform. In other words, the coupling strategy follows a hub-and-spoke model instead of a
point-to-point approach that would require a significant effort to add new software. A schematic
example of the two coupling models is reported in Figure 1.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2024 doi:10.20944/preprints202404.0229.v1

5 of 23

Point-to-Point Hub-and-Spoke

HUB

Figure 1. Coupling strategy models: point-to-point on the left and hub-and-spoke on the right.

The coupling application implements three different classes designed for data transfer and
synchronization. The first class acts as the intermediary between OpenFOAM and the MED library by
extracting the numerical field data from the internal data structures into an object compatible with the
MED format. This class is the interface OpenFOAM-MED that we named of_interface. Similarly, the
second class, femus_interface, is the interface between FEMuS and the MED library, enabling the use
of the numerical field data within the FEMuS framework. Finally, the third class, namely med_class,
is responsible for managing the operations within the MED library itself. It includes tasks such as data
storage, retrieval, and data manipulation. An additional feature available in this class is the possibility
to interpolate a field insisting on a mesh to a different mesh discretization.

In the following, we generally refer to Code 1 and Code 2: the reader can interchangeably
substitute them with FEMuS and OpenFOAM. Figure 2 illustrates the coupling procedure. At the
supervisor level, the main function manages the interaction between the two codes and their associated
interface structures with specific solver functions. Firstly, it manages the initialization and setup of
both Code 1 and Code 2, ensuring they are correctly configured and ready to interact. This involves
initializing the two problems and the respective interface structures including an exchange mesh and
its numerical fields. Moreover, the supervisor function manages the synchronization of the simulation
time steps between Code 1 and Code 2. This enforces that both codes progress together to maintain
consistency in the coupled simulation. At each time step, the supervisor coordinates the exchange of
fields, updating solutions, and monitoring convergence criteria.

Supervisor

Code 1 Code 2

Solver 1 Solver 2

Coupling

Figure 2. Coupling procedure scheme.

This framework can be exploited in various simulations involving coupling between volume or
boundary fields. For simulations requiring volume field transfer, the application allows the exchange

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2024 doi:10.20944/preprints202404.0229.v1

6 of 23

of numerical data representing physical quantities distributed in the whole computational domain.
On the other hand, simulations involving boundary field transfer focus on the interaction between
different physical domains or interfaces within the computational domain. By transferring boundary
conditions, forces, or constraints between Code 1 and Code 2, we can simulate complex fluid-structure
interactions, conjugate heat transfer processes, and multi-phase flow phenomena. For both these two
types of coupling, the main structure of the algorithm remains consistent. In the following sections,
the algorithm implemented is described.

3.1. Coupling Algorithm

As illustrated in Algorithm 1, in the initial step of the coupling process, both Code 1 and Code 2
are required to generate a mesh copy in MED format corresponding to the computational domain (or a
portion of it). Both interface classes of Code 1 and Code 2 feature a function named init_interface(),
used for extracting essential information to recreate the mesh in MED format. This function assigns the
interface name for reference at the supervisor level and retrieves the mesh connectivity, coordinates,
and mapping data necessary to link the data structure of the code mesh with that of the MED mesh.
Since the FEMuS code employs Finite Element Method (FEM) and handles biquadratic fields, its
mesh is biquadratic. However, for coupling with the OpenFOAM problem, which operates with
linear meshes, the interface to the MED coupling implements a linear mesh. Therefore, holding
the information from the original biquadratic mesh, we extract the data to create a corresponding
linear mesh for the FEMuS coupling interface. Once the interface classes have stored the necessary
information, the MED library can generate a copy of the mesh in MED format. The function responsible
for managing the creation of the mesh is called create_mesh(), and it belongs to the med_class class.

At this stage, both codes have their respective copies of the mesh in MED format. Following the creation
of meshes, both codes initialize the fields to be exchanged. We have implemented two distinct functions
within the med_class, that are init_med_field_on_nodes() and init_med_field_on_cells(). The first
creates and initializes a MED format field of type MEDCoupling::MEDCouplingFieldDouble on mesh
nodes, setting it to zero. In contrast, the other function performs a similar operation but targets mesh cells
instead of nodes.

In these functions, an array of type MEDCoupling::DataArrayDouble is generated for each field
that is required by the specific coupling procedure. This format enables the MED library to effectively
set the values of the MED field based on the stored data.

Both codes have now completed the initialization at the supervisor level through their dedicated
functions within their respective classes. Moreover, the interfaces for the data transfer have been
configured with their corresponding MED mesh copies and MED fields. At the supervisor level, the
process can start the time loop.

The time loop begins with the execution of the solver functions within Code 1, which are respon-
sible for solving the system of governing equations of the specific physics being modeled. Once Code 1
has completed its computations and obtained a solution, the internal fields are transferred to the
corresponding MED fields. This transfer process involves a sequence of functions. Firstly, the interface
class of Code 1 uses the function get_field_from_Code1() to extract the solution of the field from
Code 1. Next, within the med_class class, two functions are employed: fill_med_array(), which sets
the field values into the corresponding DataArrayDouble, and update_med_field(), which sets the
array into the MED field.

At this step, a projection function can be used when a source field from Code 1 has to be
interpolated from the source mesh to a target grid suitable for Code 2. The MED library provides
a range of functions tailored to this functionality. It is important to highlight that the interpolation
functions are available for P0 (e.g., cell-wise) and P1 (e.g., node-wise) fields, both targeting intensive or
extensive fields.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2024 doi:10.20944/preprints202404.0229.v1

7 of 23

Algorithm 1 Coupling Algorithm

1: procedure main()
2: Initialization of Code 1 and Code 2 structures.

Initialization of interfaces
3: function init_interface()
4: Set interface name for reference at the supervisor level.
5: conn = get_mesh_connectivity() ▷ Get interface mesh connectivity
6: coords = get_mesh_coordinates() ▷ Get coordinates of mesh nodes
7: set_map_CodeFromToMED() ▷ Map mesh nodes ⇄ MED mesh nodes
8: end function
9: function create_mesh()

10: insert cells with conn information into the MED mesh structure.
11: setup coords information into the MED mesh structure.
12: creation of MED mesh copy from the mesh of Code 1 and Code 2
13: end function
14: function init_med_field_on_nodes/cells()
15: assigns the MED field to the corresponding interface MED mesh
16: allocate_med_array() ▷ MED array memory allocation
17: init_med_field() ▷ set MED field values to zero
18: end function

Time loop
19: time_step = 0
20: for time_step = 0 −→ num_steps do
21: Solve system of equations of Code 1
22: get_field_from_Code1() ▷ Extract field solution from Code 1
23: fill_med_array() ▷ Write field solution into MED array
24: update_med_field() ▷ Set MED array values into MED field
25: interpolation() ▷ Interpolate P0 field from Code 1 to Code 2
26: set_field_to_Code2() ▷ Set field solution into Code 2
27: Solve system of equations of Code 2
28: get_field_from_Code2() ▷ Extract field solution from Code 2
29: fill_med_array() ▷ Write field solution into MED array
30: update_med_field() ▷ Set MED array values into MED field
31: interpolation() ▷ Interpolate P0 field from Code 2 to Code 1
32: set_field_to_Code1() ▷ Set field solution into Code 1
33: time_step += 1
34: end for
35: end procedure

These interpolation algorithms can combine different field types, e.g. it is possible to interpolate
from P0 to P0, from P0 to P1, from P1 to P0, and from P1 to P1. In this application, a P0 to P0 interpolation
scheme is employed, requiring that both fields from FEMuS and OpenFOAM be represented as cell-
wise fields. Given that FEMuS uses biquadratic fields, it becomes necessary to convert the solution
into a cell-wise field. To achieve this conversion, an interpolation algorithm specifically designed for
converting P2 (biquadratic field) to P0 field is employed after the extraction of the solution from FEMuS.
Therefore, the interpolation() function from med_class is called. This function is used to interpolate
the MED field from Code 1 to a MED field over a MED mesh of Code 2. The MED field interpolated
over the mesh of Code 2 is now available (directly in memory) as a MED object. With an inverse
process, it can be stored as the solution of Code 2 using the interface function set_field_to_Code2().
In the scenario where Code 2 is FEMuS, an interpolation algorithm from P0 to P2 field must be used

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2024 doi:10.20944/preprints202404.0229.v1

8 of 23

before calling the set_field_to_Code2() function. This is necessary to ensure compatibility between
the cell-wise field format required by the coupling framework and the biquadratic solution format
required by FEMuS.

With the solution provided by Code 1, Code 2 can proceed to solve its specific physics. Once the
solution of the system of equations in Code 2 is obtained, it provides the field to be exchanged back to
Code 1 using a mechanism analogous to the previous one. The interface function get_field_from_Code2()
is called to extract solution from Code 2, while fill_med_array() and update_med_field() are em-
ployed to set the solution of the Code 2 into the corresponding MED field. Then the interpolation()
function is used to interpolate the MED field from Code 2 to the target MED field associated with
Code 1. Finally, this interpolated field is written into Code 1 using the set_field_to_Code1() routine.

Once Code 1 receives the solution from Code 2, the data exchange between the two codes is
completed. With both codes now equipped with the necessary fields, the time loop can proceed to the
next time iteration at the supervisor level. This iterative process is repeated at each time step until the
end of the simulation.

4. Numerical Results

In this section, we present two numerical examples that show the capabilities of the algorithm
described above. The idea is to analyze two different aspects of the data transfer between numerical
codes. Specifically, volume and boundary field transfer are investigated since both situations represent
realistic applications. The first example is a buoyant-driven cavity where different codes solve the
velocity and temperature fields, while the second one is a conjugate heat transfer problem between
two different domains where temperature and heat flux are exchanged. For both applications, the
mathematical problem is described with appropriate boundary conditions, and the numerical results
are compared with literature reference data for the same application setting.

4.1. Buoyant Driven Cavity

In the following section, a first numerical application is presented to show the simulation results
of a code coupling procedure between volume fields, taking reference data from the literature as a
benchmark. The simulation setting is depicted in Figure 3, where a square cavity is considered as
the numerical domain for the resolution of Navier-Stokes and temperature equations. In this case,
we can consider a Newtonian and incompressible fluid for which a two-dimensional setting has
been investigated. In particular, these equations are coupled though the buoyancy term. Therefore,
considering the velocity u, the pressure p and the temperature T, we have

∇ · u = 0 ,

∂u
∂t

+ u · ∇u =
p
ρ
+ ν∆u + gβ(T − T0) ,

∂T
∂t

+ u · ∇T = α∆T + Q ,

(1)

where ν is the kinematic viscosity, ρ the density, β the coefficient of thermal expansion, α the thermal
diffusivity, T0 the reference temperature and Q the volumetric thermal source. We recall that ∇·
represents the divergence operator, ∇ is the gradient, while ∆ the Laplacian. For all the presented tests,
a laminar behavior of the flow has been considered.

Regarding the boundary condition, we impose a no-slip boundary condition for the velocity field
at every boundary edge. For the energy equation, both Dirichlet and Neumann boundary conditions
are used. In particular, we impose the temperature on two opposite edges, creating a hot and a cold
wall, while on the remaining edges, an insulation condition has been imposed, according to Figure 3.
Furthermore, the volumetric thermal source Q was set to zero for every numerical simulation.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2024 doi:10.20944/preprints202404.0229.v1

9 of 23

y∗

x∗

T = TCT = TH

∇T · n̂ = 0

∇T · n̂ = 0

g l

Figure 3. Geometry of the buoyant cavity problem with boundary conditions for the temperature field.

As we know from the literature, the form of the solution to this problem depends on the non-
dimensional Rayleigh number that is defined as Ra = gρβL3(TH − TC)/(να), where L is the reference
length of the domain. Referring to Figure 3, we have L = l. Moreover, the reference temperature T0 is
set to the mean value between TH and TC for every specific simulation. The numerical tests have been
performed for different Ra numbers, ranging from 103 up to 106 and compared with reference data.
Specifically, this problem has been described in several works [25–29].

Regarding the numerical approach, four different approaches are presented and analyzed. Two
simulations have been performed by solving the system of equations (1) considering a monolithic
solution with the FEMuS code (F) and OpenFOAM (OF), taken as reference. The other two cases use
the code coupling technique: in the first case (c1), the temperature is solved in FEMuS and the velocity
in OpenFOAM, and vice-versa in the second case (c2). In the two latter procedures, we recall that
the coupling between the codes takes place through two terms in the equations: the buoyancy term,
which requires the temperature field in the momentum equation, and the advection term in the energy
equation, which is computed via the velocity field coming from the momentum equation. This is a
necessary condition for the cases c1 and c2 to satisfy the problem described in (1). In particular, the
field transfer is performed considering the volumetric value of the specific field, so for each cell of the
target mesh, the field is interpolated from the source mesh by using the MED structures described in
the previous section. The entire volumetric field is transferred between the two codes, adopting the
same discretization for the domain, even if the FEM codes consider biquadratic quadrilateral elements
while the FVM code uses linear quadrilateral elements.

4.1.1. Volume Data Transfer Algorithm

Following Algorithm 1, we outline the procedure employed for the coupling application involving
volume data transfer. In both coupling cases c1 and c2, the init_interface() and create_mesh() are
used to create a MED mesh object of the entire domain. The FEMuS problem can use either a 2D or a
3D mesh, according to the problem dimension. In contrast, OpenFOAM can handle only 3D meshes,
even for 2D problems. Since we are addressing this latter mesh dimension in this context, the volume
mesh used by FEMuS consists of a 2D computational grid. Consequently, the MED meshes employed
in this scenario consider a 2D mesh for FEMuS and a 3D mesh for OpenFOAM with a single cell across
the third dimension.

TheinitializationofMEDfieldsover theMEDmeshes involvescallingtheroutine init_med_field_on_cells()
to initialize a cell-wise temperature field and a cell-wise velocity field for both codes throughout the entire com-
putational domain. We name the P0 temperature field over MED meshes as temp_P0_2Dmesh for FEMuS and
temp_P0_3Dmesh for OpenFOAM. Similarly, the P0 velocity field is denoted by vel_P0_2Dmesh and vel_P0_3Dmesh
for FEMuS and OpenFOAM, respectively.

We describe the algorithm for the coupling case c1 since the c2 case is entirely similar but with the
fields swapped. Once the time loop is started, FEMuS first solves the temperature equation as described

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2024 doi:10.20944/preprints202404.0229.v1

10 of 23

in (1). Then, the get_field_from_femus() function is called to extract the temperature solution. Given
that FEMuS solves for a biquadratic temperature field, an interpolation from P2 to P0 is performed to cor-
rectly pass the data to OpenFOAM, which works with P0 fields. Following this, the fill_med_array()
and update_med_field() functions are used to set the temp_P0_2Dmesh field. At this point, the
interpolation() routine is used to interpolate temp_P0_2Dmesh into the MED mesh from Open-
FOAM to obtain the target MED field temp_P0_3Dmesh. The function set_field_to_OpenFOAM() set
the interpolated field into the OpenFOAM temperature field, used to compute the buoyancy term
within the Navier-Stokes equation. Once OpenFOAM has solved the system of equations, the velocity
field is extracted using get_field_from_OpenFOAM() routine and set to the vel_P0_3Dmesh field. Then,
the interpolation function computes the vel_P0_2Dmesh to be passed to the FEMuS code. This field
must be first interpolated using the P0 to P2 interpolation scheme and then written into the velocity
field of FEMuS using the routine set_field_to_femus(). In the following time iteration, FEMuS uses
this updated velocity field in the advection term of the temperature equation.

4.1.2. Simulations Results

The numerical fields resulting from the computation have been non-dimensionalized with the
following

x∗ =
x
L

, u∗ =
u L
α

, Θ =
T − TC

∆T
, (2)

where TC represents the Dirichlet boundary condition for the temperature on the cold wall. Naturally,
by considering these new variables such as the non-dimensional temperature Θ, the non-homogeneous
Dirichlet boundary conditions change their specific values: on the cold wall we now have Θ = 0,
while on the hot one, we have Θ = 1. Therefore, the numerical results are described by using only the
non-dimensionalized variables.

In Figures 4–7 isolines of the contour of the velocity magnitude (|u|), the non-dimensional velocity
components (u∗, v∗) and the non-dimensional temperature (Θ) are reported for four Ra numbers (from
103 up to 106) for the two coupling algorithms (c1 and c2). Reference results of the physical field
contours can be widely found in the literature for this kind of problem. For this reason, the interested
reader can refer to [29] and references therein. For every case of Ra number, the contour isolines are in
agreement with those in the literature.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2024 doi:10.20944/preprints202404.0229.v1

11 of 23

0.4

0.7

0.7

1.
1

1.1

1.5

1.5

1.9

1.9

2.
2

2.2

2.6

2.
6

3.0

3.0

3.3

3.3

3.3

3.3

|u|

-3.40

-3.00
-2.60

-2.20
-1.80-1.40

-1.00

-0.60

-0.20

0.200.60

1.00

1.40

1.80
2.202.60

3.00 3.40

u∗

-3.16

-2.74

-2.32 -1
.8

9

-1.47

-1
.0

5

-0.63

-0.21

0.
21

0.63

1.05

1.47

1.892.32

2.74

3.16
3.58

v∗ Θ

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
80.
9

1.
0

0.4

0.7

0.7

1.1

1.
1

1.5

1.51.
9

1.9

2.2

2.2

2.6

2.6

3.0 3.0

3.3

3.3

3.3

3.3

|u|

-3.40

-3.00

-2.60

-2.20

-1
.8

0

-1.40

-1.00-0.60
-0.20

0.200.60

1.00
1.40

1.80

2.20

2.60

3.00

3.
40

u∗

-3.58

-3.16

-2
.7

4

-2.32

-1.89

-1.47

-1
.0

5

-0
.6

3

-0
.2

1

0.
21

0.63 1.
05

1.47

1.89

2.
32

2.74

3.16

3.
58

v∗ Θ

0.
1

0.
2

0.
3

0.
4

0.
50.

6

0.
7

0.
8

0.9

1.
0

Figure 4. From left to right, the contour of velocity magnitude, non-dimensional velocity components
and non-dimensional temperature. Coupling algorithm c1 (top) and c2 (bottom) for the case with
Ra = 103.

2.0

2.0

4.0

4.0

6.
0

6.0

8.0

8.
0

10.0

10
.0

12.0

12.0

14.0

14.0

14
.0

14.0

16.0

16
.0

16.0

16.0

18.0

18.0

|u|

-1
5.

21

-13.42

-11.63
-9.84

-8
.0

5

-6.26

-4
.4

7

-2
.6

8

-0.89

0.89

2.68

4.47

6.26

8.05

9.84

11.63

13.42

15.21

u∗
-1

8.
79

-1
6.

58

-14.37

-1
2.

16

-9.95

-7
.7

4

-5.53

-3.32

-1
.1

11.11

3.
32

5.53

7.
74

9.
95

12.16

14.37

16
.5

8

18.79

v∗

0.
1

0.
2

0.
3

0.4

0.5

0.6

0.7
0.8

0.9

Θ

2.0

2.0

4.0

4.0

6.0

6.
0

8.0

8.0

10.0

10.0

12.0

12
.0

14.0
14.0

14
.0

14
.0

16.0

16.0

16.0

16.0

18.0

18
.0

|u|

-15.21

-13.42
-11.63

-9.84 -8.05

-6
.2

6

-4.47

-2.68
-0.89

0.892.68 4.47

6.26

8.05

9.8411.63

13.42

15.21

u∗

-1
8.7

9

-1
6.

58-1
4.

37

-1
2.

16

-9.95

-7
.7

4

-5
.5

3

-3.32

-1
.1

1

1.
11

3.32
5.53

7.
74

9.
95

12.16

14.37

16.58

18.79

v∗
0.

1

0.2

0.
3

0.
4

0.
5

0.60.7

0.
8

0.
9

Θ

Figure 5. From left to right, the contour of velocity magnitude, non-dimensional velocity components
and non-dimensional temperature. Coupling algorithm c1 (top) and c2 (bottom) for the case with
Ra = 104.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2024 doi:10.20944/preprints202404.0229.v1

12 of 23

7.
4

7.4

14.8

14.8

22.2

22.2

29
.6

29.6

37.0

37
.0 37

.0

37.0

44.4

44
.451

.8

51.8

59
.2 59

.2

66
.6

66
.6

|u|

-35.79

-31.58
-27.37

-23.16

-18.95

-14.74

-10.53

-6.32 -2.11

2.116.32 10.53

14.74
18.9523.16

27
.3

7

31.58

35.79

u∗

-6
8.

48

-61.96

-5
5.

43
-4

8.
91-

42
.3

9
-3

5.
87

-29.35

-2
2.

83

-16.30

-9
.7

8
-3

.2
6

-3
.2

6

3.
26

3.26

9.78

16
.3

0

22
.8

3

29
.3

5

35.87

42
.3

9
48

.9
1

55
.4

3
61

.9
6

68
.4

8

v∗

0.
1

0.2
0.3

0.
4

0.5

0.
6

0.7

0.
8

0.
9

Θ

|u|

5.
775.77

11
.5

4 11.54

17.31

17.31

23.08

23
.0

8

28.85

28.85

34.62

34.62

34.62

34.6240
.3

8

40.38

46
.1

5

46
.1

5

51.92

51
.9

2

57
.6

9 57
.6

9

63
.4

6 63
.4

6

69
.2

3

69.23

u

-36.52

-33.04

-29.57

-26.09

-22.61

-19.13

-15.65

-12.17

-8.70

-5.22
-1.74

1.745.22 8.70

12.17

15.6519.13
22.61

26
.0

9

29.57

33.04 36.52

v

-6
7.

57

-61.13

-54.70

-4
8.

26 -4
1.

83
-3

5.
39 -2

8.
96

-2
2.

52

-16.09

-9
.6

5

-3
.2

2

-3
.2

2

3.
22

3.
22

9.65

16
.0

9

22.52

28
.9

6

35
.3

9 41
.8

3
48

.2
6

54.70 61
.1

3
67

.5
7

Θ

0.
1

0.2
0.3

0.4

0.5

0.
6

0.7

0.
8

0.
9

1.0

Figure 6. From left to right, the contour of velocity magnitude, non-dimensional velocity components
and non-dimensional temperature . Coupling algorithm c1 (top) and c2 (bottom) for the case with
Ra = 105.

23.0

23.0

46.0

46.0

69.0

69
.0

92
.0

92.0

92
.0

92.0

11
5.

0

11
5.

0

138.0

138.0

16
1.

0

16
1.

0

18
4.

0

18
4.

020
7.

0

20
7.

0

|u|

-89.47

-7
8.

95

-68.42-57.89

-47.37

-36.84

-26.32

-15.79
-5.26

5.26 15.79

26.32

36
.8

447.37

57.89

68.42
78.95 89.47

u∗

-211.83
-191.65

-1
71

.4
8

-1
51

.3
0

-1
31

.1
3

-1
10

.9
6

-90.78

-7
0.

61

-50.43

-30.26
-10.09

-10.09

10
.0

9

10.09

30
.2

6

50
.4

3

70.61

90.78

11
0.

96
13

1.
1315

1.
30171.48

19
1.

65

211.83

v∗

0.
1

0.
2

0.3

0.
4

0.
5

0.6

0.7
0.

8
0.

9

Θ

23
.0

23.0

46
.0

46
.069

.0

69
.0

92.0

92
.0

115.0

115.0

13
8.

0

13
8.

0

16
1.

0

16
1.

018
4.

0

18
4.

0

20
7.

0

207.0

|u|

-78.95 -68.42

-57.89

-47.37

-36.84

-26.32

-15.79 -5.26

5.2615.79

26.3236.84

47.37

57.89 68.42

78
.9

5

u∗

-2
11

.8
3

-1
91

.6
5

-171.48

-1
51

.3
0

-1
31

.1
3

-1
10

.9
6

-90.78

-7
0.

61 -
50

.4
3

-3
0.

26

-1
0.

09

-10.09

10
.0

9

10.09

30
.2

6

50.43

70
.6

1

90.78

11
0.

96131.13

15
1.

30
17

1.
48

19
1.

65
21

1.
83

v∗
0.

1

0.2
0.3

0.4

0.5

0.
6

0.7

0.
8

0.
9

Θ

Figure 7. From left to right, the contour of velocity magnitude, non-dimensional velocity components
and non-dimensional temperature. Coupling algorithm c1 (top) and c2 (bottom) for the case with
Ra = 106.

In Table 1 a grid convergence analysis is reported for the maximum value of the v∗ component
evaluated at y∗ = 0.5, for the case of Ra = 105. In particular, three types of grid size have been
investigated, corresponding respectively to 400, 1600, and 6400 elements (nel), for each of the four
simulation setups. The four simulations show the same convergence behavior, with a similar value
for the finest grid solution. A comparison with [12] for the same simulations has been reported since
we have used the same grid refinement. It can be noticed that our results are consistent with the ones
already published.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2024 doi:10.20944/preprints202404.0229.v1

13 of 23

Table 1. Grid convergence of the v∗max value at y∗ = 0.5 for the case with Ra = 105, and comparison
with the same data of [12], for three different level of discretisation.

nel F OF c1 c2 [12]

20 × 20 73.639 65.186 66.789 71.908 73.241

40 × 40 73.615 72.470 73.140 73.244 73.189

80 × 80 73.617 73.337 73.515 73.681 73.168

In Tables 2 and 3, we report the maximum value of the non-dimensional velocity components,
u∗ and v∗ evaluated respectively at the planes x∗ = 0.5 and v∗ = 0.5 with different Ra numbers and
compare them with the same data taken from the literature.

Table 2. Maximum value of u∗-component at x∗ = 0.5, for different Ra numbers and comparison with
literature data.

Ra F OF c1 c2 [25] [26] [28] [29]

103 3.66 3.59 3.64 3.70 3.63 3.68 3.65 3.49

104 16.24 16.22 16.19 16.33 16.18 16.10 16.18 16.12

105 35.70 35.71 35.75 35.80 34.81 34.00 34.77 33.39

106 80.79 81.03 83.16 78.47 65.33 65.40 64.69 65.40

Table 3. Maximum value of v∗-component at y∗ = 0.5, for different Ra numbers and comparison with
literature data.

Ra F OF c1 c2 [25] [26] [27] [28] [29]

103 3.69 3.60 3.68 3.73 3.68 3.73 3.69 3.70 3.69

104 19.80 19.76 19.72 19.88 19.51 19.90 19.63 19.62 19.76

105 73.62 73.34 73.52 73.68 68.22 70.00 68.85 68.69 70.63

106 234.80 234.66 227.41 229.06 216.75 228.00 221.60 220.83 227.11

In general, a good agreement can be noticed for the maximum value of the non-dimensional
velocity components. For the case of Ra = 106, however, a slight difference is present concerning other
literature data, although the four simulations presented in this work exhibit values close to each other.

In Figures 8 and 9 the non-dimensional velocity components and the non-dimensional temperature
are reported for every type of the four simulations (F, OF, c1, c2) and for every Ra number. A
comparison with literature data from [29], symbolized with circular markers, is also highlighted.
Specifically, these plots refer to the variables’ behavior at specific points in the domain: the line
x∗ = 0.5 for the u∗ component and the line y∗ = 0.5 for the v∗ component and the temperature Θ.

Regarding the latter variable, the plotted domain is restricted to x∗ ∈ [0, 0.2] (apart from Ra = 105)
since the literature data con be found only this interval. Moreover, for the same Θ, a good agreement
with reference data published in [29] is present for every case and every type of simulation, including
both coupled algorithms. For this reason, we do not provide a zoom on specific regions of the non-
dimensional temperature plot since the lines of the four simulations are almost overlapping. The
same trend can also be seen for the v∗ component, while some discrepancy can be noticed for the u∗

component in the case of Ra = 106. On the other hand, each of our simulations seems to produce the
same numerical solution, confirming the goodness of the simulations and coupling procedure. We
provide a zoom of the plot in the region close to the maximum/minimum of the velocity components
to better highlight the slight differences between the four simulations and the literature results.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2024 doi:10.20944/preprints202404.0229.v1

14 of 23

0.00 0.05 0.10 0.15 0.20

x∗

0.80

0.85

0.90

0.95

1.00
Θ

F
OF
c1
c2

0.00 0.05 0.10 0.15 0.20

x∗

0.6

0.7

0.8

0.9

1.0

Θ

F
OF
c2
c1

0.0 0.2 0.4 0.6 0.8 1.0

y∗
−4

−2

0

2

4

u
∗

F
OF
c1
c2

0.75 0.80 0.85

3.4

3.6

3.8

0.0 0.2 0.4 0.6 0.8 1.0

y∗

−15

−10

−5

0

5

10

15

u
∗

F
OF
c1
c2

0.80 0.85

15.8

16.0

16.2

16.4

0.0 0.2 0.4 0.6 0.8 1.0

x∗
−4

−2

0

2

4

v
∗

F
OF
c1
c2

0.15 0.20 0.25

3.5

4.0

0.0 0.2 0.4 0.6 0.8 1.0

x∗

−20

−10

0

10

20

v
∗

F
OF
c1
c2

0.10 0.15

19.0

19.5

20.0

Figure 8. Non-dimensional temperature Θ (at y∗ = 0.5, top) and non-dimensional components u∗ (at
x∗ = 0.5, middle) and v∗ (at y∗ = 0.5, bottom) for the four types of simulations (F, OF, c1 and c2) with
a comparison with literature data from [29] (circular markers). Case with Ra = 103 on the left and
Ra = 104 on the right.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2024 doi:10.20944/preprints202404.0229.v1

15 of 23

0.0 0.2 0.4 0.6 0.8 1.0

x∗

0.0

0.2

0.4

0.6

0.8

1.0
Θ

F
OF
c1
c2

0.00 0.05 0.10 0.15 0.20

x∗

0.4

0.6

0.8

1.0

Θ

F
OF
c1
c2

0.0 0.2 0.4 0.6 0.8 1.0

y∗

−30

−20

−10

0

10

20

30

u
∗

F
OF
c1
c2

0.80 0.85 0.90

34

35

0.0 0.2 0.4 0.6 0.8 1.0

y∗

−75

−50

−25

0

25

50

75

u
∗

F
OF
c1
c2

0.85 0.90 0.95

75

80

0.0 0.2 0.4 0.6 0.8 1.0

x∗

−75

−50

−25

0

25

50

75

v
∗

F
OF
c1
c2

0.06 0.08

72

73

0.0 0.2 0.4 0.6 0.8 1.0

x∗

−200

−100

0

100

200

v
∗

F
OF
c1
c2

0.02 0.04 0.06

200

220

Figure 9. Non-dimensional temperature Θ (at y∗ = 0.5, top) and non-dimensional components u∗ (at
x∗ = 0.5, middle) and v∗ (at y∗ = 0.5, bottom) for the four types of simulations (F, OF, c1 and c2) with
a comparison with literature data from [29] (circular markers). Case with Ra = 105 on the left and
Ra = 106 on the right.

4.2. Conjugate Heat Transfer (CHT)

In this section, we present the second application implemented to test the data transfer between a
FVM code and a FEM code in the domain defined by Figure 10. This test aims to investigate the data
transfer through a boundary that connects these two domains. In this context, we analyze a Conjugate
Heat Transfer problem that describes a thermal exchange between two regions of different materials.
In particular, we consider the heat exchange through a physical boundary between a solid and a
fluid region. This kind of application finds significant attention in several scientific and engineering
applications, such as solar heating [30], heat exchange [31] and nuclear energy production [32].

The solid is modeled as a two-dimensional isotropic material with constant material properties.
Two domains are considered where different equations are solved. The first region represents a solid
domain in which only the temperature equation has been solved, while in the second region, the
momentum and temperature equations are solved for a buoyant fluid, employing the same system

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2024 doi:10.20944/preprints202404.0229.v1

16 of 23

of equation described in (1). The only parameter which describes the temperature distribution in the
solid is the thermal diffusivity α, which is defined as

α =
k

ρ cp
, (3)

where k is the thermal conductivity and cp the thermal capacity of the solid domain. Therefore, the
heat equation in the solid reads as

∂T
∂t

= α∆T . (4)

We recall that in the following discussion, the physical field has been non-dimensionalized, thus, the
temperature field T is transformed into the corresponding Θ by using (2).

The peculiarity of this kind of physical setup is the mutual exchange of the boundary conditions
values at the interface between the two regions. At the common interface, the fluid problem is
equipped with a non-homogeneous Dirichlet boundary condition while the solid problem uses a
non-homogeneous Neumann boundary condition. Specifically, the temperature field in the solid at the
boundary is used as the boundary condition for the fluid region, while the heat flux computed at the
same interface for the fluid region is the boundary condition for the temperature equation of the solid.

Therefore, for the solid, two homogenous Neumann boundary conditions have been imposed for
the top and bottom boundaries as a fixed temperature is imposed on one lateral side (the cold wall).
Otherwise, on the opposite wall (interface), a qw computed in the fluid region is imposed at every time
step.

Regarding the fluid region, the boundary conditions for the velocity field are the same as the cavity
configuration presented in the previous section. For the temperature field, the top and bottom walls
are described with a homogeneous boundary condition, while the other two boundaries are equipped
with a fixed temperature field. When, in one side, a non-dimensional temperature Θ is fixed (hot
wall), the interface has a changing temperature field in agreement to the solution of the temperature
equation in the solid region. A schematic representation of the direction for the exchanging of physical
quantities can be seen in Figure 10. Here, the grey-colored solid region is graphically separated from
the fluid one with a dashed line, through which the flux (wavy line, qw) and the temperature (solid
line, Tw) are exchanged.

0.2 l l
y∗

x∗

FEM FVM

qw

Tw

Θ = 1Θ = 0

0.8 l l

FEM FVM

qw

Tw

Θ = 1Θ = 0

Figure 10. Geometrical configurations of the CHT problem: on the left the domain with the solid wall
thickness equal to t1, on the right equal to t2.

4.2.1. Boundary Data Transfer Algorithm

The method used for the coupling application involving boundary data transfer follows a pro-
cedure similar to the algorithm described in paragraph 4.1.1. In this scenario, we aim to couple the
boundary between the solid and the fluid region within a 2D problem. Hence, the interface structures
consist of a 1D mesh for FEMuS and a 2D mesh for OpenFOAM. After the interfaces and the meshes are
created, the fields to be exchanged are initialized. In this instance, the fields to be transferred between

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2024 doi:10.20944/preprints202404.0229.v1

17 of 23

the codes are the temperature at the boundary and the wall heat flux through the same boundary.
Thus, we generate two MED fields for storing FEMuS data: a cell-wise heat flux field (qs_P0_1Dmesh)
and a temperature field (temp_P0_1Dmesh). Similarly, corresponding MED fields are initialized for
OpenFOAM: qs_P0_2Dmesh and temp_P0_2Dmesh.

At the beginning of the time loop, OpenFOAM solves the governing equation for the fluid and the
temperature equation. It then computes the wall heat flux to be transferred to FEMuS. The qs_P0_2Dmesh is
first extracted from the solution of OpenFOAM with the function get_field_from_OpenFOAM() and then
stored in a MED field over the corresponding mesh. The heat flux provided by OpenFOAM is interpolated
over the target mesh to obtain the target field qs_P0_1Dmesh. This field is then written into the FEMuS
solver as a non-homogeneous Neumann boundary condition using the set_field_to_femus() routine. It
is worth noting that the P0 to P2 interpolation is needed before the solution is written into the boundary
since the field provided by OpenFOAM has a cell-wise approximation. The updated boundary condition
is then used by FEMuS to solve the temperature equation within the solid domain, as described in (4).
After obtaining the temperature solution in the solid, the get_field_from_femus() function is invoked to
retrieve the solution at the boundary domain. With the inverse mapping this solution is first converted into
a P0 field and then interpolated over the OpenFOAM boundary to yield the temp_P0_2Dmesh field. This
field is used as a Dirichlet boundary condition for OpenFOAM as the boundary temperature is updated
using the set_field_to_OpenFOAM() routine. At this stage, control is turned back to OpenFOAM, where it
continues the task of solving its equations in the following time step.

4.2.2. Simulations Results

A schematic representation of the physical configuration is reported in Figure 10, where the
mutual exchange of the boundary conditions at the interface is depicted. Note that the fluid region
is described by a squared cavity of dimension l × l. In this work, two geometric configurations are
considered to take into account the solid region with thickness of t1 = 0.2l and t2 = 0.8l, where l is
the length side of the cavity. The physical and geometrical configuration have been implemented
following the work of Basak et al. [33], with the idea of reproducing numerical results described in
literature.

Several physical and geometrical configurations have been analyzed in [33], changing the Pr
number, the Ra number, the conductivity ratio K, the solid wall thickness t and its geometrical position
(hot side or cold side). Regarding K, this parameter is defined as the ratio between solid and fluid
thermal conductivity as

K =
ks

k f
, (5)

where the subscripts s and f refer to solid and fluid regions, respectively.
We present the numerical simulation of these tests considering only a few configurations. In

particular, the Pr number has been considered fixed and equal to 0.015, while two Ra numbers have
been considered (103 and 105). Three values of K have been investigated, equal to K1 = 0.1, K2 = 1
and K3 = 10. Concerning the solid wall position, only one configuration has been taken into account,
where the solid represents the cold side of the physical domain.

Regarding the initial condition for the temperature field, it is worth noting that two different
thermal conductivity are present in the whole simulated region (fluid + solid) for which we have that
Θ ∈ [0, 1]. Therefore, the linear behavior of the temperature distribution between cold and hot walls,
which is the initial condition, has to take into account two different ki with two different region widths.
In our simulation, we fix the initial temperature as

Θ(x) =


x

s1 + s2K
x ∈ solid

x
s1/K + s2

+ Θb x ∈ f luid ,
(6)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2024 doi:10.20944/preprints202404.0229.v1

18 of 23

where Θb represents the initial temperature on the interface and is equal to s1/(s1 + s2K), with s1 and
s2 the width of the two regions. Naturally, Equation (6) arises from the well-known solution of the
temperature distribution inside a wall with two different regions, but no advection. Considering the
boundary conditions on Θ, which reads Θ = 0 on the cold wall (solid) and Θ = 1 on the hot wall
(fluid), this initial condition ensures that the temperature flux is always with the right sign, i.e., the
thermal flux passes through the common boundary from the fluid to the solid region.

In Figures 11–13, the contour of the non-dimensional temperature Θ and the velocity stream
function Ψ are reported for the simulated cases. Considering the non-dimensional temperature, we can
notice a different behavior for the isolines with different conductivity ratios K. When K < 1, the largest
part of the temperature gradient is located in the solid region, while for values of K > 1, the same
consideration can be drawn for the fluid region. Naturally, increasing the Ra number, we re-obtain
the classical temperature isolines of a buoyant cavity, where the isolines distribution still follows the
previous discussion of the conductivity ratio K. These considerations can be applied also in the case of
a solid wall thickness equal to t2.

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0
Θ

0.1
0.2

0.3
0.4

0.5
0.6

0.7 0.8

0.9

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0
Θ

0.1

0.2
0.2

0.3

0.4

0.5
0.6

0.7

0.8

0.9

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0
Θ

0.01

0.1

0.3

0.6

0.8

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0
Ψ

0.01

0.
05

0.10

0.15

0.20

0.
25

0.30

0.35

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0
Ψ

0.02

0.
10

0.20

0.30

0.40

0.50

0.60

0.
70

0.80

0.90

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0
Ψ

0.02
0.10

0.20

0.30

0.40

0.50

0.60

0.70 0.80

0.
90

1.00

Figure 11. Simulations with solid thickness t1 and Ra = 103. From left to right contour of non-
dimensional temperature Θ (top) and velocity stream function Ψ (bottom) for K = 0.1, 1, 10.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2024 doi:10.20944/preprints202404.0229.v1

19 of 23

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0
Θ

0.
1

0.2
0.3

0.4

0.
5

0.6
0.7

0.8

0.
8

0.90

0.95

0.98

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0
Θ

0.
1

0.2 0.3

0.
3

0.
4

0.4
0.4

0.6

0.
7

0.8

0.
9

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0
Θ

0.
02

0.04

0.04

0.
1

0.2

0.3

0.4

0.5

0.
6

0.7
0.8

0.9

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0
Ψ

0.1

0.5
1.0

2.0

3.0

4.
0

5.0

5.2

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0
Ψ

0.2

0.5

1.0

2.
0

3.0

4.0

5.0

6.0

7.0

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0
Ψ

0.5

1.0

2.0

3.
0

4.0

5.
0

6.0

7.0

7.
9

Figure 12. Simulations with solid thickness t1 and Ra = 105. From left to right contour of non-
dimensional temperature Θ (top) and velocity stream function Ψ (bottom) for K = 0.1, 1, 10.

0.4 0.8 1.2 1.6
0.0

0.2

0.4

0.6

0.8

1.0
Θ

0.10
0.20

0.30
0.40

0.50
0.60

0.70
0.80

0.
90

0.95

0.98

0.4 0.8 1.2 1.6
0.0

0.2

0.4

0.6

0.8

1.0
Θ

0.1
0.2

0.3
0.4

0.5

0.
6

0.7
0.

7
0.

8

0.
9

0.4 0.8 1.2 1.6
0.0

0.2

0.4

0.6

0.8

1.0
Θ

0.1

0.2

0.
2

0.
3

0.4

0.5

0.
6

0.7

0.8

0.
9

0.4 0.8 1.2 1.6
0.0

0.2

0.4

0.6

0.8

1.0
Ψ

0.02

0.
50

1.001.50

2.
00

2.
50

3.
00

0.4 0.8 1.2 1.6
0.0

0.2

0.4

0.6

0.8

1.0
Ψ

0.1

0.5

1.0

2.
0

3.0

4.
0 5.

0

6.
0

0.4 0.8 1.2 1.6
0.0

0.2

0.4

0.6

0.8

1.0
Ψ

0.2

0.5

1.0

2.
0

3.0

4.
0

5.
0

6.
0

7.0

7.
6

Figure 13. Simulations with solid thickness t2 and Ra = 105. From left to right contour of non-
dimensional temperature Θ (top) and velocity stream function Ψ (bottom) for K = 0.1, 1, 10.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2024 doi:10.20944/preprints202404.0229.v1

20 of 23

Regarding the velocity stream function Ψ, the major difference can be noticed between the
simulations with a different Ra number: for Ra = 103 the order of magnitude is lower than one while
for Ra = 105 we reach values up to 8. Also, the conductivity ratio K influences this value, for which an
increase of K produces an increase in the stream function magnitude.

In Figure 14, the local Nusselt number on the interface is reported for the case of the solid wall
thickness equal to t1. This parameter has been computed as the normal gradient of the non-dimensional
temperature on the interface and represents the total ratio between the convective and the conductive
heat transfer over the boundary interface. In particular, we have

Nul =
∂Θ
∂n

. (7)

0.0 0.2 0.4 0.6 0.8 1.0

y∗

0.28

0.30

0.32

0.34

0.36

0.38

N
u
l

0.0 0.2 0.4 0.6 0.8 1.0

y∗

0.6

0.8

1.0

1.2

1.4

1.6

N
u
l

0.0 0.2 0.4 0.6 0.8 1.0

y∗

0.36

0.38

0.40

0.42

0.44

N
u
l

0.0 0.2 0.4 0.6 0.8 1.0

y∗

1

2

3

4

5

6

N
u
l

Figure 14. Local boundary Nusselt number for the case with solid thickness t1: gray markers are the
simulations with Ra = 103 on top (K = 0.1 on the left and K = 10 on the right), Ra = 105 on the bottom
(K = 0.1 on the left and K = 10 on the right). A comparison with data from [33] is reported (white
circular markers).

A comparison with reference literature data is reported with the white circular markers (data
from [33]) and the gray markers obtained with the boundary data algorithm presented in this work.
A good agreement can be noticed for every reported case. A slight overestimation concerning the
literature data is obtained for the case with Ra = 105 and K = 10.

In Table 4 the average Nusselt number Nul on the shared boundary between the two regions is
reported, with a comparison of the same parameter presented in [33]. A good agreement with the
literature data is achieved for every simulation.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2024 doi:10.20944/preprints202404.0229.v1

21 of 23

Table 4. Average Nusselt number with different conductivity ratios K, varying the Ra number and wall
thickness t. A comparison with results from [33] is also reported.

Ra
t1

K1 [33] K2 [33] K3 [33]

103 0.332 0.335 0.898 0.890 1.08 1.08

105 0.412 0.412 1.897 1.907 3.269 3.162

Ra
t2

K1 [33] K2 [33] K3 [33]

105 0.118 0.117 0.850 0.851 2.556 2.578

5. Conclusions

In this work an algorithm for the numerical coupling of a Finite Volume code (OpenFOAM) and
a Finite Element code (FEMuS) is presented by using an external library (MED). The code coupling
relies on volumetric and boundary data exchange over the simulated domain without using external
files. The algorithm is suitable for multiphysics simulations where different codes with different fields
of application can be coupled based on their specific field features.

Specifically, we have presented two types of data exchange: a volume and a boundary data
transfer. The volume coupling considers the volume transfer data in a buoyant-driven cavity problem.
The boundary coupling cosider a conjugate heat transfer problem between a solid and a fluid. In
the first application, we tested the code coupling through the buoyancy term in the momentum
equation, while in the second application, the coupling was performed by considering the thermal
boundary condition on the interface between the two regions. For the buoyant cavity application, the
coupling has been performed in two ways, firstly solving the momentum equation in OpenFOAM
and temperature in FEMuS and then switching the equation to solve between the two codes. Both
simulation results of the two applications show good agreement with the same applications already
presented in the literature. Future works will investigate the capability of the presented algorithm to
exchange additional physics, such as turbulence modeling with the aim of enhancing the OpenFOAM
models with specific thermal turbulence models available in the FEMuS code.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Drikakis, D.; Frank, M.; Tabor, G. Multiscale computational fluid dynamics. Energies 2019, 12, 3272.
https://doi.org/10.3390/en12173272.

2. Groen, D.; Zasada, S.J.; Coveney, P.V. Survey of multiscale and multiphysics applications and communities.
Computing in Science & Engineering 2013, 16, 34–43. https://doi.org/10.1109/mcse.2013.47.

3. Cordero, M.E.; Uribe, S.; Zárate, L.G.; Rangel, R.N.; Regalado-Méndez, A.; Reyes, E.P. CFD Modelling of
Coupled Multiphysics-Multiscale Engineering Cases. Comput. Fluid Dyn.-Basic Instruments Appl. Sci 2018.

4. Jasak, H.; Jemcov, A.; Tukovic, Z.; et al. OpenFOAM: A C++ library for complex physics simulations. In
Proceedings of the International workshop on coupled methods in numerical dynamics, 2007, Vol. 1000, pp.
1–20.

5. Angeli, P.E.; Bieder, U.; Fauchet, G. Overview of the TrioCFD code: Main features, VetV procedures and
typical applications to nuclear engineering. In Proceedings of the NURETH 16-16th International Topical
Meeting on Nuclear Reactor Thermalhydraulics, 2015.

6. Archambeau, F.; Méchitoua, N.; Sakiz, M. Code Saturne: A finite volume code for the computation of
turbulent incompressible flows-Industrial applications. International Journal on Finite Volumes 2004, 1.

7. Levesque, J. The Code Aster: a product for mechanical engineers; Le Code Aster: un produit pour les
mecaniciens des structures. Epure 1998.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2024 doi:10.20944/preprints202404.0229.v1

22 of 23

8. Helfer, T.; Michel, B.; Proix, J.M.; Salvo, M.; Sercombe, J.; Casella, M. Introducing the open-source mfront
code generator: Application to mechanical behaviours and material knowledge management within the
PLEIADES fuel element modelling platform. 70, 994–1023. https://doi.org/10.1016/j.camwa.2015.06.027.

9. Kirk, B.S.; Peterson, J.W.; Stogner, R.H.; Carey, G.F. libMesh: A C++ Library for Parallel Adaptive Mesh
Refinement/Coarsening Simulations. Engineering with Computers 2006, 22, 237–254. https://doi.org/10.100
7/s00366-006-0049-3.

10. Bangerth, W.; Hartmann, R.; Kanschat, G. deal. II—a general-purpose object-oriented finite element library.
ACM Transactions on Mathematical Software (TOMS) 2007, 33, 24–es.

11. Alnæs, M.; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A.; Richardson, C.; Ring, J.; Rognes, M.E.;
Wells, G. The FEniCS project version 1.5. Archive of numerical software 2015, 3.

12. Da Vià, R. Development of a computational platform for the simulation of low Prandtl number turbulent
flows. PhD thesis, University of Bologna, 2019.

13. Barbi, G.; Bornia, G.; Cerroni, D.; Cervone, A.; Chierici, A.; Chirco, L.; Da Vià, R.; Giovacchini, V.; Manservisi,
S.; Scardovelli, R. FEMuS-Platform: A numerical platform for multiscale and multiphysics code coupling.
In Proceedings of the 9th International Conference on Computational Methods for Coupled Problems in
Science and Engineering, COUPLED PROBLEMS 2021. International Center for Numerical Methods in
Engineering, 2021, pp. 1–12.

14. Numeric Platform. https://github.com/FemusPlatform/NumericPlatform.
15. SALOME. https://www.salome-platform.org/?page_id=23, 2023.
16. Ahrens, J.; Geveci, B.; Law, C.; Hansen, C.; Johnson, C. 36-paraview: An end-user tool for large-data

visualization. The visualization handbook 2005, 717, 50038–1.
17. Balay, S.; Abhyankar, S.; Adams, M.F.; Benson, S.; Brown, J.; Brune, P.; Buschelman, K.; Constantinescu, E.M.;

Dalcin, L.; Dener, A.; et al. PETSc Web page. https://petsc.org/, 2023.
18. Chierici, A.; Giovacchini, V.; Manservisi, S. ANALYSIS AND NUMERICAL RESULTS FOR BOUNDARY

OPTIMAL CONTROL PROBLEMS APPLIED TO TURBULENT BUOYANT FLOWS. International Journal of
Numerical Analysis & Modeling 2022, 19.

19. Chirco, L.; Manservisi, S. An optimal control approach to a fluid-structure interaction parameter estimation
problem with inequality constraints. Computers & Fluids 2021, 226, 104999. https://doi.org/10.1016/j.
compfluid.2021.104999.

20. Da Vià, R.; Giovacchini, V.; Manservisi, S. A Logarithmic Turbulent Heat Transfer Model in Applications
with Liquid Metals for Pr = 0.01–0.025. Applied Sciences 2020, 10. https://doi.org/10.3390/app10124337.

21. Da Vià, R.; Manservisi, S. Numerical simulation of forced and mixed convection turbulent liquid sodium
flow over a vertical backward facing step with a four parameter turbulence model. International Journal of
Heat and Mass Transfer 2019, 135, 591–603. https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.129.

22. Barbi, G.; Cervone, A.; Chierici, A.; Chirco, L.; Da Vià, R.; Franceschini, F.; Giovacchini, V.; Manservisi, S.
SIMULATION OF TALL-3D EXPERIMENTAL FACILITY WITH A MULTISCALE AND MULTIPHYSICS
COMPUTATIONAL PLATFORM. In Proceedings of the 9th International Conference on Computational
Methods for Coupled Problems in Science and Engineering, COUPLED PROBLEMS 2021. International
Center for Numerical Methods in Engineering, 2021, Vol. 1, pp. 1–12.

23. Chirco, L.; Da Vià, R.; Manservisi, S. VOF evaluation of the surface tension by using variational representation
and Galerkin interpolation projection. Journal of Computational Physics 2019, 395, 537–562. https://doi.org/
10.1016/j.jcp.2019.06.036.

24. Ribes, A.; Caremoli, C. Salome platform component model for numerical simulation. In Proceedings of the
31st annual international computer software and applications conference (COMPSAC 2007). IEEE, 2007,
Vol. 2, pp. 553–564.

25. de Vahl Davis, G. Natural convection of air in a square cavity: a benchmark numerical solution. International
Journal for numerical methods in fluids 1983, 3, 249–264.

26. Manzari, M. An explicit finite element algorithm for convection heat transfer problems. International Journal
of Numerical Methods for Heat & Fluid Flow 1999, 9, 860–877. https://doi.org/10.1108/09615539910297932.

27. Massarotti, N.; Nithiarasu, P.; Zienkiewicz, O. Characteristic-based-split (CBS) algorithm for incompressible
flow problems with heat transfer. International Journal of Numerical Methods for Heat & Fluid Flow 1998,
8, 969–990. https://doi.org/10.1108/09615539810244067.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2024 doi:10.20944/preprints202404.0229.v1

23 of 23

28. Mayne, D.A.; Usmani, A.S.; Crapper, M. h-adaptive finite element solution of high Rayleigh number
thermally driven cavity problem. International Journal of Numerical Methods for Heat & Fluid Flow 2000,
10, 598–615. https://doi.org/10.1108/09615530010347187.

29. D.C., W.; B.S.V., P.; G.W., W. A new benchmark quality solution for the buoyancy-driven cavity by discrete
singular convolution. Numerical Heat Transfer: Part B: Fundamentals 2001, 40, 199–228.

30. Pangavhane, D.R.; Sawhney, R.; Sarsavadia, P. Design, development and performance testing of a new
natural convection solar dryer. Energy 2002, 27, 579–590. https://doi.org/10.1016/s0360-5442(02)00005-1.

31. Fitzgerald, S.D.; Woods, A.W. Transient natural ventilation of a room with a distributed heat source. Journal
of Fluid Mechanics 2007, 591, 21–42. https://doi.org/10.1017/s0022112007007598.

32. Espinosa, F.; Avila, R.; Cervantes, J.; Solorio, F. Numerical simulation of simultaneous freezing–melting
problems with natural convection. Nuclear engineering and design 2004, 232, 145–155. https://doi.org/10.101
6/j.nucengdes.2004.06.005.

33. Basak, T.; Anandalakshmi, R.; Singh, A.K. Heatline analysis on thermal management with conjugate natural
convection in a square cavity. Chemical engineering science 2013, 93, 67–90. https://doi.org/10.1016/j.ces.20
13.01.033.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2024 doi:10.20944/preprints202404.0229.v1

