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Article 
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Abstract: This study investigated Land Use and Land Cover (LULC) classification east of the Nile 
Delta, Egypt, using Sentinel-2 bands, spectral indices, and Sentinel-1 data. The aim was to enhance 
agricultural planning and decision-making by providing timely and accurate information, 
addressing limitations of manual data collection. Several Machine Learning (ML) and Deep Learning 
(DL) models were trained and tested using distinct temporal datasets to ensure model independence. 
Ground truth annotations, validated against a reference Google satellite map, supported training and 
evaluation. XGBoost achieved the highest overall accuracy (94.4%), surpassing the Support Vector 
Classifier (84.3%), while Random Forest produced the most accurate map with independent data. 
Combining Sentinel-1 and Sentinel-2 data improved accuracy by approximately 10%. Strong 
performance was observed across Recall, Precision, and F1-Score metrics, particularly for urban and 
aquaculture classes. Uniform Manifold Approximation and Projection (UMAP) technique effectively 
visualized data distribution, though complete class separation was not achieved. Despite their small 
size, road area predictions were reliable. This research highlights the potential of integrating multi-
sensor data with advanced algorithms for improved LULC classification and emphasizes the need 
for enhanced ground truth data in future studies. 

Keywords: land use and land cover (LULC); remote sensing; AI; ML; DL 
 

1. Introduction 

The agri-food sector is a cornerstone of Egypt’s economy, providing livelihoods for millions and 
significantly contributing to national food security. Despite the predominantly desert landscape, with 
approximately 96% of the country classified as such, agriculture flourishes in the fertile Nile Valley 
and Delta. This cultivated area, totaling 9.6 million acres (approximately 4% of Egypt’s landmass), 
supports a vital socioeconomic sector. In 2022, agriculture employed roughly 18.9% of the Egyptian 
workforce and contributed 11.5% to the Gross Domestic Product during the 2021/2022 fiscal year, 
demonstrating a 4.0% growth rate [1]. 

Land Use and Land Cover (LULC) change is a key indicator for understanding dynamic shifts 
in geographic distribution. It plays a crucial role in analyzing a range of interconnected issues, from 
global ecological processes and climate change to environmental security, terrestrial-marine 
interactions, and the maintenance of ecological balance [2–5]. LULC data play a vital role in a range 
of geospatial analysis tools, including urban planning, regional management, and environmental 
conservation efforts [6–11]. The rapid pace of urbanization has exacerbated climate change effects, 
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underscoring the necessity for accurate land cover classifications to combat urban heat islands and 
monitor changes in vegetation indices, urban expansion, and aquatic structures [12]. 

Moreover, discussions about LULC offer vital frameworks for understanding the intricate 
relationships between human societies and our planet’s ecosystems. By conducting thorough LULC 
analyses, researchers obtain critical insights into socio-ecological dynamics, which are fundamental 
for promoting sustainable resource management, agricultural planning, and food security initiatives 
[11,13,14]. Up-to-date and accurate LULC maps are crucial for enhancing sustainable resource 
management, shaping agricultural and environmental policies, and assessing the ecological impacts 
of economic and agricultural activities [6,15–21]. Food security relies heavily on accurate information 
about agricultural land. This information is necessary for environmental monitoring, effective crop 
management, and meeting national crop demands. Deep Learning (DL) provides innovative tools for 
acquiring this crucial data [22]. 

Despite progress, challenges remain in the precise mapping of LULC, primarily due to 
insufficient up-to-date reference data and the labor-intensive nature of traditional surveying 
techniques [23]. Innovations in satellite technology and computing have not only increased access to 
open-source satellite data but also enhanced the capabilities of Remote Sensing (RS) for LULC 
mapping [24]. These advancements allow for the detailed detection, identification, and tracking of 
LULC changes across a range of spatial and temporal dimensions [25]. However, ground-level 
validation, potentially using geotagged photos, is crucial for verifying the accuracy of LULC maps 
[26,27]. 

RS cartography has been transformed by the rapid development of Earth observation systems, 
enabling its application across a wide spectrum of fields, from monitoring urban growth and 
responding to disasters to classifying vegetation, assessing forest degradation and wildfire damage, 
and studying climate change [28–34]. The popularity of RS technology stems from its ability to 
provide thorough information quickly and efficiently [35,36]. However, the reliance on commercial 
satellite data presents a significant hurdle. The cost of such data can be prohibitive, and coverage 
may be limited, particularly in certain regions. This underscores the critical need for advancements 
in multi-source and multi-temporal remote sensing techniques [37,38]. The emergence of free and 
open data sources, such as the Sentinel-2 (optical) and Sentinel-1 (SAR) missions since 2015, 
represents a major step forward, democratizing access to valuable Earth observation data and 
fostering innovation in RS applications [37,39,40]. 

Analyzing LULC using RS data often presents a significant challenge due to the sheer volume 
of data, making manual analysis labor-intensive, time-consuming, and expensive [41]. Artificial 
Intelligence (AI) has emerged as a transformative technology in this domain, offering the potential to 
automate image interpretation and efficiently extract valuable spatial information from satellite 
imagery [42,43]. Established Machine Learning (ML) algorithms, such as K-Nearest Neighbors 
(KNN) and Random Forest (RF), have proven useful in a variety of applications, from recognizing 
patterns in forests to performing land classification, regression, and clustering [44–48]. However, DL 
techniques, with their ability to handle both pixel-based and object-based classification, are 
particularly well-suited for the task of deciphering the complex and nuanced patterns that 
characterize remote sensing imagery. The development and refinement of these AI-driven 
approaches are crucial for unlocking the full potential of remote sensing data in LULC analysis 
[41,49,50]. 

Several ML algorithms gained prominence in RS for LULC classification during the 1990s, 
including Support Vector Machines (SVM), Decision Trees (DT), and RF. Their adoption was further 
accelerated by advancements in computer chip multithreading in the 2000s [46,47,51–55]. More 
recently, Extreme Gradient Boosting (XGBoost) has emerged as a powerful technique, leveraging an 
innovative approach to gradient-boosted DT [56,57]. Artificial Neural Networks (ANNs) have also 
seen significant progress, although their effectiveness depends on prior knowledge derived from 
ground samples and the quality of training data [56,58]. A common challenge for these methods is 
the presence of mixed pixels, which can negatively impact classification accuracy [59]. To address the 
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temporal dimension of image data, Recurrent Neural Networks (RNNs), particularly Long Short-
Term Memory (LSTM) models, have been employed for classifying image time series, capitalizing on 
their ability to learn sequential relationships [60–64]. 

For effective crop management and environmental conservation, automated information 
classification is increasingly vital. A key challenge lies in the variability of ground object 
characteristics and imaging conditions, which can negatively influence classification accuracy [65,66]. 
While spectral bands are important, the analysis of RS images also relies heavily on Vegetation 
Indices (VIs) and texture features. However, the computational cost associated with processing such 
high-dimensional data can be a limiting factor for many ML techniques [67]. 

In the current study, we leverage Sentinel-2 and Sentinel-1 data, alongside ML and DL 
algorithms, to classify LULC patterns in the east of Delta, Egypt, to overcome the current obstacles to 
accurately identify agricultural lands and crops areas. By incorporating ground annotations and 
labelled images from Google Earth, we evaluate the performance of various ML and DL models 
across different scenarios and dates in July and August 2021. Our comprehensive analysis suite aims 
to enhance our understanding of feature importance at the individual LULC class level, utilizing 
Python programming for interpretation. 

2. Materials and Methods 

2.1. Case Study 

This study aimed to evaluate a developed classification method in the eastern region of the Nile 
Delta in Egypt (Figure 1). Located in northern Egypt where the Nile River converges with the 
Mediterranean Sea, the Nile Delta extends approximately 150 km north from Cairo. This region is 
crucial, as it is home to over 50% of Egypt’s population and supports 63% of the nation’s agricultural 
land. The delta features sandy and silty coastlines with various lateral configurations, shaped by the 
historical paths of the Nile [68]. The study area includes governorates such as Daqahlia, Damietta, 
Sharkia, Gharbiya, and Kafr Al-Sheikh, covering about half of the delta, with a total area of 
approximately 10,610.88 km². Known for its fertile soil rich in clay, this region is marked by small-
scale agricultural fields and densely populated settlements engaged in diverse agricultural activities, 
including crop cultivation and livestock farming. The Nile Delta’s fertile soil and favorable climate 
create ideal conditions for intensive agriculture, significantly contributing to Egypt’s agricultural 
output. Its strategic location along the Mediterranean coast and its proximity to the Nile River 
enhance irrigation and support year-round agricultural practices. 
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Figure 1. The Area Of Interest (AOI) with blue frame related to the Nile Delta region. 

2.2. Data Annotation 

Ground-truth reference samples were manually labeled using geo-tagged shapefiles obtained 
from Google Earth and processed with QGIS software (open-source) version 3.32-Lima (Creative 
Commons Attribution-ShareAlike 3.0 license (CC BY-SA), https://qgis.org/de/site/). The annotated 
shapefile included six classes: cultivated areas, forests (including trees and palms), urban, roads, 
water bodies, and aquacultures, totalling 11,637 polygons. This reference geo-tagged shapefile was 
utilized to calibrate the classifiers and assess the classification accuracy. 

2.3. Satellite Image Processing 

2.3.1. Sentinel-1 Data 

The Sentinel-1 satellite features a C-band Synthetic Aperture Radar (SAR) instrument that 
operates at a central frequency of 5.405 GHz. Sentinel-1 data is available in the Ground Range 
Detected (GRD) format. Accessing this data was done via the ’Earth Engine Data Catalog,’ utilizing 
Python 3 with the command ’ee.ImageCollection(“COPERNICUS/S_GRD”).’ The preprocessing of 
Sentinel-1 data was performed using the Sentinel-1 Toolbox. This preprocessing process involved 
eliminating thermal noise, radiometric calibration, and terrain correction. The data were gathered in 
Interferometric Wide Swath (IW) mode, with a coverage width of 250 km. Sentinel-1 data were 
captured using dual polarizations, VV and VH, during the descending orbital trajectory. The pixel 
size and resolution of the data are 10 meters [69]. 

To ensure alignment with the Area Of Interest (AOI), the Sentinel-1 data were processed to have 
the same geometry coordinates as the downloaded Sentinel-2 tile. In cases where the AOI spanned 
across multiple Sentinel-1 tiles, a merging function was applied using the ’rasterio’ library in Python. 
Given that Sentinel-1 data were obtained from different orbits, the Coordinate Reference System 
(CRS) was corrected to match that of Sentinel-2 (EPS: 32636), ensuring consistency in geospatial 
referencing. 

2.3.2. Sentinel-2 Data 
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Data from Sentinel-2 were accessed through the Microsoft Planetary Computer, employing 
Python 3 with the command ’Planetary_computer.’ This platform is an open-source resource that 
follows open standards. The Sentinel-2 imagery consists of thirteen spectral bands with resolutions 
ranging from 10m to 60m and has a revisit period of about five days. The data were processed to 
Level-2A (bottom-of-atmosphere) using Sen2Cor and then the data was transformed to a cloud-
optimized GeoTIFF format. Terrain correction was carried out using the Planet DEM 30 digital 
elevation model [70]. To ensure consistency with the resolution of Sentinel-1 data, the Sentinel-2 
bands with a spatial resolution of 20m were resampled to 10m using nearest neighbour interpolation. 

The AOI was covered by a single tile with the ID ’36RUV’. The downloaded data had a cloud 
cover of equal to or less than 4%. The downloaded bands included red, green, blue, near-infrared 
(NIR), red-edge-1, SWIR-1, and SWIR-2. The CRS used was ’EPS: 32636’ for consistent geospatial 
referencing. 

2.4. Additional Features for Sentinel-1 and 2 Bands 

Additional features were derived from Sentinel-1 and Sentinel-2 bands to enhance LULC 
classifications. The ratio between VV and VH polarizations was computed from Sentinel-1 data. 
Furthermore, various spectral indices were calculated from Sentinel-2 bands to aid in the 
identification of LULC classifications. The utilized spectral indices from Sentinel-2 bands are detailed 
in Table 1. 

For the training and prediction of the models, data were gathered from nine selected dates in 
July and August 2021 for both Sentinel-1 and Sentinel-2. These dates were specifically chosen to 
ensure they were closely aligned, with a difference ranging from 1 to 3 days, as illustrated in Table 2. 
Moreover, one date from 2023 was designated for testing the models using the latest imagery from 
Google Earth. The Sentinel-2 image dated August 6, 2023, underwent adjustments to reflect the shift 
in the baseline of the Sentinel orbit from 3.0 to 4.0, which commenced on January 25, 2022 [71,72]. 

2.5. Data Preprocessing 

The satellite imagery from Sentinel-1 and Sentinel-2 was combined with the annotated shapefile 
to enable pixel-level annotation. Each pixel’s information consisted of values from the spectral bands 
and indices used as features, along with the corresponding LULC class from the annotated shapefile, 
which acted as the label. This annotation process covered nine dates throughout the summer of 2021. 
However, the dataset exhibited imbalanced class distributions due to the uneven spatial distribution 
of ground objects, particularly with aquaculture being more prevalent in the northern regions of the 
Nile Delta and the Mediterranean coast. This imbalance could adversely affect the accuracy of ML 
classifications [73]. To address this challenge, techniques for managing imbalanced classes, including 
the decomposition-based method and the Synthetic Minority Over-sampling TEchnique (SMOTE), 
were applied [74]. Additionally, the dataset was normalized and divided into training and testing 
sets in an 80-20% ratio. These steps were crucial for improving the accuracy of ML classification 
efforts, as emphasized by Buda et al. [73]. 

2.6. AI Models 

For classifying the evolved dataset of Sentinel-1, Sentinel-2, and the annotated shapefile, five 
machine learning classification models and one DL model were developed. The utilized machine 
learning algorithms include KNN, Support Vector Classifier (SVC), DT, RF, and XGB. Additionally, 
a LSTM model was employed as the deep learning approach. To enhance performance, the XGB and 
SVM classifiers were configured to run on the GPU instead of the CPU. For XGB, the device 
parameter was set to ’cuda’, and the thundersvm library was used in place of sklearn, with the gpu_id 
parameter adjusted to the GPU ID number. Furthermore, various parameters were tuned for each 
classifier using the RandomizedSearchCV library to optimize performance and achieve higher 
accuracy. Details of the optimization process can be found in Table 3. 
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Table 1. Utilized spectral indices from Sentinel-2 bands. 

Spectral index Formula Characteristics / Definitions References 

Normalized 

difference 

vegetation index 

(NDVI) 

NDVI= (NIR – 

R)/(NIR+R) 

Measures vegetation health by 

comparing the reflectance of near-

infrared (NIR) and red light, with NIR 

being reflected by vegetation and red 

light being absorbed by vegetation. 

[75] 

kernel Normalized 

difference 

vegetation index 

(kNDVI) 

kNDVI = tanh((NIR 

– red/ 2σ)2) 

σ = 0.5 (NIR + red) 

Enhances the performance of NDVI by 

incorporating automatic and pixel-wise 

adaptive stretching, ensuring that all 

aspects of the relationship between NIR 

and red bands are considered. 

[76] 

Normal Difference 

Built-up Index 

(NDBI) 

NDBI = (SWIR – 

NIR) / (SWIR + 

NIR) 

Asserts built-up areas by utilizing the 

NIR and short-wave infrared (SWIR) 

bands. 

[77] 

Dry Bare Soil Index 

(DBSI) 

DBSI = ((SWIR – 

GREEN) / (SWIR + 

GREEN) ) – NDVI 

Combines spectral bands including 

blue, red, NIR, and SWIR to capture 

variations in soil composition. 

[78] 

Normal Difference 

Water Index 

(NDWI) 

NDWI = (GREEN - 

NIR) / (GREEN + 

NIR) 

Identifies open water features in 

satellite imagery, distinguishing water 

bodies from soil and vegetation. 

[79] 

Modified 

Normalized 

Difference Water 

Index (MNDWI) 

MNDWI = (GREEN 

− SWIR1)/(GREEN 

+ SWIR1) 

Effectively distinguishes between water 

bodies and urban areas in satellite 

images. 

[80] 

Normalized 

Difference Pond 

Index (NDPI) 

NDPI = (SWIR1 - 

GREEN)/(SWIR1 + 

GREEN) 

Exhibits enhanced discriminatory 

power for aquatic and wetland 

vegetation compared to NDVI, which is 

a general indicator of vegetation 

presence. 

[81] 

Shortwave infrared 

transformed 

reflectance (STR) 

STR = (1 - SWIR)2 / 2 

SWIR 

Calculates reflectance for bare soils 

using SWIR bands. 
[82] 

Soil adjusted 

vegetation index 

(SAVI) 

SAVI= 1.5(NIR – R) 

(NIR+R+0.5) 

Reduces the influence of soil brightness 

by incorporating a correction factor for 

soil-brightness. 

[83] 

Optimized soil 

adjusted 

vegetation index 

(OSAVI) 

OSAVI= 1.16(NIR – 

R)/ (NIR+R+0.16) 

A modified version of SAVI that utilizes 

reflectance in the red and NIR 

spectrum. 

[84] 
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Enhanced 

vegetation index 

(EVI) 

EVI= 2.5(NIR – 

R)/(NIR+6 R – 

7.5B+1) 

Similar to NDVI, but EVI incorporates 

corrections for atmospheric influences 

and canopy background effects, thereby 

enhancing its sensitivity, notably in 

densely vegetated regions. 

[85] 

Automated Water 

Extraction Index 

(AWEI) 

AWEIsh = BLUE + 

2.5 × GREEN − 1.5 × 

(NIR + SWIR1) − 

0.25 × SWIR2 

Contributes to enhanced land cover 

classification accuracy through its 

capacity to discriminate between binary 

water and non-water areas irrespective 

of environmental conditions. 

[80] 

The LSTM model architecture comprises six ’Bidirectional’ LSTM layers with neuron numbers 
set to 16, 32, 64, 64, 32, and 16, respectively, with an input shape of (20, 1) corresponding to the 
number of features. Dropout layers were included after each LSTM layer, with a dropout rate of 20%. 
The final layer consists of six neurons representing the six classes, with the activation method set to 
softmax. The model was compiled with ’sparse_categorical_crossentropy’ loss, ’adam’ optimizer, and 
accuracy as the displayed metric. The total number of parameters in the model was 235,590. Training 
was conducted for 100 epochs with a batch size of 8192, and a validation split of 0.1 was used. 

Table 2. Dates of imagery utilized in the study. 

Sentinel-1 Sentinel-2 

July 04, 2021 July 07, 2021 

July 10, 2021 July 12, 2021 

July 16, 2021 July 17, 2021 

July 28, 2021 July 27, 2021 

August 03, 2021 August 01, 2021 

August 09, 2021 August 11, 2021 

August 15, 2021 August 16, 2021 

August 21, 2021 August 21, 2021 

August 27, 2021 August 26, 2021 

August 07, 2023 August 06, 2023 

Table 3. Range of Parameters Used by RandomizedSearchCV for Each ML Model. 

Model  Search space 

KNN n_neighbors = [4, 5, 6, 7, 8, 9] 

DT 
Criterion = {‘gini’, ‘entropy’}, max_depth = [10,13,15,18,20], min_sample_split = 

[50,80,100] 

RF 
n_estimators = [500,700,1000], max_depth = [10,13,15,18,20], min_sample_split = 

[50,80,100] 

SVC Kernels = ’RBF’, C = [10,20,30,40], Gamma = [0.1,0.5,1,5,10] 

XGB 
n_estimators = [500,700,1000], max_depth = [5,8,10,12,15], gamma = [0,0.001,0.005,0.1,0.5], 

learning_rate = [0.1,0.5,0.8,1,1.2,1.5,2], tree_method = ‘hist’ 

2.7. Models’ Evaluation 
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To assess the performance of the utilized models with the best parameters, various metrics were 
calculated, including accuracy, recall, precision, and F1 score. These metrics are computed using the 
following equations: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃𝑇𝑃 + 𝐹𝑃 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃𝑇𝑃 + 𝐹𝑁 𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 
Where TP (True Positive), TN (True Negative), FP (False Positive), and FN (False Negative) denote 
the predicted classifications. 

2.7. Experiment and Analysis 

The verification and simulation of the proposed method were conducted on a high-performance 
laptop, ensuring consistency across all comparison methods in a unified software and hardware 
environment. The experimental hardware and software configurations are detailed in Table 4. All 
experimental codes for remote sensing and AI models proposed in this paper were implemented 
using the Python programming language. 

Table 4. Experimental Simulation Scenarios. 

 Operating system Windows 11 Pro 

Software 

environment 

Deep learning framework Tensor Flow 

Machine learning framework Sklean, thundersvm, xgboost 

Program editor Python 3 

 CUDA CUDA Toolkit 

Hardware 

environment 

CPU 
AMD Ryzen 9 9 590HX with Radeon 

Graphics – 3.30 GHz 

GPU NVIDIA GeForce RTX 3080 47.7 GB 

Running memory 64 GB 

3. Results 

3.1. Models’ Performance 

The analysis of various machine learning models in Figure 2 revealed a notable Overall Accuracy 
(OA) across all tested scenarios, with the best-performing scenario achieving a mean OA of 91.05 ± 
3.35%. Among the models evaluated, the XGB model stood out, achieving the highest accuracy at 
94.4%. This marked a significant improvement over the other models, highlighting XGB’s superior 
classification capability. In contrast, the SVC model exhibited the lowest OA at 84.3%, closely aligned 
with several of its peers, indicating a more consistent but less effective performance. 
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Figure 2. The Overall Accuracy (OA) of the utilized models. 

The models, including DT, KNN, RF, and LSTM, demonstrated comparable accuracies, with 
values recorded at 87.7%, 88.1%, 88.3%, and 88.7%, respectively. Interestingly, the SVC model 
displayed a general decline in accuracy as the number of variables increased. This decline was 
contingent upon the nature of the variables included, suggesting that the model’s sensitivity to input 
features played a critical role in its performance. 

For the LSTM model, an important observation was made: its accuracy reached 88% after 40 
epochs of training, stabilizing at 88.7% from epoch 80 onward. Validation accuracy also exhibited a 
trend of being consistently higher than overall accuracy, particularly converging around epoch 84, as 
illustrated in Figure 3. This stability suggests that the LSTM model effectively captured the 
underlying patterns in the data, although it took time to reach optimal performance. 

 

Figure 3. Training (Acc) and validation-accuracy (Val_Acc) during the used 100 Epochs of LSTM. 

The performance metrics for individual classes, as showcased in a radar chart in Figure 4, 
revealed a consistent pattern across the best-performing models. The XGB model excelled in 
precision, recall, and F1-Score metrics, with all exceeding 92%. Specifically, the Urban and Aqua-
culture classes achieved impressive precision and recall rates, reaching 97% and 96%, respectively. In 
contrast, the Roads class consistently exhibited lower performance, with precision, recall, and F1-
Score values ranging from 82% to 85% across most models. The KNN model showed a noteworthy 
exception, achieving 90% precision and 87% F1-Score, indicating its relative effectiveness in this 
particular classification task. 

The SVC model struggled the most with the Roads class, recording the lowest metrics: recall at 
72%, precision at 81%, and F1-Score at 76%. Conversely, the XGB model demonstrated significant 
strength in classifying Roads, achieving recall, precision, and F1-Score values of 92%, 95%, and 94%, 
respectively. The Cultivated Areas class also demonstrated lower performance across the board, with 
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metrics ranging from 82% to 87% for most models, while XGB improved these values to between 92% 
and 94%. 

For the Trees and Palms class, precision metrics were consistently high across all models, 
ranging from 93% to 96%. The only outlier was the SVC, which recorded a lower precision of 86%. 
Notably, the XGB model achieved significantly higher recall for this class at 94%, surpassing the 87% 
to 88% recall rates of the other models, demonstrating its ability to identify relevant features 
effectively. This trend was mirrored in the F1-Score, which exhibited similar patterns to recall with 
slightly higher values. 

The Water Bodies class presented an interesting case; the XGB model recorded a precision of 
92%, while other models fell in the range of 85% to 86%. However, recall for Water Bodies was 
relatively high across all models, with the XGB model achieving 95% and the others ranging from 
86% to 91%. This suggests that while XGB led in precision, all models performed adequately in 
identifying Water Bodies. 

 

Figure 4. The calculated a) recall, b) precision and c) F1-Score of the utilized models for the utilized classes 
(cultivated areas, trees & palms, urban, roads, water bodies and aqua culture). 

3.2. Data Visualisation 

To visualize the distribution and separability of input features for the 2021 dataset, we employed 
Uniform Manifold Approximation and Projection (UMAP). This technique is valuable for 
dimensionality reduction and visualization, as it preserves local structures and relationships among 
data points. In the UMAP plot shown in Figure 5, each color represents a distinct class among the six 
classes. Effective classification is indicated by closely clustered points of the same color and increased 
separation between different colors. The resulting UMAP visualizations illustrated clear separations 
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among certain classes—specifically, the Cultivated Areas and Trees & Palms, Water Bodies and 
Aqua-culture—while the Roads class showed some overlap with other classes. 

 
Figure 5. Visualization of input features and their distribution using the UMAP technique. 

3.2. Models’ Evaluation 

The application of the established models to the entire satellite image tile covering the AOI 
provided insightful results. These results were visualized as geo-images, maintaining the same 
spatial coordinates as the original satellite imagery, as shown in Figure 6. Conducted on June 8, 2023, 
this comprehensive analysis focused on the detailed results from the XGB, RF, DT, and LSTM models. 
The SVC and KNN models were excluded from this detailed evaluation due to their lower OA, 
precision, and F1-Score, as well as their significantly longer computation times, which extended from 
12 to 18 weeks. 

The resulting distribution maps vividly illustrated the prevalence of various LULC classes, with 
the XGB model indicating Cultivated Areas as the dominant class. In contrast, the LSTM model 
identified Water Bodies as predominant. The RF and DT models produced similar results, primarily 
highlighting the dominance of Cultivated Areas while providing clearer representations of the other 
classes. 
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Figure 6. The predicted maps of the models (a) XGB, (b) LSTM, (c) RF and (d) DT for the total AOI covering all 
the classes at 06/08/2023. 

For a more granular examination of LULC class distribution, Figure 7 presents a zoomed-in view 
of a specific area within the AOI. This detailed comparison juxtaposes model predictions against 
Google satellite imagery for reference. The XGB model exhibited a strong representation of 
Cultivated Areas, correlating closely with the reference imagery. RF and DT models also accurately 
represented these areas, while the LSTM model incorrectly classified some low-density cultivated 
areas as urban. 
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Figure 7. Comparison between the google satellite maps (1) and the predicted models XGB (2), RF (3), DT (4), and LSTM (5) for the classes cultivated area (a), trees & palms (b), urban (c), roads 
(d), waterbodies-Sea (e), waterbodies-river & canals (f), and aqua-culture (g) at 06/08/2023. Yellow lines at google satellite maps mark the small classes on map. 
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The RF model demonstrated the most accurate depiction of Trees and Palms when compared to 
the Google satellite imagery, closely followed by DT. In contrast, the XGB model showed fewer areas 
classified as Trees and Palms, and the LSTM model misrepresented these areas as Water Bodies. For 
the Urban class, RF, DT, and LSTM models showed similar representations, with RF providing the 
most accurate portrayal relative to the Google imagery. The XGB model, however, only captured 
buildings as urban, misclassifying adjacent uncultivated areas. 

All models successfully represented the Roads class, with RF and DT achieving the best 
performance. The XGB and LSTM models depicted roads with thinner lines compared to the 
reference imagery. Significantly, the XGB model excelled in predicting Water Bodies, distinguishing 
this class from aqua-culture more effectively than RF and DT, which sometimes conflated the two. In 
addition, the representation of the River Nile and canals was accurate across all models, with RF 
demonstrating slightly better performance. Conversely, Aqua-culture areas were accurately plotted 
by all models, yielding similar results in their predictions. 

4. Discussion 

LULC classification has greatly benefited from the rapid evolution of RS technologies and the 
expanding availability of diverse geospatial data. The wealth of spectral and spatial information 
provided by multi-scale, multi-resolution sensors and thematic mappers is essential for applications 
ranging from regional planning and urban management to environmental monitoring [86–89]. A 
variety of algorithms are employed to classify this data and extract the necessary information for 
these applications [28]. 

The use of satellite images from the Sentinel-2 platform enables the calculation of diverse 
spectral indices, which are crucial for distinguishing features that aid in land cover mapping. The 
indices listed in Table 1 facilitate the differentiation of water bodies from soil and vegetation through 
the Normalized Difference Water Index (NDWI) [79]. They also help recognize urban areas from 
water surfaces using the Modified Normalized Difference Water Index (MNDWI) [80] and the 
Automated Water Extraction Index (AWEI) [80]. To characterize bare soil, the Shortwave Infrared 
Transformed Reflectance (STR) index was employed [82], while the Soil Adjusted Vegetation Index 
(SAVI) [83] and the Optimized Soil Adjusted Vegetation Index (OSAVI) [84] were used to mitigate 
soil brightness. Moreover, vegetation areas were identified using the Normalized Difference 
Vegetation Index (NDVI) [75] and the Kernel Normalized Difference Vegetation Index (kNDVI) [76], 
while built-up areas were detected through the Normalized Difference Built-up Index (NDBI) [77]. 

Sentinel-2 data and derived indices have been widely and successfully applied to LULC 
mapping, yielding consistently good accuracy [90,91]. The use of Sentinel-2 time series data has 
proven effective in mitigating misclassifications related to specific agricultural practices and 
improving the delineation of small land cover features, such as minor crop fields, rivers, and roads. 
Moreover, the integration of Sentinel-1 radar data with Sentinel-2 optical imagery has further boosted 
LULC classification accuracy. In the present study, this combined approach resulted in an 
approximate 10% improvement in overall accuracy, demonstrating the value of incorporating radar 
data. Sentinel-1’s sensitivity to surface characteristics like texture, elevation, internal structure, 
roughness, and moisture content [92–95] proved particularly useful in distinguishing forested areas 
from agricultural land [96]. However, the use of Sentinel-1 data alone has been shown to have limited 
effectiveness for LULC mapping [95,97,98]. 

Among the models used in this study, most achieved OA of approximately 88%, as illustrated 
in Figure 2, with the XGB model attaining the highest accuracy at 94.4%, while the SVC model 
recorded the lowest at 84.3%. The enhanced performance of the XGB model can be accredited to its 
capability to evaluate feature importance during the feature selection phase [56]. The overall 
accuracies obtained in this study, except for the SVC model, are in close agreement with results from 
other research that employed various ML and DL models along with satellite imagery, all reporting 
accuracies around 90% [56,99,100]. Additionally, the performance metrics—recall, precision, and F1-
Score—for each class in Figure 4 exhibited similar trends to the OA. The highest values for recall, 
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precision, and F1-Score were found in the urban and aquaculture classes, with trees and palms also 
demonstrating significant precision. Notably, the urban and aquaculture classes, as shown in Figure 
7c and Figure 7g, represented the most accurate predictions based on the satellite images acquired 
on August 6, 2023, in comparison to the reference Google satellite map. 

To visualize the input features, the UMAP algorithm—a nonparametric dimensionality 
reduction technique—was employed to represent the spectral bands and calculated indices for the 
six classes under investigation [101]. The UMAP charts displayed in Figure 5 highlighted distinct 
trends for each class, although complete separation among class points was not fully achieved. 
Notably, while water bodies and aquaculture classes exhibited similarities in their features, they were 
clearly differentiated from the other classes. Similarly, agricultural areas were relatively distinct from 
trees and palms; however, the road class showed some overlap with other classes due to the spatial 
constraints, as roadways often coexist within the same pixel as adjacent land covers. 

The AOI for August 6, 2023, as shown in Figure 6, yielded reliable results for the RF, DT, and 
XGB models. In contrast, the LSTM model displayed discrepancies, particularly in regions with 
excessive water coverage. A comparative analysis of each model’s predictions against the reference 
Google satellite map is illustrated in Figure 7. The RF model, conceded as a master method in remote 
sensing classification [51,56] produced the most accurate results relative to the reference map, with 
minor misclassifications occurring where aquaculture areas were mistakenly identified in marine 
zones and urban areas instead of the less cultivated coastal regions (Figure 7e). The DT model 
exhibited a similar pattern to RF but performed less effectively due to higher misclassification rates. 
This outcome aligns with the understanding that RF functions as an ensemble classifier, utilizing 
multiple bootstrap-aggregated decision trees to reduce variance [102]. 

The XGB model, optimized for gradient boosting with an objective function to mitigate 
overfitting, has been effectively utilized for LULC classification in prior studies [56,57,103]. It 
successfully predicted all classes but indicated a larger area for the agricultural class, resulting in 
reduced predicted areas for trees and palms, urban areas, and roads. The Mediterranean Sea was also 
accurately identified by the XGB model, with minimal representation of aquaculture, as illustrated in 
Figure 7e. Across all models, both aquaculture and urban areas demonstrated strong predictive 
performance. However, in Figure 7c and 7g, the XGB model specifically identified buildings while 
overlooking adjacent uncultivated regions. Notably, despite the medium resolution of Sentinel-1 and 
Sentinel-2 images, primary roads and bridges were accurately predicted across all models in Figure 
7d, either matching or showing smaller area representations compared to the reference map, 
particularly for the XGB model. 

Although the LSTM model has proven effective in various RS applications, including traffic flow 
prediction and crop type classification [104,105], its performance in this study was less reliable for 
specific classes, particularly in predicting agricultural areas, trees and palms, and water bodies. 

To enhance the performance of the RF, DT, and XGB models, an increased volume of labeled 
ground truth annotations is essential, particularly for uncultivated and poorly cultivated lands. This 
improvement will facilitate more accurate model training and lead to enhanced predictive 
capabilities in future LULC mapping efforts. 

5. Conclusions 

In conclusion, this study successfully utilized Sentinel-2 and Sentinel-1 data to predict LULC in 
the east Nile Delta, Egypt, highlighting the effectiveness of various ML and DL models. By employing 
a training and testing approach with distinct dates, the study ensured model independence, reducing 
the risk of overfitting and enhancing the robustness of the results. The integration of spectral indices 
from Sentinel-2 improved land cover differentiation, while Sentinel-1 data significantly boosted 
overall classification accuracy. Among the models tested, the RF model was the most effective, 
producing the best-predicted map based on independent data, while the XGB model achieved the 
highest OA and provided valuable feature importance insights. 
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Performance metrics showed strong predictions for urban and aquaculture classes, highlighting 
the models’ strengths in these areas. UMAP visualization revealed a generally good data distribution 
across classes, though complete separation was not achieved. The reliable prediction of road areas, 
despite their small spatial footprint, further demonstrated the models’ ability to handle complex 
LULC classifications. Overall, this research underscores the potential of combining multi-sensor 
remote sensing data and advanced algorithms for improved LULC classification, for overcoming the 
current obstacles to accurately identifying agricultural land and cropped areas, in addition to the 
applications in urban management, environmental monitoring, and land planning. Future studies 
should focus on expanding datasets, exploring emerging deep learning methods, and continuing to 
improve ground truth data for better model performance. 
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The following abbreviations are used in this manuscript: 

LULC Land Use and Land Cover 
ML Machine Learning 
DL Deep Learning 
RS Remote Sensing 
UMAP Uniform Manifold Approximation and Projection 
AI Artificial Intelligence 
KNN K-Nearest Neighbors 
RF Random Forest 
SVM Support Vector Machine 
DT Decision Trees 
XGB Xtreme Gradient Boosting 
ANN Artificial Neural Networks 
RNN Recurrent Neural Networks 
LSTM Long Short-Term Memory 
VIs Vegetation Indices 
SAR Synthetic Aperture Radar 
GRD Ground Range Detected 
IW Wide Swath 
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AOI Area Of Interest 
CRS Coordinate Reference System 
SMOTE Synthetic Minority Over-sampling Technique 
OA Overall Accuracy 
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