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Abstract: Many cryptographic systems require random numbers, and weak random numbers lead to 
insecure systems. In the modern world, there are several techniques for generating random numbers, 
of which the most fundamental and important methods are deterministic extractors proposed by 
von Neumann, Elias, and Peres. Elias’s extractor achieves the optimal rate (i.e., information theoretic 
upper bound) h(p) if the block size tends to infinity, where h(·) is the binary entropy function and p 
is probability that each bit of input sequences occurs. Peres’s extractor achieves the optimal rate h(p) 
if the length of input and the number of iterations tend to infinity. The previous researches related to 
both extractors did not mention practical aspects including running time and memory-size with finite 
input sequences. In this paper, based on some heuristics, we derive a lower bound on the maximum 
redundancy of Peres’s extractor, and we show that Elias’s extractor is better than Peres’s one in terms 
of the maximum redundancy (or the rates) if we do not pay attention to time complexity or space 
complexity. In addition, we perform numerical and non-asymptotic analysis of both extractors with a 
finite input sequence with any biased probability under the same e nvironments. For doing it, we 
implemented both extractors on a general PC and simple environments. Our empirical results show 
that Peres’s extractor is much better than Elias’s one for given finite input sequences under the almost 
same running time. As a consequence, Peres’s extractor would be more suitable to generate uniformly 
random sequences in practice in applications such as cryptographic systems.

Keywords: True random number generation; von Neumann’s extractor; Peres’s extractor; Elias’s 
extractor;19

1. Introduction20

It is undeniable that random numbers play important roles in cryptography, for example, key21

generation, nonces, one-time pads, etc. The quality of random numbers directly determines the strength22

of cryptographic systems. A low quality of random numbers lead to that an adversary can break a23

system. It can be seen that in 2012, Heninger et al. [1] and Lenstra et al. [2] explored RSA keys in TLS24

and SSH servers on the Internet. Their experiment showed that a weak random number for generating25

a random prime in embedded devices led to the result that an adversary could break a system. This26

tells us that a cryptographic system will be broken if insufficient randomness is used to generate keys.27

Moreover, there is a hacker group which calling itself fail0verflow [3]. They could recover ECDSA28

private key generated by weak random numbers for PlayStation 3 game console by Sony in Annual29

Chaos Communication Congress (27C3) in 2010. Furthermore, Microsoft Windows also generated30

weak random numbers, as shown by Leo Dorrendorf et al. [4] in 2007. The Windows operating31

system had an unpublished pseudorandom number generator (PRNG) called CryptGenRandom. Their32

work examined the binary code of Windows 2000 and reconstructed CryptGenRandom. After that,33

they found several vulnerabilities, which can be used to predict all random values, such as SSL keys.34
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Overall, the random number generation is very important in cryptography to ensure that secret keys35

are random and unpredictable.36

A natural source such as physical phenomena, the stock market, or Bitcoin [5] can produce37

unpredictable random sequences, though such sequences from the source are not uniformly random38

(i.e., biased). However, there is a solution to solve this problem, namely, to use deterministic extractors.39

A deterministic extractor is a function which takes a non-uniformly random sequence as input and40

outputs a uniformly random sequence. The deterministic extractors have been studied in mathematics,41

information theory, and cryptography. In information theory, those extractors can also be treated42

for the intrinsic randomness problem (i.e., the problem of generating truly random numbers). And,43

as applications in cryptography, the output sequence of those extractors can be used as secret keys44

in information-theoretic cryptography or symmetric key cryptography. In particular, Elias’s and45

Peres’s extractors are well known and fundamental and shown to be optimal in terms of the rate (or46

redundancy), if we suppose input-size tends to infinity (i.e., in an asymptotic viewpoint). However, it is47

not easy to conclude which one is better, since those are constructed by completely different approaches.48

The main purpose of this paper is to investigate those with finite inputs (i.e., in a non-asymptotic49

viewpoint) by numerical analysis to make it clear which is better for the practical use.50

1.1. Related work51

There are several works that proposed the methods for extracting uniformly random sequences52

from non-uniformly random sequences. The most famous one of them is the von Neumann’s extractor53

[6] proposed in 1951. He demonstrated a simple procedure for extracting independent unbiased bits54

from a sequence of independent, identically distributed (i.i.d.) and biased bits.55

An improved algorithm of von Neumann’s extractor was proposed by Elias [7] in 1971. Elias’s56

extractor utilizes a block coding technique to improve the rate (or redundancy) of von Neumann’s57

extractor, however the straightforward implemantation of this extractor requires exponential time and58

exponential memory size with respect to N, where N is block size, to store all 2N input sequences with59

their assignment of output sequences. Later in 2000, Ryabko and Matchikina [8] proposed an extension60

of Elias’s extractor that improved time complexity and space complexity by using the enumerative61

encoding technique from [9] and Schönhage–Strassen algorithm [10] for fast integer multiplication in62

order to compute assignment of output sequences. In this paper, we call this improved method the63

RM method.64

Peres’s extractor is another extended algorithm of von Neumann’s extractor. In 1992, Peres [11]65

proposed a procedure which is an improved one from the von Neumann’s extractor. The basic idea66

of Peres’s extractor is to reuse the discarded bits in von Neumann’s extractor by iterating similar67

procedures in von Neumann’s extractor.68

The extractors by von Neumann, Elias, and Peres are the most fundamental and important ones69

using a single source. In particular, Elias’s and Peres’s extractors are interesting, since they can achieve70

the optimal rate (i.e., information-theoretic upper bound) h(p) if input-size tends to infinity (i.e., in71

an asymptotic case), where each bit of input sequences from a single source occurs with probability72

p ∈ (0, 1) and h(·) is the binary entropy function. In this paper, we are interested in the non-asymptotic73

case, namely, the achievable rate for finite input-sizes. For Elias’s extractor, it can be observed in the74

works [7]. However, for Peres’s extractor, it is not explicitly known. As a related work for Peres’s75

extractor, Pae [12] reported a recursion formula to compute the rate for finite input-sizes, but it is76

difficult to give the rate function with finite input-sizes since the recursion formula is complicated.77

Pae also computed the rate by the recursion formula in the case p = 1/3, compared the rates of78

Peres’s extractor and Elias’s one, and concluded that the rate of Peres’s extractor increased much79

slower than that of Elias’s one by the numerical analysis. However, it is not explicitly known which80

extractor is better to use in practice, if we take into account the running time, implementation cost, and81

memory-size required in the extractors, as mentioned in [12].82
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There are several works for constructing extractors using multiple sources (i.e., not a single source).83

Bourgain [13] provided a 2-source extractor under the condition that the two sources are independent84

and each source has min-entropy 0.499n, where n is bit-length of output of the sources. Raz [14]85

proposed improvement in terms of total min-entropy, and constructed 2-source extractors with the86

condition that one source has min-entropy more than n/2 and the other source requires min-entropy87

O(log n). In 2015, Cohen [15] constructed a 3-source extractor, where one source having min-entropy δn,88

the second source having min-entropy O(log n) and the third source having min-entropy O(log log n).89

In 2016, Chattopadhyay and Zuckerman [16] proposed a general 2-source extractor, where each source90

has a polylogarithmic min-entropy. They combined two weak random sequences into a single sequence91

by using K-Ramsey graphs and resilient functions. Their extractor has only one-bit output and achieves92

negligible error and high complexity than Peres’s extractor or Elias’s extractor.93

Furthermore, many researchers are interested in implementing a randomness extractor in a real94

world. In particular, in 2009, Bouda et al. [17] used mobile phones or pocket computers to generate95

random data that is close to truly random ones. They took 12 pictures per second then used their96

function to get random 4 bits in each picture, and then applied Carter-Wegman universal2 hash97

functions. Their output passed 15 of 16 items in NIST statistical tests at the confidence level α = 0.01.98

However, their proposed model was not a simultaneous system, and hence it would be difficult to use99

in practical applications. Halprin and Naor [18] presented the idea of using human game-play as a100

randomness source in 2009. They constructed the Hide and Seek game that produced approximately 17101

bits of raw data per click then extracted with a pairwise independent hash function that it can generate102

128 bits 264-close to random in less than two minutes. For using human as a random generator, there103

are several impact on the entropy of sources such as the skill of player, interesting and entertain player,104

the number of rounds in game, etc. Later in 2011, Voris et al. [19] investigated the use of accelerators105

on the RFID tags as a source. They implemented a two-stage extractor on the RFID tags. It can produce106

random 128 bits in 1.5 seconds and passed the NIST statistical tests. However, they stored a Toeplitz107

matrix on the RFID tags and performed matrix multiplications, though the RFID tags have limited108

computational resources in general.109

1.2. Our contribution110

In this paper, we revisit the extractors by von Neumann, Elias, and Peres, since they are very111

fundamental and only require a single source. In the studies for those extractors, it is usual to112

asymptotically analyze the rate or redundancy of the extractors in the literatures, where the rate is113

the average bit-length of outputs per bit of input (see Section 2 for detals). Specifically, the rate of von114

Neumann’s extractor is p(1− p) that is far from the optimal rate (i.e., information-theoretic upper115

bound) h(p). Meanwhile, the rate of Elias’s extractor converges to h(p) if the block size tends to infinity.116

Specifically, Elias’s extractor outputs a uniformly random sequence with high rate, when it take a long117

block-size equal to the input length. However, it has trade-off between the rates and computational118

resources such as time complexity and memory-size. On the other hand, Peres’s extractor achieves the119

optimal rate h(p) if the length of input and the number of iterations tend to infinity, and it requires120

smaller time complexity and memory-size. However, it would be hard to explicitly derive the exact121

rate for finite input sequences. Thus, it is not easy to conclude which is a more suitable extractor for122

the practical use in general. As a related work, there is only one work by Pae [12] which showed123

comparison of both extractors as mentioned in Section 1.1, but it does not completely answer the124

question, since it analyzed performance of both extractors only for restricted parameters, in particular,125

the case where each bit of input sequences occurs with probability p = 1/3 and did not consider the126

running time. In this paper, we will perform non-asymptotic analysis for the wide range of parameters127

for Elias’s and Peres’s extractors, to anwer the question: which is more suitable in the practical use128

in applications in a real world. For doing it, we evaluate numerical performance of Peres’s extractor129

and the Elias’s one with the RM method in terms of practical aspects including achievable rates (or130

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 August 2018                   doi:10.20944/preprints201808.0038.v1

Peer-reviewed version available at Entropy 2018, 20, 729; doi:10.3390/e20100729

http://dx.doi.org/10.20944/preprints201808.0038.v1
http://dx.doi.org/10.3390/e20100729


4 of 18

redundancy) and running time with finite input sequences. Specifically, the contribution of the paper131

is as follows:132

• Based on some heuristics, we derive a lower bound on the maximum redundancy of Peres’s133

extractor in Section 3. This result shows that the maximum redundancy of Elias’s extractor is134

superior to Peres’s one in general, if we focus only on redundancy (or rates) and we do not pay135

attention to time complexity or space complexity.136

• By numerical analysis, we design our experiments by comparing both extractors with finite137

input sequences of which each bit occurs with any biased probability p ∈ (0, 1) under the same138

environments in terms of practical aspects. Both extractors are implemented on a general PC139

and do not require any special resources, libraries, frameworks for computation. Therefore, it140

can be applied in various cryptographic applications and platforms without any restrictions.141

Our implementation and results will be explained in Section 4. We calibrate our implementation142

by comparing the theoretical and experimental redundancy of both extractors. Afterwards, we143

analyze time complexity of both extractors with respect to bit-length of input sequences from144

100 to 5000. We compare the redundancy of both extractors, and our implementation shows that145

Peres’s extractor is much better than Elias’s one under the almost same running time. As a result,146

Peres’s extractor would be more suitable for generating uniformly random sequences for the147

practical use in applications.148

2. Preliminaries149

The first deterministic extractor was constructed by von Neumann [6] in 1951, and later improved150

ones were proposed by Elias [7] in 1971, and by Peres [11] in 1992. The prior work [6,7,11] considered151

Bernoulli source Bern(p) from which input sequences were generated, namely Bern(p) outputs i.i.d.152

(x1, x2, . . . , xn) ∈ {0, 1}n according to Pr(xi = 1) = p and Pr(xi = 0) = q = 1− p for some unknown153

p ∈ (0, 1).154

A deterministic extractor A takes (x1, x2, . . . , xn) ∈ {0, 1}n as input and outputs (y1, y2, . . . , y`) ∈155

{0, 1}`, and its average bit-length of output is denoted by ¯̀(n) which is a function of n, and define156

its rate function by rA(p) := limn→∞ ¯̀(n)/n. Additionally, for a deterministic extractor A, we define157

the redundancy function by fA(p) := h(p)− rA(p), where h(·) is the binary entropy function defined158

by h(p) = −p log p − (1− p) log(1− p), and the maximum redundancy by Γ := supp∈(0,1) fA(p).159

Note that the above definition of redundancy functions is meaningful, since h(p) is shown to be the160

information-theoretic upper bound of the extractors in [7,11]. Furthermore, in this paper we define a161

non-asymptotic rate function rA(p, n) := ¯̀(n)/n, a non-asymptotic redundancy function fA(p, n) :=162

h(p)− rA(p, n), and the non-asymptotic maximum redundancy Γ(n) := supp∈(0,1) fA(p, n), which163

will be used in our non-asymptotic analysis.164

2.1. von Neumann’s extractor165

The von Neumann’s extractor was a simple algorithm for extracting independent unbiased bits
from biased bits. This algorithm divides the input sequences (x1, x2, x3, x4, . . . , xn) into the pairs1

((x1x2), (x3x4), . . .) and maps each pair with a mapping as follows:

00 7→ ∧, 01 7→ 0, 10 7→ 1, 11 7→ ∧, (1)

where the symbol ∧means no output was generated. After that, it concatenates all resulting outputs166

of (1). For the help of understanding, we give an example as follows.167

1 If n is odd, we discard the last bit.
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Example 1. Suppose that an input sequence is (x1, x2, x3, . . . , x8) = (1, 0, 0, 1, 0, 0, 1, 1). Firstly, divide it168

into the pairs as ((1, 0), (0, 1), (0, 0), (1, 1)). Next, map each pairs with the mapping (1). Finally, the extractor169

outputs (y1, y2) = (1, 0).170

Complexity: The von Neumann’s extractor is efficient in the sense that both time complexity and171

space complexity are small such that time complexity is evaluated as O(n), and space complexity is172

evaluated as O(1).173

Redundancy: The von Neumann extractor is not desirable, since the maximum redundancy is far174

from zero. Actually, the rate function rvN(p) of the von Neumann extractor is evaluated by rvN(p) =175

limn→∞ np(1− p)/n = p(1 − p), which is 1/4 at p = 1/2 and less elsewhere. In addition, the176

(non-asymptotic) rate functions, (non-asymptotic) redundancy functions, and the (non-asymptotic)177

maximum redundancy are evaluated as follows: f vN(p, n) = f vN(p) = h(p)− p(1− p), ΓvN(n) =178

ΓvN = 3/4.179

2.2. Elias’s extractor180

Elias [7] improved the von Neumann’s extractor by using a block coding technique in 1971. Let181

N ∈ N(N ≥ 2) be the block size in Elias’s extractor. For all binary sequences with bit-length N,182

partition them into N + 1 sets Sk (k = 0, 1, 2, . . . , N), where Sk consists of all the (N
k ) sequences of length183

N which have k ones and N − k zeros. Here, each sequence of Sk is equiprobable (i.e., the probability184

is pkqN−k).185

Define (N
k ) = αm2m + αm−12m−1 + ... + α020, mk = blog2 (

N
k )c. Let |Sk| = (αmk , αmk−1, ..., α0) is the186

binary expansion of the integer (N
k ), αmk = 1, αj ∈ {0, 1}, mk > j ≥ 0. For each j (1 ≤ j ≤ m) such187

that αj = 1, we assign 2j distinct output sequences of length j to 2j distinct sequences of Sk which188

have not already been assigned. If α0 = 1, one sequence of Sk is assigned to ∧. In particular, since189

|S0| = |SN | = 1, two sequences (0, 0, . . . , 0) and (1, 1, . . . , 1) are assigned to ∧. For instance, we show a190

procedure of Elias’s extractor in Example 2.191

Example 2. Suppose that the given input sequence x = (1, 0, 0, 1, 0, 0, 1, 1) with block size N = 4, which is the
same as in Example 1. Firstly, we partition the set {0, 1}4 of possible input sequences into the following subsets:

S0 = {(0, 0, 0, 0)},
S1 = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)},
S2 = {(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)},
S3 = {(1, 1, 1, 0), (1, 0, 1, 1), (1, 1, 0, 1), (0, 1, 1, 1)},
S4 = {(1, 1, 1, 1)}.

Then, we have |S0| = |S4| = 1 = (1), |S1| = |S3| = 4 = (1, 0, 0), |S2| = 6 = (1, 1, 0). We consider the
following assignment of output sequences:

(0, 0, 0, 0) 7→ ∧, (1, 1, 1, 1) 7→ ∧,

(1, 0, 0, 0) 7→ (0, 0), (1, 1, 1, 0) 7→ (0, 0),

(0, 1, 0, 0) 7→ (0, 1), (1, 0, 1, 1) 7→ (1, 0),

(0, 0, 1, 0) 7→ (1, 0), (1, 1, 0, 1) 7→ (1, 1),

(0, 0, 0, 1) 7→ (1, 1), (0, 1, 1, 1) 7→ (0, 1),

(0, 0, 1, 1) 7→ (0, 1), (1, 0, 1, 0) 7→ (1, 0),

(0, 1, 1, 0) 7→ (0, 0), (1, 0, 0, 1) 7→ (1, 1),

(0, 1, 0, 1) 7→ (0), (1, 1, 0, 0) 7→ (1).
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Suppose that an input sequence x = (1, 0, 0, 1, 0, 0, 1, 1) is given. Since the block size N = 4, the192

sequence is divided as x = ((1, 0, 0, 1), (0, 0, 1, 1)). By the above assignment of output sequences, the193

output sequence is y = ((1, 1)(0, 1)) = (1, 1, 0, 1). Furthermore, there are several ways to assign mk bits194

to binary output sequences with the same probability that affect to the output sequence y. Thus the195

output sequence of 10010011 will not be 1101, if we use another assignment. Note that Elias’s extractor196

with block size N = 2 is equivalent to von Neumann’s extractor, or equivalently the mapping (1). In197

this sense, Elias’s extractor is an extension of von Neumann’s extractor.198

Complexity: It can be seen that the straightforward implementation of Elias’s extractor requires much199

space and time complexity to make a table of the assignment of output sequences as illustrated by200

Example 2. Specifically, it requires exponential time and exponential memory size with respect to N to201

store all 2N binary sequences with their assignment of output sequences. For reducing time and space202

complexity of Elias’s extractor, Ryabko and Matchikina [8] proposed a method that is extended from203

Elias’s extractor, which we call the RM method in this paper. The RM method utilizes enumerative204

encoding technique from [9] and Schönhage–Strassen algorithm [10] for fast integer multiplication in205

order to compute assignment of output sequences without making the large table. The procedure of206

RM method is described as follows.207

Firstly, suppose a binary input sequence xN = (x1, x2, . . . , xN) contains k ones and N − k zeros.
Let Num(xN) be a number which corresponds to xN when we lexicographical order set Sk. If xN has k
ones, then the number Num(xN) is defined by

Num(xN) =
N

∑
t=1

( xtN − t

k−
t−1
∑

i=1
xi

)
. (2)

Then, we calculate a binary codeword code(xN) of xN , which is assignment of an output sequence of208

xN as follows:209

(i) Compute Num(xN) in the set Sk, if xN contains k ones.210

(ii) Let |Sk| = (N
k ) = 2j0 + 2j1 + ... + 2jm for 0 ≤ j0 < j1 < ... < jm.211

(iii) If j0 = 0 and Num(xN) = 0, then code(xN) = ∧.212

(iv) If 0 ≤ Num(xN) < 2j0 , then code(xN) is defined to be the j0 low-order binary string of Num(xN).213

(v) If
t

∑
s=0

2js ≤ Num(xN) <
t

∑
s=0

2js + 2jt+1 for some 0 ≤ t ≤ m, then code(xN) is defined to be the214

suffix consisting of the jt+1 binary string of Num(xN).215

Example 3. Suppose that the block size N = 4, and the given input sequence is x = (1, 0, 0, 1, 0, 0, 1, 1), which216

is the same as all previous examples. After that, the sequence is divided as x = ((1, 0, 0, 1), (0, 0, 1, 1)). Next,217

compute Num(xN) follow the above conditions.218

Num((1, 0, 0, 1)) =

(
4− 1

2

)
+

(
4− 4
2− 1

)
= 3,

Num((0, 0, 1, 1)) =

(
4− 3

2

)
+

(
4− 4
2− 1

)
= 0.

Afterwards, the RM method computes code(1, 0, 0, 1) = (1, 1) and code(0, 0, 1, 1) = (0). Finally, outputs219

y = (1, 1, 0) by concatenating code(1, 0, 0, 1) and code(0, 0, 1, 1).220

The time and space complexity of Elias’s extractor with the RM method are O(N log3 N log log N)221

and O(N log2 N), respectively (see [8] for details).222

Redundancy: Generally, the rate function and redundancy function of Elias’s extractor depend on223

block size N. For given n-bit input sequence, if we take the block size equal to the length of input224

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 August 2018                   doi:10.20944/preprints201808.0038.v1

Peer-reviewed version available at Entropy 2018, 20, 729; doi:10.3390/e20100729

http://dx.doi.org/10.20944/preprints201808.0038.v1
http://dx.doi.org/10.3390/e20100729


7 of 18

sequence N := n, the rate function (or redundancy) achieve the best value. For simplicity, we assume225

that N = n in the following explanation. Then, the rate function rE(p, n) is evaluated by226

rE(p, n) ≈ 1
n

n

∑
k=0

(
n
k

)
pk(1− p)n−k log

(
n
k

)
. (3)

Elias’s extractor takes i.i.d. with non-uniform distribution as input, and it will output i.i.d. with227

uniform distribution such that its rate is given by equation (3). Elias [7] showed that the rate function228

rE(p, n) of the Elias’s extractor converges to h(p) as n→ ∞, or equivalently, the redundancy function229

fE(p, n) := h(p)− rE(p, n) converges to zero as n→ ∞. More precisely, it was shown that fE(p, n) =230

O(1/n) for any fixed p. Therefore, for given n-bit input sequence, if we set the maximum block-size to231

be the input-size, the non-asymptotic maximum redundancy ΓE(n) converges to zero not slower than232

1/n.233

2.3. Peres’s extractor234

Peres’s extractor is another method that improved the rates (or redundancy) from von Neumann’s235

extractor. The basic idea behind Peres’s extractor is to reuse the discarded bits in the mapping (1). In236

the following, we denote the von Neumann’s extractor by Ψ1. For an n-bit sequence (x1, x2, . . . , xn), we237

describe the von Neumann’s extractor by Ψ1(x1, x2, . . . , xn) = (y1, y2, . . . , y`), where yi = x2mi−1 and238

m1 < m2 < · · · < m` are all the indices satisfying x2mi−1 6= x2mi with mi ≤ n/2. In Peres’s extractor,239

Ψν (ν ≥ 2) is defined inductively as follows: For an even n,240

Ψν(x1, x2, . . . , xn) = Ψ1(x1, x2, . . . , xn) ∗Ψν−1(u1, u2, . . . , u n
2
) ∗Ψν−1(v1, v2, . . . , v n

2−`), (4)

where ∗ is concatenation; uj = x2j−1 ⊕ x2j for 1 ≤ j ≤ n/2; vs = x2is−1 and i1 < i2 < · · · < i n
2−` are241

all the indices satisfying x2is−1 = x2is with is ≤ n/2. For an odd input size n, Ψν(x1, x2, . . . , xn) :=242

Ψν(x1, x2, . . . , xn−1), i.e., the last bit is discarded and utilize the case of an even n above.243

Note that, the number of iterations ν is at most blog nc, since Ψν for every ν ≥ 2 is defined by Ψν−1244

having an input sequence whose bit-length is at most n/2, i.e., the bit-length of both (u1, u2, . . . , u n
2
)245

and (v1, v2, . . . , v n
2−`) in the equation (4) is at most n/2. Obviously, Peres’s extractor with ν = 1 is the246

same as the von Neumann’s extractor. In addition, Peres’s extractor with a large ν is considered to be247

an elegantly improved version from von Neumann’s one by utilizing a recursion mechanism.248

Example 4. Suppose that an input sequence is given as x = (1, 0, 0, 1, 0, 0, 1, 1), which is the same as all249

previous examples. The number of iterations satisfy ν ≤ blog 8c = 3. Then, Peres’s extractor is executed as250

follows:251

Ψ1(x) = (1, 0),

Ψ2(x) = Ψ1(x) ∗Ψ1(1, 1, 0, 0) ∗Ψ1(0, 1) = (1, 0, 0),

Ψ3(x) = Ψ1(x) ∗Ψ2(1, 1, 0, 0) ∗Ψ2(0, 1)

= Ψ1(x) ∗ (Ψ1(1, 1, 0, 0) ∗Ψ1(0, 0) ∗Ψ1(1, 0)) ∗ (Ψ1(0, 1) ∗Ψ1(1))

= (1, 0, 1, 0).

Complexity: We denote the time complexity of Ψν by Tν(n). By the equation (4), we have252

Tν(n) = T1(n) + n/2 + Tν−1(n/2) + Tν−1(n/2− `), (5)

and T1(n) = O(n) (see Section 2.1 for time complexity of the von Neumann’s extractor). From the253

condition (5), we obtain Tν(n) = O(νn) for Ψν with 1 ≤ ν ≤ blog nc. In particular, time complexity of254

Peres’s extractor with the maximum iterations ν = blog nc is evaluated as Tν(n) = O(n log n) and the255

space complexity is O(1).256
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Table 1. Comparison of extractors.

Redundancy Γ(n) Time complexity Space complexity
von Neumann extractor 3/4 O(n) O(1)

Elias extractor O(1/n) O(n log3 n log log n) O(n log2 n)
(with maximum block-size) (by [7]) (by [8]) (by [8])

Peres extractor o(1) O(n log n) O(1)
(with maximum iterations) (by [11]) (by [11]) (by [11])

Redundancy: The rate function rPν (p) of Peres’s extractor can be computed inductively by the equation257

rPν (p) = pq + 1
2 rPν−1(p2 + q2) + 1

2 (p2 + q2)rPν−1

(
p2

p2+q2

)
(6)

for ν ≥ 2, and rP1 (p) = pq. Note that rP1 (p) is the rate of the von Neumann’s extractor. Peres’s extractor258

takes i.i.d. with non-uniform distribution as input, and it will output i.i.d. with uniform distribution259

such that its rate is given by equation (6) if n → ∞. It is shown in [11] that rPν (p) ≤ rPν+1(p) for all260

ν ∈ N, p ∈ (0, 1), and lim
ν→∞

rPν (p) = h(p) uniformly in p ∈ (0, 1).261

In other words, the above result is described in terms of redundancy as follows:262

fPν (p) = h(p)− rPν (p)

=
1
2

fPν−1(p2 + q2) +
1
2
(p2 + q2) fPν−1

(
p2

p2 + q2

)
(7)

for ν ≥ 2 and fP1 (p) = h(p)− p(1− p), where the above equation (7) follows from the equation (6).263

Furthermore, it holds that fPν (p) ≥ fPν+1(p) for all ν ∈ N, p ∈ (0, 1), and lim
ν→∞

fPν (p) = 0 uniformly264

in p ∈ (0, 1). Suppose that we take the maximum ν = blog nc and n → ∞, and then, we have265

ΓP(n) = o(1).266

In Table 1, we summarize the redundancy, time complexity and space complexity (memory size)267

for the von Neumann’s, Elias’s, and Peres’s extractors.268

3. Lower Bound on Redundancy of Peres’s Extractor269

Although it is shown that ΓP(n) = o(1) in the Peres’s extractor (i.e., ΓP(n) converges to zero as270

n → ∞), it is not known whether ΓP(n) converges to zero rapidly or slowly. To investigate it, we271

analyze the non-asymptotic redundancy function fPν (p, n) and non-asymptotic maximum redundancy272

ΓP(n). In particular, we derive a lower bound on ΓP(n) based on some heuristics.273

Let fPν (p) = h(p) − rPν (p) be the redundancy function for Peres’s extractor with ν iterations.274

Then, we first show that fPν (p) is not concave in p ∈ (0, 1) for ν ≥ 5 as follows. The proof is given in275

Appendix A.276

Proposition 1. The redundancy function fPν (p) in the Peres’s extractor with ν iterations is not concave in277

p ∈ (0, 1) if ν ≥ 5. More generally, for the Peres’s extractor with ν iterations, the redundancy function fPν (p)278

satisfies279

d2 fPν ( 1
2 )

dp2 = 8− 4
ln 2
− 6

(
3
4

)ν−1
. (8)

In particular, d2 fPν
dp2

(
1
2

)
< 0 for 1 ≤ ν ≤ 4 and d2 fPν

dp2

(
1
2

)
> 0 for ν ≥ 5.280
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Here, we assume that the following proposition holds true. It does not seem to be easy to provide281

a proof, however, it seems to be true from our experimental results that are provided in Appendix B.282

Proposition 2 (heuristics). Suppose ν = blog nc. Then, we have fPν (p, n) ≥ fPν (p), or equivalently283

rPν (p, n) ≤ rPν (p), for a suffuciently large n and any p ∈ (0, 1).284

The following theorem shows a lower bound on ΓP(n) that are derived based on Proposition 2.285

Theorem 1. Suppose that Proposition 2 holds true. Then, in Peres’s extractor with the maximum iterations286

ν = blog nc, we have ΓP(n) > 1/n2−log 3. In particular, ΓP(n) = ω(1/n).287

Proof. Let n be a large natural number. For a natural number ν ∈ N with 1 ≤ ν ≤ log n, we define288

aν := rν(1/2). Then, by the equation (6) we have289

a1 =
1
4

, aν =
1
4
+

3
4

aν−1 for ν ≥ 2.

By solving the equation above, we have290

aν = 1−
(

3
4

)ν

for ν ≥ 1. (9)

Thus, for ν = blog nc, we obtain291

fPν (1/2, n) ≥ fPν (1/2) (10)

= (3/4)ν (11)

≥ (3/4)log n

=
1

n2−log 3 ,

where the inequality (10) follows from Proposition 2, and the equality (11) follows from (9).292

Therefore, we have293

ΓP(n) = sup
p∈(0,1)

fPblog nc(p, n)

> fPblog nc(
1
2

, n) (12)

≥ 1
n2−log 3 ,

where the inequality (12) follows from Proposition 1.294

Theorem 1 shows that the non-asymptotic maximum redundancy ΓP(n) does converge to zero295

slower than 1/n. This means that Peres’s extractor is worse than Elias’s extractor in terms of the296

maximum redundancy, since ΓE(n) = O(1/n) if block size is set to be n. However, this result does297

not always mean that Peres’s extractor is worse than Elias’s one, since time complexity and space298

complexity of Peres’s extractor are better than those of Elias’s one from Table 1. In this sense, it is299

not easy to conclude which extractor is superior. In the next section, from a viewpoint of practicality300

including running time, we compare both extractors and show that Peres’s extractor is better than301

Elias’s one by numerical analysis with various parameters.302
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4. Implementation and Numerical Analysis303

In this section, we describe our experimental results of Peres’s extractor and Elias’s one with304

the RM method. We used Java language version 1.8 to implement both extractors and evaluated the305

performance on a desktop PC with Intel Core i3 3.70 GHz and 4 GB of RAM. Our experiments would306

also be performed on a general PC and do not require any special resources, libraries, frameworks for307

computation. Actually, we can use other languages instead of Java language, however, Java language308

can evaluate it on every platform without any support software. Thereby, we used Java language for309

implementation. For comparing Peres’s extractor and Elias’s one with the RM method with finite input310

sequences in terms of non-asymptotic viewpoints, we consider the following four questions.311

1. Is theoretical redundancy the same as experimental redundancy in both extractors?312

2. Is experimental redundancy of Elias’s extractor with the RM method better than experimental313

redundancy of Peres’s extractor?314

3. What is the exact running time of both extractors?315

4. Which extractor achieves better redundancy (or rate) under the almost same running time?316

To answer the questions above, we design our experiments as follows.317

To answer the questions (1) and (2), we evaluate theoretical and experimental redundancy of318

Peres’s extractor and Elias’s one by using a pseudorandom number generation program rand() in319

MATLAB [20] to get biased input sequences with controlling the probability (See Sections 4.1 and 4.2).320

This experiment used rand() to generate input sequences because we can control the probability p for321

each input sequence. Therefore, we vary probability p = 0.1, 0.2, . . . , 0.9. We show the results for a322

finite input sequence with 180 bits that would be used in various cryptographic algorithms. Actually,323

we implemented various bit-length of input sequences such as n = 80, 100, . . . , 200 bit-length, and324

obtained almost the same results with the case of 180-bit length. Hence, we will describe only the input325

length with 180 bits, and we omit the cases of other bit-length in this paper. In addition, to investigate326

efficiency of Elias’s extractor, the input size should be divided by a reasonable block size. Therefore,327

the 180 bit-length is also suitable, because it can be divided by many simple block-sizes 10, 20, 30, 60,328

90, 180. For computing (N
k ) in Elias’s extractor with the RM method, we consider the following:329

• Schönhage–Strassen multiplication algorithm requires O(N1+ε) which is asymptotically faster330

than the normal multiplication requiring O(N2);331

• For avoiding multiplication, we use only the addition operation because it is simple and makes332

the basic operation lighter so that it can be used in various applications and environments.333

Additionally, we use the recursive formula (N
k ) = (N−1

k−1 ) + (N−1
k ) for 10 ≤ N ≤ 180 in order to compute334

(N
k ) only by additions and also by dynamic programming. For computing experimental redundancy335

with finite input sequences, we use 180-bit length of inputs and generate 100 times for each probability336

p. The rand() will produce different sequences in every time under the same probability, thus we337

repeat to generate input sequences 100 times and calculate the average of experimental redundancy.338

Actually, we repeated to generate input sequences 100, 1000, and 2000 times, but all the results on the339

average of experimental redundancy are almost the same, and hence, we focus on generating input340

sequences 100 times only. Next, we note that the number of iterations satisfies ν ≤ blog 180c = 7 for341

Peres’s extractor in Section 4.1, and we take the block size N = 10, 20, 30, 60, 90, 180 for Elias’s extractor342

with RM method in Section 4.2. Then, we calculate the average on the redundancy function fPν (p)343

of Peres’s extractor by using (7) and the redundancy function fE(p, N) = h(p)− rE(p, N) of Elias’s344

extractor with the RM method by using (3) for each probability p.345

To answer the question (3), we investigate running time for extracting uniformly random346

sequences for both extractors (See Section 4.3). Time complexity depends on the length of input347

sequences, and thus the probability is not a parameter in this investigation. Thereby, this experiment348

changes the random number generator for input sequences to RANDOM.ORG [21] for generating349

input sequences. This random number generator can produce a sequence that is very close350
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to a true random number with unknown probability p by using randomness of atmospheric351

noises. In addition, it can produce 131,072 random bits in each time. This experiment takes352

n = 100, 200, 400, 600, 800, 1000, 2000, 3000, 4000, 5000 as bit-length of input sequences. For reliability of353

our experiment, we repeated to extract unbiased random sequences 100 times for each n, and then354

calculated the average on their running time.355

By analyzing all the results of the experiments above, we can answer the question (4): we can356

compare the redundancy of both extractors under the almost same running time (see Section 4.4).357

4.1. Analysis of redundancy of Peres’s extractor358

(a) Asymptotic and theoretical estimate of redundancy
by equation (7).

(b) Non-asymptotic and experimental estimate of
redundancy with 180-bit input sequences.

Figure 1. Redundancy of Peres’s extractor.

In Fig. 1a, we show the redundancy of Peres’s extractor from theoretical aspects, that is, we359

calculated the redundancy fPν (p) of Peres’s extractor by using (7) with the iterations ν = 1, 2, . . . , 7360

and the probability p = 0.1, 0.2, . . . , 0.9. We depicted the graphs of redundancy fPν (p), where x-axis361

means probability p and y-axis means redundancy. It can be easily seen that the redundancy becomes362

smaller as the number of iterations become bigger, for all p ∈ (0, 1). Furthermore, we showed the363

experimental redundancy of Peres’s extractor with 180 bit-length of input sequences in Fig. 1b. As a364

result, the theoretical redundancy in Fig. 1a is almost the same as the experimental redundancy in Fig.365

1b.366

(a) Graph of fP5 (p) (b) Graph of fP6 (p)

Figure 2. Asymptotic and theoretical estimate of redundancy of Peres’s extractor with ν = 5, 6 and
0.450 ≤ p ≤ 0.550.
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In Fig. 2, we depiced the graphs of theoretical redundancy fPν (p) with ν = 5, 6 arround p = 1/2,367

namely, 0.450 ≤ p ≤ 0.550. Both graphs support Proposition 1 in a geometric viewpoint. In addition,368

our experiment shows that fP5 (p) would approximately take the maximum 0.2373467 at p ≈ 0.476 and369

p ≈ 0.524, and fP6 (p) would approximately take the maximum 0.1781326 at p ≈ 0.459 and p ≈ 0.541.370

(a) Graph of fP5 (p, 180) (b) Graph of fP6 (p, 180)

Figure 3. Non-asymptotic and experimental estimates on redundancy of Peres’s extractor for 180-bit
input sequences with ν = 5, 6 and 0.450 ≤ p ≤ 0.550.

In Fig. 3, we show experimental redundancy with probability 0.450 ≤ p ≤ 0.550 at x-axis as in Fig.371

2. It can be seen that fPν (p) (ν = 5, 6) would not be concave but there is much fluctuation, although372

fPν (p) (ν = 5, 6) in Fig. 1b look to be concave.373

4.2. Analysis of redundancy of Elias’s extractor with the RM method374

(a) Asymptotic and theoretical estimate of redundancy
by equation (3) and fE(p, n) := h(p)− rE(p, n).

(b) Non-asymptotic and experimental estimate of
redundancy with 180-bit input sequences.

Figure 4. Redundancy of Elias’s extractor with RM method.

In Fig. 4a, we show the redundancy of Elias’s extractor with the RM method from theoretical375

aspects, that is, we calculated the theoretical redundancy fE(p, N) = h(p) − rE(p, N) of Elias’s376

extractor with the RM method by using (3) with probability p = 0.1, 0.2, . . . , 0.9 and the block size377

N = 10, 20, 30, 60, 90, 180. It can be seen that the redundancy becomes smaller as block size becomes378

larger, for all p ∈ (0, 1). In spite of the fact that there is a slight difference between theoretical379

redundancy in Fig. 4a and experimental redundancy in Fig. 4b, we can say that most of them have380

similarity.381

As a result, the redundancy of Elias’s extractor with large block size is better than that of Peres’s382

extractor, which is an answer to the second question of ours. Moreover, we can observe that the383
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theoretical redundancy is almost the same as the experimental redundancy in both extractors, which is384

an answer to the first question. Therefore, we can rely on our implementation, and we will use this385

implementation for analyzing the running time in the next section.386

4.3. Analysis of time complexity of both extractors387

(a) Peres’s extractor. (b) Elias’s extractor with RM method.

Figure 5. Running time.

This section will answer the third question. In Fig. 5a, we show running time of Peres’s extractor388

with iterations ν = 1, 2, . . . , 7 and bit-length of input sequences n = 100, 200, 400, 600, 800, 1000,389

2000, 3000, 4000, 5000. We depicted the graphs of the running time, where x-axis means bit-length390

of input sequences and y-axis means running time in the second unit. It is clearly seen that, if the391

number of iterations become larger, it leads to the large running time. The running time increases392

almost linearly but the slope depends on the iterations ν, as supported by theoretical estimate of time393

complexity O(νn). Additionally, the running time of iterations ν = 7 and bit-length of input sequences394

n = 5000 is the largest running time (1.425 milliseconds), which means that it can be used in practice395

in a real world.396

In Fig. 5b, we show running time of Elias’s extractor with RM method with block size N =397

2, 4, 6, 8, 10, 12, 16, 20. It can be seen that, if the block size becomes larger, it leads to the large running398

time. The running time increases linearly, but the slope depends on the block size N, as supported399

by theoretical estimate of time complexity O(N log3 N log log N). In addition, the running time with400

block size N = 20 and bit-length of input sequences n = 5000 is the largest running time (33.155401

milliseconds), which is much larger than that of Peres’s extractor.402

By comparing the running time of both extractors, the running time of Peres’s extractor is better403

than that of Elias’s extractor with the RM method at the same bit-length of input sequences. In case404

of long bit-length of input sequences, the difference between running time of both extractors can be405

seen more clearly. Therefore, we can conclude that Peres’s extractor is faster than Elias’s extractor with406

the RM method at the same bit-length of input sequences. On the other hand, according to the results407

in Sections 4.1 and 4.2, we have seen that the redundancy of Elias’s extractor with the RM method is408

better than that of Peres’s extractor. Thus, we analyze comparison of redundancy (or rate) under the409

almost same running time in the next section.410

4.4. Comparison under the almost same running time411

By all previous experiments, we have observed that: the redundancy of Elias’s extractor with412

the RM method is better than that of Peres’s extractor; but, the time complexity of Peres’s extractor is413
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(a) Comparison of running time. (b) Comparison of redundancy for 180-bit inputs.

Figure 6. Comparison of Peres’s and Elias’s extractors.

better than that of Elias’s extractor with the RM method. Therefore, we will answer the fourth question414

by comparing running time in Fig. 6a and redundancy under the almost same running time in Fig. 6b.415

In Fig. 6a, we show the comparison of running time of Peres’s extractor with iterations ν = 4, 5, 6416

and running time of Elias’s extractor with the RM method having block size N = 2, 10, 20. The running417

time of Peres’s extractor with iterations ν = 6 (the yellow line) is almost the same as the running time418

of Elias’s extractor with the RM method having block size N = 2 (the black dash line). Thereby, we419

can compare the experimental redundancy of Peres’s extractor and that of Elias’s extractor with the420

RM method under the almost same running time, that is, fP6 (p) and fE(p, 2) in Fig. 6b. It is clearly421

seen that fP6 (p) (the yellow line) is much better than fE(p, 2) (the black dash line), and fP6 (p) is close422

to fE(p, 20) (the green dash line). However, the running time of Elias’s extractor with the RM method423

having block size N = 20 is much larger than the running time of Peres’s extractor with iterations424

ν = 6, as seen in Fig. 6a. In addition, we can observe the redundancy fP4 (p) of Peres’s extractor with425

iterations ν = 4 (the red line) is close to the redundancy fE(p, 10) of Elias’s extractor with the RM426

method having block size N = 10 (the blue dash line), but the running time of Elias’s extractor with the427

RM method having block size N = 10 is approximately 16 times larger than that of Peres’s extractor428

with iterations ν = 4, as seen in Fig. 6a (i.e., the blue dash line and the red line). As a result, we can429

conclude that Peres’s extractor achieves better rate (or redundancy) than Elias’s extractor with the RM430

method under the almost same running time.431

5. Conclusion432

Evidently, Elias’s extractor achieved the optimal rate if the block size tends to infinity. On the433

other hand, Peres’s extractor achieved the optimal rate if the length of input and the number of434

iterations tend to infinity. Note that we used an improved version of Elias’s extractor from Ryabko and435

Matchikina [8]. For finite input sequences, it is not easy to decide which extractor is more appropriate436

to use in applications (e.g., cryptography) in practice.437

In this paper, we evaluated numerical performance of Peres’s extractor and Elias’s one with the RM438

method in terms of practical aspects. Firstly, we derived a lower bound on the maximum redundancy439

of Peres’s extractor based on some heuristics, and we showed that the maximum redundancy of Elias’s440

extractor (with the RM method) was superior to that of Peres’s extractor in general, if we do not pay441

attention to time complexity or space complexity. We also found that fPν (p) is not concave in p ∈ (0, 1)442

for every ν ≥ 5. Afterwards, we evaluated numerical performance of Peres’s extractor and Elias’s one443

with the RM method for finite input sequences. Our implementation evaluated it on a general PC and444

did not require any special resources, libraries, frameworks for computation, which means that it can445

be easily utilized for the practical use in various applications. As a result, we showed that Peres’s446
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extractor is faster than the Elias’s one at the same bit-length of input sequences. Moreover, Peres’s447

extractor is also much better than Elias’s one with the RM method under the almost same running time448

and the same bit-length of input sequences. Consequently, Peres’s extractor will be better in practical449

use to produce uniformly random sequences, and more appropriate to use in applications such as450

cryptography.451

Appendix A. Proof of Proposition 1452

First, we note that, for ν ≥ 1,453

fPν (1/2) = h(1/2)− rPν (1/2) =
(

3
4

)ν

, (A1)

where the last equality follows from (9).454

For p ∈ (0, 1), we define p̃ := p2 + (1− p)2 and p̂ := p2/ p̃. Then, it holds that455

dp̃
dp

= 2(2p− 1),
dp̂
dp

=
2p(1− p)

p̃2 . (A2)

Next, for the first order derivative of fPν (p), we have456

d fP1 (p)
dp

=
1

ln 2
ln

1− p
p

+ 2p− 1, (A3)

d fPν (p)
dp

= (2p− 1)

(
fPν−1( p̂) +

d fPν−1( p̃)
dp

)
+

p(1− p)
p̃

d fPν−1( p̂)
dp

for ν ≥ 2. (A4)

Then, by setting p = 1/2 in (A4), for ν ≥ 2, we have457

d fPν (1/2)
dp

=
1
2

d fPν−1(1/2)
dp

(A5)

=

(
1
2

)ν−1 d fP1 (1/2)
dp

= 0, (A6)

where (A5) follows from (A4), and (A6) follows from (A3).458

Moreover, for the second order derivative of fPν (p), we obtain459

d2 fP1 (p)
dp2 = − 1

ln 2
1

p(1− p)
+ 2, (A7)

d2 fPν (p)
dp2 = 2 fPν−1( p̂) + 2

d fPν−1( p̃)
dp

+
1− 2p

p̃
d fPν−1( p̂)

dp

+2(2p− 1)2 d2 fPν−1( p̃)
dp2 +

2p2(1− p)2

p̃3

d2 fPν−1( p̂)
dp2 for ν ≥ 2. (A8)

And, by setting p = 1/2 in (A8), for ν ≥ 2, we have460

d2 fPν (1/2)
dp2 = 2 fPν−1(1/2) + 2

d fPν−1(1/2)
dp

+
d2 fPν−1(1/2)

dp2

= 2
(

3
4

)ν−1
+

d2 fPν−1(1/2)
dp2 , (A9)
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where the first equality follows from (A8), and the second equality (A9) follows from (A1) and (A6).461

Then, by solving the equation (A9) (ν ≥ 2) and d2 fP1 (1/2)
dp2 = 2− 4/ ln 2, we get462

d2 fPν (1/2)
dp2 =

d2 fP1 (1/2)
dp2 + 2

ν−1

∑
k=1

(
3
4

)k

= 2− 4
ln 2

+ 6

{
1−

(
3
4

)ν−1
}

= 8− 4
ln 2
− 6

(
3
4

)ν−1
. (A10)

From the equation (A10), it follows that463

d2 fPν (1/2)
dp2 < 0 for 1 ≤ ν ≤ 4,

d2 fPν (1/2)
dp2 > 0 for ν ≥ 5.

Appendix B. Experimental Results for Proposition 2464

In this appendix, we show experimental results for Proposition 2, which support that Proposition465

2 holds true. In Fig. B1, we depict the difference values fPν (p, n) − fPν (p) with input bit-length466

n = 80, 100, ..., 200 and iterations 1 ≤ ν ≤ blog nc. The x-axis means the probability p = 01., 0.2, ..., 0.9467

and y-axis means the difference values defined by fPν (p, n)− fPν (p).468

Proposition 2 states that fPblog nc(p, n)− fPblog nc(p) ≥ 0 for p ∈ (0, 1), and we can observe that it469

holds true for input bit-length n = 80, 100, ..., 200 by our experimental results.470
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(a) 80-bit input sequences. (b) 100-bit input sequences.

(c) 120-bit input sequences. (d) 140-bit input sequences.

(e) 160-bit input sequences. (f) 180-bit input sequences.

(g) 200-bit input sequences.

Figure B1. Difference values fPν (p, n)− fPν (p) with n = 80, 100, ..., 200 and 1 ≤ ν ≤ blog nc.
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