

Article

Numerical and Non-asymptotic Analysis of Elias's and Peres's Extractors with Finite Input Sequence

Amonrat Prasitsupparote ^{1,*}, Norio Konno ² and Junji Shikata ¹

¹ Graduate School of Environment and Information Sciences, Yokohama National University, 240-8501, Japan

² Department of Applied Mathematics, Faculty of Engineering, Yokohama National University, 240-8501, Japan

* Correspondence: amonrat-prasitsupparote-zp@ynu.jp

† This paper is an extended version of our paper published in 51st Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA, March 2017.

Abstract: Many cryptographic systems require random numbers, and weak random numbers lead to insecure systems. In the modern world, there are several techniques for generating random numbers, of which the most fundamental and important methods are deterministic extractors proposed by von Neumann, Elias, and Peres. Elias's extractor achieves the optimal rate (i.e., information theoretic upper bound) $h(p)$ if the block size tends to infinity, where $h(\cdot)$ is the binary entropy function and p is probability that each bit of input sequences occurs. Peres's extractor achieves the optimal rate $h(p)$ if the length of input and the number of iterations tend to infinity. The previous researches related to both extractors did not mention practical aspects including running time and memory-size with finite input sequences. In this paper, based on some heuristics, we derive a lower bound on the maximum redundancy of Peres's extractor, and we show that Elias's extractor is better than Peres's one in terms of the maximum redundancy (or the rates) if we do not pay attention to time complexity or space complexity. In addition, we perform numerical and non-asymptotic analysis of both extractors with a finite input sequence with any biased probability under the same environments. For doing it, we implemented both extractors on a general PC and simple environments. Our empirical results show that Peres's extractor is much better than Elias's one for given finite input sequences under the almost same running time. As a consequence, Peres's extractor would be more suitable to generate uniformly random sequences in practice in applications such as cryptographic systems.

Keywords: True random number generation; von Neumann's extractor; Peres's extractor; Elias's extractor;

1. Introduction

It is undeniable that random numbers play important roles in cryptography, for example, key generation, nonces, one-time pads, etc. The quality of random numbers directly determines the strength of cryptographic systems. A low quality of random numbers lead to that an adversary can break a system. It can be seen that in 2012, Heninger et al. [1] and Lenstra et al. [2] explored RSA keys in TLS and SSH servers on the Internet. Their experiment showed that a weak random number for generating a random prime in embedded devices led to the result that an adversary could break a system. This tells us that a cryptographic system will be broken if insufficient randomness is used to generate keys. Moreover, there is a hacker group which calling itself fail0verflow [3]. They could recover ECDSA private key generated by weak random numbers for PlayStation 3 game console by Sony in Annual Chaos Communication Congress (27C3) in 2010. Furthermore, Microsoft Windows also generated weak random numbers, as shown by Leo Dorrendorf et al. [4] in 2007. The Windows operating system had an unpublished pseudorandom number generator (PRNG) called CryptGenRandom. Their work examined the binary code of Windows 2000 and reconstructed CryptGenRandom. After that, they found several vulnerabilities, which can be used to predict all random values, such as SSL keys.

35 Overall, the random number generation is very important in cryptography to ensure that secret keys
36 are random and unpredictable.

37 A natural source such as physical phenomena, the stock market, or Bitcoin [5] can produce
38 unpredictable random sequences, though such sequences from the source are not uniformly random
39 (i.e., biased). However, there is a solution to solve this problem, namely, to use deterministic extractors.
40 A deterministic extractor is a function which takes a non-uniformly random sequence as input and
41 outputs a uniformly random sequence. The deterministic extractors have been studied in mathematics,
42 information theory, and cryptography. In information theory, those extractors can also be treated
43 for the intrinsic randomness problem (i.e., the problem of generating truly random numbers). And,
44 as applications in cryptography, the output sequence of those extractors can be used as secret keys
45 in information-theoretic cryptography or symmetric key cryptography. In particular, Elias's and
46 Peres's extractors are well known and fundamental and shown to be optimal in terms of the rate (or
47 redundancy), if we suppose input-size tends to infinity (i.e., in an asymptotic viewpoint). However, it is
48 not easy to conclude which one is better, since those are constructed by completely different approaches.
49 The main purpose of this paper is to investigate those with finite inputs (i.e., in a non-asymptotic
50 viewpoint) by numerical analysis to make it clear which is better for the practical use.

51 *1.1. Related work*

52 There are several works that proposed the methods for extracting uniformly random sequences
53 from non-uniformly random sequences. The most famous one of them is the von Neumann's extractor
54 [6] proposed in 1951. He demonstrated a simple procedure for extracting independent unbiased bits
55 from a sequence of independent, identically distributed (i.i.d.) and biased bits.

56 An improved algorithm of von Neumann's extractor was proposed by Elias [7] in 1971. Elias's
57 extractor utilizes a block coding technique to improve the rate (or redundancy) of von Neumann's
58 extractor, however the straightforward implementation of this extractor requires exponential time and
59 exponential memory size with respect to N , where N is block size, to store all 2^N input sequences with
60 their assignment of output sequences. Later in 2000, Ryabko and Matchikina [8] proposed an extension
61 of Elias's extractor that improved time complexity and space complexity by using the enumerative
62 encoding technique from [9] and Schönhage–Strassen algorithm [10] for fast integer multiplication in
63 order to compute assignment of output sequences. In this paper, we call this improved method the
64 *RM method*.

65 Peres's extractor is another extended algorithm of von Neumann's extractor. In 1992, Peres [11]
66 proposed a procedure which is an improved one from the von Neumann's extractor. The basic idea
67 of Peres's extractor is to reuse the discarded bits in von Neumann's extractor by iterating similar
68 procedures in von Neumann's extractor.

69 The extractors by von Neumann, Elias, and Peres are the most fundamental and important ones
70 using a single source. In particular, Elias's and Peres's extractors are interesting, since they can achieve
71 the optimal rate (i.e., information-theoretic upper bound) $h(p)$ if input-size tends to infinity (i.e., in
72 an asymptotic case), where each bit of input sequences from a single source occurs with probability
73 $p \in (0, 1)$ and $h(\cdot)$ is the binary entropy function. In this paper, we are interested in the non-asymptotic
74 case, namely, the achievable rate for finite input-sizes. For Elias's extractor, it can be observed in the
75 works [7]. However, for Peres's extractor, it is not explicitly known. As a related work for Peres's
76 extractor, Pae [12] reported a recursion formula to compute the rate for finite input-sizes, but it is
77 difficult to give the rate function with finite input-sizes since the recursion formula is complicated.
78 Pae also computed the rate by the recursion formula in the case $p = 1/3$, compared the rates of
79 Peres's extractor and Elias's one, and concluded that the rate of Peres's extractor increased much
80 slower than that of Elias's one by the numerical analysis. However, it is not explicitly known which
81 extractor is better to use in practice, if we take into account the running time, implementation cost, and
82 memory-size required in the extractors, as mentioned in [12].

83 There are several works for constructing extractors using multiple sources (i.e., not a single source).
84 Bourgain [13] provided a 2-source extractor under the condition that the two sources are independent
85 and each source has min-entropy $0.499n$, where n is bit-length of output of the sources. Raz [14]
86 proposed improvement in terms of total min-entropy, and constructed 2-source extractors with the
87 condition that one source has min-entropy more than $n/2$ and the other source requires min-entropy
88 $O(\log n)$. In 2015, Cohen [15] constructed a 3-source extractor, where one source having min-entropy δn ,
89 the second source having min-entropy $O(\log n)$ and the third source having min-entropy $O(\log \log n)$.
90 In 2016, Chattopadhyay and Zuckerman [16] proposed a general 2-source extractor, where each source
91 has a polylogarithmic min-entropy. They combined two weak random sequences into a single sequence
92 by using K-Ramsey graphs and resilient functions. Their extractor has only one-bit output and achieves
93 negligible error and high complexity than Peres's extractor or Elias's extractor.

94 Furthermore, many researchers are interested in implementing a randomness extractor in a real
95 world. In particular, in 2009, Bouda et al. [17] used mobile phones or pocket computers to generate
96 random data that is close to truly random ones. They took 12 pictures per second then used their
97 function to get random 4 bits in each picture, and then applied Carter-Wegman universal₂ hash
98 functions. Their output passed 15 of 16 items in NIST statistical tests at the confidence level $\alpha = 0.01$.
99 However, their proposed model was not a simultaneous system, and hence it would be difficult to use
100 in practical applications. Halprin and Naor [18] presented the idea of using human game-play as a
101 randomness source in 2009. They constructed the Hide and Seek game that produced approximately 17
102 bits of raw data per click then extracted with a pairwise independent hash function that it can generate
103 128 bits 2^{64} -close to random in less than two minutes. For using human as a random generator, there
104 are several impact on the entropy of sources such as the skill of player, interesting and entertain player,
105 the number of rounds in game, etc. Later in 2011, Voris et al. [19] investigated the use of accelerators
106 on the RFID tags as a source. They implemented a two-stage extractor on the RFID tags. It can produce
107 random 128 bits in 1.5 seconds and passed the NIST statistical tests. However, they stored a Toeplitz
108 matrix on the RFID tags and performed matrix multiplications, though the RFID tags have limited
109 computational resources in general.

110 1.2. Our contribution

111 In this paper, we revisit the extractors by von Neumann, Elias, and Peres, since they are very
112 fundamental and only require a single source. In the studies for those extractors, it is usual to
113 asymptotically analyze the rate or redundancy of the extractors in the literatures, where the rate is
114 the average bit-length of outputs per bit of input (see Section 2 for details). Specifically, the rate of von
115 Neumann's extractor is $p(1 - p)$ that is far from the optimal rate (i.e., information-theoretic upper
116 bound) $h(p)$. Meanwhile, the rate of Elias's extractor converges to $h(p)$ if the block size tends to infinity.
117 Specifically, Elias's extractor outputs a uniformly random sequence with high rate, when it take a long
118 block-size equal to the input length. However, it has trade-off between the rates and computational
119 resources such as time complexity and memory-size. On the other hand, Peres's extractor achieves the
120 optimal rate $h(p)$ if the length of input and the number of iterations tend to infinity, and it requires
121 smaller time complexity and memory-size. However, it would be hard to explicitly derive the exact
122 rate for finite input sequences. Thus, it is not easy to conclude which is a more suitable extractor for
123 the practical use in general. As a related work, there is only one work by Pae [12] which showed
124 comparison of both extractors as mentioned in Section 1.1, but it does not completely answer the
125 question, since it analyzed performance of both extractors only for restricted parameters, in particular,
126 the case where each bit of input sequences occurs with probability $p = 1/3$ and did not consider the
127 running time. In this paper, we will perform non-asymptotic analysis for the wide range of parameters
128 for Elias's and Peres's extractors, to answer the question: which is more suitable in the practical use
129 in applications in a real world. For doing it, we evaluate numerical performance of Peres's extractor
130 and the Elias's one with the RM method in terms of practical aspects including achievable rates (or

131 redundancy) and running time with finite input sequences. Specifically, the contribution of the paper
 132 is as follows:

- 133 • Based on some heuristics, we derive a lower bound on the maximum redundancy of Peres's
 134 extractor in Section 3. This result shows that the maximum redundancy of Elias's extractor is
 135 superior to Peres's one in general, if we focus only on redundancy (or rates) and we do not pay
 136 attention to time complexity or space complexity.
- 137 • By numerical analysis, we design our experiments by comparing both extractors with finite
 138 input sequences of which each bit occurs with any biased probability $p \in (0, 1)$ under the same
 139 environments in terms of practical aspects. Both extractors are implemented on a general PC
 140 and do not require any special resources, libraries, frameworks for computation. Therefore, it
 141 can be applied in various cryptographic applications and platforms without any restrictions.
 142 Our implementation and results will be explained in Section 4. We calibrate our implementation
 143 by comparing the theoretical and experimental redundancy of both extractors. Afterwards, we
 144 analyze time complexity of both extractors with respect to bit-length of input sequences from
 145 100 to 5000. We compare the redundancy of both extractors, and our implementation shows that
 146 Peres's extractor is much better than Elias's one under the almost same running time. As a result,
 147 Peres's extractor would be more suitable for generating uniformly random sequences for the
 148 practical use in applications.

149 2. Preliminaries

150 The first deterministic extractor was constructed by von Neumann [6] in 1951, and later improved
 151 ones were proposed by Elias [7] in 1971, and by Peres [11] in 1992. The prior work [6,7,11] considered
 152 Bernoulli source $\text{Bern}(p)$ from which input sequences were generated, namely $\text{Bern}(p)$ outputs i.i.d.
 153 $(x_1, x_2, \dots, x_n) \in \{0, 1\}^n$ according to $\Pr(x_i = 1) = p$ and $\Pr(x_i = 0) = q = 1 - p$ for some unknown
 154 $p \in (0, 1)$.

155 A deterministic extractor A takes $(x_1, x_2, \dots, x_n) \in \{0, 1\}^n$ as input and outputs $(y_1, y_2, \dots, y_\ell) \in$
 156 $\{0, 1\}^\ell$, and its average bit-length of output is denoted by $\bar{\ell}(n)$ which is a function of n , and define
 157 its rate function by $r^A(p) := \lim_{n \rightarrow \infty} \bar{\ell}(n)/n$. Additionally, for a deterministic extractor A , we define
 158 the redundancy function by $f^A(p) := h(p) - r^A(p)$, where $h(\cdot)$ is the binary entropy function defined
 159 by $h(p) = -p \log p - (1 - p) \log(1 - p)$, and the maximum redundancy by $\Gamma := \sup_{p \in (0, 1)} f^A(p)$.
 160 Note that the above definition of redundancy functions is meaningful, since $h(p)$ is shown to be the
 161 information-theoretic upper bound of the extractors in [7,11]. Furthermore, in this paper we define a
 162 non-asymptotic rate function $r^A(p, n) := \bar{\ell}(n)/n$, a non-asymptotic redundancy function $f^A(p, n) :=$
 163 $h(p) - r^A(p, n)$, and the non-asymptotic maximum redundancy $\Gamma(n) := \sup_{p \in (0, 1)} f^A(p, n)$, which
 164 will be used in our non-asymptotic analysis.

165 2.1. von Neumann's extractor

The von Neumann's extractor was a simple algorithm for extracting independent unbiased bits
 from biased bits. This algorithm divides the input sequences $(x_1, x_2, x_3, x_4, \dots, x_n)$ into the pairs¹
 $((x_1 x_2), (x_3 x_4), \dots)$ and maps each pair with a mapping as follows:

$$00 \mapsto \wedge, \quad 01 \mapsto 0, \quad 10 \mapsto 1, \quad 11 \mapsto \wedge, \quad (1)$$

166 where the symbol \wedge means no output was generated. After that, it concatenates all resulting outputs
 167 of (1). For the help of understanding, we give an example as follows.

¹ If n is odd, we discard the last bit.

168 Example 1. Suppose that an input sequence is $(x_1, x_2, x_3, \dots, x_8) = (1, 0, 0, 1, 0, 0, 1, 1)$. Firstly, divide it
169 into the pairs as $((1, 0), (0, 1), (0, 0), (1, 1))$. Next, map each pairs with the mapping (1). Finally, the extractor
170 outputs $(y_1, y_2) = (1, 0)$.

171 Complexity: The von Neumann's extractor is efficient in the sense that both time complexity and
172 space complexity are small such that time complexity is evaluated as $O(n)$, and space complexity is
173 evaluated as $O(1)$.

174 Redundancy: The von Neumann extractor is not desirable, since the maximum redundancy is far
175 from zero. Actually, the rate function $r^{\text{VN}}(p)$ of the von Neumann extractor is evaluated by $r^{\text{VN}}(p) =$
176 $\lim_{n \rightarrow \infty} np(1-p)/n = p(1-p)$, which is $1/4$ at $p = 1/2$ and less elsewhere. In addition, the
177 (non-asymptotic) rate functions, (non-asymptotic) redundancy functions, and the (non-asymptotic)
178 maximum redundancy are evaluated as follows: $f^{\text{VN}}(p, n) = f^{\text{VN}}(p) = h(p) - p(1-p)$, $\Gamma^{\text{VN}}(n) =$
179 $\Gamma^{\text{VN}} = 3/4$.

180 2.2. Elias's extractor

181 Elias [7] improved the von Neumann's extractor by using a block coding technique in 1971. Let
182 $N \in \mathbb{N}(N \geq 2)$ be the block size in Elias's extractor. For all binary sequences with bit-length N ,
183 partition them into $N + 1$ sets S_k ($k = 0, 1, 2, \dots, N$), where S_k consists of all the $\binom{N}{k}$ sequences of length
184 N which have k ones and $N - k$ zeros. Here, each sequence of S_k is equiprobable (i.e., the probability
185 is $p^k q^{N-k}$).

186 Define $\binom{N}{k} = \alpha_m 2^m + \alpha_{m-1} 2^{m-1} + \dots + \alpha_0 2^0$, $m_k = \lfloor \log_2 \binom{N}{k} \rfloor$. Let $|S_k| = (\alpha_{m_k}, \alpha_{m_k-1}, \dots, \alpha_0)$ is the
187 binary expansion of the integer $\binom{N}{k}$, $\alpha_{m_k} = 1$, $\alpha_j \in \{0, 1\}$, $m_k > j \geq 0$. For each j ($1 \leq j \leq m$) such
188 that $\alpha_j = 1$, we assign 2^j distinct output sequences of length j to 2^j distinct sequences of S_k which
189 have not already been assigned. If $\alpha_0 = 1$, one sequence of S_k is assigned to \wedge . In particular, since
190 $|S_0| = |S_N| = 1$, two sequences $(0, 0, \dots, 0)$ and $(1, 1, \dots, 1)$ are assigned to \wedge . For instance, we show a
191 procedure of Elias's extractor in Example 2.

Example 2. Suppose that the given input sequence $x = (1, 0, 0, 1, 0, 0, 1, 1)$ with block size $N = 4$, which is the
 same as in Example 1. Firstly, we partition the set $\{0, 1\}^4$ of possible input sequences into the following subsets:

$$\begin{aligned} S_0 &= \{(0, 0, 0, 0)\}, \\ S_1 &= \{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)\}, \\ S_2 &= \{(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)\}, \\ S_3 &= \{(1, 1, 1, 0), (1, 0, 1, 1), (1, 1, 0, 1), (0, 1, 1, 1)\}, \\ S_4 &= \{(1, 1, 1, 1)\}. \end{aligned}$$

Then, we have $|S_0| = |S_4| = 1 = (1)$, $|S_1| = |S_3| = 4 = (1, 0, 0)$, $|S_2| = 6 = (1, 1, 0)$. We consider the
 following assignment of output sequences:

$$\begin{aligned} (0, 0, 0, 0) &\mapsto \wedge, & (1, 1, 1, 1) &\mapsto \wedge, \\ (1, 0, 0, 0) &\mapsto (0, 0), & (1, 1, 1, 0) &\mapsto (0, 0), \\ (0, 1, 0, 0) &\mapsto (0, 1), & (1, 0, 1, 1) &\mapsto (1, 0), \\ (0, 0, 1, 0) &\mapsto (1, 0), & (1, 1, 0, 1) &\mapsto (1, 1), \\ (0, 0, 0, 1) &\mapsto (1, 1), & (0, 1, 1, 1) &\mapsto (0, 1), \\ (0, 0, 1, 1) &\mapsto (0, 1), & (1, 0, 1, 0) &\mapsto (1, 0), \\ (0, 1, 1, 0) &\mapsto (0, 0), & (1, 0, 0, 1) &\mapsto (1, 1), \\ (0, 1, 0, 1) &\mapsto (0), & (1, 1, 0, 0) &\mapsto (1). \end{aligned}$$

192 Suppose that an input sequence $x = (1, 0, 0, 1, 0, 0, 1, 1)$ is given. Since the block size $N = 4$, the
 193 sequence is divided as $x = ((1, 0, 0, 1), (0, 0, 1, 1))$. By the above assignment of output sequences, the
 194 output sequence is $y = ((1, 1)(0, 1)) = (1, 1, 0, 1)$. Furthermore, there are several ways to assign m_k bits
 195 to binary output sequences with the same probability that affect to the output sequence y . Thus the
 196 output sequence of 10010011 will not be 1101, if we use another assignment. Note that Elias's extractor
 197 with block size $N = 2$ is equivalent to von Neumann's extractor, or equivalently the mapping (1). In
 198 this sense, Elias's extractor is an extension of von Neumann's extractor.

199 **Complexity:** It can be seen that the straightforward implementation of Elias's extractor requires much
 200 space and time complexity to make a table of the assignment of output sequences as illustrated by
 201 Example 2. Specifically, it requires exponential time and exponential memory size with respect to N to
 202 store all 2^N binary sequences with their assignment of output sequences. For reducing time and space
 203 complexity of Elias's extractor, Ryabko and Matchikina [8] proposed a method that is extended from
 204 Elias's extractor, which we call the *RM method* in this paper. The RM method utilizes enumerative
 205 encoding technique from [9] and Schönhage–Strassen algorithm [10] for fast integer multiplication in
 206 order to compute assignment of output sequences without making the large table. The procedure of
 207 RM method is described as follows.

Firstly, suppose a binary input sequence $x^N = (x_1, x_2, \dots, x_N)$ contains k ones and $N - k$ zeros. Let $\text{Num}(x^N)$ be a number which corresponds to x^N when we lexicographical order set S_k . If x^N has k ones, then the number $\text{Num}(x^N)$ is defined by

$$\text{Num}(x^N) = \sum_{t=1}^N \binom{x_t N - t}{k - \sum_{i=1}^{t-1} x_i}. \quad (2)$$

208 Then, we calculate a binary codeword $\text{code}(x^N)$ of x^N , which is assignment of an output sequence of
 209 x^N as follows:

- 210 (i) Compute $\text{Num}(x^N)$ in the set S_k , if x^N contains k ones.
- 211 (ii) Let $|S_k| = \binom{N}{k} = 2^{j_0} + 2^{j_1} + \dots + 2^{j_m}$ for $0 \leq j_0 < j_1 < \dots < j_m$.
- 212 (iii) If $j_0 = 0$ and $\text{Num}(x^N) = 0$, then $\text{code}(x^N) = \wedge$.
- 213 (iv) If $0 \leq \text{Num}(x^N) < 2^{j_0}$, then $\text{code}(x^N)$ is defined to be the j_0 low-order binary string of $\text{Num}(x^N)$.
- 214 (v) If $\sum_{s=0}^t 2^{j_s} \leq \text{Num}(x^N) < \sum_{s=0}^{t+1} 2^{j_s} + 2^{j_{t+1}}$ for some $0 \leq t \leq m$, then $\text{code}(x^N)$ is defined to be the
 215 suffix consisting of the j_{t+1} binary string of $\text{Num}(x^N)$.

216 **Example 3.** Suppose that the block size $N = 4$, and the given input sequence is $x = (1, 0, 0, 1, 0, 0, 1, 1)$, which
 217 is the same as all previous examples. After that, the sequence is divided as $x = ((1, 0, 0, 1), (0, 0, 1, 1))$. Next,
 218 compute $\text{Num}(x^N)$ follow the above conditions.

$$\begin{aligned} \text{Num}((1, 0, 0, 1)) &= \binom{4-1}{2} + \binom{4-4}{2-1} = 3, \\ \text{Num}((0, 0, 1, 1)) &= \binom{4-3}{2} + \binom{4-4}{2-1} = 0. \end{aligned}$$

219 Afterwards, the RM method computes $\text{code}(1, 0, 0, 1) = (1, 1)$ and $\text{code}(0, 0, 1, 1) = (0)$. Finally, outputs
 220 $y = (1, 1, 0)$ by concatenating $\text{code}(1, 0, 0, 1)$ and $\text{code}(0, 0, 1, 1)$.

221 The time and space complexity of Elias's extractor with the RM method are $O(N \log^3 N \log \log N)$
 222 and $O(N \log^2 N)$, respectively (see [8] for details).

223 **Redundancy:** Generally, the rate function and redundancy function of Elias's extractor depend on
 224 block size N . For given n -bit input sequence, if we take the block size equal to the length of input

225 sequence $N := n$, the rate function (or redundancy) achieve the best value. For simplicity, we assume
 226 that $N = n$ in the following explanation. Then, the rate function $r^E(p, n)$ is evaluated by

$$r^E(p, n) \approx \frac{1}{n} \sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k} \log \binom{n}{k}. \quad (3)$$

227 Elias's extractor takes i.i.d. with non-uniform distribution as input, and it will output i.i.d. with
 228 uniform distribution such that its rate is given by equation (3). Elias [7] showed that the rate function
 229 $r^E(p, n)$ of the Elias's extractor converges to $h(p)$ as $n \rightarrow \infty$, or equivalently, the redundancy function
 230 $f^E(p, n) := h(p) - r^E(p, n)$ converges to zero as $n \rightarrow \infty$. More precisely, it was shown that $f^E(p, n) =$
 231 $O(1/n)$ for any fixed p . Therefore, for given n -bit input sequence, if we set the maximum block-size to
 232 be the input-size, the non-asymptotic maximum redundancy $\Gamma^E(n)$ converges to zero not slower than
 233 $1/n$.

234 2.3. Peres's extractor

235 Peres's extractor is another method that improved the rates (or redundancy) from von Neumann's
 236 extractor. The basic idea behind Peres's extractor is to reuse the discarded bits in the mapping (1). In
 237 the following, we denote the von Neumann's extractor by Ψ_1 . For an n -bit sequence (x_1, x_2, \dots, x_n) , we
 238 describe the von Neumann's extractor by $\Psi_1(x_1, x_2, \dots, x_n) = (y_1, y_2, \dots, y_\ell)$, where $y_i = x_{2m_i-1}$ and
 239 $m_1 < m_2 < \dots < m_\ell$ are all the indices satisfying $x_{2m_i-1} \neq x_{2m_i}$ with $m_i \leq n/2$. In Peres's extractor,
 240 Ψ_ν ($\nu \geq 2$) is defined inductively as follows: For an even n ,

$$\Psi_\nu(x_1, x_2, \dots, x_n) = \Psi_1(x_1, x_2, \dots, x_n) * \Psi_{\nu-1}(u_1, u_2, \dots, u_{\frac{n}{2}}) * \Psi_{\nu-1}(v_1, v_2, \dots, v_{\frac{n}{2}-\ell}), \quad (4)$$

241 where $*$ is concatenation; $u_j = x_{2j-1} \oplus x_{2j}$ for $1 \leq j \leq n/2$; $v_s = x_{2i_s-1}$ and $i_1 < i_2 < \dots < i_{\frac{n}{2}-\ell}$ are
 242 all the indices satisfying $x_{2i_s-1} = x_{2i_s}$ with $i_s \leq n/2$. For an odd input size n , $\Psi_\nu(x_1, x_2, \dots, x_n) :=$
 243 $\Psi_\nu(x_1, x_2, \dots, x_{n-1})$, i.e., the last bit is discarded and utilize the case of an even n above.

244 Note that, the number of iterations ν is at most $\lfloor \log n \rfloor$, since Ψ_ν for every $\nu \geq 2$ is defined by $\Psi_{\nu-1}$
 245 having an input sequence whose bit-length is at most $n/2$, i.e., the bit-length of both $(u_1, u_2, \dots, u_{\frac{n}{2}})$
 246 and $(v_1, v_2, \dots, v_{\frac{n}{2}-\ell})$ in the equation (4) is at most $n/2$. Obviously, Peres's extractor with $\nu = 1$ is the
 247 same as the von Neumann's extractor. In addition, Peres's extractor with a large ν is considered to be
 248 an elegantly improved version from von Neumann's one by utilizing a recursion mechanism.

249 **Example 4.** Suppose that an input sequence is given as $x = (1, 0, 0, 1, 0, 0, 1, 1)$, which is the same as all
 250 previous examples. The number of iterations satisfy $\nu \leq \lfloor \log 8 \rfloor = 3$. Then, Peres's extractor is executed as
 251 follows:

$$\begin{aligned} \Psi_1(x) &= (1, 0), \\ \Psi_2(x) &= \Psi_1(x) * \Psi_1(1, 1, 0, 0) * \Psi_1(0, 1) = (1, 0, 0), \\ \Psi_3(x) &= \Psi_1(x) * \Psi_2(1, 1, 0, 0) * \Psi_2(0, 1) \\ &= \Psi_1(x) * (\Psi_1(1, 1, 0, 0) * \Psi_1(0, 0) * \Psi_1(1, 0)) * (\Psi_1(0, 1) * \Psi_1(1)) \\ &= (1, 0, 1, 0). \end{aligned}$$

252 **Complexity:** We denote the time complexity of Ψ_ν by $T_\nu(n)$. By the equation (4), we have

$$T_\nu(n) = T_1(n) + n/2 + T_{\nu-1}(n/2) + T_{\nu-1}(n/2 - \ell), \quad (5)$$

253 and $T_1(n) = O(n)$ (see Section 2.1 for time complexity of the von Neumann's extractor). From the
 254 condition (5), we obtain $T_\nu(n) = O(\nu n)$ for Ψ_ν with $1 \leq \nu \leq \lfloor \log n \rfloor$. In particular, time complexity of
 255 Peres's extractor with the maximum iterations $\nu = \lfloor \log n \rfloor$ is evaluated as $T_\nu(n) = O(n \log n)$ and the
 256 space complexity is $O(1)$.

Table 1. Comparison of extractors.

	Redundancy $\Gamma(n)$	Time complexity	Space complexity
von Neumann extractor	$3/4$	$O(n)$	$O(1)$
Elias extractor (with maximum block-size)	$O(1/n)$ (by [7])	$O(n \log^3 n \log \log n)$ (by [8])	$O(n \log^2 n)$ (by [8])
Peres extractor (with maximum iterations)	$o(1)$ (by [11])	$O(n \log n)$ (by [11])	$O(1)$ (by [11])

257 **Redundancy:** The rate function $r_v^P(p)$ of Peres's extractor can be computed inductively by the equation

$$r_v^P(p) = pq + \frac{1}{2}r_{v-1}^P(p^2 + q^2) + \frac{1}{2}(p^2 + q^2)r_{v-1}^P\left(\frac{p^2}{p^2 + q^2}\right) \quad (6)$$

258 for $v \geq 2$, and $r_1^P(p) = pq$. Note that $r_1^P(p)$ is the rate of the von Neumann's extractor. Peres's extractor
259 takes i.i.d. with non-uniform distribution as input, and it will output i.i.d. with uniform distribution
260 such that its rate is given by equation (6) if $n \rightarrow \infty$. It is shown in [11] that $r_v^P(p) \leq r_{v+1}^P(p)$ for all
261 $v \in \mathbb{N}$, $p \in (0, 1)$, and $\lim_{v \rightarrow \infty} r_v^P(p) = h(p)$ uniformly in $p \in (0, 1)$.

262 In other words, the above result is described in terms of redundancy as follows:

$$\begin{aligned} f_v^P(p) &= h(p) - r_v^P(p) \\ &= \frac{1}{2}f_{v-1}^P(p^2 + q^2) + \frac{1}{2}(p^2 + q^2)f_{v-1}^P\left(\frac{p^2}{p^2 + q^2}\right) \end{aligned} \quad (7)$$

263 for $v \geq 2$ and $f_1^P(p) = h(p) - p(1 - p)$, where the above equation (7) follows from the equation (6).
264 Furthermore, it holds that $f_v^P(p) \geq f_{v+1}^P(p)$ for all $v \in \mathbb{N}$, $p \in (0, 1)$, and $\lim_{v \rightarrow \infty} f_v^P(p) = 0$ uniformly
265 in $p \in (0, 1)$. Suppose that we take the maximum $v = \lfloor \log n \rfloor$ and $n \rightarrow \infty$, and then, we have
266 $\Gamma^P(n) = o(1)$.

267 In Table 1, we summarize the redundancy, time complexity and space complexity (memory size)
268 for the von Neumann's, Elias's, and Peres's extractors.

269 3. Lower Bound on Redundancy of Peres's Extractor

270 Although it is shown that $\Gamma^P(n) = o(1)$ in the Peres's extractor (i.e., $\Gamma^P(n)$ converges to zero as
271 $n \rightarrow \infty$), it is not known whether $\Gamma^P(n)$ converges to zero rapidly or slowly. To investigate it, we
272 analyze the non-asymptotic redundancy function $f_v^P(p, n)$ and non-asymptotic maximum redundancy
273 $\Gamma^P(n)$. In particular, we derive a lower bound on $\Gamma^P(n)$ based on some heuristics.

274 Let $f_v^P(p) = h(p) - r_v^P(p)$ be the redundancy function for Peres's extractor with v iterations.
275 Then, we first show that $f_v^P(p)$ is not concave in $p \in (0, 1)$ for $v \geq 5$ as follows. The proof is given in
276 Appendix A.

277 **Proposition 1.** *The redundancy function $f_v^P(p)$ in the Peres's extractor with v iterations is not concave in
278 $p \in (0, 1)$ if $v \geq 5$. More generally, for the Peres's extractor with v iterations, the redundancy function $f_v^P(p)$
279 satisfies*

$$\frac{d^2 f_v^P(\frac{1}{2})}{dp^2} = 8 - \frac{4}{\ln 2} - 6 \left(\frac{3}{4}\right)^{v-1}. \quad (8)$$

280 In particular, $\frac{d^2 f_v^P}{dp^2}\left(\frac{1}{2}\right) < 0$ for $1 \leq v \leq 4$ and $\frac{d^2 f_v^P}{dp^2}\left(\frac{1}{2}\right) > 0$ for $v \geq 5$.

281 Here, we assume that the following proposition holds true. It does not seem to be easy to provide
 282 a proof, however, it seems to be true from our experimental results that are provided in Appendix B.

283 **Proposition 2** (heuristics). Suppose $\nu = \lfloor \log n \rfloor$. Then, we have $f_\nu^P(p, n) \geq f_\nu^P(p)$, or equivalently
 284 $r_\nu^P(p, n) \leq r_\nu^P(p)$, for a sufficiently large n and any $p \in (0, 1)$.

285 The following theorem shows a lower bound on $\Gamma^P(n)$ that are derived based on Proposition 2.

286 **Theorem 1.** Suppose that Proposition 2 holds true. Then, in Peres's extractor with the maximum iterations
 287 $\nu = \lfloor \log n \rfloor$, we have $\Gamma^P(n) > 1/n^{2-\log 3}$. In particular, $\Gamma^P(n) = \omega(1/n)$.

288 **Proof.** Let n be a large natural number. For a natural number $\nu \in \mathbb{N}$ with $1 \leq \nu \leq \log n$, we define
 289 $a_\nu := r_\nu(1/2)$. Then, by the equation (6) we have

$$a_1 = \frac{1}{4}, \quad a_\nu = \frac{1}{4} + \frac{3}{4}a_{\nu-1} \text{ for } \nu \geq 2.$$

290 By solving the equation above, we have

$$a_\nu = 1 - \left(\frac{3}{4}\right)^\nu \text{ for } \nu \geq 1. \quad (9)$$

291 Thus, for $\nu = \lfloor \log n \rfloor$, we obtain

$$f_\nu^P(1/2, n) \geq f_\nu^P(1/2) \quad (10)$$

$$= (3/4)^\nu \quad (11)$$

$$\geq (3/4)^{\log n}$$

$$= \frac{1}{n^{2-\log 3}},$$

292 where the inequality (10) follows from Proposition 2, and the equality (11) follows from (9).

293 Therefore, we have

$$\begin{aligned} \Gamma^P(n) &= \sup_{p \in (0,1)} f_{\lfloor \log n \rfloor}^P(p, n) \\ &> f_{\lfloor \log n \rfloor}^P\left(\frac{1}{2}, n\right) \\ &\geq \frac{1}{n^{2-\log 3}}, \end{aligned} \quad (12)$$

294 where the inequality (12) follows from Proposition 1. \square

295 Theorem 1 shows that the non-asymptotic maximum redundancy $\Gamma^P(n)$ does converge to zero
 296 slower than $1/n$. This means that Peres's extractor is worse than Elias's extractor in terms of the
 297 maximum redundancy, since $\Gamma^E(n) = O(1/n)$ if block size is set to be n . However, this result does
 298 not always mean that Peres's extractor is worse than Elias's one, since time complexity and space
 299 complexity of Peres's extractor are better than those of Elias's one from Table 1. In this sense, it is
 300 not easy to conclude which extractor is superior. In the next section, from a viewpoint of practicality
 301 including running time, we compare both extractors and show that Peres's extractor is better than
 302 Elias's one by numerical analysis with various parameters.

303 4. Implementation and Numerical Analysis

304 In this section, we describe our experimental results of Peres's extractor and Elias's one with
 305 the RM method. We used Java language version 1.8 to implement both extractors and evaluated the
 306 performance on a desktop PC with Intel Core i3 3.70 GHz and 4 GB of RAM. Our experiments would
 307 also be performed on a general PC and do not require any special resources, libraries, frameworks for
 308 computation. Actually, we can use other languages instead of Java language, however, Java language
 309 can evaluate it on every platform without any support software. Thereby, we used Java language for
 310 implementation. For comparing Peres's extractor and Elias's one with the RM method with finite input
 311 sequences in terms of non-asymptotic viewpoints, we consider the following four questions.

- 312 1. Is theoretical redundancy the same as experimental redundancy in both extractors?
- 313 2. Is experimental redundancy of Elias's extractor with the RM method better than experimental
 314 redundancy of Peres's extractor?
- 315 3. What is the exact running time of both extractors?
- 316 4. Which extractor achieves better redundancy (or rate) under the almost same running time?

317 To answer the questions above, we design our experiments as follows.

318 To answer the questions (1) and (2), we evaluate theoretical and experimental redundancy of
 319 Peres's extractor and Elias's one by using a pseudorandom number generation program **rand0** in
 320 MATLAB [20] to get biased input sequences with controlling the probability (See Sections 4.1 and 4.2).
 321 This experiment used **rand0** to generate input sequences because we can control the probability p for
 322 each input sequence. Therefore, we vary probability $p = 0.1, 0.2, \dots, 0.9$. We show the results for a
 323 finite input sequence with 180 bits that would be used in various cryptographic algorithms. Actually,
 324 we implemented various bit-length of input sequences such as $n = 80, 100, \dots, 200$ bit-length, and
 325 obtained almost the same results with the case of 180-bit length. Hence, we will describe only the input
 326 length with 180 bits, and we omit the cases of other bit-length in this paper. In addition, to investigate
 327 efficiency of Elias's extractor, the input size should be divided by a reasonable block size. Therefore,
 328 the 180 bit-length is also suitable, because it can be divided by many simple block-sizes 10, 20, 30, 60,
 329 90, 180. For computing $\binom{N}{k}$ in Elias's extractor with the RM method, we consider the following:

- 330 • Schönhage–Strassen multiplication algorithm requires $O(N^{1+\epsilon})$ which is asymptotically faster
 331 than the normal multiplication requiring $O(N^2)$;
- 332 • For avoiding multiplication, we use only the addition operation because it is simple and makes
 333 the basic operation lighter so that it can be used in various applications and environments.

334 Additionally, we use the recursive formula $\binom{N}{k} = \binom{N-1}{k-1} + \binom{N-1}{k}$ for $10 \leq N \leq 180$ in order to compute
 335 $\binom{N}{k}$ only by additions and also by dynamic programming. For computing experimental redundancy
 336 with finite input sequences, we use 180-bit length of inputs and generate 100 times for each probability
 337 p . The **rand0** will produce different sequences in every time under the same probability, thus we
 338 repeat to generate input sequences 100 times and calculate the average of experimental redundancy.
 339 Actually, we repeated to generate input sequences 100, 1000, and 2000 times, but all the results on the
 340 average of experimental redundancy are almost the same, and hence, we focus on generating input
 341 sequences 100 times only. Next, we note that the number of iterations satisfies $\nu \leq \lfloor \log 180 \rfloor = 7$ for
 342 Peres's extractor in Section 4.1, and we take the block size $N = 10, 20, 30, 60, 90, 180$ for Elias's extractor
 343 with RM method in Section 4.2. Then, we calculate the average on the redundancy function $f_v^P(p)$
 344 of Peres's extractor by using (7) and the redundancy function $f^E(p, N) = h(p) - r^E(p, N)$ of Elias's
 345 extractor with the RM method by using (3) for each probability p .

346 To answer the question (3), we investigate running time for extracting uniformly random
 347 sequences for both extractors (See Section 4.3). Time complexity depends on the length of input
 348 sequences, and thus the probability is not a parameter in this investigation. Thereby, this experiment
 349 changes the random number generator for input sequences to RANDOM.ORG [21] for generating
 350 input sequences. This random number generator can produce a sequence that is very close

351 to a true random number with unknown probability p by using randomness of atmospheric
 352 noises. In addition, it can produce 131,072 random bits in each time. This experiment takes
 353 $n = 100, 200, 400, 600, 800, 1000, 2000, 3000, 4000, 5000$ as bit-length of input sequences. For reliability of
 354 our experiment, we repeated to extract unbiased random sequences 100 times for each n , and then
 355 calculated the average on their running time.

356 By analyzing all the results of the experiments above, we can answer the question (4): we can
 357 compare the redundancy of both extractors under the almost same running time (see Section 4.4).

358 *4.1. Analysis of redundancy of Peres's extractor*



(a) Asymptotic and theoretical estimate of redundancy (b) Non-asymptotic and experimental estimate of
 by equation (7). redundancy with 180-bit input sequences.

Figure 1. Redundancy of Peres's extractor.

359 In Fig. 1a, we show the redundancy of Peres's extractor from theoretical aspects, that is, we
 360 calculated the redundancy $f_v^P(p)$ of Peres's extractor by using (7) with the iterations $v = 1, 2, \dots, 7$
 361 and the probability $p = 0.1, 0.2, \dots, 0.9$. We depicted the graphs of redundancy $f_v^P(p)$, where x -axis
 362 means probability p and y -axis means redundancy. It can be easily seen that the redundancy becomes
 363 smaller as the number of iterations become bigger, for all $p \in (0, 1)$. Furthermore, we showed the
 364 experimental redundancy of Peres's extractor with 180 bit-length of input sequences in Fig. 1b. As a
 365 result, the theoretical redundancy in Fig. 1a is almost the same as the experimental redundancy in Fig.
 366 1b.

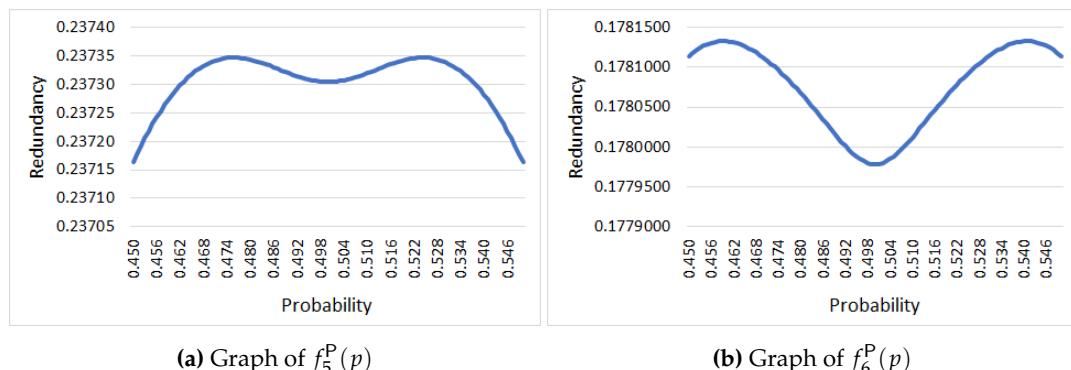


Figure 2. Asymptotic and theoretical estimate of redundancy of Peres's extractor with $v = 5, 6$ and
 $0.450 \leq p \leq 0.550$.

367 In Fig. 2, we depicted the graphs of theoretical redundancy $f_v^P(p)$ with $v = 5, 6$ around $p = 1/2$,
 368 namely, $0.450 \leq p \leq 0.550$. Both graphs support Proposition 1 in a geometric viewpoint. In addition,
 369 our experiment shows that $f_5^P(p)$ would approximately take the maximum 0.2373467 at $p \approx 0.476$ and
 370 $p \approx 0.524$, and $f_6^P(p)$ would approximately take the maximum 0.1781326 at $p \approx 0.459$ and $p \approx 0.541$.

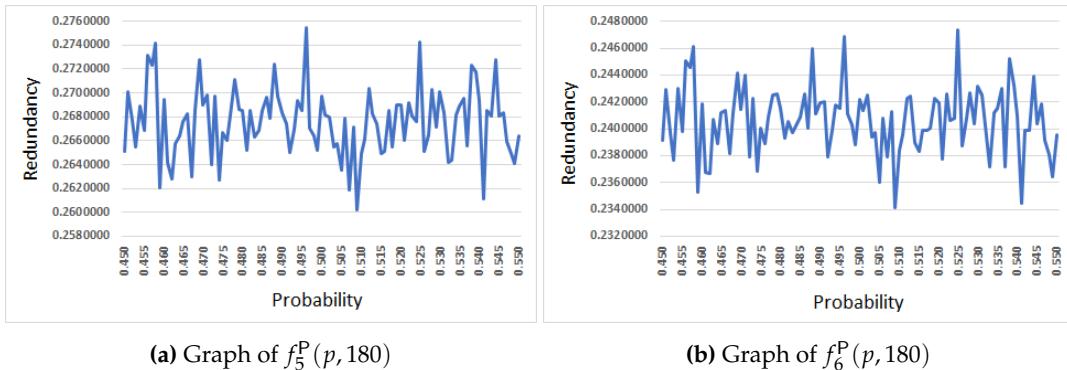


Figure 3. Non-asymptotic and experimental estimates on redundancy of Peres's extractor for 180-bit input sequences with $v = 5, 6$ and $0.450 \leq p \leq 0.550$.

371 In Fig. 3, we show experimental redundancy with probability $0.450 \leq p \leq 0.550$ at x -axis as in Fig.
 372 2. It can be seen that $f_v^P(p)$ ($v = 5, 6$) would not be concave but there is much fluctuation, although
 373 $f_v^P(p)$ ($v = 5, 6$) in Fig. 1b look to be concave.

374 4.2. Analysis of redundancy of Elias's extractor with the RM method

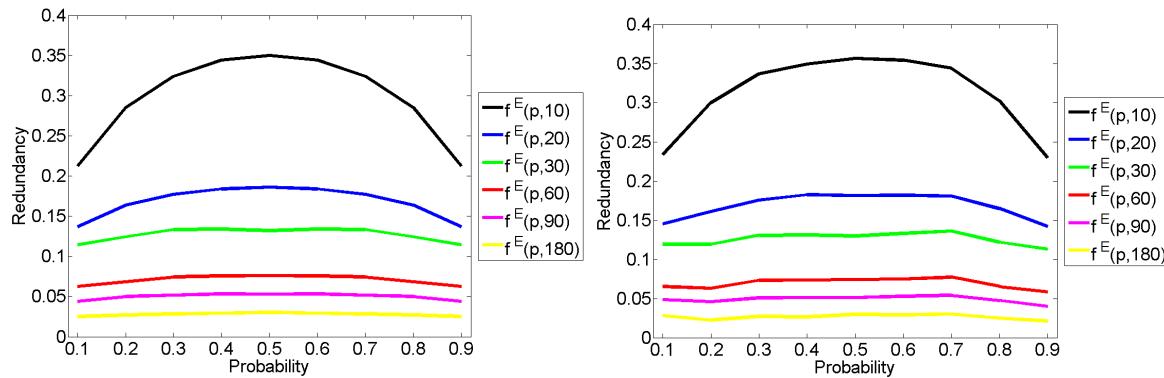


Figure 4. Redundancy of Elias's extractor with RM method.

375 In Fig. 4a, we show the redundancy of Elias's extractor with the RM method from theoretical
 376 aspects, that is, we calculated the theoretical redundancy $f^E(p, N) = h(p) - r^E(p, N)$ of Elias's
 377 extractor with the RM method by using (3) with probability $p = 0.1, 0.2, \dots, 0.9$ and the block size
 378 $N = 10, 20, 30, 60, 90, 180$. It can be seen that the redundancy becomes smaller as block size becomes
 379 larger, for all $p \in (0, 1)$. In spite of the fact that there is a slight difference between theoretical
 380 redundancy in Fig. 4a and experimental redundancy in Fig. 4b, we can say that most of them have
 381 similarity.

382 As a result, the redundancy of Elias's extractor with large block size is better than that of Peres's
 383 extractor, which is an answer to the second question of ours. Moreover, we can observe that the

384 theoretical redundancy is almost the same as the experimental redundancy in both extractors, which is
 385 an answer to the first question. Therefore, we can rely on our implementation, and we will use this
 386 implementation for analyzing the running time in the next section.

387 *4.3. Analysis of time complexity of both extractors*

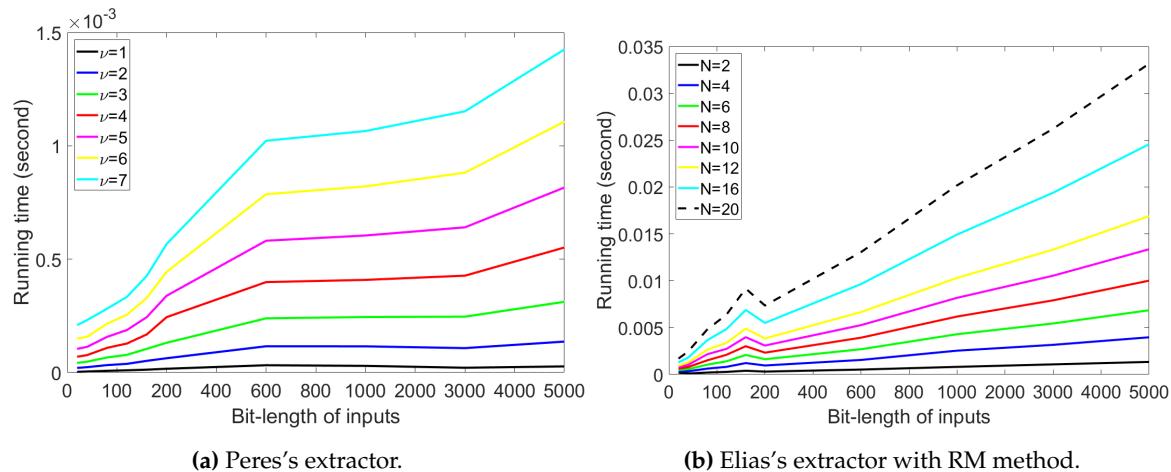


Figure 5. Running time.

388 This section will answer the third question. In Fig. 5a, we show running time of Peres's extractor
 389 with iterations $v = 1, 2, \dots, 7$ and bit-length of input sequences $n = 100, 200, 400, 600, 800, 1000,$
 390 $2000, 3000, 4000, 5000$. We depicted the graphs of the running time, where x -axis means bit-length
 391 of input sequences and y -axis means running time in the second unit. It is clearly seen that, if the
 392 number of iterations become larger, it leads to the large running time. The running time increases
 393 almost linearly but the slope depends on the iterations v , as supported by theoretical estimate of time
 394 complexity $O(vn)$. Additionally, the running time of iterations $v = 7$ and bit-length of input sequences
 395 $n = 5000$ is the largest running time (1.425 milliseconds), which means that it can be used in practice
 396 in a real world.

397 In Fig. 5b, we show running time of Elias's extractor with RM method with block size $N =$
 398 $2, 4, 6, 8, 10, 12, 16, 20$. It can be seen that, if the block size becomes larger, it leads to the large running
 399 time. The running time increases linearly, but the slope depends on the block size N , as supported
 400 by theoretical estimate of time complexity $O(N \log^3 N \log \log N)$. In addition, the running time with
 401 block size $N = 20$ and bit-length of input sequences $n = 5000$ is the largest running time (33.155
 402 milliseconds), which is much larger than that of Peres's extractor.

403 By comparing the running time of both extractors, the running time of Peres's extractor is better
 404 than that of Elias's extractor with the RM method at the same bit-length of input sequences. In case
 405 of long bit-length of input sequences, the difference between running time of both extractors can be
 406 seen more clearly. Therefore, we can conclude that Peres's extractor is faster than Elias's extractor with
 407 the RM method at the same bit-length of input sequences. On the other hand, according to the results
 408 in Sections 4.1 and 4.2, we have seen that the redundancy of Elias's extractor with the RM method is
 409 better than that of Peres's extractor. Thus, we analyze comparison of redundancy (or rate) under the
 410 almost same running time in the next section.

411 *4.4. Comparison under the almost same running time*

412 By all previous experiments, we have observed that: the redundancy of Elias's extractor with
 413 the RM method is better than that of Peres's extractor; but, the time complexity of Peres's extractor is

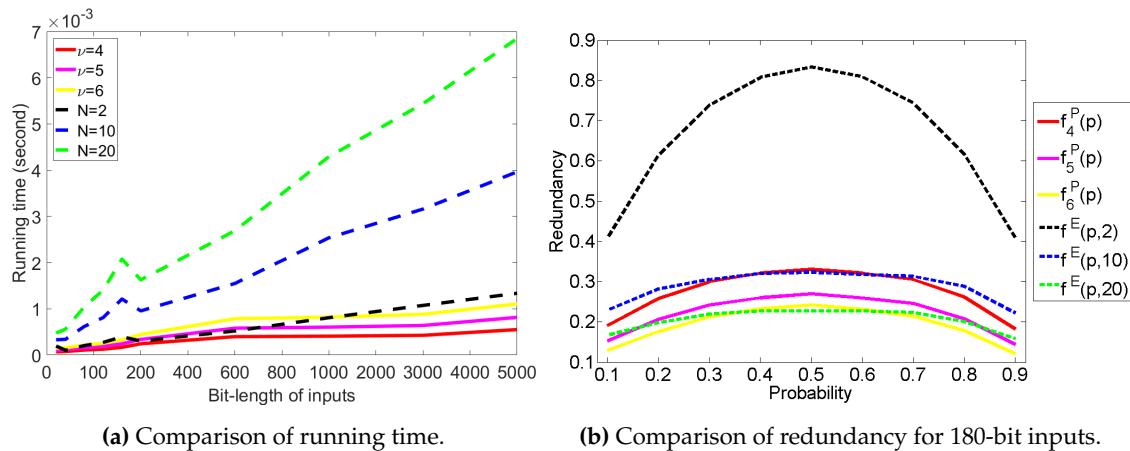


Figure 6. Comparison of Peres's and Elias's extractors.

414 better than that of Elias's extractor with the RM method. Therefore, we will answer the fourth question
 415 by comparing running time in Fig. 6a and redundancy under the almost same running time in Fig. 6b.

416 In Fig. 6a, we show the comparison of running time of Peres's extractor with iterations $\nu = 4, 5, 6$
 417 and running time of Elias's extractor with the RM method having block size $N = 2, 10, 20$. The running
 418 time of Peres's extractor with iterations $\nu = 6$ (the yellow line) is almost the same as the running time
 419 of Elias's extractor with the RM method having block size $N = 2$ (the black dash line). Thereby, we
 420 can compare the experimental redundancy of Peres's extractor and that of Elias's extractor with the
 421 RM method under the almost same running time, that is, $f_6^P(p)$ and $f^E(p, 2)$ in Fig. 6b. It is clearly
 422 seen that $f_6^P(p)$ (the yellow line) is much better than $f^E(p, 2)$ (the black dash line), and $f_6^P(p)$ is close
 423 to $f^E(p, 20)$ (the green dash line). However, the running time of Elias's extractor with the RM method
 424 having block size $N = 20$ is much larger than the running time of Peres's extractor with iterations
 425 $\nu = 6$, as seen in Fig. 6a. In addition, we can observe the redundancy $f_4^P(p)$ of Peres's extractor with
 426 iterations $\nu = 4$ (the red line) is close to the redundancy $f^E(p, 10)$ of Elias's extractor with the RM
 427 method having block size $N = 10$ (the blue dash line), but the running time of Elias's extractor with the
 428 RM method having block size $N = 10$ is approximately 16 times larger than that of Peres's extractor
 429 with iterations $\nu = 4$, as seen in Fig. 6a (i.e., the blue dash line and the red line). As a result, we can
 430 conclude that Peres's extractor achieves better rate (or redundancy) than Elias's extractor with the RM
 431 method under the almost same running time.

432 5. Conclusion

433 Evidently, Elias's extractor achieved the optimal rate if the block size tends to infinity. On the other hand, Peres's extractor achieved the optimal rate if the length of input and the number of iterations tend to infinity. Note that we used an improved version of Elias's extractor from Ryabko and Matchikina [8]. For finite input sequences, it is not easy to decide which extractor is more appropriate to use in applications (e.g., cryptography) in practice.

438 In this paper, we evaluated numerical performance of Peres's extractor and Elias's one with the RM
 439 method in terms of practical aspects. Firstly, we derived a lower bound on the maximum redundancy
 440 of Peres's extractor based on some heuristics, and we showed that the maximum redundancy of Elias's
 441 extractor (with the RM method) was superior to that of Peres's extractor in general, if we do not pay
 442 attention to time complexity or space complexity. We also found that $f_\nu^P(p)$ is not concave in $p \in (0, 1)$
 443 for every $\nu \geq 5$. Afterwards, we evaluated numerical performance of Peres's extractor and Elias's one
 444 with the RM method for finite input sequences. Our implementation evaluated it on a general PC and
 445 did not require any special resources, libraries, frameworks for computation, which means that it can
 446 be easily utilized for the practical use in various applications. As a result, we showed that Peres's

447 extractor is faster than the Elias's one at the same bit-length of input sequences. Moreover, Peres's
 448 extractor is also much better than Elias's one with the RM method under the almost same running time
 449 and the same bit-length of input sequences. Consequently, Peres's extractor will be better in practical
 450 use to produce uniformly random sequences, and more appropriate to use in applications such as
 451 cryptography.

452 **Appendix A. Proof of Proposition 1**

453 First, we note that, for $\nu \geq 1$,

$$f_\nu^P(1/2) = h(1/2) - r_\nu^P(1/2) = \left(\frac{3}{4}\right)^\nu, \quad (\text{A1})$$

454 where the last equality follows from (9).

455 For $p \in (0, 1)$, we define $\tilde{p} := p^2 + (1-p)^2$ and $\hat{p} := p^2/\tilde{p}$. Then, it holds that

$$\frac{d\tilde{p}}{dp} = 2(2p-1), \quad \frac{d\hat{p}}{dp} = \frac{2p(1-p)}{\tilde{p}^2}. \quad (\text{A2})$$

456 Next, for the first order derivative of $f_\nu^P(p)$, we have

$$\frac{df_1^P(p)}{dp} = \frac{1}{\ln 2} \ln \frac{1-p}{p} + 2p - 1, \quad (\text{A3})$$

$$\frac{df_\nu^P(p)}{dp} = (2p-1) \left(f_{\nu-1}^P(\hat{p}) + \frac{df_{\nu-1}^P(\tilde{p})}{dp} \right) + \frac{p(1-p)}{\tilde{p}} \frac{df_{\nu-1}^P(\hat{p})}{dp} \quad \text{for } \nu \geq 2. \quad (\text{A4})$$

457 Then, by setting $p = 1/2$ in (A4), for $\nu \geq 2$, we have

$$\frac{df_\nu^P(1/2)}{dp} = \frac{1}{2} \frac{df_{\nu-1}^P(1/2)}{dp} \quad (\text{A5})$$

$$= \left(\frac{1}{2}\right)^{\nu-1} \frac{df_1^P(1/2)}{dp} \\ = 0, \quad (\text{A6})$$

458 where (A5) follows from (A4), and (A6) follows from (A3).

459 Moreover, for the second order derivative of $f_\nu^P(p)$, we obtain

$$\frac{d^2 f_1^P(p)}{dp^2} = -\frac{1}{\ln 2} \frac{1}{p(1-p)} + 2, \quad (\text{A7})$$

$$\begin{aligned} \frac{d^2 f_\nu^P(p)}{dp^2} &= 2f_{\nu-1}^P(\hat{p}) + 2 \frac{df_{\nu-1}^P(\tilde{p})}{dp} + \frac{1-2p}{\tilde{p}} \frac{df_{\nu-1}^P(\hat{p})}{dp} \\ &\quad + 2(2p-1)^2 \frac{d^2 f_{\nu-1}^P(\tilde{p})}{dp^2} + \\ &\quad \frac{2p^2(1-p)^2}{\tilde{p}^3} \frac{d^2 f_{\nu-1}^P(\hat{p})}{dp^2} \quad \text{for } \nu \geq 2. \end{aligned} \quad (\text{A8})$$

460 And, by setting $p = 1/2$ in (A8), for $\nu \geq 2$, we have

$$\begin{aligned} \frac{d^2 f_\nu^P(1/2)}{dp^2} &= 2f_{\nu-1}^P(1/2) + 2 \frac{df_{\nu-1}^P(1/2)}{dp} + \frac{d^2 f_{\nu-1}^P(1/2)}{dp^2} \\ &= 2 \left(\frac{3}{4}\right)^{\nu-1} + \frac{d^2 f_{\nu-1}^P(1/2)}{dp^2}, \end{aligned} \quad (\text{A9})$$

461 where the first equality follows from (A8), and the second equality (A9) follows from (A1) and (A6).
 462 Then, by solving the equation (A9) ($\nu \geq 2$) and $\frac{d^2 f_1^P(1/2)}{dp^2} = 2 - 4/\ln 2$, we get

$$\begin{aligned} \frac{d^2 f_\nu^P(1/2)}{dp^2} &= \frac{d^2 f_1^P(1/2)}{dp^2} + 2 \sum_{k=1}^{\nu-1} \left(\frac{3}{4}\right)^k \\ &= 2 - \frac{4}{\ln 2} + 6 \left\{1 - \left(\frac{3}{4}\right)^{\nu-1}\right\} \\ &= 8 - \frac{4}{\ln 2} - 6 \left(\frac{3}{4}\right)^{\nu-1}. \end{aligned} \quad (\text{A10})$$

463 From the equation (A10), it follows that

$$\begin{aligned} \frac{d^2 f_\nu^P(1/2)}{dp^2} &< 0 \quad \text{for } 1 \leq \nu \leq 4, \\ \frac{d^2 f_\nu^P(1/2)}{dp^2} &> 0 \quad \text{for } \nu \geq 5. \end{aligned}$$

464 Appendix B. Experimental Results for Proposition 2

465 In this appendix, we show experimental results for Proposition 2, which support that Proposition
 466 2 holds true. In Fig. B1, we depict the difference values $f_\nu^P(p, n) - f_\nu^P(p)$ with input bit-length
 467 $n = 80, 100, \dots, 200$ and iterations $1 \leq \nu \leq \lfloor \log n \rfloor$. The x -axis means the probability $p = 0.1, 0.2, \dots, 0.9$
 468 and y -axis means the difference values defined by $f_\nu^P(p, n) - f_\nu^P(p)$.

469 Proposition 2 states that $f_{\lfloor \log n \rfloor}^P(p, n) - f_{\lfloor \log n \rfloor}^P(p) \geq 0$ for $p \in (0, 1)$, and we can observe that it
 470 holds true for input bit-length $n = 80, 100, \dots, 200$ by our experimental results.

471 References

1. Heninger, N.; Durumeric, Z.; Wustrow, E.; Halderman, J.A. Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices. *Proceedings of the 21st USENIX Security Symposium*, 2012.
2. Lenstra, A.K.; Hughes, J.P.; Augier, M.; Bos, J.W.; Kleinjung, T.; Wachter, C. Public Keys. In *Advances in Cryptology – CRYPTO 2012*; Safavi-Naini, R.; Canetti, R., Eds.; Number 7417 in Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2012; pp. 626–642.
3. Bendel, M. Hackers Describe PS3 Security As Epic Fail, Gain Unrestricted Access - Exophase.com.
4. Dorrendorf, L.; Guterman, Z.; Pinkas, B. Cryptanalysis of the Random Number Generator of the Windows Operating System. *ACM Trans. Inf. Syst. Secur.* **2009**, *13*, 10:1–10:32. doi:10.1145/1609956.1609966.
5. Bonneau, J.; Clark, J.; Goldfeder, S. On Bitcoin as a public randomness source. *IACR Cryptology ePrint Archive* **2015**, 2015, 1015.
6. Neumann, J.v. Various Techniques Used in Connection with Random Digits, Notes by G E Forsythe. *National Bureau of Standards Applied Math Series* **1951**, *12*, 36–38.
7. Elias, P. The Efficient Construction of an Unbiased Random Sequence. *Ann. Math. Statist.* **1972**, *43*, 865–870. doi:10.1214/aoms/1177692552.
8. Ryabko, B.; Matchikina, E. Fast and efficient construction of an unbiased random sequence. *IEEE Transactions on Information Theory* **2000**, *46*, 1090–1093. doi:10.1109/18.841190.
9. Cover, T. Enumerative source encoding. *IEEE Transactions on Information Theory* **1973**, *19*, 73–77. doi:10.1109/TIT.1973.1054929.
10. Schönhage, A.; Strassen, V. Schnelle Multiplikation großer Zahlen. *Computing* **1971**, *7*, 281–292. doi:10.1007/BF02242355.
11. Peres, Y. Iterating Von Neumann’s Procedure for Extracting Random Bits. *Ann. Statist.* **1992**, *20*, 590–597. doi:10.1214/aos/1176348543.
12. Pae, S.i. Exact output rate of Peres’s algorithm for random number generation. *Information Processing Letters* **2013**, *113*, 160–164. doi:10.1016/j.ipl.2012.12.012.

- 496 13. Bourgain, J. More on the sum-product phenomenon in prime fields and its applications. *International*
497 *Journal of Number Theory* **2005**, *01*, 1–32. doi:10.1142/S1793042105000108.
- 498 14. Raz, R. Extractors with Weak Random Seeds. Proceedings of the Thirty-seventh Annual ACM
499 Symposium on Theory of Computing; ACM: New York, NY, USA, 2005; STOC '05, pp. 11–20.
500 doi:10.1145/1060590.1060593.
- 501 15. Cohen, G. Local Correlation Breakers and Applications to Three-Source Extractors and Mergers.
502 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, 2015, pp. 845–862.
503 doi:10.1109/FOCS.2015.57.
- 504 16. Chattopadhyay, E.; Zuckerman, D. Explicit Two-source Extractors and Resilient Functions. Proceedings of
505 the 48th Annual ACM SIGACT Symposium on Theory of Computing; ACM: New York, NY, USA, 2016;
506 STOC 2016, pp. 670–683. doi:10.1145/2897518.2897528.
- 507 17. Bouda, J.; Krhovjak, J.; Matyas, V.; Svenda, P. Towards True Random Number Generation in Mobile
508 Environments. In *Identity and Privacy in the Internet Age*; Jøsang, A.; Maseng, T.; Knapskog, S.J., Eds.;
509 Number 5838 in Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2009; pp. 179–189.
- 510 18. Halprin, R.; Naor, M. Games for Extracting Randomness. Proceedings of the 5th Symposium
511 on Usable Privacy and Security; ACM: New York, NY, USA, 2009; SOUPS '09, pp. 12:1–12:12.
512 doi:10.1145/1572532.1572548.
- 513 19. Voris, J.; Saxena, N.; Halevi, T. Accelerometers and Randomness: Perfect Together. Proceedings of the
514 Fourth ACM Conference on Wireless Network Security; ACM: New York, NY, USA, 2011; WiSec '11, pp.
515 115–126. doi:10.1145/1998412.1998433.
- 516 20. The MathWorks, I. Uniformly distributed random numbers - MATLAB rand.
- 517 21. RANDOM.ORG. RANDOM.ORG - Byte Generator.

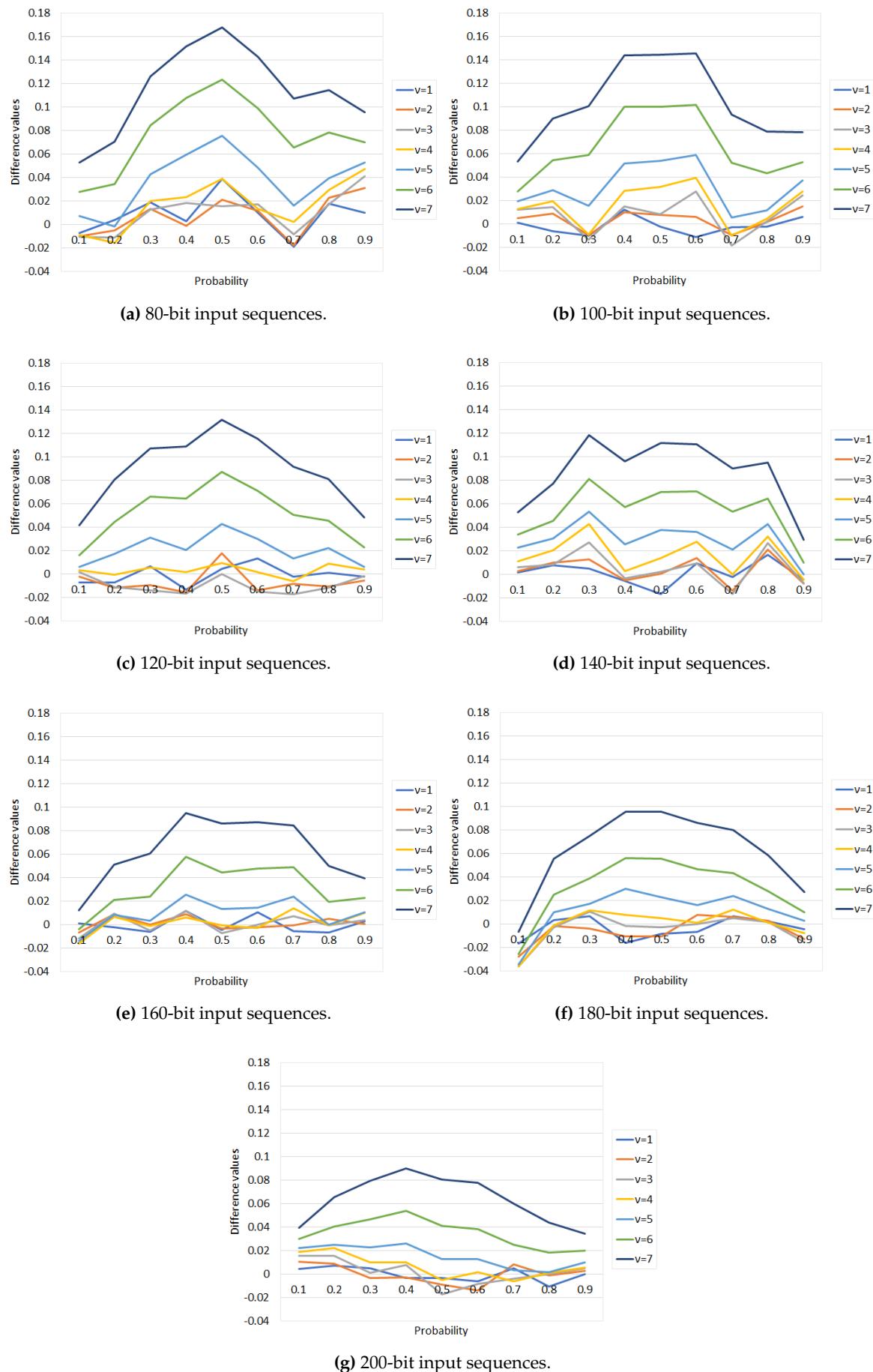


Figure B1. Difference values $f_v^P(p, n) - f_v^P(p)$ with $n = 80, 100, \dots, 200$ and $1 \leq v \leq \lfloor \log n \rfloor$.