Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 d0i:10.20944/preprints201808.0038.v1

Article
Numerical and Non-asymptotic Analysis of Elias’s
and Peres’s Extractors with Finite Input Sequence

Amonrat Prasitsupparote 1*, Norio Konno 2 and Junji Shikata !
1
2

Graduate School of Environment and Information Sciences, Yokohama National University, 240-8501, Japan
Department of Applied Mathematics, Faculty of Engineering, Yokohama National University, 240-8501,
Japan
* Correspondence: amonrat-prasitsupparote-zp@ynu.jp
t+ This paper is an extended version of our paper published in 515 Annual Conference on Information
Sciences and Systems (CISS), Baltimore, MD, USA, March 2017.

1 Abstract: Many cryptographic systems require random numbers, and weak random numbers lead to
= insecure systems. In the modern world, there are several techniques for generating random numbers,
s of which the most fundamental and important methods are deterministic extractors proposed by
« von Neumann, Elias, and Peres. Elias’s extractor achieves the optimal rate (i.e., information theoretic
s upper bound) i(p) if the block size tends to infinity, where /() is the binary entropy function and p
e is probability that each bit of input sequences occurs. Peres’s extractor achieves the optimal rate h(p)
7 if the length of input and the number of iterations tend to infinity. The previous researches related to
s both extractors did not mention practical aspects including running time and memory-size with finite
o input sequences. In this paper, based on some heuristics, we derive a lower bound on the maximum
1 redundancy of Peres’s extractor, and we show that Elias’s extractor is better than Peres’s one in terms
1 of the maximum redundancy (or the rates) if we do not pay attention to time complexity or space
12 complexity. In addition, we perform numerical and non-asymptotic analysis of both extractors with a
13 finite input sequence with any biased probability under the same environments. For doing it, we
1« implemented both extractors on a general PC and simple environments. Our empirical results show
15 that Peres’s extractor is much better than Elias’s one for given finite input sequences under the almost
16 same running time. As a consequence, Peres’s extractor would be more suitable to generate uniformly
1z random sequences in practice in applications such as cryptographic systems.

1= Keywords: True random number generation; von Neumann’s extractor; Peres’s extractor; Elias’s
19 extractor;

o 1. Introduction

N

2 It is undeniable that random numbers play important roles in cryptography, for example, key
22 generation, nonces, one-time pads, etc. The quality of random numbers directly determines the strength
= of cryptographic systems. A low quality of random numbers lead to that an adversary can break a
24 system. It can be seen that in 2012, Heninger et al. [1] and Lenstra et al. [2] explored RSA keys in TLS
= and SSH servers on the Internet. Their experiment showed that a weak random number for generating
2 arandom prime in embedded devices led to the result that an adversary could break a system. This
2r tells us that a cryptographic system will be broken if insufficient randomness is used to generate keys.
2 Moreover, there is a hacker group which calling itself failOverflow [3]. They could recover ECDSA
20 private key generated by weak random numbers for PlayStation 3 game console by Sony in Annual
0 Chaos Communication Congress (27C3) in 2010. Furthermore, Microsoft Windows also generated
a1 weak random numbers, as shown by Leo Dorrendorf et al. [4] in 2007. The Windows operating
sz system had an unpublished pseudorandom number generator (PRNG) called CryptGenRandom. Their
s work examined the binary code of Windows 2000 and reconstructed CryptGenRandom. After that,
sa they found several vulnerabilities, which can be used to predict all random values, such as SSL keys.

© 2018 by the author(s). Distributed under a Creative Commons CC BY license.

http://dx.doi.org/10.20944/preprints201808.0038.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/e20100729

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 d0i:10.20944/preprints201808.0038.v1

20f18

35 Overall, the random number generation is very important in cryptography to ensure that secret keys
36 are random and unpredictable.

37 A natural source such as physical phenomena, the stock market, or Bitcoin [5] can produce
s unpredictable random sequences, though such sequences from the source are not uniformly random
s (i.e., biased). However, there is a solution to solve this problem, namely, to use deterministic extractors.
20 A deterministic extractor is a function which takes a non-uniformly random sequence as input and
a1 outputs a uniformly random sequence. The deterministic extractors have been studied in mathematics,
a2 information theory, and cryptography. In information theory, those extractors can also be treated
a3 for the intrinsic randomness problem (i.e., the problem of generating truly random numbers). And,
4 as applications in cryptography, the output sequence of those extractors can be used as secret keys
« in information-theoretic cryptography or symmetric key cryptography. In particular, Elias’s and
s Peres’s extractors are well known and fundamental and shown to be optimal in terms of the rate (or
«z redundancy), if we suppose input-size tends to infinity (i.e., in an asymptotic viewpoint). However, it is
«s noteasy to conclude which one is better, since those are constructed by completely different approaches.
4 The main purpose of this paper is to investigate those with finite inputs (i.e., in a non-asymptotic
so viewpoint) by numerical analysis to make it clear which is better for the practical use.

s1 1.1. Related work

52 There are several works that proposed the methods for extracting uniformly random sequences
s from non-uniformly random sequences. The most famous one of them is the von Neumann's extractor
s« [60] proposed in 1951. He demonstrated a simple procedure for extracting independent unbiased bits
ss from a sequence of independent, identically distributed (i.i.d.) and biased bits.

56 An improved algorithm of von Neumann'’s extractor was proposed by Elias [7] in 1971. Elias’s
sz extractor utilizes a block coding technique to improve the rate (or redundancy) of von Neumann's
ss extractor, however the straightforward implemantation of this extractor requires exponential time and
s exponential memory size with respect to N, where N is block size, to store all 2V input sequences with
o their assignment of output sequences. Later in 2000, Ryabko and Matchikina [8] proposed an extension
e1 of Elias’s extractor that improved time complexity and space complexity by using the enumerative
ez encoding technique from [9] and Schonhage-Strassen algorithm [10] for fast integer multiplication in
es order to compute assignment of output sequences. In this paper, we call this improved method the
e RM method.

65 Peres’s extractor is another extended algorithm of von Neumann'’s extractor. In 1992, Peres [11]
es proposed a procedure which is an improved one from the von Neumann'’s extractor. The basic idea
e» of Peres’s extractor is to reuse the discarded bits in von Neumann’s extractor by iterating similar
es procedures in von Neumann's extractor.

60 The extractors by von Neumann, Elias, and Peres are the most fundamental and important ones
7 using a single source. In particular, Elias’s and Peres’s extractors are interesting, since they can achieve
7 the optimal rate (i.e., information-theoretic upper bound) h(p) if input-size tends to infinity (i.e., in
72 an asymptotic case), where each bit of input sequences from a single source occurs with probability
2z p € (0,1) and h(-) is the binary entropy function. In this paper, we are interested in the non-asymptotic
7a case, namely, the achievable rate for finite input-sizes. For Elias’s extractor, it can be observed in the
7 works [7]. However, for Peres’s extractor, it is not explicitly known. As a related work for Peres’s
76 extractor, Pae [12] reported a recursion formula to compute the rate for finite input-sizes, but it is
7z difficult to give the rate function with finite input-sizes since the recursion formula is complicated.
7e Pae also computed the rate by the recursion formula in the case p = 1/3, compared the rates of
7o Peres’s extractor and Elias’s one, and concluded that the rate of Peres’s extractor increased much
s slower than that of Elias’s one by the numerical analysis. However, it is not explicitly known which
a1 extractor is better to use in practice, if we take into account the running time, implementation cost, and
s2 memory-size required in the extractors, as mentioned in [12].

http://dx.doi.org/10.20944/preprints201808.0038.v1
http://dx.doi.org/10.3390/e20100729

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 d0i:10.20944/preprints201808.0038.v1

30f18

83 There are several works for constructing extractors using multiple sources (i.e., not a single source).
sa Bourgain [13] provided a 2-source extractor under the condition that the two sources are independent
es and each source has min-entropy 0.499n, where n is bit-length of output of the sources. Raz [14]
ss proposed improvement in terms of total min-entropy, and constructed 2-source extractors with the
ez condition that one source has min-entropy more than 7 /2 and the other source requires min-entropy
ss O(logn). In2015, Cohen [15] constructed a 3-source extractor, where one source having min-entropy dn,
so the second source having min-entropy O(logn) and the third source having min-entropy O(loglogn).
%0 In 2016, Chattopadhyay and Zuckerman [16] proposed a general 2-source extractor, where each source
o1 has a polylogarithmic min-entropy. They combined two weak random sequences into a single sequence
o2 by using K-Ramsey graphs and resilient functions. Their extractor has only one-bit output and achieves
o3 negligible error and high complexity than Peres’s extractor or Elias’s extractor.
o4 Furthermore, many researchers are interested in implementing a randomness extractor in a real
os world. In particular, in 2009, Bouda et al. [17] used mobile phones or pocket computers to generate
9 random data that is close to truly random ones. They took 12 pictures per second then used their
oz function to get random 4 bits in each picture, and then applied Carter-Wegman universal, hash
s functions. Their output passed 15 of 16 items in NIST statistical tests at the confidence level & = 0.01.
oo However, their proposed model was not a simultaneous system, and hence it would be difficult to use
100 in practical applications. Halprin and Naor [18] presented the idea of using human game-play as a
11 randomness source in 2009. They constructed the Hide and Seek game that produced approximately 17
102 bits of raw data per click then extracted with a pairwise independent hash function that it can generate
103 128 bits 2%4-close to random in less than two minutes. For using human as a random generator, there
10s are several impact on the entropy of sources such as the skill of player, interesting and entertain player,
15 the number of rounds in game, etc. Later in 2011, Voris et al. [19] investigated the use of accelerators
16 on the RFID tags as a source. They implemented a two-stage extractor on the RFID tags. It can produce
17 random 128 bits in 1.5 seconds and passed the NIST statistical tests. However, they stored a Toeplitz
s matrix on the RFID tags and performed matrix multiplications, though the RFID tags have limited
100 computational resources in general.

wo 1.2. Our contribution

111 In this paper, we revisit the extractors by von Neumann, Elias, and Peres, since they are very
12 fundamental and only require a single source. In the studies for those extractors, it is usual to
us asymptotically analyze the rate or redundancy of the extractors in the literatures, where the rate is
us the average bit-length of outputs per bit of input (see Section 2 for detals). Specifically, the rate of von
1s Neumann'’s extractor is p(1 — p) that is far from the optimal rate (i.e., information-theoretic upper
1e bound) h(p). Meanwhile, the rate of Elias’s extractor converges to (p) if the block size tends to infinity.
uz Specifically, Elias’s extractor outputs a uniformly random sequence with high rate, when it take a long
us block-size equal to the input length. However, it has trade-off between the rates and computational
ue resources such as time complexity and memory-size. On the other hand, Peres’s extractor achieves the
120 Optimal rate hi(p) if the length of input and the number of iterations tend to infinity, and it requires
121 smaller time complexity and memory-size. However, it would be hard to explicitly derive the exact
122 rate for finite input sequences. Thus, it is not easy to conclude which is a more suitable extractor for
123 the practical use in general. As a related work, there is only one work by Pae [12] which showed
124 comparison of both extractors as mentioned in Section 1.1, but it does not completely answer the
125 question, since it analyzed performance of both extractors only for restricted parameters, in particular,
126 the case where each bit of input sequences occurs with probability p = 1/3 and did not consider the
127 running time. In this paper, we will perform non-asymptotic analysis for the wide range of parameters
126 for Elias’s and Peres’s extractors, to anwer the question: which is more suitable in the practical use
120 in applications in a real world. For doing it, we evaluate numerical performance of Peres’s extractor
130 and the Elias’s one with the RM method in terms of practical aspects including achievable rates (or

http://dx.doi.org/10.20944/preprints201808.0038.v1
http://dx.doi.org/10.3390/e20100729

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 d0i:10.20944/preprints201808.0038.v1

40f18

1

w

: redundancy) and running time with finite input sequences. Specifically, the contribution of the paper
2 is as follows:

-
w

133 e Based on some heuristics, we derive a lower bound on the maximum redundancy of Peres’s
134 extractor in Section 3. This result shows that the maximum redundancy of Elias’s extractor is
135 superior to Peres’s one in general, if we focus only on redundancy (or rates) and we do not pay
136 attention to time complexity or space complexity.

137 e By numerical analysis, we design our experiments by comparing both extractors with finite
138 input sequences of which each bit occurs with any biased probability p € (0,1) under the same
130 environments in terms of practical aspects. Both extractors are implemented on a general PC
140 and do not require any special resources, libraries, frameworks for computation. Therefore, it
141 can be applied in various cryptographic applications and platforms without any restrictions.
142 Our implementation and results will be explained in Section 4. We calibrate our implementation
143 by comparing the theoretical and experimental redundancy of both extractors. Afterwards, we
148 analyze time complexity of both extractors with respect to bit-length of input sequences from
145 100 to 5000. We compare the redundancy of both extractors, and our implementation shows that
146 Peres’s extractor is much better than Elias’s one under the almost same running time. As a result,
147 Peres’s extractor would be more suitable for generating uniformly random sequences for the
148 practical use in applications.

10 2. Preliminaries

150 The first deterministic extractor was constructed by von Neumann [6] in 1951, and later improved
151 ones were proposed by Elias [7] in 1971, and by Peres [11] in 1992. The prior work [6,7,11] considered
12 Bernoulli source Bern(p) from which input sequences were generated, namely Bern(p) outputs i.i.d.
i3 (X1,Xx2,...,%,) € {0,1}" according to Pr(x; = 1) = p and Pr(x; = 0) = g = 1 — p for some unknown
ELT I 4 € (0, 1)

155 A deterministic extractor A takes (x1,x,...,%,) € {0,1}" as input and outputs (y1,y2,...,y¢) €
s {0,1}¢, and its average bit-length of output is denoted by 7(n) which is a function of 1, and define
157 its rate function by A (p) := limy, . £(11) /n. Additionally, for a deterministic extractor A, we define
s the redundancy function by fA(p) := h(p) — r*(p), where h(-) is the binary entropy function defined
o by h(p) = —plogp — (1 —p)log(1l — p), and the maximum redundancy by I' := sup,¢ 1 Ap).
10 Note that the above definition of redundancy functions is meaningful, since k(p) is shown to be the
161 information-theoretic upper bound of the extractors in [7,11]. Furthermore, in this paper we define a
12 non-asymptotic rate function r*(p,n) := #(n)/n, a non-asymptotic redundancy function fA(p,n) :=
s h(p) —r™(p,n), and the non-asymptotic maximum redundancy T'(n) := SUP,c(0,1) fA(p,n), which
16s Will be used in our non-asymptotic analysis.

15 2.1. von Neumann'’s extractor

The von Neumann’s extractor was a simple algorithm for extracting independent unbiased bits
from biased bits. This algorithm divides the input sequences (xl, X2, X3,X4,.., xn) into the pairsl
((x1x2), (x3x4), ...) and maps each pair with a mapping as follows:

00— A, 010, 101, 11~ A, 1)

1es Where the symbol A means no output was generated. After that, it concatenates all resulting outputs
1z of (1). For the help of understanding, we give an example as follows.

1 Ifnis odd, we discard the last bit.

http://dx.doi.org/10.20944/preprints201808.0038.v1
http://dx.doi.org/10.3390/e20100729

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 d0i:10.20944/preprints201808.0038.v1

50f18

1s Example 1. Suppose that an input sequence is (x1,x2,x3, ...,xg) = (1,0,0,1,0,0,1,1). Firstly, divide it
1o into the pairs as ((1,0),(0,1),(0,0), (1,1)). Next, map each pairs with the mapping (1). Finally, the extractor
w0 outputs (y1,y2) = (1,0).

i Complexity: The von Neumann'’s extractor is efficient in the sense that both time complexity and
172 space complexity are small such that time complexity is evaluated as O(n), and space complexity is
173 evaluated as O(1).

172 Redundancy: The von Neumann extractor is not desirable, since the maximum redundancy is far
ws from zero. Actually, the rate function 7'N(p) of the von Neumann extractor is evaluated by r'N(p) =
i7e limy o np(l —p)/n = p(1 — p), which is 1/4 at p = 1/2 and less elsewhere. In addition, the
177 (non-asymptotic) rate functions, (non-asymptotic) redundancy functions, and the (non-asymptotic)
e maximum redundancy are evaluated as follows: f'N(p,n) = f"N(p) = h(p) — p(1 — p), T"N(n) =
e YN =3/4,

180 2.2. Elias’s extractor

161 Elias [7] improved the von Neumann's extractor by using a block coding technique in 1971. Let
1.2 N € N(N > 2) be the block size in Elias’s extractor. For all binary sequences with bit-length N,
1e3 partition them into N + 1 sets S (k = 0,1,2,..., N), where Sj consists of all the (I,\(’) sequences of length
1es N which have k ones and N — k zeros. Here, each sequence of Sy is equiprobable (i.e., the probability
i pkN—k

s is pigh ").

186 Define (I,\(]) = a2 + 12"+ o+ 2920, my = [log, (II\CI)J Let |Sk| = (&my, @py—1, ..., %0) is the
17 binary expansion of the integer (I,\(]),ocmk = 1,a; € {0,1},m > j > 0. For each j (1 < j < m) such
s that a; = 1, we assign 2/ distinct output sequences of length j to 2/ distinct sequences of Sy which
18 have not already been assigned. If y = 1, one sequence of S is assigned to A. In particular, since
wo |So| = |Sn| =1, two sequences (0,0,...,0) and (1,1,...,1) are assigned to A. For instance, we show a
11 procedure of Elias’s extractor in Example 2.

Example 2. Suppose that the given input sequence x = (1,0,0,1,0,0,1,1) with block size N = 4, which is the
same as in Example 1. Firstly, we partition the set {0, 1}* of possible input sequences into the following subsets:

So = {(0,0,0,0)},

S1 = {(1,0,0,0),(0,1,0,0), (0,0,1,0), (0,0,0,1)},

S, = {(0,0,1,1),(0,1,0,1),(0,1,1,0), (1,1,0,0), (1,0,1,0), (1,0,0,1)},
Ss ={(1,1,1,0),(1,0,1,1),(1,1,0,1),(0,1,1,1)},

Sy ={(1,1,1,1)}.

Then, we have |So| = |S4| =1 = (1),]51] = |S3] = 4 = (1,0,0),|S2| = 6 = (1,1,0). We consider the
following assignment of output sequences:

(0,0,0,0) — A, (1,1,1,1) — A,
(1,0,0,0) — (0,0), (1,1,1,0) — (0,0),
(0,1,0,0) — (0,1), (1,0,1,1) — (1,0),
(0,0,1,0) — (1,0), (1,1,0,1) — (1,1),
(0,0,0,1) — (1,1), (0,1,1,1) — (0,1),
(0,0,1,1) — (0,1), (1,0,1,0) — (1,0),
(0,1,1,0) — (0,0), (1,0,0,1) — (1,1),
(0,1,0,1) — (0), (1,1,0,0) > (1).

http://dx.doi.org/10.20944/preprints201808.0038.v1
http://dx.doi.org/10.3390/e20100729

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 d0i:10.20944/preprints201808.0038.v1

6 of 18

102 Suppose that an input sequence x = (1,0,0,1,0,0,1,1) is given. Since the block size N = 4, the
s sequence is divided as x = ((1,0,0,1),(0,0,1,1)). By the above assignment of output sequences, the
10 outputsequenceisy = ((1,1)(0,1)) = (1,1,0,1). Furthermore, there are several ways to assign m bits
105 to binary output sequences with the same probability that affect to the output sequence y. Thus the
16 output sequence of 10010011 will not be 1101, if we use another assignment. Note that Elias’s extractor
17 with block size N = 2 is equivalent to von Neumann’s extractor, or equivalently the mapping (1). In
108 this sense, Elias’s extractor is an extension of von Neumann'’s extractor.

100 Complexity: It can be seen that the straightforward implementation of Elias’s extractor requires much
200 space and time complexity to make a table of the assignment of output sequences as illustrated by
201 Example 2. Specifically, it requires exponential time and exponential memory size with respect to N to
202 store all 2N binary sequences with their assignment of output sequences. For reducing time and space
203 complexity of Elias’s extractor, Ryabko and Matchikina [8] proposed a method that is extended from
206 Elias’s extractor, which we call the RM method in this paper. The RM method utilizes enumerative
20s encoding technique from [9] and Schonhage—-Strassen algorithm [10] for fast integer multiplication in
206 Order to compute assignment of output sequences without making the large table. The procedure of
202z RM method is described as follows.
Firstly, suppose a binary input sequence x
Let Num(xN) be a number which corresponds to x¥ when we lexicographical order set Sy. If xN has k
ones, then the number Num(xN) is defined by

N <N>—i(xtN_t) @
umix = = k_ til Xi .
i=1

N = (x1,x2,...,xN) contains k ones and N — k zeros.

20s Then, we calculate a binary codeword code(xN) of xN, which is assignment of an output sequence of
N .
200 x" as follows:

210 (i) Compute Num(xN) in the set Sy, if xN contains k ones.
an (i) Let |Sg| = (}) =20 + 21 4 .42 for 0 < jo < j1 < oo < jm.
22 (ifi) If jo = 0 and Num(x™) = 0, then code(x™) = A.
25 (iv) If0 < Num(xN) < 2/0, then code(x") is defined to be the jy low-order binary string of Num (xN).
b t 4
s (V) If ¥ 25 < Num(xN) < ¥ 255 + 2/i+1 for some 0 < t < m, then code(xN) is defined to be the
s=0 s=0
215 suffix consisting of the j;; 1 binary string of Num(xV).
21 Example 3. Suppose that the block size N = 4, and the given input sequence is x = (1,0,0,1,0,0,1,1), which
217 IS the same as all previous examples. After that, the sequence is divided as x = ((1,0,0,1),(0,0,1,1)). Next,
zs compute Num(xN) follow the above conditions.
4—-4
2-1
4—-4
2-1

4—1) N
2
Num((0,0,1,1)) = (4;3>+< >:0.

210 Afterwards, the RM method computes code(1,0,0,1) = (1,1) and code(0,0,1,1) = (0). Finally, outputs
220 Yy = (1,1,0) by concatenating code(1,0,0,1) and code(0,0,1,1).

Num((1,0,0,1))

3

221 The time and space complexity of Elias’s extractor with the RM method are O(N log® N loglog N)
222 and O(N log? N), respectively (see [8] for details).

222 Redundancy: Generally, the rate function and redundancy function of Elias’s extractor depend on
224 block size N. For given n-bit input sequence, if we take the block size equal to the length of input

http://dx.doi.org/10.20944/preprints201808.0038.v1
http://dx.doi.org/10.3390/e20100729

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 d0i:10.20944/preprints201808.0038.v1

7 of 18

225 sequence N := n, the rate function (or redundancy) achieve the best value. For simplicity, we assume
226 that N = 7 in the following explanation. Then, the rate function rE(p, n) is evaluated by

rE(p,n) = % Y (Z) pr(1—p)"Flog (Z) 3)

k=0

227 Elias’s extractor takes i.i.d. with non-uniform distribution as input, and it will output i.i.d. with
22 uniform distribution such that its rate is given by equation (3). Elias [7] showed that the rate function
220 1E(p,n) of the Elias’s extractor converges to hi(p) as n — oo, or equivalently, the redundancy function
20 fE(p,n):=h(p) —rE(p,n) converges to zero as n — co. More precisely, it was shown that f&(p,n) =
2 O(1/n) for any fixed p. Therefore, for given n-bit input sequence, if we set the maximum block-size to
252 be the input-size, the non-asymptotic maximum redundancy I’ (1) converges to zero not slower than
23 1/n.

23s 2.3. Peres’s extractor

235 Peres’s extractor is another method that improved the rates (or redundancy) from von Neumann'’s
236 extractor. The basic idea behind Peres’s extractor is to reuse the discarded bits in the mapping (1). In
237 the following, we denote the von Neumann'’s extractor by ¥;. For an n-bit sequence (x1,%2,.-.,%), We
23s describe the von Neumann'’s extractor by Y1 (x1,x2,...,%1) = (y1,Y2,...,Y¢), where y; = xp,,_1 and
20 1y < mp < --- < my are all the indices satisfying x,,, 1 # X2m; with m; < n/2. In Peres’s extractor,
20 ¥y (v > 2)is defined inductively as follows: For an even #,

‘YV(X],.XQ,. . -/xn) = Tl (x1/x2/' . -/xn) * val (ul/u2/ .. .,M%) * 1Irl/fl (’01/’02/ .. ~/’U%7f)/ (4)

21 where # is concatenation; u; = xp; 1 @ xpjfor1 <j<n/2;vs = xp;, gand iy <ip <+ < i%_g are
2a2 all the indices satisfying xp; 1 = xp;, with is < n/2. For an odd input size n, ¥, (x1,x2,...,%,) 1=
23 ¥, (x1,%2,...,%,_1), 1.e., the last bit is discarded and utilize the case of an even n above.

244 Note that, the number of iterations v is at most |log |, since ¥, for every v > 2 is defined by ¥, _4
2 having an input sequence whose bit-length is at most 1/2, i.e., the bit-length of both (u1, 12, ..., u1)
26 and (vy,v,. .., v ¢) in the equation (4) is at most 1 /2. Obviously, Peres’s extractor with v = 1 is the
247 same as the von Neumann'’s extractor. In addition, Peres’s extractor with a large v is considered to be
2es an elegantly improved version from von Neumann’s one by utilizing a recursion mechanism.

20 Example 4. Suppose that an input sequence is given as x = (1,0,0,1,0,0,1,1), which is the same as all
2s0 previous examples. The number of iterations satisfy v < |log8| = 3. Then, Peres’s extractor is executed as
21 follows:

‘Fl(x) = (1/0)/
Yo(x) = ¥i(x)*¥1(1,1,0,0) % ¥1(0,1) = (1,0,0),
‘1’3(x) = Tl(x)*Tz(l,l,0,0)*Tz(O,l)
‘P] (JC) * (‘Pl(l, 1,0,0) * ‘Pl (0, 0) *T1(1,0)> * (‘Yl(O,l) * T1(1>)
= (1,0,1,0).

2 Complexity: We denote the time complexity of ¥, by T, (1). By the equation (4), we have
Ty(n) =Ti(n) +n/2+T,_1(n/2) + T,_1(n/2 = 1),)

s and Tq(n) = O(n) (see Section 2.1 for time complexity of the von Neumann's extractor). From the
s« condition (5), we obtain T, (n) = O(vn) for ¥, with 1 < v < |logn]. In particular, time complexity of
25 Peres’s extractor with the maximum iterations v = |log] is evaluated as T, (n) = O(nlogn) and the
26 space complexity is O(1).

http://dx.doi.org/10.20944/preprints201808.0038.v1
http://dx.doi.org/10.3390/e20100729

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 d0i:10.20944/preprints201808.0038.v1

8 of 18

Table 1. Comparison of extractors.

Redundancy T'(n) Time complexity Space complexity
von Neumann extractor 3/4 O(n) o(1)
Elias extractor O(1/n) O(nlog® nloglogn) O(nlog” n)
(with maximum block-size) (by [7]) (by [8]) (by [8])
Peres extractor o(1) O(nlogn) 0o(1)
(with maximum iterations) (by [11]) (by [11]) (by [11])

2> Redundancy: The rate function r} (p) of Peres’s extractor can be computed inductively by the equation
2
) = pa+ 3PP+)+ 1P+ () ©

s forv >2,and ¥ (p) = pq. Note that ¥ (p) is the rate of the von Neumann'’s extractor. Peres’s extractor
20 takes ii.d. with non-uniform distribution as input, and it will output i.i.d. with uniform distribution
20 such that its rate is given by equation (6) if n — oo. It is shown in [11] that ¥’ (p) < 7, (p) for all
21 VEN,pe(0,1),and Vh_r)r;o 7 (p) = h(p) uniformly in p € (0,1).

262 In other words, the above result is described in terms of redundancy as follows:
fi(p) = h(p)—r;(p)
L I S NS S SO N P’ 7
Efv—l(P +4q)+§(P +q°)fo P @)

2es forv >2and ff(p) = h(p) — p(1 — p), where the above equation (7) follows from the equation (6).
2s Furthermore, it holds that £ (p) > fF ,(p) forallv € N, p € (0,1), and lim f2(p) = 0 uniformly
V—r00

2s in p € (0,1). Suppose that we take the maximum v = |logn| and n — co, and then, we have
20 LT (1) =o0(1).

267 In Table 1, we summarize the redundancy, time complexity and space complexity (memory size)
26s for the von Neumann'’s, Elias’s, and Peres’s extractors.

260 3. Lower Bound on Redundancy of Peres’s Extractor

270 Although it is shown that TP (1) = 0(1) in the Peres’s extractor (i.e., T” (1) converges to zero as
2 1 —), it is not known whether TP (1) converges to zero rapidly or slowly. To investigate it, we
272 analyze the non-asymptotic redundancy function fF (p,) and non-asymptotic maximum redundancy
s TP (n). In particular, we derive a lower bound on I'? (1) based on some heuristics.

274 Let fF(p) = h(p) — 7 (p) be the redundancy function for Peres’s extractor with v iterations.
s Then, we first show that £ (p) is not concave in p € (0,1) for v > 5 as follows. The proof is given in
276 Appendix A.

2z Proposition 1. The redundancy function f (p) in the Peres’s extractor with v iterations is not concave in
2s p € (0,1) if v > 5. More generally, for the Peres’s extractor with v iterations, the redundancy function f¥ (p)
20 satisfies

d2 P/l v—1
Pyt 6(3) ®
dp In2 4
20 In particular, d;{f (%) <0forl1 <v<4and d;ﬁ (%) > 0 forv > 5.

http://dx.doi.org/10.20944/preprints201808.0038.v1
http://dx.doi.org/10.3390/e20100729

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 d0i:10.20944/preprints201808.0038.v1

90f18

281 Here, we assume that the following proposition holds true. It does not seem to be easy to provide
2e2 a proof, however, it seems to be true from our experimental results that are provided in Appendix B.

2ss Proposition 2 (heuristics). Suppose v = |logn|. Then, we have fY (p,n) > fF(p), or equivalently
2 11 (p,n) < 1V (p), for a suffuciently large n and any p € (0,1).

205 The following theorem shows a lower bound on I'” (1) that are derived based on Proposition 2.

2es Theorem 1. Suppose that Proposition 2 holds true. Then, in Peres’s extractor with the maximum iterations
207 v = |logn], wehave TP (n) > 1/n?>71983. In particular, TP (n) = w(1/n).

2es Proof. Let n be a large natural number. For a natural number v € Nwith 1 < v < logn, we define
a0 a4y := 1,(1/2). Then, by the equation (6) we have
1 1

3
ay = -+ —a,_q forv > 2.

=y 11

20 By solving the equation above, we have

av—1—<3) forv > 1.)
4
21 Thus, for v = |logn|, we obtain
fr(/2n) > f7(1/2) (10)
= (3/4) (11)
> (3/4)10gn
1
= n2—log3’

202 Where the inequality (10) follows from Proposition 2, and the equality (11) follows from (9).

203 Therefore, we have
) = sup fho,(pn)
pe(0,1)
> g (3 12)
>

20 where the inequality (12) follows from Proposition 1. [J

205 Theorem 1 shows that the non-asymptotic maximum redundancy T (1) does converge to zero
206 slower than 1/n. This means that Peres’s extractor is worse than Elias’s extractor in terms of the
207 maximum redundancy, since T'E(1n) = O(1/n) if block size is set to be n. However, this result does
20¢ Not always mean that Peres’s extractor is worse than Elias’s one, since time complexity and space
200 complexity of Peres’s extractor are better than those of Elias’s one from Table 1. In this sense, it is
s0 nNot easy to conclude which extractor is superior. In the next section, from a viewpoint of practicality
so1 including running time, we compare both extractors and show that Peres’s extractor is better than
s02 Elias’s one by numerical analysis with various parameters.

http://dx.doi.org/10.20944/preprints201808.0038.v1
http://dx.doi.org/10.3390/e20100729

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 d0i:10.20944/preprints201808.0038.v1

10 0of 18

s3 4. Implementation and Numerical Analysis

304 In this section, we describe our experimental results of Peres’s extractor and Elias’s one with
305 the RM method. We used Java language version 1.8 to implement both extractors and evaluated the
s0s performance on a desktop PC with Intel Core i3 3.70 GHz and 4 GB of RAM. Our experiments would
307 also be performed on a general PC and do not require any special resources, libraries, frameworks for
;s computation. Actually, we can use other languages instead of Java language, however, Java language
;00 can evaluate it on every platform without any support software. Thereby, we used Java language for
a0 implementation. For comparing Peres’s extractor and Elias’s one with the RM method with finite input
s sequences in terms of non-asymptotic viewpoints, we consider the following four questions.

a2 1. Is theoretical redundancy the same as experimental redundancy in both extractors?

313 2. Is experimental redundancy of Elias’s extractor with the RM method better than experimental
314 redundancy of Peres’s extractor?

a1 3. What is the exact running time of both extractors?

316 4. Which extractor achieves better redundancy (or rate) under the almost same running time?

317 To answer the questions above, we design our experiments as follows.

318 To answer the questions (1) and (2), we evaluate theoretical and experimental redundancy of

s Peres’s extractor and Elias’s one by using a pseudorandom number generation program rand() in
s20 MATLAB [20] to get biased input sequences with controlling the probability (See Sections 4.1 and 4.2).
sz This experiment used rand() to generate input sequences because we can control the probability p for
;2 each input sequence. Therefore, we vary probability p = 0.1,0.2,...,0.9. We show the results for a
s23 finite input sequence with 180 bits that would be used in various cryptographic algorithms. Actually,
;2 we implemented various bit-length of input sequences such as n = 80,100, .. .,200 bit-length, and
s2s obtained almost the same results with the case of 180-bit length. Hence, we will describe only the input
22 length with 180 bits, and we omit the cases of other bit-length in this paper. In addition, to investigate
s27 efficiency of Elias’s extractor, the input size should be divided by a reasonable block size. Therefore,
a2 the 180 bit-length is also suitable, because it can be divided by many simple block-sizes 10, 20, 30, 60,
320 90, 180. For computing (I]\g) in Elias’s extractor with the RM method, we consider the following:

330 e Schonhage-Strassen multiplication algorithm requires O(N1*€) which is asymptotically faster
331 than the normal multiplication requiring O(N?);

332 o For avoiding multiplication, we use only the addition operation because it is simple and makes
333 the basic operation lighter so that it can be used in various applications and environments.

:3¢ Additionally, we use the recursive formula (I,j) = (II\(]__ll) + N K 1) for 10 < N < 180 in order to compute
(l,\cl) only by additions and also by dynamic programming. For computing experimental redundancy
:3¢ with finite input sequences, we use 180-bit length of inputs and generate 100 times for each probability
337 p. The rand() will produce different sequences in every time under the same probability, thus we
;s repeat to generate input sequences 100 times and calculate the average of experimental redundancy.
330 Actually, we repeated to generate input sequences 100, 1000, and 2000 times, but all the results on the
w0 average of experimental redundancy are almost the same, and hence, we focus on generating input
san sequences 100 times only. Next, we note that the number of iterations satisfies v < |log180| = 7 for
a2 Peres’s extractor in Section 4.1, and we take the block size N = 10, 20, 30, 60, 90, 180 for Elias’s extractor
33 with RM method in Section 4.2. Then, we calculate the average on the redundancy function £} (p)
sas of Peres’s extractor by using (7) and the redundancy function f&(p, N) = h(p) — rE(p, N) of Elias’s
as extractor with the RM method by using (3) for each probability p.

346 To answer the question (3), we investigate running time for extracting uniformly random
sz sequences for both extractors (See Section 4.3). Time complexity depends on the length of input
s sequences, and thus the probability is not a parameter in this investigation. Thereby, this experiment
a0 changes the random number generator for input sequences to RANDOM.ORG [21] for generating
0 input sequences. This random number generator can produce a sequence that is very close

http://dx.doi.org/10.20944/preprints201808.0038.v1
http://dx.doi.org/10.3390/e20100729

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 d0i:10.20944/preprints201808.0038.v1

110f18

1 to a true random number with unknown probability p by using randomness of atmospheric
2 noises. In addition, it can produce 131,072 random bits in each time. This experiment takes
s 1 = 100,200,400, 600, 800, 1000,2000, 3000, 4000, 5000 as bit-length of input sequences. For reliability of
s our experiment, we repeated to extract unbiased random sequences 100 times for each n, and then
sss calculated the average on their running time.

356 By analyzing all the results of the experiments above, we can answer the question (4): we can
57 compare the redundancy of both extractors under the almost same running time (see Section 4.4).

s 4.1. Analysis of redundancy of Peres’s extractor

0.8 038
07
07t] —.p
—p) iy ||=fr®.180
06 =P —f, (p,180)
2 305 -
> L] O 0. 7|
§ 05 _f3p(p) 5 fsp(p,180)
2o4 =) 5 0.4 —f, (p,180)
g P
3 3 —t7(p,180
= /’_\ | _fSP(p) = | SP(p)
P fs (p,180)
0.2 /-——_\\ || @) 02 -
P £ (p,180)
oql | 7 (p) 01]
%1 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09
Probability Probability

(a) Asymptotic and theoretical estimate of redundancy (b) Non-asymptotic and experimental estimate of
by equation (7). redundancy with 180-bit input sequences.

Figure 1. Redundancy of Peres’s extractor.

359 In Fig. 1a, we show the redundancy of Peres’s extractor from theoretical aspects, that is, we
se0 calculated the redundancy f!(p) of Peres’s extractor by using (7) with the iterations v = 1,2,...,7
ser and the probability p = 0.1,0.2,...,0.9. We depicted the graphs of redundancy f} (p), where x-axis
se2 means probability p and y-axis means redundancy. It can be easily seen that the redundancy becomes
s smaller as the number of iterations become bigger, for all p € (0,1). Furthermore, we showed the
sea experimental redundancy of Peres’s extractor with 180 bit-length of input sequences in Fig. 1b. As a
ses result, the theoretical redundancy in Fig. 1a is almost the same as the experimental redundancy in Fig.

366 1b.
0.23740 0.1781500
0.2373% 0.1781000
% 0.23730 =
c c
0.1780500
_fgﬁ 0.23725 _fgﬂ
0.23720
= 2 0.1780000
£ 0.23715 £
0.1779500
0.23710
0.23705 0.1779000
w0 g o W N O g o weN g o w © W N0 g o w0 g O w0 g O W
N wnow w00 O = = NN Mm oS T nwn w w00 O = NN M oS
e A T T B B i B B BT B B B B A A R A e s T B T B R B B
O 00O 0000 OO0 0O OO 00 oo OO0 O 000 O 0000 o000 OO0 0oCo
Probability Probability
P P
(a) Graph of f; (p) (b) Graph of f¢ (p)

Figure 2. Asymptotic and theoretical estimate of redundancy of Peres’s extractor with v = 5,6 and
0.450 < p < 0.550.

http://dx.doi.org/10.20944/preprints201808.0038.v1
http://dx.doi.org/10.3390/e20100729

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 d0i:10.20944/preprints201808.0038.v1

12 0f 18

367 In Fig. 2, we depiced the graphs of theoretical redundancy f{ (p) with v = 5,6 arround p = 1/2,
s namely, 0.450 < p < 0.550. Both graphs support Proposition 1 in a geometric viewpoint. In addition,
ses oOuUr experiment shows that fI (p) would approximately take the maximum 0.2373467 at p ~ 0.476 and
o p~0524,and fF(p) would approximately take the maximum 0.1781326 at p ~ 0.459 and p = 0.541.

w
-3

3

A

0.2760000 0.2480000
0.2740000 0.2460000
0.2720000 0.2440000

g 02700 ? 0.2420000
5 0.2680000]
= T 0.2400000
S 0.2660000 g
0.2380000
B 02620000 T
& 2620000 & 02360000
0.2600000 0.2340000
0.2580000 0.2320000
Mo nguweBg g ngg gl merguemeg g B
B2ES5:858s8A820808283838% §885555858382828088¢28383¢%
2252353353 scssss5sssss 23c2cdccscscscscscsesss
Probability Probability
P P
(@) Graph of f5 (p,180) (b) Graph of fg (p,180)

Figure 3. Non-asymptotic and experimental estimates on redundancy of Peres’s extractor for 180-bit
input sequences with v = 5,6 and 0.450 < p < 0.550.

a1 In Fig. 3, we show experimental redundancy with probability 0.450 < p < 0.550 at x-axis as in Fig.
sz 2. It can be seen that £ (p) (v = 5,6) would not be concave but there is much fluctuation, although
fP(p) (v = 5,6) in Fig. 1b look to be concave.

w
J
w

« 4.2, Analysis of redundancy of Elias’s extractor with the RM method

3

A

04— T 0.4
035 0.35]
03 0l |
' —t5(p,10)
5025 3025/ {|—#E(p,20)
[\]
2 02 1 2 0o ,—fE(p,30)
gm5////”_———‘*\\\\ B — | P
e | o 0.15¢ |~ 5e.00)
0.1] 01 1| tEpas0)
—‘—-__f
0.05] 0.05¢]
%1 02 03 04 05 06 07 08 09 %1 02 03 04 05 06 07 08 09
Probability Probability

(a) Asymptotic and theoretical estimate of redundancy (b) Non-asymptotic and experimental estimate of
by equation (3) and fE(p,n) := h(p) — rE(p, n). redundancy with 180-bit input sequences.

Figure 4. Redundancy of Elias’s extractor with RM method.

375 In Fig. 4a, we show the redundancy of Elias’s extractor with the RM method from theoretical
w76 aspects, that is, we calculated the theoretical redundancy f&(p,N) = h(p) — E(p, N) of Elias’s
a7 extractor with the RM method by using (3) with probability p = 0.1,0.2,...,0.9 and the block size
e N = 10,20,30,60, 90, 180. It can be seen that the redundancy becomes smaller as block size becomes
sre larger, for all p € (0,1). In spite of the fact that there is a slight difference between theoretical
s redundancy in Fig. 4a and experimental redundancy in Fig. 4b, we can say that most of them have
se1 similarity.

382 As aresult, the redundancy of Elias’s extractor with large block size is better than that of Peres’s
se3 extractor, which is an answer to the second question of ours. Moreover, we can observe that the

http://dx.doi.org/10.20944/preprints201808.0038.v1
http://dx.doi.org/10.3390/e20100729

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 d0i:10.20944/preprints201808.0038.v1

13 0f 18

sea theoretical redundancy is almost the same as the experimental redundancy in both extractors, which is
ses an answer to the first question. Therefore, we can rely on our implementation, and we will use this
;s implementation for analyzing the running time in the next section.

ser 4.3. Analysis of time complexity of both extractors

=)
C
Q
(5}
Q
L
[}
£
j=2)
c
€05
c
=}
&
0 —_— : 0 — ‘
0 100 200 400 600 800 1000 2000 3000 4000 5000 0 100 200 400 600 800 1000 2000 3000 4000 5000
Bit-length of inputs Bit-length of inputs
(a) Peres’s extractor. (b) Elias’s extractor with RM method.
Figure 5. Running time.
388 This section will answer the third question. In Fig. 5a, we show running time of Peres’s extractor

;e Wwith iterations v = 1,2,...,7 and bit-length of input sequences n = 100, 200,400, 600, 800, 1000,
300 2000, 3000,4000, 5000. We depicted the graphs of the running time, where x-axis means bit-length
301 of input sequences and y-axis means running time in the second unit. It is clearly seen that, if the
s number of iterations become larger, it leads to the large running time. The running time increases
303 almost linearly but the slope depends on the iterations v, as supported by theoretical estimate of time
sa complexity O(vn). Additionally, the running time of iterations v = 7 and bit-length of input sequences
s0s 11 = 5000 is the largest running time (1.425 milliseconds), which means that it can be used in practice
306 in a real world.

307 In Fig. 5b, we show running time of Elias’s extractor with RM method with block size N =
e 2,4,6,8,10,12,16,20. It can be seen that, if the block size becomes larger, it leads to the large running
s9s time. The running time increases linearly, but the slope depends on the block size N, as supported
wo by theoretical estimate of time complexity O(N log® N'loglog N). In addition, the running time with
a1 block size N = 20 and bit-length of input sequences n = 5000 is the largest running time (33.155
sz milliseconds), which is much larger than that of Peres’s extractor.

a03 By comparing the running time of both extractors, the running time of Peres’s extractor is better
s0s than that of Elias’s extractor with the RM method at the same bit-length of input sequences. In case
«s of long bit-length of input sequences, the difference between running time of both extractors can be
a6 seen more clearly. Therefore, we can conclude that Peres’s extractor is faster than Elias’s extractor with
a7 the RM method at the same bit-length of input sequences. On the other hand, according to the results
a8 in Sections 4.1 and 4.2, we have seen that the redundancy of Elias’s extractor with the RM method is
a0 better than that of Peres’s extractor. Thus, we analyze comparison of redundancy (or rate) under the
a0 almost same running time in the next section.

a1 4.4. Comparison under the almost same running time

a12 By all previous experiments, we have observed that: the redundancy of Elias’s extractor with
a3 the RM method is better than that of Peres’s extractor; but, the time complexity of Peres’s extractor is

http://dx.doi.org/10.20944/preprints201808.0038.v1
http://dx.doi.org/10.3390/e20100729

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018

432

d0i:10.20944/preprints201808.0038.v1

14 of 18
-3
7 x10 ‘ o
—u=4 P 7 =TT
[==v=5 7 e ———
6 =6 P ’, 0.8r "‘,, e,
S _|= N=2 - L // \\ 1l—sP,
§ 5 M= N=10 e 0.7 // \\ t, (P)
- N= -
g,|m N . 06 AR)
[0) 4 7 -7 % s’ X P
£, L7 -7 gos SN o @
[’
g - - Pl - 3 04-/ “_ '“fE(p,2)
< - - x> R
S2f o~ -7 _- (p,10)
o /7 ~ _ - 0.3t | “'fE(20)
1+ 7~ - - _--—— = e,
_L7 -——=-- " ——— 02
Z o
0 : : : : : ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 100 200 400 600 800 1000 2000 3000 4000 5000 0'10,1 02 03 04 05 06 07 08 09

Bit-length of inputs

Probability

(a) Comparison of running time. (b) Comparison of redundancy for 180-bit inputs.

Figure 6. Comparison of Peres’s and Elias’s extractors.

better than that of Elias’s extractor with the RM method. Therefore, we will answer the fourth question
by comparing running time in Fig. 6a and redundancy under the almost same running time in Fig. 6b.

In Fig. 6a, we show the comparison of running time of Peres’s extractor with iterations v = 4,5,6
and running time of Elias’s extractor with the RM method having block size N = 2,10, 20. The running
time of Peres’s extractor with iterations v = 6 (the yellow line) is almost the same as the running time
of Elias’s extractor with the RM method having block size N = 2 (the black dash line). Thereby, we
can compare the experimental redundancy of Peres’s extractor and that of Elias’s extractor with the
RM method under the almost same running time, that is, f§ (p) and f&(p,2) in Fig. 6b. It is clearly
seen that f{ (p) (the yellow line) is much better than fE(p,2) (the black dash line), and f§ (p) is close
to fE(p,20) (the green dash line). However, the running time of Elias’s extractor with the RM method
having block size N = 20 is much larger than the running time of Peres’s extractor with iterations
v = 6, as seen in Fig. 6a. In addition, we can observe the redundancy ff (p) of Peres’s extractor with
iterations v = 4 (the red line) is close to the redundancy f&(p, 10) of Elias’s extractor with the RM
method having block size N = 10 (the blue dash line), but the running time of Elias’s extractor with the
RM method having block size N = 10 is approximately 16 times larger than that of Peres’s extractor
with iterations v = 4, as seen in Fig. 6a (i.e., the blue dash line and the red line). As a result, we can
conclude that Peres’s extractor achieves better rate (or redundancy) than Elias’s extractor with the RM
method under the almost same running time.

5. Conclusion

Evidently, Elias’s extractor achieved the optimal rate if the block size tends to infinity. On the
other hand, Peres’s extractor achieved the optimal rate if the length of input and the number of
iterations tend to infinity. Note that we used an improved version of Elias’s extractor from Ryabko and
Matchikina [8]. For finite input sequences, it is not easy to decide which extractor is more appropriate
to use in applications (e.g., cryptography) in practice.

In this paper, we evaluated numerical performance of Peres’s extractor and Elias’s one with the RM
method in terms of practical aspects. Firstly, we derived a lower bound on the maximum redundancy
of Peres’s extractor based on some heuristics, and we showed that the maximum redundancy of Elias’s
extractor (with the RM method) was superior to that of Peres’s extractor in general, if we do not pay
attention to time complexity or space complexity. We also found that £} (p) is not concave in p € (0,1)
for every v > 5. Afterwards, we evaluated numerical performance of Peres’s extractor and Elias’s one
with the RM method for finite input sequences. Our implementation evaluated it on a general PC and
did not require any special resources, libraries, frameworks for computation, which means that it can
be easily utilized for the practical use in various applications. As a result, we showed that Peres’s

http://dx.doi.org/10.20944/preprints201808.0038.v1
http://dx.doi.org/10.3390/e20100729

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 d0i:10.20944/preprints201808.0038.v1

150f18

a7 extractor is faster than the Elias’s one at the same bit-length of input sequences. Moreover, Peres’s
ass extractor is also much better than Elias’s one with the RM method under the almost same running time
a0 and the same bit-length of input sequences. Consequently, Peres’s extractor will be better in practical
a0 use to produce uniformly random sequences, and more appropriate to use in applications such as

a1 cryptography.

2 Appendix A. Proof of Proposition 1

453 First, we note that, forv > 1,
3 v
a2 =n/2) -t = (3) (A1)
ssa Where the last equality follows from (9).
ass For p € (0,1), we define p := p? + (1 — p)? and p := p?/p. Then, it holds that
P _ 5, 1y 4P _2p(1—p)
ap 2(2p—-1), - 7 (A2)
as6 Next, for the first order derivative of fF (p), we have
dff(p) 1. 1-p
iy 1r121 T +2p—1, (A3)
afy (p) Py UiaP) | p(—p)afy 1 (P)
— — > 2.
dp 2p—1) | fiua(P) + dp + 5 iy forv >2 (A4)
a57 Then, by setting p = 1/2 in (A4), for v > 2, we have
P d 1/2
dfv (1/2) — 1 fv 1(/) (A5)
dp 2
_ () & aff(1/2) (1/2)
= 0, (A6)
s Where (AD) follows from (A4), and (A6) follows from (A3).
450 Moreover, for the second order derivative of £} (p), we obtain
Affp) 11
= 42 A7
dp? ln2p(1—P) e (A7)
2fP p) 1—2pdfy (P
fv(p)_zfv 1()+2 (p) ﬂp fv 1(p)
dp? ap poodp
f] 1 (P)
_1)\2 v—1
+2(2p—1) i +
2 2426P (5
2P EhealP) s (A8)
p dp
460 And, by setting p = 1/2 in (A8), for v > 2, we have
Cf/2) e dfy 1(1/2) d*fy(1/2)
T = 2fv71(1/2)+2 dp + dpz
3\'""' f4(1/2)

http://dx.doi.org/10.20944/preprints201808.0038.v1
http://dx.doi.org/10.3390/e20100729

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 d0i:10.20944/preprints201808.0038.v1

16 of 18

«1 where the first equality follows from (A8), and the second equality (A9) follows from (A1) and (A6).

a2 Then, by solving the equation (A9) (v > 2) and it —L = (1/2) =2-4/In2, we get

2 (P 42 v—1 k
PfP/2) _ PL02) 22()

dp? dp?
4 3\V !
4 3 v—1
= 8_1r12_6<4> . (A10)
«.3 From the equation (A10), it follows that
2 P
M<O forl <v <4,
dp
2 (P
dfvi(i/Z) >0 forv>5.
dp

sa Appendix B. Experimental Results for Proposition 2

a65 In this appendix, we show experimental results for Proposition 2, which support that Proposition
ss 2 holds true. In Fig. B1, we depict the difference values f (p,n) — fF (p) with input bit-length
sz 1 = 80,100, ...,200 and iterations 1 < v < |logn |. The x-axis means the probability p = 01.,0.2,...,0.9
ss and y-axis means the difference values defined by £ (p,n) — fF(p).

a6 Proposition 2 states that f llog | (p,n)—f ﬁog nl (p) > 0for p € (0,1), and we can observe that it
a0 holds true for input bit-length n = 80, 100, ..., 200 by our experimental results.

a1 References

a2z 1. Heninger, N.; Durumeric, Z.; Wustrow, E.; Halderman, J.A. Mining Your Ps and Qs: Detection of
473 Widespread Weak Keys in Network Devices. Proceedings of the 21st USENIX Security Symposium, 2012.
ara 2. Lenstra, A.K.; Hughes, J.P; Augier, M.; Bos,].W.; Kleinjung, T.; Wachter, C. Public Keys. In Advances in
a75 Cryptology — CRYPTO 2012; Safavi-Naini, R.; Canetti, R., Eds.; Number 7417 in Lecture Notes in Computer
476 Science, Springer Berlin Heidelberg, 2012; pp. 626—-642.

a7 3. Bendel, M. Hackers Describe PS3 Security As Epic Fail, Gain Unrestricted Access - Exophase.com.

ars 4. Dorrendorf, L.; Gutterman, Z.; Pinkas, B. Cryptanalysis of the Random Number Generator of the Windows
479 Operating System. ACM Trans. Inf. Syst. Secur. 2009, 13, 10:1-10:32. doi:10.1145/1609956.1609966.

as0 b5. Bonneau, J.; Clark, J.; Goldfeder, S. On Bitcoin as a public randomness source. IACR Cryptology ePrint
481 Archive 2015, 2015, 1015.

a2 6. Neumann, J.v. Various Techniques Used in Connection with Random Digits, Notes by G E Forsythe.
483 National Bureau of Standards Applied Math Series 1951, 12, 36-38.

a8a 7. Elias, P. The Efficient Construction of an Unbiased Random Sequence. Ann. Math. Statist. 1972, 43, 865-870.
pre doi:10.1214/aoms/1177692552.

486 8. Ryabko, B.; Matchikina, E. Fast and efficient construction of an unbiased random sequence. IEEE
487 Transactions on Information Theory 2000, 46, 1090-1093. doi:10.1109/18.841190.

a8 9. Cover, T. Enumerative source encoding. IEEE Transactions on Information Theory 1973, 19, 73-77.
480 do0i:10.1109/TIT.1973.1054929.

a00 10. Schonhage, A.; Strassen, V. Schnelle Multiplikation grofier Zahlen. Computing 1971, 7, 281-292.
401 doi:10.1007 /BF02242355.

a02 11, Peres, Y. Iterating Von Neumann'’s Procedure for Extracting Random Bits. Ann. Statist. 1992, 20, 590-597.
403 doi:10.1214/aos/1176348543.

a0a 12. Pae, S.i. Exact output rate of Peres’s algorithm for random number generation. Information Processing

495 Letters 2013, 113, 160-164. d0i:10.1016/j.ipl.2012.12.012.

https://doi.org/10.1145/1609956.1609966
https://doi.org/10.1214/aoms/1177692552
https://doi.org/10.1109/18.841190
https://doi.org/10.1109/TIT.1973.1054929
https://doi.org/10.1007/BF02242355
https://doi.org/10.1214/aos/1176348543
https://doi.org/10.1016/j.ipl.2012.12.012
http://dx.doi.org/10.20944/preprints201808.0038.v1
http://dx.doi.org/10.3390/e20100729

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 d0i:10.20944/preprints201808.0038.v1

17 of 18
a6 13. Bourgain, J. More on the sum-product phenomenon in prime fields and its applications. International
407 Journal of Number Theory 2005, 01, 1-32. doi:10.1142/51793042105000108.
a8 14. Raz, R. Extractors with Weak Random Seeds. = Proceedings of the Thirty-seventh Annual ACM
400 Symposium on Theory of Computing; ACM: New York, NY, USA, 2005; STOC 05, pp. 11-20.
500 do0i:10.1145/1060590.1060593.
son. 15. Cohen, G. Local Correlation Breakers and Applications to Three-Source Extractors and Mergers.
s02 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, 2015, pp. 845-862.
503 do0i:10.1109/FOCS.2015.57.
soa 16. Chattopadhyay, E.; Zuckerman, D. Explicit Two-source Extractors and Resilient Functions. Proceedings of
505 the 48th Annual ACM SIGACT Symposium on Theory of Computing; ACM: New York, NY, USA, 2016;
506 STOC 2016, pp. 670-683. doi:10.1145/2897518.2897528.
so7 17. Bouda, J.; Krhovjak, J.; Matyas, V.; Svenda, P. Towards True Random Number Generation in Mobile
508 Environments. In Identity and Privacy in the Internet Age; Josang, A.; Maseng, T.; Knapskog, S.J., Eds.;
509 Number 5838 in Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2009; pp. 179-189.
si0 18, Halprin, R;; Naor, M. Games for Extracting Randomness. Proceedings of the 5th Symposium
511 on Usable Privacy and Security; ACM: New York, NY, USA, 2009; SOUPS ‘09, pp. 12:1-12:12.
512 doi:10.1145/1572532.1572548.
s13 19, Voris, J.; Saxena, N.; Halevi, T. Accelerometers and Randomness: Perfect Together. Proceedings of the
514 Fourth ACM Conference on Wireless Network Security; ACM: New York, NY, USA, 2011; WiSec "11, pp.
515 115-126. do0i:10.1145/1998412.1998433.

si6 20. The MathWorks, I. Uniformly distributed random numbers - MATLAB rand.
s17z 21, RANDOM.ORG. RANDOM.ORG - Byte Generator.

https://doi.org/10.1142/S1793042105000108
https://doi.org/10.1145/1060590.1060593
https://doi.org/10.1109/FOCS.2015.57
https://doi.org/10.1145/2897518.2897528
https://doi.org/10.1145/1572532.1572548
https://doi.org/10.1145/1998412.1998433
http://dx.doi.org/10.20944/preprints201808.0038.v1
http://dx.doi.org/10.3390/e20100729

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 i: 44/preprints201808.0038.v1

18 of 18
0.18 0.18
016 0.16
0.14 0.14
012 S 0.12 J—
E 0.1 —v=2 E 0.1 —v=2
© _ g 3
E 0.08 ——v=3 H 0.08 V=!
$ 006 v=4 & 006 v=4
= —v=5 £ ——v=!
g 004 E 004
—vy=6 —_—y=
0.02 0.02
—v-7 —v7
0 0
-0.02 -0.02
-0.04 -0.04 B
Probability Probability
(a) 80-bit input sequences. (b) 100-bit input sequences.
0.18 0.18
0.16 0.16
014 0.14
012 R 0.12 Y
g 0.1 w2 é 0.1 R
2 —v=3 > 008 —v=
a 0.08 V=, g o V=
g 0.06 v=4 5 006 v=4
U @
= —_—y=5 = —y=5
% oo /\/\/\ % o
—V=6 ——v=
0.02 0.02
B /\/\, —v=7 —v=7
0 0
0.02 0.1 3 . 0.5 X 0.9 0.02
-0.04 — -0.04
Probability Probability
(c) 120-bit input sequences. (d) 140-bit input sequences.
018 0.18
0.16 0.16
0.14 0.14
0.12 R 012 S
E 0.1 —v=2 § 01 —v=2
w ™
> 008 —v=3 % 008 —v-3
Q L=
S 006 v=4 5 006 v=4
5 i
< —v=5 & —v=5
&5 004 5 004
—v=6 —v=6
0.02 0.02
—_—v=7 —_—v=
) 0 W"\
0 2 03 06 07 08 B9
-0.02 -0.02
-0.04 -0.04 B
Probability Probability
(e) 160-bit input sequences. (f) 180-bit input sequences.
0.18
0.16
0.14
0.12 —
g o1 —v=2
2 —v=3
a 0.08 V=
§ 006 v=4
&
&

0.04 v
—V=6
0.02
—v=7
0 B —

01 02 03 04 = 07 VT 09

Probability

-0.02
-0.04

(g) 200-bit input sequences.

Figure B1. Difference values f/ (p,n) — fF (p) with n = 80,100, ...,200 and 1 < v < |logn].

http://dx.doi.org/10.20944/preprints201808.0038.v1
http://dx.doi.org/10.3390/e20100729

	Introduction
	Related work
	Our contribution

	Preliminaries
	von Neumann's extractor
	Elias's extractor
	Peres's extractor

	Lower Bound on Redundancy of Peres's Extractor
	Implementation and Numerical Analysis
	Analysis of redundancy of Peres's extractor
	Analysis of redundancy of Elias's extractor with the RM method
	Analysis of time complexity of both extractors
	Comparison under the almost same running time

	Conclusion
	Proof of Proposition 1
	Experimental Results for Proposition 2
	References

