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Abstract: Finding the key factor and possible "Newton's laws" in financial markets has remained
the central issue in this area. However, with the development of information and communication
technologies, financial models are becoming more and more realistic but complex which is contra-
dictory to the objective law “Greatest truths are the simplest”. Therefore, this paper attempts to
discover the most critical parameter and establishes an evolutionary model which is independent
of micro features. In the model, information is the only key factor and stock price is the emergence
of the collective behavior. The statistical properties of the model are significantly similar to the real
market. It also explains the correlations of stocks within an industry, which provide a new idea for
the study of key factors and core structures in the financial market.
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1. Introduction

With the massive use of information and communication technologies, we can collect
traceable data from almost anyone, and the rise of network science [1] and computational
social science [2] has provided opportunities for innovative research in econophysics and
sociophysics. In particular, econophysics regards the financial market as a complex sys-
tem and attempts to depict it more realistically, such as the interactions between traders
by network dynamic evolution. Econophysics describes the economic system with many
interacting heterogeneous entities (people, firms, institutions, etc.) in the similar way as a
physical system, and expect to find similar laws. However, humans are not ideal gas mol-
ecules, it is unclear how many and which quantities would be needed for determining
and anticipating a given macroscopic, in the sense of collective, observable [3]. Moreover,
human beings are adaptable, the study about economic system is bound to be a difficult
problem.

Now, researchers have proposed numerous different mechanisms models to depict
the microstructure of financial markets. They pursued the most detailed descriptions,
such as creating diverse agents and setting rules for interactions between agents and trad-
ing rules. To deal with the variables of different individuals, researchers collected the data
about traders' behavior through information technology. But individuals rely on different
risk preferences and reference points, even if we can reasonably describe the behavior of
a single individual, we cannot directly generalize to a group. Since the behavior of indi-
viduals is complex and mutable, not all people are the same. For example, in the case of
controlling the spread of COVID-19 disease, the spread of the epidemic can be controlled
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to a certain extent when a strict movement control order restricted their right to independ-
ent activities [4]. However, individuals are highly variable in a financial system, micro-
structure models are not enough to consider the variable adaptability of individuals.

Although traders are unique and unpredictable, the research has exhibited that sta-
tistical evidences remain stable relatively accordant to the stability of the statistical prop-
erties of particle motion in physics models [5,6]. So in the studies of financial markets,
statistical results of different micro models should conform to the general rule. The clas-
sical percolation model [7-9] simulates herd behavior. For any pair of agents i and j, they
are linked together with a probability, then agent i make buying or selling decision with
another probability. The model explains the power-law distribution of stock price returns
properly. The two-dimensional Ising model [10] takes into account trader imitation of
neighbors, the influence of public information and personal traits, here the influence of
public information is a Gaussian distribution. The trader's decision function also has a
probability component, and the returns of the model are "fat-tailed" [11,12]. The financial
models with network topology [13] also produce the stylized fact of real stock markets by
setting the link probability of nodes and performing decision functions. These models
share common features. First, they generate a stock trading environment in the form of
probability. Second, traders make buy-sell decisions with probability or decision func-
tions. Based on these basic models and their common features, more and more details are
introduced to depict a more realistic financial market. Over the past century or so, the
stock trading information flow has changed from slow to intensive, traders’ literacy from
low to high, relationship from simple social relationships to complex social networks. In-
dividual characteristics of traders and the market environment have dramatically
changed. Stock trading rules also varied in different countries, for example, there is 10%
price limit in China [14]. Nevertheless, no matter what changed the environment or rules,
it is observed that stylized facts are robust on different timescales and in different stock
markets. Therefore, in the study of the macro laws, statistical properties of the stock mar-
ket, the key factor should not be the relationship network of traders, the speed of infor-
mation flow, or the level of literacy of traders which researchers want to introduce. On the
other hand, Woolley et al. [15] studied "collective intelligence" and demonstrated that the
key factor characterizing "collective intelligence" is not the average or maximum individ-
ual intelligence of group members. Collective intelligence appears to be the emergence of
collective behavior. In this paper, we consider political, economy and climate as infor-
mation which is a factor affecting investment decisions. In given information, the behavior
of traders emerging with probabilities results in the evolution of stock markets. Here, con-
trary to the agents model which pursues a realistic and detailed structure, we do not focus
on micro features including individual intelligence, interactions between individuals. We
established a stock price evolution model with emergence properties in given information
and verified its rationality by real market data. In a word, we aim to find the key factor
and capture stable macroscopic law in the ever-changing stock market.

The paper is organized as follows: Section 2: A detailed description of the stock mar-
ket model with decayed information impact. Section 3: Statistical analysis and nonlinear
behavior of the proposed model. Section IV: Correlation analysis between stocks in the
industry.

2. Stock price model with decayed information impact

Now, the percolation model, the Ising model, and the network topology model have
been widely studied. Most of them share a common feature double probability forms.
Based on the common feature, we proposed the stock price model of decayed information
impact. It includes two components — the generation and decay of market information and
the emergence properties of the collective decision-making in given information.
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2.1. Information generation and decay:

e  Suppose the initial stock price is P,. The stock market environment is variable daily
and is influenced by a series of stochastic events including supply and demand, mac-
roeconomic, political factors, corporate finances and performance, market sentiment,
etc. We will coarse-grain all the stochastic events by information just a single influence
value. The impact of new information is random variables with a truncated Gaussian
distribution I~N(0,0{), here g, = AP,. Considering the extreme cases (very bad in-
formation, very good information), the truncation interval is chosen to
be[—40;, +40;]. New information sequence I, can be obtained by random sampling
from the Gaussian distribution.

¢ Considering that significant events have a sustained impact on the investors, and the
impact strength of the information will decay over time, we assume that the infor-
mation influence I, decays linearly with time, and the information influence after the
i-thday I is expressed as
, _(ly—ai I, >0
Ii_{1t+ai 1. <0 )

here a is the decay coefficient.

2.2. Stock price evolution process:

The given information determines the theoretical stock price P;.

i=t—1
Pl=P_ +1 + z I @)
i=0

Traders participate in the game and make decisions based on the given information. Their
collective behaviors result in actual stock price. As the investors vary from radicals or
conservatives, daredevils or followers, etc, statistical properties of the final actual stock
price is stable in the ever-changing stock market. The actual stock price P, in day t has
emergence properties of collective intelligence, which is a random sampling from a trun-
cated Gaussian distributionP.~N(P{,07). As the price fluctuation is related to the infor-
mation, here o, = §>< |P{—P,_4|. Considering the extremes, the truncation interval is
[—40,, +40,].

Figure 1 shows the simulated stock price series P, and the corresponding return se-
ries 1, Py = 3000,0; = 20,a = 5. In Fig. 1, volatility clustering is be observed, large vola-
tility tends to follow large volatility and small volatility tends to follow small volatility.
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Figure 1. Stock price series of the proposed model and its corresponding return.

3. Descriptive statistics and nonlinear behavior analysis

In this section, we discussed the descriptive statistics and nonlinear behavior of the
stock price model with decayed information impact and verified the simulation results
with the real stock market. We used real daily closing price data from 2010-01-01 to 2020-
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12-03 (T=2700) including the SSE (Shanghai Composite Index), SZES (Shenzhen Stock Ex-
change Index), and S&P500 (S&P 500 Index) (https://finance.yahoo.com). Besides, the sim-
ulated data length T=3000 matches with the real data (T=2700).

3.1. Descriptive statistics of returns

“Fat-tailed” stylized fact of returns has been verified in extensive empirical studies
[16-18]. It is an important criterion for the reasonableness of price dynamics in the stock
model research. Here, the definition of price return is r, = InP, — InP,_; [19]. The proba-
bility density distributions of three simulated and real market returns is shown in Figure
2(a). Simulated and real return distributions are almost identical, they both exhibit distinct
“fat-tailed” compared to the Gaussian distribution. Table 1 shows the statistics: mean,
standard deviation, maximum, minimum, skew, kurtosis, the results of Kolmogorov-
Smirnov test (K-S test) and power-law fit, where the kurtosis of all returns is larger than
3 that is the kurtosis of the Gaussian distribution [20]. In the K-S test, All p-values are very
small and all the H-values are 1, so we reject that the distribution of the simulated data
and the empirical ones follow the Gaussian distribution at a significance level 5%. Figure
2(b) shows that the cumulative probability distributions of simulated and real market re-
turns follow power-law distribution P(|ry| > x)~x~%, a is the power-law exponent. The
corresponding power-law exponent values in Table 1 approximately equal to 3, it obeys
the “Inverse cubic law” [21].
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Figure 2. (a) The probability density distributions of simulated and empirical returns (semi-log); (b)
The cumulative distributions of simulated and empirical returns (log-log).
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Table 1. Descriptive statistics, power-law fit and K-S test of returns

. . K-S test
Data Mean Std Max Min Skew Kurtosis o
P-value H

X1 0.00004 0.0172 0.1294 -0.1240 0.2987 6.6543 8.1208*10" (-9) 1 3.5784
X, -0.00002 0.0217 0.1601 -0.2125 -0.3848 9.3611 1.8554*10" (-10) 1 4.0968
X3 0.00005 0.0182 0.1520 -0.1367 -0.0234 8.3799 4.2418*10" (-10) 1 3.8109
S&P500 0.00004 0.0111 0.0934 -0.1066 -0.9710 15.2922 4.0739*10" (-18) 1 3.4624
SSE 0.00002 0.0136 0.0060 -0.0887 -0.8969 6.1958 1.6704*10" (-10) 1 3.5277
SZSE 0.00001 0.0164 0.0625 -0.0895 -0.7368 3.7987 5.8053*10" (-7) 1 3.4777

3.2. Nonlinear statistical analysis of returns

The analysis of nonlinear statistical behavior can characterize the chaotic behavior of
a dynamic system. It is usually applied to financial time series analysis. In empirical eco-
nomics and economic physics, a number of studies have investigated the nonlinear prop-
erties of financial markets [22-24]. Here we also apply the chaotic approach to analyze the
nonlinear behavior of simulated return series and compare them with real market return
series.

3.2.1. Correlation dimension analysis

The correlation dimension method is a measure of the complexity of dynamical sys-
tems that distinguishes deterministic systems (including low-dimensional chaos) and sto-
chastic systems [25]. According to the method of Grassberger et al. [26], the correlation
dimension can be calculated when the appropriate embedding dimension m and time lag
7 are selected for the phase space reconstruction. For an m-dimensional phase space, the
correlation integral C(r) is calculated by

N
2
C(T)=limm Z @(r_lXi_XjD (3)

N-co
Lj=1,i#j

where 0 is the step function. The appropriate choice of r enables the correlation dimen-
sion of the system D to describe as

D = 1im 12926 4)

0 log, T

A common method is to fit the log, C(r) and log, r by least squares, and the slope is the
correlation dimension D. For random sequences, D increases linearly with the embedding
dimension m with no saturation, while for deterministic chaotic sequences, D increases
with m to a certain position to reach saturation, and the saturation m is the correlation
dimension D of the time series attractor. Figure 3 shows the correlation integral log, C(r)
and log,r in different embedding dimensions m. Figure 4 shows the correlation dimen-
sion. It is observed that all correlation dimensions increase with m, and reach saturation
at a certain position. It can be seen that all the returns have deterministic noise which
means the systems are chaotic. The simulated data from the proposed model well match
with the real market data.
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Figure 3. Correlation integral results of return series from SSE (a), the model (b).
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Figure 4. Correlation dimension of returns from SSE and 5 simulated data.

3.2.2. Lyapunov exponent analysis, sample entrop

To further compare the chaotic behavior of si
culated the maximum Lyapunov exponent for eac
Rosenstein et al. [27], the Hurst exponent by the re

y analysis and Hurst exponent

mulated and empirical returns, we cal-
h stock price series by the algorithm of
scaled range analysis[28], and the sam-

ple entropy method by Richman et al. [29]. In Table 2, the maximum Lyapunov exponents
of both simulated and empirical returns are larger than 0 which indicates that they have
similar chaotic properties. Second, similar sample entropy values indicate similar com-
plexity. Hurst exponent is slightly larger than 0.5, which means that the simulated and

real returns have similar long memory.

Table 2. The maximum Lyapunov exponent (m=10), Sample Entropy (m=2) and Hurst exponent of

returns from the model and empirical market.

Data MLE Sample Entropy Hurst Exponent
Datal 0.0778 1.7497 0.6281
Data2 0.0762 1.6832 0.6364
Data3 0.0773 1.7033 0.6478
Data4 0.0757 1.7401 0.6152
Data5 0.0575 1.4901 0.5840

SSE 0.0628 1.7889 0.5238
SZSE 0.0842 1.8750 0.5176

S&P500 0.0639 1.4902 0.5022
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4. Correlation analysis of stocks

The correlation between stocks is an important criterion to weigh the correlation of
stock market risk level and portfolio rationality. Studies on the properties of stock corre-
lation show that the stronger correlations between stocks are, the higher risk in the corre-
sponding asset portfolio is [30]. Usually, stocks belonging to the same industry are more
correlated because they are influenced by the same external information, including natu-
ral climate, macro policies, raw materials, and other factors [31]. The stocks in an industry
have strong correlations and risky portfolios, so the rational investments usually cover
different industries. In our model, stocks rise or fall are affected by external information,
so the model can be considered to study the correlation between stocks.

This section investigated the correlation of stock returns within per industry in China
by the detrended cross-correlation analysis (DCCA) [32,33] and calculated their distribu-
tions. p is the detrended cross-correlation coefficient, —1 < p < 1. There are 28 indus-
tries in Shenwan Industry Classification Standard, we selected 16 industries from 2016-
01-01 to 2020-12-10 (T = 1200), which contain a sufficient number of stocks (the number
of stocks N > 30). Simulated stock data in an industry: the initial stock price is same, to
avoid the sensitivity to initial conditions, we selected the data from 6000 to 7500 steps in

the simulation (T=1500), and got 100 stocks under the same historical information series.
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Figure 5. The distribution of p from Chemicals(a), Real Estate(b), Electronic(c),and 3 simulated

data(d)(e)(f).

Figure 5 shows the distribution of the correlation of stock returns within an industry.
Figure 5 (a)(b)(c) are three empirical data examples and (d)(e)(f) are three simulated ones
that are generated in different historical information series. It can be seen in Figure 5 that
p distributions within each of the 16 industries show a regular single-peaked distribution.
The most probable correlation coefficients p,, are around 0.3, which indicates that the
model is consistent with the real market, and most stocks have weak positive correlations
within an industry. Figure 6 shows the most probable correlation coefficients p,, which
of within the 16 industries and the three simulated data. The three simulated data peaks
are 0.34, 0.33, and 0.32, which all lying within the peak range from 0.21 to 0.43 in the real
market. Moreover, since each set of simulated data is generated in given the same histor-
ical information series, there is probable that the stock market evolution will recur when
there is similar information series. In our proposed model, the correlation of the simulated
stock with the same historical information can be analogized statistically to the correlation
of the stocks within China's industry. It is a supplement method of stock correlation re-
search which helps get IPOs' prices accurately and investors obtain a better portfolio strat-

egy.
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Figure 6. The p,, of stocks in 16 industries and 3 simulated data.

5. Conclusions

With the development of Internet and communication technologies, various financial
micro models are devoted to introducing plenty of individual traits and relationships into
financial market models. However, empirical studies show that no matter how the market
environment changes, the stylized facts remain stable which are independent of the speed
of information, the literacy of trader, the wealth of society, or the closeness of the relation-
ship. That is to say there must be the so-called “Newtons laws” in the stock market which
has no relation with the micro-characteristics and individual characteristics. So we studied
the once stock market models, and try to find the nature of the systems. From the perco-
lation model, Ising model, and network topology financial model, we got a common fea-
ture that trading environment and group decision are generated with probability. We ig-
nore the micro items that do not affect macro statistical properties and establish the stock
price model with decayed information impact macroscopically. It recaptures the stylized
facts and the chaotic characteristics of the real stock market, confirming that the key factor
that affects stock price fluctuations is information, not the individual characteristics of
investors or the sparseness of the relationship network. Stock prices are the emergence of
collective behavior in given information (current and decayed). Besides, the model gener-
ated different stock price series in the same historical information, which be analogous to
the stocks in the same industry. Similar single-peaked distribution proving that the model
can be effectively used in stock correlation research and history recur rules. It opens a new
way to selecting rational portfolios, complements current industry correlation research
methods and providing theoretical support. The paper provides a useful framework for
understanding stock price evolution through the emergence of collective intelligence. And
we finding the possible key factor of stock price fluctuation and the essence of the financial
market at a macro level.
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