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Abstract 

Streptococcus pneumoniae remains a leading global cause of morbidity and mortality, particularly 

affecting young children and older adults. While vaccination against pneumococcus has markedly 

reduced the disease burden worldwide, challenges such as serotype replacement, antibiotic 

resistance, and limited vaccine uptake persist. To address these issues, this review summarizes the 

mechanisms of vaccine-induced immunity, the development of diverse vaccine platforms—including 

polysaccharide, conjugate, and protein-based vaccines—as well as recent innovations such as mRNA 

and mucosal vaccines. Clinical and epidemiological data are integrated to evaluate the effectiveness 

of current strategies and the growing requirement for personalized, region-specific, and cost-effective 

vaccination approaches. We further highlight the ongoing challenges, including vaccine design 

optimization, low coverage rates in vulnerable populations, and market competition, emphasizing 

the critical need for enhanced surveillance and policy support to advance global pneumococcal 

disease prevention efforts. 

Keywords: pneumococcal vaccines; vaccine development; clinical application; immunity; global 

health 

 

1. Introduction 

Pneumococcal vaccines represent a cornerstone strategy for reducing the global disease burden 

caused by Streptococcus pneumoniae (S. pneumoniae). By activating the immune response of host, 

pneumococcal vaccines have demonstrated significant preventive efficacy across diverse populations 

and offer a critical intervention for improving survival, particularly among high-risk individuals[1-

3]. Advancements in pneumococcal conjugate vaccine (PCV), pneumococcal polysaccharide vaccine 

(PPSV), and other techniques (such as recombinant antigen design and mucosal delivery platform) 

have significantly expanded the serotype coverage and enhanced immunogenicity[4-6]. Furthermore, 

strategies such as co-administration of PPSV23 with PCV, alongside process optimizations, have 

improved cost-effectiveness, thereby providing critical support for global implementation[7]. 

Nevertheless, there are still persistent barriers to global implementation, including serotype 

replacement, suboptimal vaccination coverage, and the absence of personalized vaccination 

regimens[8-10]. This review provides a summary of pneumococcal vaccine development by 

synthesizing recent insights from immunological studies, clinical trials, and epidemiological research. 

Specifically, we elucidate the underlying immune mechanisms, highlight key translational challenges, 

and evaluate innovative platforms shaping the next generation vaccine design, while underscoring 
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the importance of sustained serotype surveillance and tailored immunization strategies for effective 

pneumococcal disease control. 

1.1. Burden of Pneumococcal Diseases 

Pneumococcal diseases, particularly community-acquired pneumonia, remains a significant 

global health issue in people of all ages, posing a serious threat to children younger than 5 and adults 

aged 65 and above[11]. Despite increasing PCV coverage worldwide, a high disease burden still exists 

in low - and middle - income countries (LMICs). Recent global epidemiological surveillance 

estimated that pneumococcal pneumonia caused approximately 826,000 deaths in 2019 (including 

225,000 children under five), with the majority concentrated in these settings[12]. In LMICs with 

insufficient and unevenly distributed medical resources, the severity of pneumonia becomes 

particularly pronounced, where its high mortality rates and complication risks show significant 

correlations with urban-rural and regional resource disparities[13,14]. 

1.2. Streptococcus Pneumoniae 

S. pneumonia is a Gram-positive diplococcus[15] and facultative anaerobe[16] that primarily 

colonizes the human upper respiratory tract and propagates through respiratory droplets[17]. The 

bacteria's pathogenicity is attributed to its polysaccharide capsule[18], and to date, more than 100 

serotypes have been discovered[19]. Pneumococcal serotypes demonstrate marked heterogeneity 

concerning invasive potential, geographic distribution, and antibiotic resistance[20-22]. For example, 

serotypes 19F and 23F predominate in invasive pneumococcal diseases[8], while 6A/B are more 

frequently found in carriers[23]. These serotype-specific pathogenicity facilitate S. pneumoniae as a 

leading global cause of community-acquired pneumonia, with the capacity to induce severe 

conditions including meningitis and sepsis across all age groups[24]. Regional investigations have 

showed distinct epidemiological patterns. In Iran, serotypes 23F and 19F are the main causes of 

invasive pneumococcal diseases, accounting for 16.4% and 15.2% respectively[23]. In China, the 

predominant carriage strains in children are 19F, 19A, and 23F, and the PCV13 vaccine coverage is 

about 74.8%[8]. Antimicrobial resistance is emerging globally, mediated through multiple 

mechanisms, including altering the structure and affinity of penicillin-binding proteins[26], altering 

cell wall permeability[27], and utilizing efflux pumps[28]. Resistance rates reach alarming levels in 

some regions, with Tunisia reporting 75.3% penicillin resistance and 71.4% erythromycin resistance 

[25], while Ethiopia found that 17.5% penicillin resistance and 33.3% multi-drug resistance[29]. These 

findings collectively underscore the dual challenges posed by serotype diversity and antibiotic 

resistance, and emphasize the critical need for effective vaccination strategies to mitigate these issues. 

1.3. Rationale for Vaccination 

Vaccination represents the most cost-effective strategy for pneumococcal disease 

prevention[30,31]. PPSV and PCV exert protective effects by inducing serotype-specific antibodies, 

which reduce the risk of pathogen colonization and invasive infections[32]. The pneumonia 

vaccination program has rolled out phased immunization plans for infants, adolescents, and adults. 

For instance, the inclusion of PCV in childhood immunization schedules has significantly reduced 

pneumonia-related mortality[33]. As evidenced by numerous studies, PCV introduction has led to a 

reduction in pneumonia-related mortality, with impacts ranging from 10% to 78%[34]. Moreover, 

antibiotic resistance is a significant issue in treating pneumococcal disease[35]. Using PCV vaccines 

can lower antibiotic use and slow antibiotic resistance development. This is achieved by reducing 

pneumococcal infection rates and cutting back on unnecessary antibiotic use. 

Vaccines currently in use have shown effectiveness in lowering the S. pneumoniae infection rate 

and alleviating post-infection symptoms. Pneumococcal vaccines, particularly the PCV13, have been 

widely used globally to reduce the burden of pneumococcal disease[36]. PCV13 is an extension of the 

PCV7, providing protection against six additional serotypes that are closely associated with invasive 

pneumococcal disease (IPD)[37]. Global evidence demonstrates the remarkable effectiveness of 

PCV13 vaccination: in United States, PCV13 vaccination successfully prevented 216,303 pneumonia 

hospitalizations caused by vaccine-covered serotypes from 2019 to 2021 [38]; in Mongolia, after 
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implementation in 2016, vaccine-serotype carriage rates decreased by 44% with a concurrent 

significant reduction in pneumonia cases[39]. Among Portuguese children aged 0-6, PCV13 

introduction led to a significant drop in vaccine-covered serotype carriage (from 47.6% to 10.7%) via 

herd immunity. However, unvaccinated kids and those aged 4-6 still had 2.5 - fold and 2.9 - fold 

higher risks of carrying PCV13 serotypes[40]. As PCV13 coverage expands, serotypes not included 

in the vaccine have become major causes of invasive pneumococcal disease, either by the rise of new 

resistant strains like the 24F type common in France, or by previously existing strains changing their 

serotype, as seen in the transition from 23F to 35B/D in some bacterial populations[41,42]. 

Geographically, large-scale PCV13 immunization in both Portugal and Mongolia has induced 

serotype replacement phenomena[39,40]. These evolving epidemiological trends pose new 

challenges for pneumococcal disease prevention and control.  

2. Pneumococcal Vaccines: Production and Immunity 

The development and production of pneumococcal vaccines have significantly advanced over 

the years, with highly diverse processes that can be broadly classified into three main categories 

based on the antigenic components and preparation methodology: polysaccharide vaccines, 

conjugate vaccines, and protein-based vaccines. Each category has its unique characteristics, 

advantages, and limitations, and necessitating thorough understanding of their production processes 

and mechanisms to optimize vaccine strategies in global public health initiatives. 

2.1. Polysaccharide Vaccines 

Polysaccharide vaccines, such as the PPSV23, are manufactured through extraction and 

purification of capsular polysaccharides from S. pneumoniae[43]. As a pivotal virulence factor, 

capsular polysaccharides can elicit specific immune responses; however, their inability to effectively 

activate T cells constrains immunogenicity, with these vaccines directly stimulating B cells to produce 

IgM antibodies that lack immune memory and confer protection lasting approximately 5-10 

years[44,45]. Current polysaccharide vaccines typically target 23 serotypes (e.g., 1, 3, 19A), 

encompassing most pneumococcal strains associated with pneumonia[46]. These vaccines are 

effective in preventing pneumococcal pneumonia among elderly individuals with chronic respiratory 

conditions and may also help lower the risk of cardiovascular events in older adults[1,47]. Their 

primary target populations include high-risk individuals aged ≥2 years, particularly the elderly (≥65 

years)[1], those with chronic conditions (diabetes[48], chronic obstructive pulmonary disease[3]), and 

immunocompromised patients[49], while infants under 2 years remain non-responsive due to 

immature immune systems. Despite this limitation, their broad serotype coverage, cost-effectiveness, 

and well-established manufacturing processes have secured their position as a cornerstone in aging 

populations immunization programs endorsed by authoritative bodies and incorporated into 

multiple national immunization programs[50-52]. 

Recent studies on the PPSV23 highlight progress in three key domains. Prior evidence confirms 

the vaccine’s efficacy in preventing IPD and pneumococcal pneumonia caused by vaccine-covered 

serotypes[53]. A longitudinal study conducted in Denmark involving individuals over 65 years of 

age showed that PPSV23 offered protection against overall IPD and IPD linked to specific serotypes, 

with effectiveness rates of 32% for all-type IPD and 41% for serotypes included in PPSV23[50]. 

Nonetheless, its protective effect tends to diminish among adults over 75 years old, people with 

specific underlying health conditions, and those who received the vaccine more than five years prior 

to disease onset[53]. Furthermore, a phase III clinical trial evaluated the safety, immunogenicity, and 

tolerability of PCV21 in comparison with PPSV23 among adults aged 50 and above. The study found 

that the PCV21 was non-inferior to PPSV23 for all 12 common serotypes and superior for nine 

serotypes unique to the PCV[54]. This suggests that newer conjugate vaccines may offer broader 

protection while maintaining a similar safety profile to PPSV23. While PPSV23 remains a cornerstone 

in pneumococcal disease prevention, its limitations—such as limited serotype coverage, waning 

immunity in older adults, and short-lived immunity—highlight the need for next-generation vaccines 

with broader serotype coverage and enhanced immunogenicity, particularly for high-risk 

populations.   
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2.2. Conjugate Vaccines 

To address the shortcomings of polysaccharide-based vaccines, conjugate vaccines were 

engineered by covalently attaching pneumococcal polysaccharide antigens to protein carriers such as  

cross reactive material 197 (CRM197), a non-toxic derivative of diphtheria toxin[55,56]. This 

conjugation process—involving polysaccharide activation, protein modification, and purification—

enhances T-cell activation, resulting in stronger immune responses and immunological memory, 

especially in infants[55]. For instance, PCV13 conjugates polysaccharides from 13 serotypes to 

CRM197, providing robust protection[57]. Following conjugation, the vaccines undergo additional 

purification and formulation steps to produce the final product, ensuring that the polysaccharide 

antigens can trigger a strong immune response upon administration. 

In 2000, the U.S. Food and Drug Administration approved the PCV7, which targeted serotypes 

4, 6B, 9V, 14, 18C, 19F, and 23F, marking it as the first pneumococcal vaccine specifically designed for 

use in infants and young children[58]. Its introduction led to a notable decline in IPD rates. 

Nevertheless, the broad use of PCV7 was followed by a rise in infections caused by non-vaccine 

serotypes, prompting the development of vaccines with expanded serotype coverage[59-61]. In 

response, the PCV13 was approved in 2010, building on PCV7 by adding six more clinically 

significant serotypes: 1, 3, 5, 6A, 7F, and 19A[62]. With broader serotype coverage, more flexible 

immunization schedules, and cost-effectiveness in large-scale production, PCV13 demonstrated 

superior public health utility, becoming the preferred choice in most countries[63-66]. Currently, the 

15-valent vaccine (PCV15, also known as V114) covering additional serotypes 22F and 33F has 

completed clinical trials in healthy infants, showing comparable or superior immunogenicity to 

PCV13[67]. Meanwhile, to address the evolving epidemiology of pneumococcal disease, the 

development of higher-valent PCVs such as the PCV20 and PCV21 formulations aims to provide 

broader serotype coverage[4,68]. In addition, the U.S. Centers for Disease Control and Prevention 

updated its recommendations in 2024 for the use of PCV21 in adults, extending its application to all 

individuals aged 18 and older, including those with chronic diseases or immunocompromised 

conditions[69]. 

With successive iterations, PCVs have shown improved immunogenicity and safety profiles, 

leading to their adoption in many national immunization programs worldwide. Despite the 

successful implementation of PCVs, several challenges have emerged—most notably, the growing 

issue of serotype replacement, where non-vaccine serotypes become more prevalent following 

widespread vaccine use. For instance, after New Zealand switched from PCV13 to PCV10 in 2017, 

the incidence of IPD caused by non-vaccine serotype 19A surged, accompanied by a sharp rise in 

penicillin resistance rates (from 39% to 84%)[70]. In Taiwan, although the implementation of PCV13 

led to a decline in the overall incidence of IPD, non-vaccine serotypes such as 15A and 23A continued 

to rise in prevalence, highlighting the importance of ongoing monitoring of serotype patterns and 

antimicrobial resistance trends[71]. Furthermore, widespread PCV adoption remains constrained by 

multiple factors: the spread of non-vaccine serotypes may undermine long-term prevention efficacy, 

necessitating the development of broad-spectrum or rapidly adaptable vaccine technologies[71,72]; 

elevated manufacturing costs hinder accessibility in low- and middle-income nations, indicating the 

need for cost-reduction strategies such as technology transfer or global cooperation[73]; and complex 

multi-dose regimens complicate management, suggesting that simplified formulations or 

combination vaccines could improve compliance[74]. A comparison of the key characteristics of the 

major pneumococcal vaccines discussed (PPSV23, PCV13, PCV20, and PCV21) is provided in Table 

1 and Table 2.  

Table 1. Valency, Serotype Coverage, and Target Groups of Key Pneumococcal Vaccines 

Vaccine 

Type 
Valency Target Serotypes Mechanism 

Key Target 

Populations 

PPSV23 23 2, 3, 4, 5...A 
T-cell-

independent 
Adults ≥65 years 
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PCV13 13 PCV7B + 1, 2, 5, 6A, 7F, 19A 
T-cell-

dependent 
Infants, high-risk 

PCV20 20 
PCV13 + 8, 10A, 11A, 12F, 

15B, 22F, 33F 

T-cell-

dependent 
Adults, children 

PCV21 21 PCV20 + 23B 
T-cell-

dependent 
Adults (≥18 years) 

A PPSV23 includes 2, 3, 4, 5, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F and 33F  

B PCV7 includes 4, 6B, 9V, 14, 18C, 19F, and 23F. 

Table 2. Timeline, Advantages, and Challenges of Key Pneumococcal Vaccines. 

Vaccin

e Type 
Year 

Use 

Status 
Advantages Challenges 

PPSV2

3 
1983 In use 

Low cost; 

Established 

manufacturing; 

WHO-recommended for 

elderly 

Low immunogenicity; 

No immune memory;  

Less effective in young children and 

immunocompromised individuals 

Vaccin

e Type 
Year 

Use 

Status 
Advantages Challenges 

PCV10

/PCV1

3 

2009-

2010 
In use 

Broader coverage than 

PCV7 

Waning efficacy in individuals over 75 

years old; Serotype replacement;  

Multi-dose regimens 

PCV15

/PCV2

0 

2021-

2022 

Recently 

introduce

d 

Broader serotype 

coverage; Single dose 

sufficient for some 

populations 

Higher cost compared to PPSV23 

PCV21 2024 

Recently 

introduce

d 

Potential for expanded 

protection against 

pneumococcal disease 

Still under evaluation; Regulatory 

approval pending; Limited data 

available on long-term efficacy and 

safety 

 

2.3. Emerging Vaccine Technologies 

Recent advances in pneumococcal vaccine development encompass a range of innovative 

approaches: 

• Novel antigen combinations, such as vaccines incorporating pneumococcal surface protein A (PspA) 

and detoxified pneumolysin, have demonstrated favorable safety and immunogenicity profiles in 

adults, particularly at intermediate doses[75]. Newly identified antigens like LafB have shown the 

ability to induce broad Th17-mediated mucosal immunity, remaining effective even under influenza-

induced immunosuppression[5].  

• Technological innovations have also played a crucial role. For instance, protein glycan coupling 

technology has enabled the development of recombinant conjugate vaccines that show protective 

efficacy comparable to Prevnar-13 at reduced production costs[76]. Innovative immunization 

strategies, including the use of attenuated influenza vectors carrying chimeric pneumococcal proteins, 

have enhanced protection against viral-bacterial co-infections[77].  

• Mucosal vaccine platforms, such as probiotic surface expression systems[6] and Lactobacillus-based 

intranasal sprays[78], represent another major advancement, capable of eliciting both protective 

mucosal and systemic immune responses without requiring adjuvants. In parallel, significant 

progress has been made in addressing manufacturing challenges throughimproved antigen 

production techniques and rational vaccine design.  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 July 2025 doi:10.20944/preprints202507.0067.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0067.v1
http://creativecommons.org/licenses/by/4.0/


 6 of 13 

 

• Efforts to improve antigen production and apply rational vaccine design have addressed key 

manufacturing challenges. Optimized processes for producing critical components like PspA4Pro[79] 

and recombinant Ply have enhanced vaccine feasibility[80], while computational immunoinformatics 

has facilitated the development of epitope-based candidates, such as the PspA (1–5c+p)[81] vaccine, 

which induces strong cross-reactive and functional antibody responses.  

• Genetic engineering and proteomics have opened new avenues for vaccine development. 

Recombinant protein vaccines, such as protein-based pneumococcal vaccines, utilize conserved 

antigens like PspA to achieve broader serotype coverage while simplifying manufacturing and 

ensuring product consistency. Phase I clinical trials have demonstrated favorable safety profiles and 

robust antibody responses in both adults and the elderly[75].  

These colletive breakthroughs—from enhanced traditional methods to cutting-edge platforms—

are paving the way for the next generation of pneumococcal vaccines that promise greater efficacy, 

broader protection, and improved accessibility to address pressing public health needs. 

3. Challenges 

3.1. Serotype Epidemiology and Vaccine Design Optimization 

The epidemiology of S.pneumoniae serotypes presents significant challenges for vaccine 

development, with significant geographic variability requiring region-specific surveillance to inform 

effective vaccine strategies. Post-vaccination serotype replacement has been well documented, as 

evidenced by the emergence of non-vaccine serotypes 6C, 15B, 16F, and 15A following PCV13 

introduction in China[8], and the predominance of serotypes 35B, 11A, and 3 in adult community-

acquired pneumococcal pneumonia cases in Goto City, Japan [82].  

These findings underscore the importance of tailoring vaccine formulations to local 

epidemiological patterns. While next-generation vaccines like PCV20 offer broader serotype coverage, 

their actual protective efficacy must be evaluated within the context of regional serotype prevalence. 

For instance, in the Japanese study, PCV20 covered approximately 43.7% of the identified serotypes, 

suggesting that even higher-valency vaccines may not fully address the regional serotype 

landscape[9]. Continuous molecular epidemiological surveillance, including whole-genome 

sequencing of isolates, is crucial for monitoring serotype dynamics and the emergence of new clones. 

A genomic analysis of invasive pneumococcal isolates collected in Norway over a 40-year period 

revealed that different lineages responded variably to vaccination, emphasizing the importance of 

whole-genome sequencing in guiding timely vaccine revisions and public health strategies[83]. 

3.2. Clinical Challenges and Strategic Responses 

The clinical management of pneumococcal infections faces mounting challenges due to 

escalating antimicrobial resistance, making vaccination an increasingly vital preventive strategy. 

Recent studies have documented an increase in resistance among pediatric S. pneumoniae isolates, 

particularly to penicillin, third-generation cephalosporins, fluoroquinolones, and carbapenems. This 

pattern is primarily driven by the emergence of non-PCV13 serotypes following vaccine 

introduction[84]. Vaccination remains a critical strategy in mitigating the spread of resistant strains; 

however, the effectiveness of current vaccines depends on their coverage of prevalent serotypes. In 

South and Southeast Asia, serotypes such as 6A, 6B, 14, 15B/15C, 19F, and 23F are commonly 

associated with disease and are included in existing vaccines[20]. Nevertheless, the dynamic nature 

of serotype distribution necessitates continuous evaluation to ensure that vaccine formulations 

remain relevant.  

Despite vaccine availability, suboptimal immunization coverage persists as a major barrier to 

disease control, especially among high-risk groups like the elderly. In Germany, data indicate that 

only 26% PCV23 coverage among older adults with IPD , with decreasing effectiveness over time[10]. 

Similar challenges exist in China, where vaccination rates among the elderly remain low due to 

barriers such as limited awareness, concerns about vaccine efficacy, and financial constraints, even in 

with subsidized programs[85]. To address these barriers and improve vaccination coverage, a range 

of evidence-based interventions have been identified as effective. A scoping review encompassing 

over 2.4 million participants identified strategies such as periodic health examinations, electronic 
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medical record reminders, inpatient vaccination protocols, and multimodal educational initiatives as 

effective in increasing vaccination rates among older adults[86]. 

3.3. Market Competition and the Role of Policy 

The pneumococcal vaccine market is experiencing dynamic shifts globally, driven by increased 

competition and evolving policy frameworks aimed at enhancing vaccine accessibility. China's 

vaccine landscape exemplifies this shift, where domestic manufacturers such as Walvax and CanSino 

have successfully challenged the market dominance of imported PCV13, resulting in substantial price 

reductions that enhance affordability[87]. In Europe, countries such as the Netherlands have 

conducted cost-effectiveness analyses to inform vaccination strategies for older adults. These studies 

have considered the indirect benefits of childhood vaccination programs and the emergence of 

higher-valency vaccines like PCV20 and PCV21. Findings suggest that incorporating these vaccines 

into adult immunization schedules could be cost-effective, particularly when accounting for serotype 

replacement and herd immunity dynamics[88]. These examples underscore the critical role of policy 

support in shaping the pneumococcal vaccine market. Strategic decisions regarding vaccine 

procurement, pricing negotiations, and inclusion in public health programs are essential to enhance 

vaccine uptake and reduce the burden of pneumococcal diseases across diverse populations. 

4. Conclusions 

Pneumococcal vaccines have revolutionized infectious disease prevention, achieving 

remarkable reductions in S. pneumoniae-related morbidity and mortality. While the development of 

higher-valency conjugate vaccines and innovative platforms like mucosal and mRNA-based vaccines 

marks a new frontier, persistent issues such as serotype replacement, vaccine hesitancy, and 

inequitable access limit their full potential. To maximize public health benefits, future multifaceted 

strategies should focus on region-specific vaccine design, improved surveillance of serotype 

dynamics and antimicrobial resistance, and policies that promote widespread and equitable vaccine 

uptake. Integration of real-world data, artificial intelligence-driven vaccine design, and global 

cooperation will be essential to overcoming the next wave of pneumococcal challenges. 
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