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Abstract: The advent of large models, also known as foundation models, has significantly transformed the

AI research landscape, with models like Segment Anything (SAM) achieving notable success in diverse image

segmentation scenarios. Despite its advancements, SAM encountered limitations in handling some complex

low-level segmentation tasks like camouflaged object and medical imaging. In response, in 2023, we introduced

SAM-Adapter, which demonstrated improved performance on these challenging tasks. Now, with the release

of Segment Anything 2 (SAM2)—a successor with enhanced architecture and a larger training corpus—we

reassess these challenges. This paper introduces SAM2-Adapter, the first adapter designed to overcome the

persistent limitations observed in SAM2 and achieve new state-of-the-art (SOTA) results in specific downstream

tasks including medical image segmentation, camouflaged (concealed) object detection, and shadow detection.

SAM2-Adapter builds on the SAM-Adapter’s strengths, offering enhanced generalizability and composability for

diverse applications. We present extensive experimental results demonstrating SAM2-Adapter’s effectiveness. We

show the potential and encourage the research community to leverage the SAM2 model with our SAM2-Adapter

for achieving superior segmentation outcomes. Code, pre-trained models, and data processing protocols are

available at http://tianrun-chen.github.io/SAM-Adaptor/

Keywords: Segment Anything; Adapter; Visual Prompting; camouflaged; shadow; image segmentation; polyp

segmentation; medical image segmentation

1. Introduction

The AI research landscape has been transformed by foundation models trained on vast data [1–4].
Recently, among the foundation models, Among these, Segment Anything (SAM) [5] stands out as a
highly successful image segmentation model with demonstrated success in diverse scenarios. However,
in our previously study, we found that SAM’s performance was limited in some challenging low-level
structural segmentation tasks, such as camouflaged object detection and shadow detection. To address
this, in 2023, within two weeks of SAM’s release, we proposed the SAM-Adapter [6,7], which aimed to
leverage the power of the SAM model to deliver better performance on these challenging downstream
tasks. The success of the SAM-Adapter, with its training and evaluation code and checkpoints made
publicly available, has already been a valuable resource for many researchers in the community to
experiment with and build upon, demonstrating its effectiveness on a variety of downstream tasks.

Now, the research community has pushed the boundaries further with the introduction of an
even more capable and versatile successor to SAM, known as Segment Anything 2 (SAM2). Boasting
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further enhancements in its network architecture and training on an even larger visual corpus, SAM2
has certainly piqued our interest. This naturally leads us to the questions:

• Do the challenges faced by SAM in downstream tasks persist in SAM2?
• Can we replicate the success of SAM-Adapter and leverage SAM2’s more powerful pre-trained

encoder and decoder to achieve new state-of-the-art (SOTA) results on these tasks?

In this paper, we answer both questions with a resounding "Yes." Our experiments confirm that the
challenges SAM encountered in downstream tasks do persist in SAM2, due to the inherent limitations
of foundation models—where training data cannot cover the entire corpus and working scenarios vary
[1]. However, we have devised a solution to address this challenge. By introducing the SAM2-Adapter,
we’ve created a multi-adapter configuration that leverages SAM2’s enhanced components to achieve
new SOTA results in tasks including medical image segmentation, camouflaged object detection, and
shadow detection.

Just like SAM-Adapter [6,7], this pioneering work is the first attempt to adapt the large pre-
trained segmentation model SAM2 to specific downstream tasks and achieve new SOTA per-
formance. SAM2-Adapter builds on the strengths of the original SAM-Adapter while introducing
significant advancements.

SAM2-Adapter inherits the core advantages of SAM-Adapter, including:

• Generalizability: SAM2-Adapter can be directly applied to customized datasets of various tasks,
enhancing performance with minimal additional data. This flexibility ensures that the model can
adapt to a wide range of applications, from medical imaging to environmental monitoring.

• Composability: SAM2-Adapter supports the easy integration of multiple conditions to fine-tune
SAM2, improving task-specific outcomes. This composability allows for the combination of
different adaptation strategies to meet the specific requirements of diverse downstream tasks.

SAM2-Adapter enhances these benefits by adapting to SAM2’s multi-resolution hierarchical Trans-
former architecture. By employing multiple adapters working in tandem, SAM2-Adapter effectively
leverages SAM2’s multi-resolution and hierarchical features for more precise and robust segmentation,
which maximizes the potential of the already-powerful SAM2. We perform extensive experiments on
multiple tasks and datasets, including ISTD for shadow detection [8] and COD10K [9], CHAMELEON
[10], CAMO [11] for camouflaged object detection task, and kvasir-SEG [12] for polyp segmentation
(medical image segmentation) task. Benefiting from the capability of SAM2 and our SAM-Adapter, our
method achieves state-of-the-art (SOTA) performance on both tasks. The contributions of this work
can be summarized as follows:

• We are the first to identify and analyze the limitations of the Segment Anything 2 (SAM2) model
in specific downstream tasks, continuing our research from SAM.

• Second, we are the first to propose the adaptation approach, SAM2-Adapter, to adapt SAM2
to downstream tasks and achieve enhanced performance. This method effectively integrates
task-specific knowledge with the general knowledge learned by the large model.

• Third, despite SAM2’s backbone being a simple plain model lacking specialized structures tailored
for the specific downstream tasks, our extensive experiments demonstrate that SAM2-Adapter
achieves SOTA results on challenging segmentation tasks, setting new benchmarks and proving
its effectiveness in diverse applications.

By further building upon the success of the SAM-Adapter, the SAM2-Adapter inherents the
advantages of SAM-Adapter and demonstrates the exceptional ability of the SAM2 model to transfer
its knowledge to specific data domains, pushing the boundaries of what is possible in downstream
segmentation tasks. We encourage the research community to adopt SAM2 as the backbone in
conjunction with our SAM2-Adapter, to achieve even better segmentation results in various research
fields and industrial applications. We are releasing our code, pre-trained model, and data processing
protocols in http://tianrun-chen.github.io/SAM-Adaptor/.
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2. Related Work

Semantic Segmentation. In recent years, semantic segmentation has made significant progress, primar-
ily due to the remarkable advancements in deep-learning-based methods such as fully convolutional
networks (FCN) [13], encoder-decoder structures [14–19], dilated convolutions [20–25], pyramid struc-
tures [22,23,26–29], attention modules [30–34], and transformers [2,35–38]. Recent advancements have
improved SAM’s performance, such as [39], which introduces a High-Quality output token and trains
the model on fine-grained masks. Other efforts have focused on enhancing SAM’s efficiency for
broader real-world and mobile use, exemplified by [40–42]. The widespread success of SAM has led
to its adoption in various fields, including medical imaging [43–46], remote sensing [47,48], motion
segmentation [49], and camouflaged object detection [50]. Notably, our previous work SAM-Adapter
[6,7] tested camouflaged object detection, polyp segmentation, and shadow segmentation, and provide
with the first adapter-based method to integrate the SAM’s exceptional capability to these downstream
tasks.
Adapters. The concept of Adapters was first introduced in the NLP community [51] as a tool to
fine-tune a large pre-trained model for each downstream task with a compact and scalable model. In
[52], multi-task learning was explored with a single BERT model shared among a few task-specific
parameters. In the computer vision community, [53] suggested fine-tuning the ViT [54] for object
detection with minimal modifications. Recently, ViT-Adapter [55] leveraged Adapters to enable a
plain ViT to perform various downstream tasks. [56] introduce an Explicit Visual Prompting (EVP)
technique that can incorporate explicit visual cues to the Adapter. However, no prior work has tried to
apply Adapters to leverage pretrained image segmentation model SAM trained at large image corpus.
Here, we mitigate the research gap.
Polyp Segmentation. In recent years, there has been notable progress in polyp segmentation [57]
due to deep-learning approaches. These techniques employ deep neural networks to derive more
discriminative features from endoscopic polyp images. Nonetheless, the use of bounding-box detectors
often leads to inaccurate polyp boundary localization. To resolve this, [58] leveraged fully convolutional
networks (FCN) with pre-trained models to identify and segment polyps. [59] introduced a technique
utilizing Fully Convolutional Neural Networks (FCNNs) to predict 2D Gaussian shapes. Subsequently,
the U-Net [60] architecture, featuring a contracting path for context capture and a symmetric expanding
path for precise localization, achieved favorable segmentation results. However, these strategies
focus primarily on entire polyp regions, neglecting boundary constraints. Therefore, Psi-Net [61]
incorporated both region and boundary constraints for polyp segmentation, yet the interplay between
regions and boundaries remained underexplored. [62] introduced PolypSegNet, an enhanced encoder-
decoder architecture designed for the automated segmentation of polyps in colonoscopy images. To
address the issue of non-equivalent images and pixels, [63] proposed a confidence-aware resampling
method for polyp segmentation tasks. Specifically for polyp segmentation, works done by [64] and
[6] present promising results using an unprompted SAM and a domain-adapted SAM respectively.
Additionally, Polyp-SAM [65] used SAM for the same task. [66] evaluated the zero-shot capabilities of
SAM on the organ segmentation task.
Camouflaged Object Detection (COD). Camouflaged object detection, or concealed object detection
is a challenging but useful task that identifies objects blend in with their surroundings. COD has
wide applications in medicine, agriculture, and art. Initially, researches of camouflage detection
relied on low-level features like texture, brightness, and color [67–70] to distinguish foreground from
background. It is worth noting that some of these prior knowledge is critical in identifying the objects,
and is used to guide the neural network in this paper.

Le et al.[11] first proposed an end-to-end network consisting of a classification and a segmentation
branch. Recent advances in deep learning-based methods have shown a superior ability to detect
complex camouflaged objects [9,71,72]. In this work, we leverage the advanced neural network
backbone (a foundation model – SAM2) with the input of task-specific prior knowledge to achieve the
state-of-the-art (SOTA) performance.
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Shadow Detection. Shadows can occur when an object surface is not directly exposed to light. They
offer hints on light source direction and scene illumination that can aid scene comprehension [73,74].
They can also negatively impact the performance of computer vision tasks [75,76]. Early method use
hand-crafted heuristic cues like chromacity, intensity and texture [74,77,78]. Deep learning approaches
leverage the knowledge learnt from data and use delicately designed neural network structure to
capture the information (e.g. learned attention modules) [79–81]. This work leverage the heuristic
priors with large neural network models to achieve the state-of-the-art (SOTA) performance.

3. Method

3.1. Using SAM 2 as the Backbone

The core of our SAM2-Adapter is built upon the powerful image encoder and mask decoder
components of the SAM2 model. Specifically, we leverage the MAE pre-trained Hiera image encoder
from SAM2, keeping its weights frozen to preserve the rich visual representations it has learned from
pretraining on large-scale datasets. Additionally, we utilize the mask decoder module from the original
SAM2 model, initializing its weights with the pretrained SAM2 parameters and then fine-tuning it
during the training of our adapter. We do not provide any additional prompts as input to the original
SAM2 mask decoder.

Similar to the successful approach of the SAM-Adapter [6], we next learn and inject task-specific
knowledge Fi into the network via Adapters. We employ the concept of prompting, which utilizes the
fact that foundation models like SAM2 have been trained on large-scale datasets. Using appropriate
prompts to introduce task-specific knowledge [56] can enhance the model’s generalization ability on
downstream tasks, especially when annotated data is scarce.

The architecture of the proposed SAM2-Adapter is illustrated in Figure 1. We aim to keep the
design of the adapter to be simple and efficient. Therefore, we choose to use an adapter that consists of
only two MLPs and an activate function within two MLPs [56]. It is worth noting that the different
from SAM[5], the image encoder of SAM2 has four stages with hierarchical resolutions. Therefore, we
initialized four different adapter and insert the four adapter in different layers of each stage. In each
stage, the weight of the adapter is shared. Specifically, each of the adapter takes the information Fi and
obtains the prompt Pi:

Pi = MLPup

(
GELU

(
MLPi

tune(Fi)
))

(1)

in which MLPi
tune are linear layers used to generate task-specific prompts for each Adapter. MLPup is

an up-projection layer shared across all Adapters that adjusts the dimensions of transformer features.
Pi refers to the output prompt that is attached to each transformer layer of SAM model. GELU is the
GELU activation function [82]. The information Fi can be chosen to be in various forms.

… … …

Adaptor 1

Adaptor 2

Layer-shared	𝑀𝐿𝑃!"

Layer-unshared	𝑀𝐿𝑃#!$%&

Task-Specific Information

🔥

🔥

🔥
Adaptor 𝒊

🔥Tunable ❄ Frozen

Adaptor 3

Adaptor 4

🔥

🔥

🔥

🔥

❄ ❄

❄ ❄

❄ ❄

❄ ❄

SAM2 Image Encoder❄

SAM2
Mask
Decoder

🔥

Figure 1. The architecture of the proposed SAM-Adapter.

For more information, please refer to the original SAM-Adapter paper [6].
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3.2. Input Task-Specific Information

It is worth noting that the information Fi can be in various forms depending on the task and
flexibly designed. For example, it can be extracted from the given samples of the specific dataset of the
task in some form, such as texture or frequency information, or some hand-crafted rules. Moreover,
the Fi can be in a composition form consisting multiple guidance information:

Fi =
N

∑
1

wjFj (2)

in which Fj can be one specific type of knowledge/features and wj is an adjustable weight to control
the composed strength. For more information, please refer to the original SAM-Adapter paper [6].

4. Experiments

4.1. Tasks and Datasets

In our experiments, we selected two challenging low-level structural segmentation tasks and one
medical imaging task to evaluate the performance of the SAM2-Adapter: camouflaged object detection
and shadow detection, and polyp segmentation.

For the camouflaged object detection task, we utilized three prominent datasets: COD10K [9],
CHAMELEON [10], and CAMO [11]. COD10K is the largest dataset for camouflaged object detection,
containing 3,040 training and 2,026 testing samples. CHAMELEON includes 76 images collected
from the internet for testing. The CAMO dataset consists of 1,250 images, with 1,000 for training and
250 for testing. Following the training protocol in [9], we used the combined dataset of CAMO and
the training set of COD10K for model training. For evaluation, we used the test sets of CAMO and
COD10K, as well as the entire CHAMELEON dataset. For the shadow detection task, we employed
the ISTD dataset [8], which contains 1,330 training images and 540 test images.For polyp segmentation
(medical image segmentation), we use the kvasir-SEG dataset [12]. The train-test split followed the
settings of the Medico multimedia task at MediaEval 2020: Automatic Polyp Segmentation [83].

For evaluation metrics, we followed the protocol in [56] and used commonly-used metrics such
as S-measure (Sm), mean E-measure (Eϕ), and MAE for the camouflaged object detection task. For
the shadow detection task, we used the balance error rate (BER) metric. For the polyp segmentation
task, we used mean Dice score (mDice) and mean Intersection-over-Union (mIoU) as the evaluation
measures.

For more details, please refer to the original SAM-Adapter paper [6].

4.2. Implementation Details

In the experiment, we choose two types of visual knowledge, patch embedding Fpe and high-
frequency components Fh f c, following the same setting in [56], which has been demonstrated effective
in various of vision tasks. wj is set to 1. Therefore, the Fi is derived by Fi = Fh f c + Fpe.

The MLPi
tune has one linear layer and MLPi

up is one linear layer that maps the output from GELU
activation to the number of inputs of the transformer layer. We use hiera-large version of SAM2.
Balanced BCE loss is used for shadow detection. BCE loss and IOU loss are used for camouflaged
object detection and polyp segmentation. AdamW optimizer is used for all the experiments. The initial
learning rate is set to 2e-4. Cosine decay is applied to the learning rate. The training of camouflaged
object segmentation is performed for 20 epochs. Shadow segmentation is trained for 90 epochs. Polyp
segmentation is trained for 20 epochs. The experiments are implemented using PyTorch on three
NVIDIA Tesla A100 GPUs. For more information, please refer to the original SAM-Adapter paper [6]
and our codebase.
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4.3. Experiments for Camouflaged Object Detection

We first evaluated SAM on the challenging task of camouflaged object detection, where foreground
objects often blend with visually similar background patterns. Our experiments revealed that SAM
did not perform well in this task. As shown in Figure 2, SAM failed to detect several concealed objects.
This was further confirmed by the quantitative results presented in Table 1, where SAM’s performance
was significantly lower than existing state-of-the-art methods across all evaluated metrics, while SAM2,
on its own, had the lowest performance, which fails to produce any meaningful results.

In contrast, Figure 3 clearly demonstrates that by introducing the SAM2-Adapter, our method
significantly elevates the model’s performance. Our approach successfully identifies concealed objects,
as evidenced by clear visual results. Quantitative results also show that our method outperforms the
existing state-of-the-art methods.

Furthermore, the SAM2-Adapter set a new SOTA performance. Visualized results show that
SAM2-Adapter segments more precisely without adding extra false information, further demonstrating
the robustness and accuracy of our approach.

Figure 2. Shadow Detection Visualization As shown in the figure, SAM often fails to detect animals
that are visually camouflaged within their natural environments and can sometimes produce irrelevant
results. SAM2 also struggles with similar issues and produce non-meaningful outcomes. However, by
incorporating SAM-Adapter, our approach significantly improves object segmentation performance.
Furthermore, SAM2-Adapter demonstrates even better performance than SAM-Adapter. The samples
depicted are from the CHAMELEON dataset.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 August 2024                   doi:10.20944/preprints202408.0622.v1

https://doi.org/10.20944/preprints202408.0622.v1


7 of 15

Figure 3. Visualization for Camouflaged Image Segmentation in COD-10K dataset As shown
in the figure, SAM struggles to detect animals that are visually camouflaged within their natural
environments and can sometimes produce results that lack meaningful segmentation. SAM2 also
faces similar challenges, often resulting in no output or false results. However, by incorporating
SAM2-Adapter, our method significantly improves object segmentation performance, surpassing SAM-
Adapter. For other dataset, please refer to More Results section.

Table 1. Quantitative Segmentation Result Comparison for Camouflaged Object Detection

Method CHAMELEON [10] CAMO [11] COD10K [9]
Sα ↑ Eϕ ↑ Fω

β ↑ MAE ↓ Sα ↑ Eϕ ↑ Fω
β ↑ MAE ↓ Sα ↑ Eϕ ↑ Fω

β ↑ MAE ↓
SINet[84] 0.869 0.891 0.740 0.440 0.751 0.771 0.606 0.100 0.771 0.806 0.551 0.051

RankNet[85] 0.846 0.913 0.767 0.045 0.712 0.791 0.583 0.104 0.767 0.861 0.611 0.045
JCOD [86] 0.870 0.924 - 0.039 0.792 0.839 - 0.82 0.800 0.872 - 0.041
PFNet [87] 0.882 0.942 0.810 0.330 0.782 0.852 0.695 0.085 0.800 0.868 0.660 0.040
FBNet [88] 0.888 0.939 0.828 0.032 0.783 0.839 0.702 0.081 0.809 0.889 0.684 0.035

SAM [5] 0.727 0.734 0.639 0.081 0.684 0.687 0.606 0.132 0.783 0.798 0.701 0.050
SAM2 [89] 0.359 0.375 0.115 0.357 0.350 0.411 0.079 0.311 0.429 0.505 0.115 0.218

SAM-Adapter [6,7] 0.896 0.919 0.824 0.033 0.847 0.873 0.765 0.070 0.883 0.918 0.801 0.025
SAM2-Adapter (Ours) 0.915 0.955 0.889 0.018 0.855 0.909 0.810 0.051 0.899 0.950 0.850 0.018

4.4. Experiments for Shadow Detection

We also evaluated SAM on shadow detection. However, as depicted in Figure 4, SAM struggled
to differentiate between the shadow and the background, with parts missing or mistakenly added.

Similarly, SAM2 also struggled with the "shadow" concept without proper prompting, failing to
produce meaningful results. In our study, we compared various methods for shadow detection and
found that SAM’s performance was significantly poorer than existing methods. However, by integrat-
ing the SAM-Adapter, we achieved a substantial improvement in performance. The SAM-Adapter
enhanced the detection of shadow regions, making them more clearly identifiable. Furthermore, SAM2-
Adapter worked just as effectively as SAM-Adapter, delivering comparable results. Our findings were
validated through quantitative analysis, and Table 2 demonstrates the significant performance boost
provided by the SAM-Adapter and matched by the SAM2-Adapter for shadow detection.
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Table 2. Result for Shadow Detection

Method BER ↓

Stacked CNN [90] 8.60

BDRAR [91] 2.69

DSC [92] 3.42

DSD [93] 2.17

FDRNet [94] 1.55

SAM [5] 40.51
SAM2 [89] 50.81
SAM-Adapter 1.43
SAM2-Adapter (Ours) 1.43

Figure 4. Shadow Detection Visualized. Both SAM and SAM2 have no understanding about the
“shadow" concept without proper prompting. They produce meaningless results. SAM-Adapter and
SAM2-Adapter perform equally well in shadow detection tasks.

4.5. Experiments for Polyp Segmentation

We illustrate the application of SAM2-Adapter in the context of medical image segmentation,
specifically focusing on polyp segmentation. Polyps, which have the potential to become malignant,
are identified during colonoscopy and removed through polypectomy. Accurate and swift detection
and removal of polyps are crucial in preventing colorectal cancer, a leading cause of cancer-related
deaths globally.

While numerous deep learning approaches have been developed for polyp identification, and the
pre-trained SAM model shows promise in identifying some polyps, its performance can be significantly
improved with our SAM-Adapter approach. However, without proper prompting, the SAM2 model
fails to produce meaningful results. Our SAM2-Adapter addresses this issue and outperforms the
original SAM-Adapter. The results of our study, presented in Table 3 and the visualization results in
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Figure 6, underscore the effectiveness of SAM2-Adapter in improving the accuracy and reliability of
polyp detection.

Table 3. Quantitative Result for Polyp Segmentation

Method mDice ↑ mIoU ↑

UNet [14] 0.821 0.756

UNet++ [95] 0.824 0.753

SFA [96] 0.725 0.619

SAM [5] 0.778 0.707
SAM2 [89] 0.200 0.029
SAM-Adapter 0.850 0.776
SAM2-Adapter (Ours) 0.873 0.806

Figure 5. Visualization of Polyp Segmentation Results. As illustrated in the figure, although SAM
can identify some polyp structures in the image, the result is not accurate. Without proper prompting,
SAM 2 failed to deliver meaningful polyp segmentation results. By using SAM2-Adapter, our approach
significantly outperform SAM-Adapter with more accurate (and complete) segmentation results.

5. Conclusion and Future Work

In this paper, we introduced SAM2-Adapter, a novel adaptation method designed to leverage the
advanced capabilities of the Segment Anything 2 (SAM2) model for specific downstream segmentation
tasks. Building on the success of the original SAM-Adapter, SAM2-Adapter utilizes a multi-adapter
configuration that is specifically tailored to SAM2’s multi-resolution hierarchical Transformer archi-
tecture. This approach effectively addresses the limitations encountered with SAM, enabling the
achievement of new state-of-the-art (SOTA) performance in challenging segmentation tasks such as
camouflaged object detection, shadow detection, and polyp segmentation.
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Our experiments demonstrate that SAM2-Adapter not only retains the beneficial features of its
predecessor, including generalizability and composability but also enhances these capabilities by
integrating seamlessly with SAM2’s advanced architecture. This integration allows SAM2-Adapter to
outperform previous methods and set new benchmarks across various datasets and tasks.

The continued presence of challenges from SAM in SAM2 highlights the inherent complexities of
applying foundation models to diverse real-world scenarios. Nevertheless, SAM2-Adapter effectively
addresses these issues, showcasing its potential as a robust tool for high-quality segmentation in a
range of applications.

We encourage researchers and engineers to adopt SAM2 as the backbone for their segmentation
tasks, coupled with SAM2-Adapter, to realize improved performance and advance the field of image
segmentation. Our work not only extends the capabilities of SAM2 but also paves the way for future
innovations in adapting large pre-trained models for specialized applications.

6. More Results

Figure 6. Camouflaged Segmentation of CAMO dataset. The SAM and SAM 2 failed to perceive those
animals that are visually ‘hidden’/concealed in their natural surroundings. By using SAM-Adapter,
our approach can significantly elevate the performance of object segmentation with SAM.
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