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Abstract: In this study, we aim to analyze ultrasonic wave dispersion equation due to second-gradient
contributions and attenuation within the framework of continuum mechanics. To analyze dispersive
behavior and attenuation effects, we consider the influence both of higher-order gradient terms (second
gradients) and of viscoelastic contributions of Rayleigh type. To this end, we use the extended Rayleigh-
Hamilton principle to derive the governing equations of the problem. Using a wave-form solution,
we establish the relationship between phase velocity and the material’s constitutive parameters,
including those related to stiffness of first (standard) and of second-gradient type, and to viscosity. To
validate the model, we use data available in the literature to provide a possible identification of all the
material parameters. Thus, for the same identification, we observe that our model provides a good
approximation of the experimentally measured trends of both the phase velocity and the attenuation
vs frequency. In conclusion, this result not only confirms that our model can accurately describe both
wave dispersion and attenuation in a material, as observed experimentally, but also highlights the
necessity of simultaneously considering both second-gradient and viscosity parameters for a proper
mechanical characterization of materials.

Keywords: ultrasonic wave dispersion; second-gradient theory; attenuation

1. Introduction
Ultrasonic wave propagation is a powerful technique used in a wide range of fields, from non-

destructive testing (NDT) and material characterization to medical diagnostics. The study of how
ultrasonic waves behave as they travel through materials provides essential information about the
internal structure and mechanical properties of the materials being tested. In traditional models, wave
propagation is typically described using classical elasticity theory, where the stress-strain relationship
of the material depends on the first derivatives of the displacement field, representing the strain.
Although this approach works well for simple, homogeneous materials, it is insufficient for more
complex materials that possess microstructural heterogeneity or exhibit non-local interaction, since
these materials often exhibit non-local behavior, meaning that the response at any given point in the
material is influenced not only by the immediate surroundings but also by broader microstructural
features. Second-gradient elasticity theory was developed to address this issue by introducing higher-
order derivatives of the displacement field, which enables the model to capture these non-local effects
and internal length scales within the material. Then, this theory has become particularly useful for
modeling materials that exhibit scale-dependent behavior, such as foams, granular materials, and
biological tissues. By incorporating second-gradient terms into the stress-strain relationship, this
theory provides a more accurate description of wave propagation in materials with microstructural
features, where the classical theory would not capture the complex interactions between the structure
of the material and the propagating wave [1,2].
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Dispersion refers to the phenomenon in which the speed of a wave depends on its frequency. In
most classical wave propagation theories, the velocity of the wave is constant and independent of
frequency. However, in second-gradient media, the wave velocity is frequency-dependent. This is
because the material’s internal structure, captured e.g. by the second-gradient terms, affects the wave’s
propagation at different frequencies. This effect can be especially pronounced in materials where
microstructural characteristics, such as pores, inclusions, or heterogeneity, influence wave propagation
[3,4]. In practice, the dispersion observed in second-gradient media can lead to significant differences
in how waves propagate, especially at higher frequencies. This has important implications for the
design and analysis of materials such as metamaterials, where customizable dispersion characteristics
are often desired to achieve specific effects, such as negative refraction or slow-wave propagation [5].
Similarly, in biological tissues, where wave dispersion is influenced by the cellular structure of the
tissue, understanding dispersion becomes critical to improving medical imaging techniques such as
ultrasound elastography [6].

Attenuation refers to the loss of energy that occurs when a wave propagates through a medium.
In traditional wave theory, attenuation is typically associated with damping mechanisms, such as
viscoelastic effects or material imperfections. However, in materials exhibiting second-gradient
behavior, attenuation can arise due to the non-local interactions and microstructural features that
influence wave propagation. As ultrasonic waves pass through a material with second-gradient
effects, their energy is dissipated in a way that cannot be fully explained by classical damping models
[7,8]. The attenuation in such materials is also frequency-dependent, with the energy loss being more
significant at higher frequencies. This frequency-dependent attenuation is crucial for understanding
wave behavior in biological tissues, where the microstructural properties of the tissue (such as cellular
arrangements) can cause additional dissipation of wave energy. Similarly, in porous materials and
composites, where waves interact with heterogeneities at multiple scales, the attenuation behavior
provides valuable insight into the material’s internal structure and mechanical properties [9].

The theoretical framework of second-gradient elasticity, which includes both dispersion and
attenuation effects, has several important applications. Understanding the frequency-dependent
dispersion and attenuation can enhance the sensitivity and resolution of ultrasonic testing techniques,
allowing for better detection of defects, cracks, or voids within materials [9]. In medical diagnostics,
particularly in ultrasound elastography, these models can provide a more accurate representation of
wave propagation through biological tissues. Since tissues often exhibit complex internal structures,
the ability to account for non-local effects and microstructural interactions improves the precision of
measurements, leading to more reliable assessments of tissue stiffness or elasticity. This has important
implications for early diagnosis and monitoring of conditions such as tumors or liver fibrosis [6].
Additionally, the study of second-gradient effects in ultrasonic wave propagation is crucial for the
development of metamaterials, engineered materials designed to have specific wave propagation
characteristics. By tailoring the second-gradient parameters, researchers can design materials with
bespoke dispersion and attenuation properties, opening up new possibilities for applications in sensing,
communication, and imaging technologies [5]. Last but not least, we would like to highlight a recent
contribution that has significantly inspired our work, specifically the thesis by Ronny Hofmann[10].
His study focuses on laboratory measurements of clastic rocks, ranging from 3 Hz to 500 kHz, and their
application to well log analysis and a time-lapse study in the North Sea. Within this framework, the
measurements reveal substantial dispersion in sandstones due to the saturation of inhomogeneities and
open boundaries (such as pore pressure diffusion), which in turn affects the material’s compressibility
and stiffness.

Furthermore, attenuation is directly related to the rate of change of the modulus. This concept
is summarized in Figure 1 [10], which illustrates that a certain parameter µ defined in Hofmann’s
thesis [10] changes i.e. from 0.8 to 0.2, the dispersion of phase velocities is higher as Figure 1a and the
attenuation peaks in Figure 1b become more pronounced. The variation of phase velocity occurs at
peak attenuation frequency, as for Figure 1c.
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Figure 1. Influence of a certain parameter µ defined in Hofmann’s thesis [10] on phase velocity (a) and attenuation (b).In the
attenuation peak point we observe the variation of phase velocity (c).

Since no continuous model currently exists that can capture the aforementioned effect, the aim of
this research is to provide a model that, starting from the Rayleigh-Hamilton principle and considering
both the material’s internal viscosity and second-gradient parameters, can simulate the aforementioned
dispersive and dissipative effects.

Beside the Introduction, the paper is organized into the following sections:

• Section 2 outlines the construction of the governing equations based on the Hamilton-Rayleigh
principle, considering both internal viscosity and second gradient parameters of the material.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 April 2025 doi:10.20944/preprints202504.0083.v1

https://doi.org/10.20944/preprints202504.0083.v1


4 of 17

Starting from the dispersion equation and using the wave form solution we derive the wavenum-
ber, then the velocity phase and the quality factor for the evaluation of attenuation phenomena.
Once the methodology and model have been finalized, we search for materials and experimental
data from the literature to validate the model.

• Section 3 focuses on the validation of the above model. Three case studies from the literature (one
involving natural materials and two involving artificial materials) are examined. The purpose
is to compare experimental data with the numerical simulation results derived from the model.
Results and comments on the comparison above mentioned are also discussed in this section.
Moreover, we have introduced a numerical simulation to evaluate general aspects of the wave’s
behavior, both from the perspective of dispersion and attenuation.

• Finally, Section 4 offers our conclusions, reflections on future developments and reports all the
contributions.

A list of abbreviations used in the manuscript and all the references adopted for this study are presented
at the end of the article.

2. Modelling and Methods
2.1. Scope and Strategy

We are searching for a model that can reproduce the variation of phase velocity and attenuation
with wave frequency for a given material, as shown in Figure 1c, that is our benchmark. In this context,
we will consider the Rayleigh-Hamilton principle, using second-gradient and viscous parameters to
describe the displacement involved in the energies represented in the principle. The Partial Differential
Equation (PDE) obtained will be solved using a wave form solution to derive the dispersion equation
that includes phase velocity and attenuation.

2.2. Variational Derivation of Governing Equations (PDE and BCs)

We begin by recalling the extended Rayleigh-Hamilton principle that postulates the variation of
the Action, δA, to be connected to the Rayleigh function R:

δA =
∫ t1

t0

{∫ L

0

(
δK − δWint

)
dx + δWext

}
dt =

∫ t1

t0

(
δR
δu̇′ δu′ +

δR
δu̇′′ δu′′

)
dt, (1)

where the three energy functions K, the kinetic energy density, W, the potential energy density,
and Wext, the external energy function, are equal to:

K =
∫ L

0

(
1
2

ρu̇2 +
1
2

ηu̇′2
)

dx, (2)

Wint =
∫ L

0

(
1
2

k1u′2 +
1
2

k2u′′2
)

dx, (3)

Wext =
[
Fext

0 u + Bext
0 u′]

x=0 +
[
Fext

L u + Bext
L u′]

x=L +
∫ L

0
(bnu + bdu′) dx, (4)

and the Raylegh function is:

R =
∫ L

0

(
1
2

c1u̇′2 +
1
2

c2u̇′′2
)

dx (5)

We recall that k1 and k2 are the standard elastic modulus for a linear one-dimensional elastic body
and the non-standard strain-gradient modulus, respectively; given the displacement u, its derivatives
with respect to time are denoted by u̇ and with respect to space u′ (first derivative) or u′′ (second
derivative), ρ and η are the mass density (mass per unit length) and the micro-inertia of the mono-
dimensional body, respectively; bn and bd are the external distributed (per unit length) forces and
double forces, respectively; Fext

0 (or Fext
L ) and Bext

0 (or Bext
L ) are the concentrated forces and double

forces, evaluated at the extrema at x = 0 (or at x = L) of the one-dimensional body, respectively.
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Meanwhile, in the Raylegh function two internal viscosity are present,c1 related to first gradient field
and c2 related to second gradient field.

Replacing (2), (3), (4) and (5) in the left side of equation (1) and integrating by parts, for every
admissible variation of the displacement filed, the variation of the Action, δA, can be reduced to:

δA =
∫ t1

t0

{∫ L

0

[
δu
(
−ρü + k1u′′ + ηü′′ − k2u(4) + bn − b′d

)]
dx
}

−
∫ t1

t0

δu(x = 0)
[
−ηu̇′(x = 0)− k1u′(x = 0) + k2u′′′(x = 0) + bd

]
dt

+
∫ t1

t0

δu(x = L)
[
−ηu̇′(x = L)− k1u′(x = L) + k2u′′′(x = L) + bd

]
dt

−
∫ t1

t0

δu′(x = 0)
[
−k2u′′(x = 0)

]
dt

+
∫ t1

t0

δu′(x = L)
[
−k2u′′(x = L)

]
dt. (6)

The variation of Raylegh function will be:

∫ t1

t0

(
δR
δu̇′ δu′ +

δR
δu̇′′ δu′′

)
dt =

∫ t

0

∫ L

0

(
c1u̇′δu′ + c2u̇′′δu′′)dx dt, (7)

that integrating by parts, in space and time, becomes:

∫ t1

t0

(
δR
δu̇′ δu′ +

δR
δu̇′′ δu′′

)
dt =

∫ t1

t0

[
c1u̇′δu

]L

0
dt −

∫ t1

t0

∫ L

0
c1u̇′′δu dx dt

+
∫ t1

t0

[
c2u̇′′δu′

]L

0
dt −

∫ t1

t0

[
c2u̇′′′δu

]L

0
dt

+
∫ t1

t0

∫ L

0
c2u̇(4)δu dx dt. (8)

Then, replacing equations (8) and (6) in (1) and ordering we obtain:

δA =
∫ t1

t0

{∫ L

0

[
δu
(
−ρü + k1u′′ + ηü′′ − k2u(4) + bn − b′d + c1u̇′′ − c2u̇(4)

)]
dx
}

dt

−
∫ t1

t0

δu(x = 0)
[
−ηu̇′(x = 0)− k1u′(x = 0) + k2u′′′(x = 0) + bd

−c1u̇′(x = 0) + c2u̇′′′(x = 0)
]
dt

+
∫ t1

t0

δu(x = L)
[
−ηu̇′(x = L)− k1u′(x = L) + k2u′′′(x = L) + bd

−c1u̇′(x = L) + c2u̇′′′(x = L)
]
dt

−
∫ t1

t0

δu′(x = 0)
[
−k2u′′(x = 0)− c2u̇′′(x = 0)

]
dt

+
∫ t1

t0

δu′(x = L)
[
−k2u′′(x = L)− c2u̇′′(x = L)

]
dt = 0. (9)

where, since the displacement u(x, t) is assumed to be prescribed both at t = t0 and at t = t1, we
have that δu(x, t = t0) = δu(x, t = t1) = 0. Equation (9) must hold for every admissible variation
δu of the displacement field u. So, the last four addends of equation (9) must therefore be null. On
one hand, if the displacement u or the displacement gradient u′ are prescribed at the boundary (i.e.,
the left-hand sides of the following equations are satisfied), then its variation is null as well as the
corresponding line of equation (9). On the other hand, to make null the same lines of equation (9),
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if the mentioned kinematic conditions are not prescribed, then the right-hand sides of the following
equations are satisfied:

u(0, t) = u0(t) (10)

or − ηu̇′(x = 0, t)− k1u′(x = 0, t) + k2u′′′(x = 0, t) + bd

− c1u̇′(x = 0, t) + c2u̇′′′(x = 0, t) = Fext
0 ,

u(L, t) = uL(t) (11)

or − ηu̇′(x = L, t)− k1u′(x = L, t) + k2u′′′(x = L, t) + bd

− c1u̇′(x = L, t) + c2u̇′′′(x = L, t) = −Fext
L ,

u′(0, t) = b0(t) or − k2u′′(x = 0, t)− c2u̇′′(x = 0, t) = Bext
0 (t), (12)

u′(L, t) = bL(t) or − k2u′′(x = L, t)− c2u̇′′(x = L, t) = −Bext
L (t). (13)

for every instants of time, e.g., ∀t ∈ R. Finally, also the first line of equation (9) must be zero for every
admissible variation δu of the displacement field. Thus, because of its arbitrariness, it results:

−ρü + k1u′′ + ηü′′ − k2u(4) − b′d + bn + c1u̇′′ − c2u̇(4) = 0, ∀x ∈ [0, L], ∀t ∈ R. (14)

2.3. Wave form solution

Equation (14) is the Partial Differential Equation (PDE) governing the evolution of the displace-
ment field u(x, t) for the investigated model, that will be solved in the following two subsections. In
particular, we search for (14) a wave form solution and we assume the body length L to be sufficiently
large so that the boundary conditions (BCs) (10)-(13) do not influence the solution.

Equation (14) can be solved considering no external distributed actions (bn = 0 and bd = 0) in the
form of the following plane wave solution for the displacement field:

u(x, t) = Re
(

u0ei(ωt−kω x)
)

, (15)

where u0 is the complex wave amplitude, ω is the frequency of the wave expressed in Rad/s, kω is
the complex wave number, i is the imaginary unit and Re is the real part operator. Calculating the
derivatives of (15) and replacing them into (14), it results:

(k2 + ic2ω)k4
ω + (k1 + ic1ω − ηω2)k2

ω − ρω2 = 0, (16)

where the arbitrariness of the complex wave amplitude u0 has been considered. Equation (16) is a
fourth-degree algebraic equation in terms of kω, and therefore admits four complex solutions for kω.
However, in (16) kω appears only with even powers (k2

ω or k4
ω). Thus, if kω = k̂ω is a solution of (16)

also kω = -k̂ω is a solution as a consequence, then two of these solutions correspond to right-hand
propagating waves, while the other two are equal in magnitude and opposite in sign. The reason is the
isotropy of the domain. In the formulae, two independent solutions are:

kω1,2 =

√
−(k1 + ic1ω − ηω2)±

√
(k1 + ic1ω − ηω2)2 + 4(k2 + ic2ω)(ρω2)

2(k2 + ic2ω)
. (17)
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Remembering the correlation between frequency ω, wave number kw and phase velocity vp [11],
we obtain an expression for the two phase velocities:

vp1,2 = Re

(
ω

kω1,2

)
=

= Re

(√
2(k2 + ic2ω)ω2

−(k1 + ic1ω − ηω2)±
√
(k1 + ic1ω − ηω2)2 + 4(k2 + ic2ω)(ρω2)

)
. (18)

Similarly, starting from the wave number kw, it is possible to determine the corresponding two
quality factors Q1 and Q2 [10] as the inverse of the damping ratio zeta, then as a function of the
real/imaginary parts of the wave number:

ζ1,2 =
1

Q1,2
= −

Im(kω1,2)

Re(kω1,2)
. (19)

In conclusion, equations (18) and (19) serve as the reference for our model, linking phase velocity
and attenuation to the frequency of the wave propagating through the material.

3. Validation: Results and Discussion
3.1. Introduction

As already highlighted in the introduction of this manuscript, we want to validate this model
with data available for common construction material in the literature [12,13]. Such literature has been
selected because, within many available articles, both phase velocity and attenuation measurements
have been made for the same material at same frequencies. In detail, we investigate a sandstone
sample [12], a cement paste sample [13]and finally a concrete sample [13]. For each material we
have developed a case of study, then the validation is obtained by superimposing the theoretical
predictions (obtained from numerical simulations) with the experimental data. In detail, first, we
propose a numerical simulation that allows us to make general considerations about the dispersive
behavior of the wave, characteristic of our model. Second, we validate the model using the materials
presented above, comparing the available experimental data with the numerical simulation. The
material constitutive parameters used in this section are presented in Table 1. Figures 2 and 3 refer to
the numerical simulation toward the benchmark (Figure 1), while Figures 4–6 refer to the case studies.

Table 1. Table of constitutive parameters for different figures.

Reference Figure nr.
Constitutive Parameters

k1 k2 ρ η c1 c2[
kg m−1 s−2][kg m s−2] [

kg m−3] [
kg m−1] [

kg m−1 s−1][kg m s−1]
benchmark

1 2 1 0.5 1 0.1 1 1 x 10−3

benchmark
2 3 1 0.5 1 0.1 3 1 x 10−3

sandstone 4 7.7 x 109 0.1 x 106 2650 0.04 100 5 x 10−3

cement
paste 5 11.3 x 109 1.8 x 106 1500 0.253 23.8 x 103 1 x 10−3

concrete 6 37.3 x 109 33.5 x 106 2450 1.4 300 x 103 1 x 10−3
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Figure 2. Phase velocity vp (m/s) and damping ratio as functions of the frequency ω (rad/s) according to equations (18)
and (19) for a given material with constitutive parameters as shown in Table 1. The characteristic frequency, at which
the attenuation peak can be distinguished, is 3.2 rad/s. The two asymptotes defined in equations (20) and (21) are also
represented.
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Figure 3. Phase velocity vp (m/s) and damping ratio as functions of the frequency ω (rad/s) according to equations (18)
and (19) for a given material with constitutive parameters as shown in Table 1. The point at which the velocity jump occurs
corresponds to the common peak, respectively maximum and minimum, of the two wave signals. The two asymptotes defined
in equations (20) and (21) are also represented.
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Figure 4. Phase velocity vp (m/s) and attenuation coefficient as functions of the frequency ω (rad/s) according to equations
(18) and (23) for a sedimentary rock with constitutive parameters as shown in Table 1. Red points represent the experimental
data by literature.
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Figure 5. Phase velocity vp (m/s) and attenuation coefficient as functions of the frequency ω (rad/s) according to equations
(18) and (23) for a paste cement sample with constitutive parameters as shown in Table 1. Red points represent the
experimental data by literature.
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Figure 6. Phase velocity vp (m/s) and attenuation coefficient as functions of the frequency ω (rad/s) according to equations
(18) and (23) for a concrete sample with constitutive parameters as shown in Table 1.Red points represent the experimental
data by literature.

3.2. Numerical Simulation Toward to the Benchmark

In Figure 2, we show for the numbers explained in Table 1 a graphical representation of the
two phase velocities (18) and their respective attenuations (19) for the same values of the material
characteristics present in Table 1. For c1 and c2 equal to zero, vp2 is zero, while vp1 asymptotically
tends to the velocities for low-frequency regime vl and for the high-frequency regime vh as follows:

lim
ω→0

lim
c1→0

lim
c2→0

vp1,2 = vl =

√
k1

ρ
, (20)

lim
ω→∞

lim
c1→0

lim
c2→0

vp1,2 = vh =

√
k2

η
, (21)

For c1 and c2 different from zero, we observe in Figure 2 that the wave with phase velocity vp2

has a much higher attenuation than the wave with phase velocity vp1, thus making it experimentally
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unmeasurable. Moreover, the variation of velocity from low to high frequency regimes occurs at a
characteristic frequency for both waves, corresponding to the attenuation peak. For certain values
of the viscosities c1 and c2, we can observe, as shown in Figures 3, a jump in the values of the phase
velocities vp1 and vp2 , at the frequency at which the attenuation curves of the two signals exhibit a
common peak. Nevertheless, the phase velocity measurable by ultrasonic instruments will be in all the
cases the one with the lower attenuation, that is, vp1 in the numerical example considered.

3.3. Validation with Data from Literature

Since experimental attenuation measurements available in the literature are generally expressed
as the loss of signal amplitude between one end and the other of the sample along its length L and
are measured in (dB/m), it is useful to introduce an attenuation coefficient, according the following
formulation[12]:

α = −20
x

· log(
ux

u0
), (22)

Replacing (15) into (22), using the Eulero proprieties and considering the real part and the imaginary
part of the wavenumber, we obtain:

α = −20ikω ≈ 20Im(kω), (23)

where in the wavenumber we can omit the real part since, due to the fact we use maxim values of
amplitude in (23), the cosine of the wavenumber, corresponding to the its real part, assume values
for sure lower than those referred to the imaginary part. Once the material stiffness parameters,
microstructure, micro-inertias, and density are set, the next step is to evaluate how variations in the
internal viscosity of the material influence the combination of parameters that best approximate the
experimental data for phase velocity and attenuation.

3.3.1. 1st Case of Study: Sandstone

The sediment specimen was prepared in a 100 mm × 100 mm × 50 mm container immersed in water
to optimize velocity dispersion and minimize ultrasonic pulse attenuation [12]. The experiment took
place in a 650 mm × 750 mm × 1500 mm water bath, using two matched pairs of broadband transducers
with center frequencies of 0.5 MHz and 1.0 MHz[12]. The transducers were aligned coaxially with a
150 mm separation, mounted on a stable frame to ensure accurate wave amplitude measurements and
prevent pressure variations on the probes [12] . In this case of study we know already the bulk modulus
of the material and its density, so the phase velocity for low regime frequency is immediately obtained
by equation (20). The values of microstructure and micro-inertia can be derived by calculating the
characteristic length of the material, taking in account the fact that the velocity in the high-frequency
regime is lower than that in the low-frequency regime according experimental data. In Figure 4, we
present the overlap between numerical simulation, using the constitutive parameters of Table 1, and
experimental data for phase velocity and wave attenuation in the tested material. In the frequency
range of investigation, no attenuation peak is observed. The monotone trend observed in both phase
velocity (decreasing) and attenuation (increasing) is successfully captured by the numerical simulation,
confirming the model’s accuracy in describing wave propagation behavior.

3.3.2. 2nd Case of Study: Cement Paste

The specimens tested were cubic of 150 mm edge, the experimental setup is a simple through-
transmission ultrasonic configuration, using a waveform generator board and two broadband trans-
ducers of frequency between 300 kHz and 1 MHz, and a data acquisition system [13]. We consider the
data for a sample with ratio water/ciment=0.375[13]. In Figure 5 we can compare experimental data
with model numerical simulation. The velocity phase suddenly decreases (at 200 kHz) till to tend to
the velocity for high frequency regime; in the attenuation graphic we observe the increasing trend,
although a resonance peak can be observed at 100 kHz in the experimental data, probably due to other
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effects not included in the model as internal micro-fractures with inclusion of fluids or a measurement
error.

3.3.3. 3rd Case of Study: Concrete

As for the cement paste, the specimens tested were cubic of 150 mm edge, and the experimental
setup was the same of previous case of study [13]. Several different compositions of concrete were
manufactured in function of water to cement ratio and of aggregate to cement ratio for a total of 24
specimens[13]. We consider the data for a sample with ratio water/ciment=0.375 [13]. Also in this case
the model confirms the monotone trend of the experimental data[13].

4. Conclusions
The limitations of classical methods for the dynamic identification of material constitutive pa-

rameters, as well as the need for simple and reliable models capable of interpreting both dissipation
and dispersion phenomena in wave propagation, are well-known issues[11]. Wave dispersion in
materials under dynamic conditions has been extensively investigated in recent scientific literature
[14–28]. Additionally, the effects of wave dissipation, starting from the wave amplitude value, have
been the subject of many reference studies for this work[29–38]. Once the wave propagation has been
reconstructed in terms of both dispersion and attenuation, excluding singular points such as cavities
or localized heterogeneities, we know the variation of the phase velocity and wave amplitudes across
the entire frequency spectrum and can also characterize them in classical terms[11,13,39,40]. With this
study we have formulated and validated a theoretical model that allows us to characterize, for a given
material, both the dispersion and attenuation of the ultrasonic wave propagating through it, as well
as all the key constitutive parameters associated with ultrasonic propagation (mechanical stiffness,
microstructure, internal viscosity). The models has been constructed by applying the principle of
Hamilton-Raylegh [41,42] and for the sake of simplicity, a one-dimensional model and only the longi-
tudinal elastic modulus have been considered, whereas for the future a more in-depth investigation
can take into account also 3D effects and therefore all the relevant elastic parameters.
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Abbreviations
The following abbreviations are used in this manuscript:
Legend of Symbols and Their Meanings

Symbol Mean
A(u) Action functional
K Kinetic energy density
Wint Potential energy density
Wext External energy
x Position in the reference configuration
t Time
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t0, t1 Two instants of time
L Length of the 1D model in the reference configuration
u(x, t) Displacement field
k1 Standard material elastic modulus
k2 Non-standard strain gradient material elastic modulus
ρ Mass density
η Micro-inertia
Fext

y Concentrated forces applied at x = y
Bext

y Concentrated double forces applied at x = y
δ Variation operator
bn Distributed forces
bd Distributed double forces
u0 Complex wave amplitude
kw Wave number
k̂w Wave number for right-hand direction propagative wave
ω Wave frequency
i Imaginary unit
Re Real operator
Im Imaginary operator
vp Plane wave velocity phase
vl Low frequency regime velocity
vh High frequency regime velocity
c1 Internal material viscosity related to first gradient field
c2 Internal material viscosity related to second gradient field
R Rayleigh function
Q Quality factor
ζ Damping ratio
α Attenuation coefficient
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