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Abstract

In this paper, we propose the set-membership quaterniomalimed least-mean-square (SM-QNLMS) algo-
rithm. For this purpose, first, we review the quaternion tl@asan-square (QLMS) algorithm, then go into the
quaternion normalized least-mean-square (QNLMS) algaritBy having the QNLMS algorithm, we propose the
SM-QNLMS algorithm in order to reduce the update rate of tidL @IS algorithm and avoid updating the system
parameters when there is not enough innovation in upcomate dMoreover, the SM-QNLMS algorithm, thanks to
the time-varying step-size, has higher convergence raterapared to the QNLMS algorithm. Finally, the proposed
algorithm is utilized in wind profile prediction and quatemic adaptive beamforming. The simulation results
demonstrate that the SM-QNLMS algorithm outperforms theL®IS algorithm and it has higher convergence
speed and lower update rate.

Index Terms

Adaptive filtering, set-membership filtering, quaterni®@MV-QNLMS, wind profile prediction, quaternionic
adaptive beamforming.

. INTRODUCTION

HE quaternions are a number system that extends the complakars. Initially, they were intro-

duced by William Rowan Hamilton in 1843 [1]. They have manylagations to multivariate signal
processing problems, such as wind profile prediction [J]-4dlor image processing [5], [6], and adaptive
beamforming [4], [7], [8]. A broad family of quaternion basalgorithms have been proposed in adaptive
filtering literatures [4], [9]-[12].

The quaternion domain generalizes the complex domain areb gis a useful way to process 3- and
4-dimensional signals. In recent years, many quaternicgedadaptive filtering algorithms have been
introduced, and they take advantage of the fact that theequah domain is a division algebra and it
has suitable data representation [13], [14]. Hence, theéequian algorithms permit a coupling between
the components of 3- and 4-dimensional processes. Furtiierrthe quaternion-valued algorithm brings
better performance in comparison with the real-valuedrélyms, since it accounts for the coupling of the
wind measurements and can be boosted to exploit the augdnguégernion statistics [15]. As a result,
as compared to the real-valued algorithmsRih and R*, they present better stability and more degrees
of freedom in the control of the adaptation process.

In this work, we assume an effective approach in order togedbe computational resources of an
adaptive filter by employing set-membership filtering (SM&ghnique [16]-[18]. For real numbers, the
set-membership normalized least-mean-square (SM-NLM&) [18], [19] and the set-membership affine
projection (SM-AP) [18], [20], [21] algorithms have alrgatleen proposed. There are many variants of
the set-membership algorithms and their applications aptde filtering literatures [22]-[26]. Moreover,
the set-membership quaternion affine projection algorittas already been introduced in [4]. Here, by
generalizing the SM-NLMS algorithm, we want to introduce tet-membership quaternion normalized
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least-mean-square (SM-QNLMS) algorithm to operate witd tuaternion numbers. The product of
guaternion numbers is not commutative, and the proposeatitdo gets around this drawback.

Ultimately, we apply the SM-QNLMS algorithm to predictinget wind profile and compare their
competitive performance with the quaternion least-meprae (QLMS) and the quaternion normalized
least-mean-square (QNLMS) algorithms. Moreover, we sthéyquaternion adaptive beamforming as an
application of the quaternion-valued algorithms. In thiarmer, we will reduce the number of involved
sensors in the adaptation mechanism. As a result, we camasecthe computational complexity and
the energy consumption of the system. As demonstrated irencah results, we recognize that the SM-
QNLMS algorithm has higher convergence rate and lower @e as compared to the QLMS and the
QNLMS algorithms.

This paper is organized as follows. A short introduction teatgrnions is provided in Section II.
Section Il briefly reviews the concept of SMF, but insteadre&l numbers, we utilize quaternions.
Section IV reviews the QLMS algorithm, and the SM-QNLMS alton is derived in Section V.
Simulations and numerical results are provided in Sectignaxd Section VII draws the conclusions.

Notations Scalars are denoted by lower case letters. Vectors (regjriare represented by lowercase
(uppercase) boldface letters. The quaternion numbermyisteepresented bifl. At iterationk, the weight
vector and the input vector are denotedwoyk), x(k) € HY ™!, respectively, wheréV is the adaptive filter
order. For a given iteratiok, the error signal is defined agk) = d(k) — w" (k)x(k), whered(k) € H
is the desired signal and)?” stands for the vector and matrix hermitian.

Il. QUATERNIONS

The quaternion number system is a non-commutative extersficomplex numbers, represented by
H. A quaternion numbeg € H is described by [1]

q=qa+ @t + g7+ qak, (1)

whereq,, ¢, q., andg,; are real numbers. The real component;a$ q,, while ¢, ¢., andg, are its three
imaginary components. The orthogonal unit imaginary axstars:, 5, and x satisfy in the following
rules

1) =K IR =1 Kt =17,

P =P =kt =gk =—1. (2)

Note that the quaternion multiplication is a non-commutatiperator; we have = —x # 1y for example.
The element 1 is the identity elementldf The conjugate of a quaternian represented by*, is defined

as
4" = qa — @1 — qc] — qak, 3)
and the normg| is expressed by
lal = Vg~ = \/q2+q§+qZ+Q§- 4)
The inverse of; is proposed as
1 q*
¢ = (5)
lq]?
Note thatq can be reformulated into the Cayley-Dickson [7] form thrbug
q = (qa + qcg) T2 (@ + qay), (6)
—_— Y
21 29

where z; and z, are complex numbers.
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[1l. SET-MEMBERSHIPFILTERING (SMF) IN H

The aim of the SMF is to obtaiw such that the magnitude of the output estimation error iseupp
bounded by a predetermined positive vaiudVe can change the value ®fwith the specific application.
If the value of7 is properly adopted, there are many valid estimatessftoAssume thatS denotes the set
of all possible input-desired data pairs, d) of interest and denote by the set of all vectorsv whose
magnitudes of their output estimation errors are upper 8edrby”y whenever(x,d) € S. The setO is
called feasibility set and is introduced by

02 () {weH":|d—w'x| <7}, 7)
(x,d)eS

Let’s define the constraint sé{(k) containing all vectorsw such that the magnitude of their output
estimation errors at time instahtare upper bounded by,

H(k) £ {w e BV - |d(k) — w'x(k)| < 7). ®)
Then the membership sét(k) is introduced by

k
Y(k) £ ﬂH(i)- @)

The membership set will contai@ and will coincide with© if all data pairs inS are traversed up to time
instantk. Due to difficulties to calculate (), adaptive approaches are needed [16]. The simplest method
is to calculate a point estimate utilizing, for example, ith@rmation provided by the constraint skt k)

as in the set-membership normalized least-mean-squaoeithlg [16], or several preceding constraint
sets as in the set-membership affine projection algorith®h [2

V. THE QUATERNION NORMALIZED LMS ALGORITHM

In this section, we review the quaternion normalized LMS (@) algorithm. For this purpose, first,
we remind the quaternion LMS (QLMS) algorithm. The QLMS altjon for quaternion signals, which
usually appear in image signal processing and multidinograsisignal processing applications, is derived
in [2]. The updating equation for the QLMS algorithm is désed by

w(k+1) =w(k) + pe*(k)x(k). (10)

The parameter in the equation above is the step-size, and it should betedlsmall enough to guarantee

the convergence of the algorithm. In general, the QNLMS rdlgm presents better performance than the
QLMS algorithm in many applications. The update equatiothefQNLMS algorithm can be characterized

as

e*(k)x(k) w e*(k)x(k)
xH (B)x(k) +6 (k) + x(B)Z+ 0’

where ||x(k)||* + § is the normalizing term and € R, is a small positive constant introduced to avoid
division-by-zero exception.

w(k+1)=w(k)+pu (11)
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V. THE SEFMEMBERSHIP QUATERNION NORMALIZEDLMS ALGORITHM

The set-membership QNLMS (SM-QNLMS) algorithm has a strectanalogous to the QNLMS
algorithm. The fundamental idea of the SM-QNLMS algorittsrta implement an evaluation to check if
the previous weight vectow (k) belongs to the constraint sét(k). If the norm of the output estimation
error signale(k) is greater than the predetermined positive vajuéhe new weight vectow (£ + 1) will
be updated to the closest boundary of the constraint{$gl at a minimum distance. In other words, the
objective function of the SM-QNLMS algorithm is given by

min [|[w(k +1) — w(k)|?

subject to

w(k+1) € H(k). (12)
The updating procedure is obtained by implementing an gadhal projection of the previous weight

vector onto the closest boundary &f(%).
To obtain the recursion rule of the SM-QNLMS algorithm, amsuhat thea priori errore(k) is given

by
e(k) = d(k) — w" (k)x(k), (13)
and consider the update equation of the QNLMS algorithm withvariable step-size(k) as follows
p(k) \
T R)x(k) +5e (k)x(k). (14)

In order to attain the update equation of the SM-QNLMS alyon, we require to adopt(k) suitably
such that it satisfies the desired set-membership upddtidged, the update must happen if

le(k)| = |d(k) — w" (k)x(k)| >7 (15)
and the norm of the posteriorierror must be given by
le(k)] =ld(k) — w! (k + )x(k)| =7

() W (x(8) ~ s e ()

w(k+1)=w(k)+

_ pu(k) H

where |e(k)| = 7 becausew (k) is updated to the closest boundary#fk). The parametes is a small
constant since it is responsible for regularization to dvamiimerical problems, thus it can be neglected

leading to
le(k)| = le(k) (1 — (k)| =7 (17)
v
=1 — u(k)| = >0 (18)
=101 =
Y
=1—pulk) = (19)
W)= 1w
7
=ulk)=1-— : (20)
=1~
Our purpose is to implement update whiefk)| > 7, thus the variable step-size is given by
1— = if |e(k)] > 7,
= le(k)]
(k) { 0 otherwise. (1)

Finally, the SM-QNLMS algorithm is summarized in Table I. Asule of thumb, the value 6f is adopted
about./502, whereo? is the variance of the additive noise in the desired signa).[2
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TABLE |
SET-MEMBERSHIP QUATERNIONNLMS ALGORITHM

SM-QNLMS Algorithm

Initialization

w(0)=1[0 --- 07

choosey around/502

choose small positive constafit

Do fork >0
e(k) = d(k) — w (k)x(k)
1 ohr i Je(k)] > 7,
= le(k)]
u(k) { 0 otherwise.

w(k+1) =w(k)+ %6*(’@)’((/‘7)
end

VI. SIMULATIONS

In this section, we utilize the QLMS, the QNLMS, and the SMHQWS algorithms in two scenarios.
In Scenario 1, we use these algorithms in wind profile premhicand, in Scenario 2, we implement
guaternionic adaptive beamforming by these algorithms.

A. Scenario 1

In this scenario, the QLMS, the QNLMS, and the SM-QNLMS aitons are applied to anemometer
readings provided by Google’s RE Initiative [28]. The wind speed recorded on May 25, 2011, is
utilized for the algorithms comparisons. The step-sjzeis adopted ag0~® and 0.9 for the QLMS and
the QNLMS algorithms, respectively. The value ®fis chosen as 5. The filter order is 7, i.ev(k)
contains 8 coefficients, and the prediction step is seleetpthl to 1. All algorithms are initialized with
the zero vector.

Figure 1 shows the predicted results using the QLMS, the QNLkhd the SM-QNLMS algorithms.
We can observe that the QLMS algorithm, the solid magentaegwannot track the wind speed, the
solid black curve, as well as the QNLMS algorithm, the dastiedl blue curve, and the SM-QNLMS
algorithm, the dashed red curve. As can be seen, the SM-QNalg&@ithm is tracking the wind speed
as well as the QNLMS algorithm; however, the SM-QNLMS altjori has lower update rate and avoid
updating the filter coefficients when there is no innovatioapcoming data. Indeed, the update rate of the
SM-QNLMS algorithm is 17.%, whereas the update rate of the QNLMS algorithm is%20Therefore,
the SM-QNLMS algorithm has a significantly higher compwuasl efficiency as compared to the QNLMS
algorithm, and this algorithm outperforms the QLMS and tHeL®IS algorithms.

B. Scenario 2

One of the most important applications of the quaterniosedaadaptive algorithms is in quaternionic
adaptive beamforming. By utilizing the crossed-dipoleagrand quaternions, we can reduce the number
of engaged sensors in the adaptive beamforming processeH#dre computational complexity and the
energy consumption of the system will decrease withountpsihe quality of the performance [8], [17],
[29]-[31].

In this scenario, we perform the quaternionic adaptive heamng [3], [17] utilizing the QLMS, the
QNLMS, and the SM-QNLMS algorithms. We assume a sensor amty 10 crossed-dipoles and half-
wavelength spacing. The step sizefor the QLMS and the QNLMS algorithms aex 10~> and 0.009,
respectively. A desired signal with 20 dB SNR:(= 0.01) impinges from broadside}, = 0 and¢ = Z,
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Fig. 1. Predicted results from the QLMS, the QNLMS, and the-@MLMS algorithms.

and two interfering signals with signal-to-interferenegio (SIR) of -10 dB arrive from(0,¢) = (7, 7)

and (0, ¢) = (3, —73), respectively. All the signals have the same polarizatib(non) = (0,0), and7 is

set to be,/202.

The learning curves of the QLMS, the QNLMS, and the SM-QNLMgathms over 100 independent
runs are depicted in Figure 2(a). The average number of apgetrformed by the SM-QNLMS algorithm
is 1425 in a total of 10000 iterations, i.e., 14725As can be seen, the SM-QNLMS algorithm converges
faster while having a lower number of updates as comparededNLMS algorithm. Indeed, the SM-
QNLMS algorithm not only reduces the update rate but alscesses the convergence rate in comparison
with the QNLMS algorithm. Furthermore, as can be seen, théM®lalgorithm has lower MSE and
extremely low convergence speed as compared to the QNLM3hen8M-QNLMS algorithms.

The response of a beamformer to the impinging signals as @ifumof  is called beam pattern and
is defined asB(0) = wis(6), wheres(#) is the steering vector. The magnitude of beam pattern explai
the variation of a beamformer concerning the signal argvimom different Direction of Arrival (DOA)
angles. Figure 2(b) presents the magnitude of the beanrpatteghe QLMS, the QNLMS, and the SM-
QNLMS algorithms with¢ = 0. In Figure 2(b), the positive values éfshow the value range < [0, 7]
for ¢ = 7 and the negative values,c [-7, 0], indicate the same range 6fc [0, 7] but ¢ = —7. We
can see that all the quaternion algorithms obtained an tadalepbeamforming result since the two nulls
at the directions of the interfering signals are clearlyibles
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Fig. 2. (a) The MSE learning curves of the QLMS, the QNLMS, a&nel SM-QNLMS algorithms; (b) Beam patterns of the QLMS, the
QNLMS, and the SM-QNLMS algorithms when DOA of the desireghsil is (0, ¢) = (0, %).

TABLE I
THE OSDRAND THE OSIRFOR THEQLMS, THE QNLMS, AND THE SM-QNLMS ALGORITHMS

Algorithms | QLMS | QNLMS | SM-QNLMS
OSDR (dB)| -1.651 | -1.508 -0.026
OSIR (dB) | -11.702| -11.564 | -10.074

The output signal to desired plus noise ratio (OSDR) and thiput signal to interference plus noise
ratio (OSIR) for the QLMS, the QNLMS, and the SM-QNLMS algbms are presented in Table II.
The OSDR is attained by computing the power of the outputadignd the total power of desired plus
one-third of the noise signal, and then we compute the rafwden these two values. Also, the OSIR is
achieved by calculating the power of the output signal amdttital power of interference plus one-third
of the noise signal, and then we find the ratio between the Ye can observe that the best results are
attained by the SM-QNLMS algorithm.

VIlI. CONCLUSIONS

In this paper, we have reviewed some properties of quatemionbers, and we have discussed the
set-membership filtering strategy in the systems of quatemumbers. Also, we have studied the QLMS
algorithm, and by normalizing this algorithm, we have reprged the QNLMS algorithm. Then we have
proposed the SM-QNLMS algorithm aiming at reducing the tipdate of the QNLMS algorithm. Finally,
we have examined these algorithms in wind profile predicaod quaternionic adaptive beamforming.
As indicated by the numerical results, the SM-QNLMS aldoritnot only has higher computational
efficiency as compared to the QNLMS algorithm but also olstaiignificant higher convergence speed.
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