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Abstract

In this paper, we propose the set-membership quaternion normalized least-mean-square (SM-QNLMS) algo-
rithm. For this purpose, first, we review the quaternion least-mean-square (QLMS) algorithm, then go into the
quaternion normalized least-mean-square (QNLMS) algorithm. By having the QNLMS algorithm, we propose the
SM-QNLMS algorithm in order to reduce the update rate of the QNLMS algorithm and avoid updating the system
parameters when there is not enough innovation in upcoming data. Moreover, the SM-QNLMS algorithm, thanks to
the time-varying step-size, has higher convergence rate ascompared to the QNLMS algorithm. Finally, the proposed
algorithm is utilized in wind profile prediction and quaternionic adaptive beamforming. The simulation results
demonstrate that the SM-QNLMS algorithm outperforms the QNLMS algorithm and it has higher convergence
speed and lower update rate.

Index Terms

Adaptive filtering, set-membership filtering, quaternion,SM-QNLMS, wind profile prediction, quaternionic
adaptive beamforming.

I. INTRODUCTION

THE quaternions are a number system that extends the complex numbers. Initially, they were intro-
duced by William Rowan Hamilton in 1843 [1]. They have many applications to multivariate signal

processing problems, such as wind profile prediction [2]–[4], color image processing [5], [6], and adaptive
beamforming [4], [7], [8]. A broad family of quaternion based algorithms have been proposed in adaptive
filtering literatures [4], [9]–[12].

The quaternion domain generalizes the complex domain and gives us a useful way to process 3- and
4-dimensional signals. In recent years, many quaternion based adaptive filtering algorithms have been
introduced, and they take advantage of the fact that the quaternion domain is a division algebra and it
has suitable data representation [13], [14]. Hence, the quaternion algorithms permit a coupling between
the components of 3- and 4-dimensional processes. Furthermore, the quaternion-valued algorithm brings
better performance in comparison with the real-valued algorithms, since it accounts for the coupling of the
wind measurements and can be boosted to exploit the augmented quaternion statistics [15]. As a result,
as compared to the real-valued algorithms inR

3 andR
4, they present better stability and more degrees

of freedom in the control of the adaptation process.
In this work, we assume an effective approach in order to reduce the computational resources of an

adaptive filter by employing set-membership filtering (SMF)technique [16]–[18]. For real numbers, the
set-membership normalized least-mean-square (SM-NLMS) [16], [18], [19] and the set-membership affine
projection (SM-AP) [18], [20], [21] algorithms have already been proposed. There are many variants of
the set-membership algorithms and their applications in adaptive filtering literatures [22]–[26]. Moreover,
the set-membership quaternion affine projection algorithmhas already been introduced in [4]. Here, by
generalizing the SM-NLMS algorithm, we want to introduce the set-membership quaternion normalized
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least-mean-square (SM-QNLMS) algorithm to operate with the quaternion numbers. The product of
quaternion numbers is not commutative, and the proposed algorithm gets around this drawback.

Ultimately, we apply the SM-QNLMS algorithm to predicting the wind profile and compare their
competitive performance with the quaternion least-mean-square (QLMS) and the quaternion normalized
least-mean-square (QNLMS) algorithms. Moreover, we studythe quaternion adaptive beamforming as an
application of the quaternion-valued algorithms. In this manner, we will reduce the number of involved
sensors in the adaptation mechanism. As a result, we can decrease the computational complexity and
the energy consumption of the system. As demonstrated in numerical results, we recognize that the SM-
QNLMS algorithm has higher convergence rate and lower update rate as compared to the QLMS and the
QNLMS algorithms.

This paper is organized as follows. A short introduction to quaternions is provided in Section II.
Section III briefly reviews the concept of SMF, but instead ofreal numbers, we utilize quaternions.
Section IV reviews the QLMS algorithm, and the SM-QNLMS algorithm is derived in Section V.
Simulations and numerical results are provided in Section VI, and Section VII draws the conclusions.

Notations: Scalars are denoted by lower case letters. Vectors (matrices) are represented by lowercase
(uppercase) boldface letters. The quaternion number system is represented byH. At iterationk, the weight
vector and the input vector are denoted byw(k),x(k) ∈ H

N+1, respectively, whereN is the adaptive filter
order. For a given iterationk, the error signal is defined ase(k) , d(k)−w

H(k)x(k), whered(k) ∈ H

is the desired signal and(·)H stands for the vector and matrix hermitian.

II. QUATERNIONS

The quaternion number system is a non-commutative extension of complex numbers, represented by
H. A quaternion numberq ∈ H is described by [1]

q = qa + qbı + qc+ qdκ, (1)

whereqa, qb, qc, andqd are real numbers. The real component ofq is qa, while qb, qc, andqd are its three
imaginary components. The orthogonal unit imaginary axis vectorsı, , andκ satisfy in the following
rules

ı = κ κ = ı κı = ,

ı2 = 2 = κ2 = ıκ = −1. (2)

Note that the quaternion multiplication is a non-commutative operator; we haveı = −κ 6= ı for example.
The element 1 is the identity element ofH. The conjugate of a quaternionq, represented byq∗, is defined
as

q∗ = qa − qbı− qc− qdκ, (3)

and the norm|q| is expressed by

|q| =
√
qq∗ =

√

q2a + q2b + q2c + q2d. (4)

The inverse ofq is proposed as

q−1 =
q∗

|q|2 . (5)

Note thatq can be reformulated into the Cayley-Dickson [7] form through

q = (qa + qc)
︸ ︷︷ ︸

z1

+ı (qb + qd)
︸ ︷︷ ︸

z2

, (6)

wherez1 andz2 are complex numbers.
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III. SET-MEMBERSHIP FILTERING (SMF) IN H

The aim of the SMF is to obtainw such that the magnitude of the output estimation error is upper
bounded by a predetermined positive valueγ. We can change the value ofγ with the specific application.
If the value ofγ is properly adopted, there are many valid estimates forw. Assume thatS denotes the set
of all possible input-desired data pairs(x, d) of interest and denote byΘ the set of all vectorsw whose
magnitudes of their output estimation errors are upper bounded byγ whenever(x, d) ∈ S. The setΘ is
called feasibility set and is introduced by

Θ ,
⋂

(x,d)∈S

{w ∈ H
N+1 : |d−w

H
x| ≤ γ}, (7)

Let’s define the constraint setH(k) containing all vectorsw such that the magnitude of their output
estimation errors at time instantk are upper bounded byγ,

H(k) , {w ∈ H
N+1 : |d(k)−w

H
x(k)| ≤ γ}. (8)

Then the membership setψ(k) is introduced by

ψ(k) ,

k⋂

i=0

H(i). (9)

The membership set will containΘ and will coincide withΘ if all data pairs inS are traversed up to time
instantk. Due to difficulties to calculateψ(k), adaptive approaches are needed [16]. The simplest method
is to calculate a point estimate utilizing, for example, theinformation provided by the constraint setH(k)
as in the set-membership normalized least-mean-square algorithm [16], or several preceding constraint
sets as in the set-membership affine projection algorithm [20].

IV. THE QUATERNION NORMALIZED LMS ALGORITHM

In this section, we review the quaternion normalized LMS (QNLMS) algorithm. For this purpose, first,
we remind the quaternion LMS (QLMS) algorithm. The QLMS algorithm for quaternion signals, which
usually appear in image signal processing and multidimensional signal processing applications, is derived
in [2]. The updating equation for the QLMS algorithm is described by

w(k + 1) = w(k) + µe∗(k)x(k). (10)

The parameterµ in the equation above is the step-size, and it should be selected small enough to guarantee
the convergence of the algorithm. In general, the QNLMS algorithm presents better performance than the
QLMS algorithm in many applications. The update equation ofthe QNLMS algorithm can be characterized
as

w(k + 1) = w(k) + µ
e∗(k)x(k)

x
H(k)x(k) + δ

= w(k) + µ
e∗(k)x(k)

‖x(k)‖2 + δ
, (11)

where‖x(k)‖2 + δ is the normalizing term andδ ∈ R+ is a small positive constant introduced to avoid
division-by-zero exception.
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V. THE SET-MEMBERSHIP QUATERNION NORMALIZED LMS ALGORITHM

The set-membership QNLMS (SM-QNLMS) algorithm has a structure analogous to the QNLMS
algorithm. The fundamental idea of the SM-QNLMS algorithm is to implement an evaluation to check if
the previous weight vectorw(k) belongs to the constraint setH(k). If the norm of the output estimation
error signale(k) is greater than the predetermined positive valueγ, the new weight vectorw(k+1) will
be updated to the closest boundary of the constraint setH(k) at a minimum distance. In other words, the
objective function of the SM-QNLMS algorithm is given by

min ‖w(k + 1)−w(k)‖2
subject to

w(k + 1) ∈ H(k). (12)

The updating procedure is obtained by implementing an orthogonal projection of the previous weight
vector onto the closest boundary ofH(k).

To obtain the recursion rule of the SM-QNLMS algorithm, assume that thea priori error e(k) is given
by

e(k) = d(k)−w
H(k)x(k), (13)

and consider the update equation of the QNLMS algorithm withthe variable step-sizeµ(k) as follows

w(k + 1) = w(k) +
µ(k)

x
H(k)x(k) + δ

e∗(k)x(k). (14)

In order to attain the update equation of the SM-QNLMS algorithm, we require to adoptµ(k) suitably
such that it satisfies the desired set-membership updating.Indeed, the update must happen if

|e(k)| = |d(k)−w
H(k)x(k)| > γ (15)

and the norm of thea posteriorierror must be given by

|ε(k)| =|d(k)−w
H(k + 1)x(k)| = γ

=|d(k)−w
H(k)x(k)− µ(k)

x
H(k)x(k) + δ

e(k)xH(k)x(k)|

=|e(k)− µ(k)

x
H(k)x(k) + δ

e(k)xH(k)x(k)|, (16)

where|ε(k)| = γ becausew(k) is updated to the closest boundary ofH(k). The parameterδ is a small
constant since it is responsible for regularization to avoid numerical problems, thus it can be neglected
leading to

|ε(k)| = |e(k)(1− µ(k))| = γ (17)

⇒|1− µ(k)| = γ

|e(k)| > 0 (18)

⇒1− µ(k) =
γ

|e(k)| (19)

⇒µ(k) = 1− γ

|e(k)| . (20)

Our purpose is to implement update when|e(k)| > γ, thus the variable step-size is given by

µ(k) =

{
1− γ

|e(k)|
if |e(k)| > γ,

0 otherwise.
(21)

Finally, the SM-QNLMS algorithm is summarized in Table I. Asa rule of thumb, the value ofγ is adopted
about

√

5σ2
n, whereσ2

n is the variance of the additive noise in the desired signal [27].
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TABLE I
SET-MEMBERSHIP QUATERNIONNLMS ALGORITHM

SM-QNLMS Algorithm

Initialization
w(0) = [0 · · · 0]T

chooseγ around
√
5σ2

n

choose small positive constantδ
Do for k ≥ 0
e(k) = d(k)−w

H(k)x(k)

µ(k) =

{

1− γ

|e(k)|
if |e(k)| > γ,

0 otherwise.
w(k + 1) = w(k) + µ(k)

x
H(k)x(k)+δ

e∗(k)x(k)

end

VI. SIMULATIONS

In this section, we utilize the QLMS, the QNLMS, and the SM-QNLMS algorithms in two scenarios.
In Scenario 1, we use these algorithms in wind profile prediction and, in Scenario 2, we implement
quaternionic adaptive beamforming by these algorithms.

A. Scenario 1

In this scenario, the QLMS, the QNLMS, and the SM-QNLMS algorithms are applied to anemometer
readings provided by Google’s RE<C Initiative [28]. The wind speed recorded on May 25, 2011, is
utilized for the algorithms comparisons. The step-size,µ, is adopted as10−8 and 0.9 for the QLMS and
the QNLMS algorithms, respectively. The value ofγ is chosen as 5. The filter order is 7, i.e.,w(k)
contains 8 coefficients, and the prediction step is selectedequal to 1. All algorithms are initialized with
the zero vector.

Figure 1 shows the predicted results using the QLMS, the QNLMS, and the SM-QNLMS algorithms.
We can observe that the QLMS algorithm, the solid magenta curve, cannot track the wind speed, the
solid black curve, as well as the QNLMS algorithm, the dash-dotted blue curve, and the SM-QNLMS
algorithm, the dashed red curve. As can be seen, the SM-QNLMSalgorithm is tracking the wind speed
as well as the QNLMS algorithm; however, the SM-QNLMS algorithm has lower update rate and avoid
updating the filter coefficients when there is no innovation in upcoming data. Indeed, the update rate of the
SM-QNLMS algorithm is 17.9%, whereas the update rate of the QNLMS algorithm is 100%. Therefore,
the SM-QNLMS algorithm has a significantly higher computational efficiency as compared to the QNLMS
algorithm, and this algorithm outperforms the QLMS and the QNLMS algorithms.

B. Scenario 2

One of the most important applications of the quaternion-based adaptive algorithms is in quaternionic
adaptive beamforming. By utilizing the crossed-dipole array and quaternions, we can reduce the number
of engaged sensors in the adaptive beamforming process. Hence, the computational complexity and the
energy consumption of the system will decrease without losing the quality of the performance [8], [17],
[29]–[31].

In this scenario, we perform the quaternionic adaptive beamforming [3], [17] utilizing the QLMS, the
QNLMS, and the SM-QNLMS algorithms. We assume a sensor arraywith 10 crossed-dipoles and half-
wavelength spacing. The step size,µ, for the QLMS and the QNLMS algorithms are4× 10−5 and 0.009,
respectively. A desired signal with 20 dB SNR (σ2

n = 0.01) impinges from broadside,θ = 0 andφ = π
2
,

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 December 2018                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 December 2018                   doi:10.20944/preprints201812.0061.v1

http://dx.doi.org/10.20944/preprints201812.0061.v1


6

Samples
0 50 100 150 200 250 300

W
in

d 
sp

ee
d 

(m
/s

)

5

6

7

8

9

10

11

12

13
Original data
QLMS prediction
QNLMS prediction
SM-QNLMS prediction

115 120 125 130 135

6

7

8

9

Fig. 1. Predicted results from the QLMS, the QNLMS, and the SM-QNLMS algorithms.

and two interfering signals with signal-to-interference ratio (SIR) of -10 dB arrive from(θ, φ) = (π
4
, π
2
)

and (θ, φ) = (π
3
,−π

2
), respectively. All the signals have the same polarization of (γ, η) = (0, 0), andγ is

set to be
√

2σ2
n.

The learning curves of the QLMS, the QNLMS, and the SM-QNLMS algorithms over 100 independent
runs are depicted in Figure 2(a). The average number of updates performed by the SM-QNLMS algorithm
is 1425 in a total of 10000 iterations, i.e., 14.25%. As can be seen, the SM-QNLMS algorithm converges
faster while having a lower number of updates as compared to the QNLMS algorithm. Indeed, the SM-
QNLMS algorithm not only reduces the update rate but also increases the convergence rate in comparison
with the QNLMS algorithm. Furthermore, as can be seen, the QLMS algorithm has lower MSE and
extremely low convergence speed as compared to the QNLMS andthe SM-QNLMS algorithms.

The response of a beamformer to the impinging signals as a function of θ is called beam pattern and
is defined asB(θ) = w

H
s(θ), wheres(θ) is the steering vector. The magnitude of beam pattern explains

the variation of a beamformer concerning the signal arriving from different Direction of Arrival (DOA)
angles. Figure 2(b) presents the magnitude of the beam pattern of the QLMS, the QNLMS, and the SM-
QNLMS algorithms withθ = 0. In Figure 2(b), the positive values ofθ show the value rangeθ ∈ [0, π

2
]

for φ = π
2

and the negative values,θ ∈ [−π
2
, 0], indicate the same range ofθ ∈ [0, π

2
] but φ = −π

2
. We

can see that all the quaternion algorithms obtained an acceptable beamforming result since the two nulls
at the directions of the interfering signals are clearly visible.
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2
).

TABLE II
THE OSDRAND THE OSIRFOR THEQLMS, THE QNLMS, AND THE SM-QNLMS ALGORITHMS

Algorithms QLMS QNLMS SM-QNLMS
OSDR (dB) -1.651 -1.508 -0.026
OSIR (dB) -11.702 -11.564 -10.074

The output signal to desired plus noise ratio (OSDR) and the output signal to interference plus noise
ratio (OSIR) for the QLMS, the QNLMS, and the SM-QNLMS algorithms are presented in Table II.
The OSDR is attained by computing the power of the output signal and the total power of desired plus
one-third of the noise signal, and then we compute the ratio between these two values. Also, the OSIR is
achieved by calculating the power of the output signal and the total power of interference plus one-third
of the noise signal, and then we find the ratio between the two.We can observe that the best results are
attained by the SM-QNLMS algorithm.

VII. CONCLUSIONS

In this paper, we have reviewed some properties of quaternion numbers, and we have discussed the
set-membership filtering strategy in the systems of quaternion numbers. Also, we have studied the QLMS
algorithm, and by normalizing this algorithm, we have represented the QNLMS algorithm. Then we have
proposed the SM-QNLMS algorithm aiming at reducing the update rate of the QNLMS algorithm. Finally,
we have examined these algorithms in wind profile predictionand quaternionic adaptive beamforming.
As indicated by the numerical results, the SM-QNLMS algorithm not only has higher computational
efficiency as compared to the QNLMS algorithm but also obtains significant higher convergence speed.
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