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Abstract: The marine lysozyme fermentation process is a highly nonlinear, multi-stage, strongly time-varying 

system, making it hard to ensure model stability and prediction accuracy in the global scope by a conventional 

single global soft sensor model. To effectively solve the above problem, this study innovatively proposed a soft 

sensor modeling method based on an improved seagull optimization algorithm (ISOA) combined with 

Gaussian process regression (GPR) weighted ensemble learning. First, the sample data set is divided into 

multiple local sample subsets by the improved density peak clustering algorithm (ADPC). Second, the 

Gaussian process regression model is optimally altered with an improved seagull optimization algorithm for 

the purpose of establishing the corresponding sub-prediction model. Finally, the prediction model's fusion 

strategy is ultimately determined depending on the degree of connection between the test samples and a subset 

of local pieces. Simulation results show that the proposed soft sensor model can predict the key biochemical 

parameters of the marine lysozyme fermentation process well with less prediction error through fewer training 

data, which can be extended to soft sensor modeling of general nonlinear systems. 

Keywords: marine lysozyme; seagull optimization algorithm; Gaussian process regression; soft 

sensor; gray correlation analysis 

 

Introduction 

Marine lysozyme (ML) has the characteristics of a low action temperature, a wide pH range, 

vigorous activity at room temperature, and a moderate reduction in activity as temperature decreases 

[1,2]. It gives new energy and chances to cleaning, medicine, environmental protection, and food 

processing sectors [3,4]. To take full advantage of the unique enzymatic properties of marine 

lysozyme and maximize production efficiency and product quality, it is necessary to have dynamic 

regulation and real-time optimization of the marine lysozyme fermentation process. However, the 

fermentation of marine lysozyme is a multivariate, time-varying, and complex nonlinear process. Key 

biochemical parameters that directly reflect the quality of the fermentation process, such as cell 

concentration, substrate concentration, and relative enzyme activity, can only be roughly estimated 

through offline sampling and analysis due to practical process technology and cost considerations. 

This procedure not only delays the collection of information, affecting the operator's ability to make 

accurate decisions about the real-time response status, but it also limits the implementation of the 

best control methods. Therefore, it is urgently to find a method to achieve real-time and accurate 

prediction of key biochemical parameters in marine lysozyme fermentation process. 

Soft sensor technology is an effective way to solve the above problems [5–9]. Among them, 

Gaussian process regression is an innovative methodology that has emerged in recent years. It shows 

excellent adaptability and generalization ability in solving small sample, serious dimensional, 

complex nonlinear regression problems [10–13].Currently, most of the soft sensor models constructed 

by Gaussian process regression method are single global soft sensor models. Although they can fulfill 

the basic requirements of online prediction of key biochemical parameters, they do not take into 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 August 2023                   doi:10.20944/preprints202308.0893.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202308.0893.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

account the nonlinear, multivariate, time-varying, and multi-stage characteristics of the biological 

fermentation process, making the global soft sensor model challenging to describe the multi-stage 

characteristics of the fermentation process and cannot guarantee prediction accuracy in the global 

scope.  

Based on this analysis, this paper proposes a soft sensor method based on the improved seagull 

optimization algorithm combined with Gaussian process regression (ISOA-GPR) weighted 

integration to demonstrate individual differences between local models. First, a subset of local 

samples is divided and trained using an improved density peak clustering algorithm (ADPC) to 

generate the ISOA-GPR local prediction submodel. Then, we extract the center of mass of each local 

sample subset using the enhanced grey correlation algorithm and weight the information entropy to 

derive a weighted "center of mass" that more accurately represents the subset's characteristics. 

Ultimately, the integration strategy for enhancing the weighting of the grey correlation algorithm is 

proposed by selecting the local submodels with a higher degree of association with the test samples. 

The simulation results show that the proposed method has less prediction error and reduced 

volatility compared to the single global soft sensor model based on ISOA-GPR. 

Theoretical Analysis 

2.1. Data subsets Construction Strategy 

Using the distribution of marine lysozyme fermentation process data, we propose an improved 

density peak clustering algorithm (ADPC) that evaluates the similarity between data in terms of the 

proximity between data samples. Density peak clustering (DPC) is a typical methodology founded 

on density clustering [14]. The cluster center is assumed to have a more significant local density and 

a greater relative distance 
iδ from other cluster centers than other data points. The algorithm also 

requires that each data point relied on for classification has two feature values, local density iρ and 

relative distance iδ . 

For the sample set R , the local density 
iρ  of data 

ix  is 

2

exp ij

i i j
c

dist

dist≠
ρ =

  
 −    

  (1)

Where ijdist  is the distance between data ix  and jx , and cdist  is the truncation distance. 

This research employs a declining trend inscription adaptive cluster center acquisition approach 

to increase cluster center selection accuracy. Because the DPC algorithm's clustering center has a 

higher local density and relative distance than other data points, the logarithmic function was picked 

to accentuate the disparity between the clustering center and other data points. After arranging the 

acquired choice parameters in descending order, the declining trend of iγ  values is determined as 

i

∗γ
.
 

Define a decision parameter iγ  that combines local density and relative distance: 

( )lgi i iγ = ρ × δ  (2)

1

1

i i
i

i i

∗ γ γ
γ =

γ γ
−

+

−

−
  (3)

Where iγ  represents the current γ  value and 1iγ −  1iγ +  represent the γ  values at the 

preceding and subsequent times, respectively. 

The method was applied to the marine lysozyme data samples, and the distribution of decision 

parameters and the decreasing trend of decision parameters were obtained, as shown in Figure 1 and 

Figure 2, respectively. 
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Figure 1. Distribution of decision parameter
i

∗γ . 

 

Figure 2. Decision parameters i

∗γ  Trend of drop. 

2.2. Sub-Model Construction 

The real marine lysozyme fermentation process exhibits apparent non-linear properties, a tiny 

data sample size, and challenging offline extraction. The Gaussian process regression method was 

chosen to establish a sub-prediction model for marine lysozyme fermentation in this paper [15]. For 

Gaussian process regression models, the choice of hyperparameters substantially affects the 

prediction model's precision. Traditional parameter selection methods rely heavily on experience and 

trial and error; regression accuracy and calculation speed are not guaranteed. In order to generate a 

sub-model with a better prediction effect, this paper uses the Improved Seagull Optimization 

Algorithm (ISOA) for online optimization and adjustment of hyperparameters. 

2.3. Improved Seagull Optimization Algorithm 

The seagull optimization algorithm (SOA) is an intelligent algorithm that simulates individual 

seagull flocks in nature and seeks to perform iterative optimization search in the solution space by 

employing the long-distance migration and spiral attack behavior of individual seagulls with the 

change of seasons [16]. 

In the conventional seagull optimization algorithm, the inertia weight decreases linearly as the 

number of iterations increases. Even though the repetition speed is faster, it is easy to cause the 

population variety to fall with each iteration. There is also a problem with weak global search ability 

in the early stage and poor local mining ability in the later stage. So this paper proposes a non-linear 

change in the inertia weight updating strategy. The specific expression is as follows: 
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tanC

iteration

t
f

Max

π π
Α = − × ×

4 4

 
− 

 
 (4)

Where t  is the current number of iterations, 
iterationMax  is the maximum number of iterations, 

and Cf  is a constant whose initial value is set to 2. 

In the early iterations of the improved seagull optimization algorithm, the inertia weight A  

decreases abruptly to maintain population diversity while enhancing its global search capability; in 

the later stages of execution, the inertia weight A  decreases gradually to increase the local search 

capability while ensuring that the algorithm is not easily trapped in a local optimum. Therefore, the 

optimal adjustment for the hyperparameters with the improved seagull optimization algorithm will 

undoubtedly result in a more accurate soft sensor model. 

2.4. Submodel Selection and Fusion Strategy 

This paper finds the weighted "center of mass" mZ  that best represents the whole data subset 

and describes the relationship between the sub-model and the test sample by the degree of association 

between mZ  and the test sample so that the right sub-model can be selected for integration 

weighting. The correlation coefficient between the test sequences and the weighted "center of mass" 

of the local subset was analyzed using an improved gray correlation algorithm that more accurately 

reflects the fluctuation between the marine lysozyme fermentation data sequences to determine their 

degree of correlation. Given a sample subset of marine lysozyme fermentation process data 

{ }mr 1 nix i= ; = ,2, , , where dR nix ∈ ,  is the number of samples in each subgroup and d  is the 

feature variable's dimensionality. Let the reference sequence be ( ) ( ) ( ){ }0 0 0 01 2x x x x d= , , ,  and 

calculate the gray correlation coefficient: 

( )
min min max max

,
max max

[0,1]n k n k
i

n k

k
Δ ρ Δ

ς = ρ
Δ ρ Δ

∈
+

+
 (5)

Where ( )( ) ( )( ) ( )
2 2

0 0 1 2i ix k x x k x k dΔ = − , = , , ,− −   ( )
1

1 d

i i

k

x x k
d =

=   ρ  indicates the 

resolution coefficient, which is taken as 0.5. 

The correlation between the reference and comparison sequences is calculated as follows: 

( )
1

i i
d

d
ϕ = ς  (6)

So that each sample of the local sample subset is used as a reference sequence and the remaining 

samples are comparison sequences, the correlation matrix of the generated samples is calculated as 

follows: 

12 1

21 2

1 2

1
1

1

n

n

n n

ϕ ϕ

ϕ ϕ
φ =

ϕ ϕ

 
 
 
 
 
 




   


 (7)

The sample with the strongest correlation with all subsets is picked as the data set's initial center 

of mass, and its correlation coefficients with other samples in that subset are reported to generate the 

correlation coefficient matrix: 
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In this paper, we present information entropy weighting to characterize the degree of variation 

for each feature variable under the correlation coefficient matrix, assign objective weights to the 

feature variables, and derive an objective subset of the "center of mass." In general, the lower a 

feature variable's information entropy, the larger its degree of variation and the higher its 

given weight. Conversely, when information entropy increases, the relevance of feature variables 

decreases, and weights decrease. The characteristic weight of the jnd characteristic variable of the 

i th sample is calculated as: 

( )
( )1

i

ij n

i i

j
P

j=

ζ
=

Σ ζ
 (9)

Entropy value of the j  characteristic variable： 

( ) ( )

( )
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1 ln , 0ln

lim ln 0, 0
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j ij ij iji

ij ij ij
P

e P P P
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=

→
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

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

  

(10)

Then, the weights of each characteristic variable are in the correlation system matrix. 

1

1

j

j d

i

je
w

d e
=

−
=

−
 

(11)

The previous computation produces the weighted center-of-mass 
m jZ w Z∗=  of the m sample 

subsets of the fermentation process, assuming that the enhanced density peak clustering approach 

correctly collects m local sample subsets. We obtained the x∗
 correlation set 

[ ]m1 2 3ω = ω ,ω ,ω , ,ω using the fermentation test sample as the reference sequence and the m 

subsets of "center of mass" 
mZ  as the comparison sequence. We kept the ISOA-GPR sub-model 

corresponding to a correlation degree greater than or equal 
∗ω . Its corresponding fermentation 

process sub-model prediction result is [ ]1 2 3 1pre pre pre pre prey y y y y mη= , , , , ,η∈ ,   , so the final 

prediction result of gray correlation weighted integration is: 

31 2
1 2 3prediction pre pre pre prey y y y y

η
η

η η η η

ωωω ω
= + + +

ω ω ω ω   
  (12)

Modeling Process 

Figure 3 depicts the specific flow of soft sensor modeling for marine lysozyme fermentation 

process. The procedure of modeling is described as follows: 

Step1: Obtain data on marine lysozyme fermentation process through experiments, including 

major environmental parameters and key biochemical parameters(bacteriophage concentration, 

substrate concentration, relative enzyme activity). The upgraded density peak clustering technique 

is utilized to define local sample subsets ( { }1 2 mR r r r= , ,   , )as well as to calculate the weighted 

center of mass ( mZ ) for each local sample subset. 
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Step 2: Calculate the consistent correlations degree between various enviornmental parameters 

and key biochemical parameters,and select environmental parameters with correlations greater than 

0.7 as auxiliary variables. Building a GPR sub-model for ISOA optimization. 

Step 3: Send the measured data ( x∗ ) to be bested, caluculate its gray correlation (

( )1i i mω = ,2, , ) with each weighted "center of mass", and select the ISOA-GPR model ( 0.7iω > ) 

as a submodel. Determine the output weights of each sub-model and output predictions  according 

to equation (12). 
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Figure 3. Soft sensor modeling specific flow chart. 

Example Simulation 

In this study, simulations are done utilizing marine lysozyme fermentation process data to 

demonstrate the efficiency of the proposed online soft sensor modeling method. The culture strain 

was S-12-86, and the fermenter model was A103-500L. The Yellow Sea Fisheries Research Institute of 

the Chinese Academy of Fisheries Sciences gave the marine lysozyme fermentation method, and the 

Jiangsu University fermentation control system platform provided the navigational lysozyme 

fermentation data. 

With bacterium concentration (X), substrate concentration (S), and relative enzyme activity (P) 

as the most critical variables for marine lysozyme fermentation, we used the consistent correlation 

method to filter the auxiliary variables and took data from a total of 15 fermentation batches. The first 

12 batches, which included 720 total data points, served as training samples, while the final three 

batches, which had 180 total data points, served as test samples. These measurements were utilized 

for training simulations based on a single global ISOA-GPR model and an ISOA-GPR-weighted 

ensemble soft sensor model. The simulation results are depicted in Figures 4–9. To show that the 

ISOA-GPR weighted ensemble soft sensor model performs better, root mean square and maximum 

absolute errors compare how well the two models can predict. Table 1 displays the results. 

( )  ( )( )
2

1

1 im i

RMSE i
e y y

m =
= −  (13)

( )  ( )
max

i
i

MAEe y y= −   (14)

Where 
( )i
y  represents the values of all actual key biological parameters (bacterial 

concentration, substrate concentration, and relative enzyme activity) for the tested samples and  ( )i
y  
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represents the values of all predicted key biological parameters (bacterial concentration, substrate 

concentration, and relative enzyme activity) for the tested samples. 

 

Figure 4. Predicted curve of bacterium concentration. 

 

Figure 5. Error variation curve of bacterium concentration. 

 

Figure 6. Predicted curve of substrate concentration. 
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Figure 7. Error variation curve of substrate concentration. 

 

Figure 8. Predicted curve of relative enzyme activity. 

 

Figure 9. Error variation curve of relative enzyme activity. 

Table 1. Comparison of the errors of the two modeling methods. 

Modeling Method 
  

X S P X S P 

Single global ISOA-GPR 

model 
1.2 1.5017 7.1730 0.8153 0.6946 2.4651 
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Weighted ensemble 

ISOA-GPR model 
0.5333 0.8103 0.8439 0.2561 0.3281 0.5509 

The above results make it clear that the Gaussian process regression model can predict the key 

biochemical parameters of marine lysozyme with fewer sample data. The suggested technique in this 

research has a narrower range of overall error volatility in prediction results than a single global 

ISOA-GPR-based soft sensor modeling approach, which can better monitor the actual values of key 

biochemical parameters. Using bacteriophage concentration as an example, the maximum absolute 

error of a single global ISOA-GPR soft sensor modeling is 1.2. In contrast, the maximum absolute 

error of ISOA-GPR weighted ensemble soft sensor modeling is only 0.5333. The root means square 

error of both is 0.8153 and 0.2561, respectively, implying that soft sensor modeling based on ISOA-

GPR weighted integration has better prediction and approximation accuracy. 

Conclusions 

The fundamental biological characteristics of marine lysozyme fermentation process are 

challenging to assess online and in real-time. To handle the problem that a single global model 

method is less reliable and does not guarantee global forecast accuracy. We present an ISOA-GPR-

weighted ensemble soft sensor modeling approach in this research. First, the fermentation process 

data are adaptively partitioned on the improved density peak clustering algorithm. Then, a soft 

sensor sub-model of the fermentation process was created with an enhanced seagull optimization 

algorithm and the Gaussian process regression (ISOA-GPR) methodology. Finally, an improved grey 

correlation algorithm is employed to extract the subset's entropy-weighted "centre of mass" and filter 

the sub-model integration output. We use the developed soft sensor modeling approach to predict 

key parameters of marine lysozyme. The simulation data show that the root means square errors of 

the proposed method in marine lysozyme fermentation process are 0.5333, 0.8103, and 0.8439, 

respectively, which can achieve the prediction of bacteriophage concentration based on less training 

data, and the prediction errors are small enough to meet the demand for online measurement of key 

parameters of marine lysozyme. 
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