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Abstract: The marine lysozyme fermentation process is a highly nonlinear, multi-stage, strongly time-varying
system, making it hard to ensure model stability and prediction accuracy in the global scope by a conventional
single global soft sensor model. To effectively solve the above problem, this study innovatively proposed a soft
sensor modeling method based on an improved seagull optimization algorithm (ISOA) combined with
Gaussian process regression (GPR) weighted ensemble learning. First, the sample data set is divided into
multiple local sample subsets by the improved density peak clustering algorithm (ADPC). Second, the
Gaussian process regression model is optimally altered with an improved seagull optimization algorithm for
the purpose of establishing the corresponding sub-prediction model. Finally, the prediction model's fusion
strategy is ultimately determined depending on the degree of connection between the test samples and a subset
of local pieces. Simulation results show that the proposed soft sensor model can predict the key biochemical
parameters of the marine lysozyme fermentation process well with less prediction error through fewer training
data, which can be extended to soft sensor modeling of general nonlinear systems.

Keywords: marine lysozyme; seagull optimization algorithm; Gaussian process regression; soft
sensor; gray correlation analysis

Introduction

Marine lysozyme (ML) has the characteristics of a low action temperature, a wide pH range,
vigorous activity at room temperature, and a moderate reduction in activity as temperature decreases
[1,2]. It gives new energy and chances to cleaning, medicine, environmental protection, and food
processing sectors [3,4]. To take full advantage of the unique enzymatic properties of marine
lysozyme and maximize production efficiency and product quality, it is necessary to have dynamic
regulation and real-time optimization of the marine lysozyme fermentation process. However, the
fermentation of marine lysozyme is a multivariate, time-varying, and complex nonlinear process. Key
biochemical parameters that directly reflect the quality of the fermentation process, such as cell
concentration, substrate concentration, and relative enzyme activity, can only be roughly estimated
through offline sampling and analysis due to practical process technology and cost considerations.
This procedure not only delays the collection of information, affecting the operator's ability to make
accurate decisions about the real-time response status, but it also limits the implementation of the
best control methods. Therefore, it is urgently to find a method to achieve real-time and accurate
prediction of key biochemical parameters in marine lysozyme fermentation process.

Soft sensor technology is an effective way to solve the above problems [5-9]. Among them,
Gaussian process regression is an innovative methodology that has emerged in recent years. It shows
excellent adaptability and generalization ability in solving small sample, serious dimensional,
complex nonlinear regression problems [10-13].Currently, most of the soft sensor models constructed
by Gaussian process regression method are single global soft sensor models. Although they can fulfill
the basic requirements of online prediction of key biochemical parameters, they do not take into
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account the nonlinear, multivariate, time-varying, and multi-stage characteristics of the biological
fermentation process, making the global soft sensor model challenging to describe the multi-stage
characteristics of the fermentation process and cannot guarantee prediction accuracy in the global
scope.

Based on this analysis, this paper proposes a soft sensor method based on the improved seagull
optimization algorithm combined with Gaussian process regression (ISOA-GPR) weighted
integration to demonstrate individual differences between local models. First, a subset of local
samples is divided and trained using an improved density peak clustering algorithm (ADPC) to
generate the ISOA-GPR local prediction submodel. Then, we extract the center of mass of each local
sample subset using the enhanced grey correlation algorithm and weight the information entropy to
derive a weighted "center of mass" that more accurately represents the subset's characteristics.
Ultimately, the integration strategy for enhancing the weighting of the grey correlation algorithm is
proposed by selecting the local submodels with a higher degree of association with the test samples.
The simulation results show that the proposed method has less prediction error and reduced
volatility compared to the single global soft sensor model based on ISOA-GPR.

Theoretical Analysis

2.1. Data subsets Construction Strategy

Using the distribution of marine lysozyme fermentation process data, we propose an improved
density peak clustering algorithm (ADPC) that evaluates the similarity between data in terms of the
proximity between data samples. Density peak clustering (DPC) is a typical methodology founded
on density clustering [14]. The cluster center is assumed to have a more significant local density and
a greater relative distance § from other cluster centers than other data points. The algorithm also
requires that each data point relied on for classification has two feature values, local density p and
relative distance 0, .

For the sample set R, the local density p of data x, is

dist, ?
o) =Zi¢jexp - 1)

dist,

Where dist; is the distance between data x, and x,,and dist, is the truncation distance.

This research employs a declining trend inscription adaptive cluster center acquisition approach
to increase cluster center selection accuracy. Because the DPC algorithm's clustering center has a
higher local density and relative distance than other data points, the logarithmic function was picked
to accentuate the disparity between the clustering center and other data points. After arranging the
acquired choice parameters in descending order, the declining trend of ¥, values is determined as

*

I
Define a decision parameter y; that combines local density and relative distance:
7=nx1g(d) @)
s _ Y77
y; =L ()
Vi = Vin
Where ¥, represents the current y value and p,, ¥, represent the ¥ values at the

preceding and subsequent times, respectively.

The method was applied to the marine lysozyme data samples, and the distribution of decision
parameters and the decreasing trend of decision parameters were obtained, as shown in Figure 1 and
Figure 2, respectively.
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Figure 1. Distribution of decision parameter }/f .
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Figure 2. Decision parameters }/l* Trend of drop.

2.2. Sub-Model Construction

The real marine lysozyme fermentation process exhibits apparent non-linear properties, a tiny
data sample size, and challenging offline extraction. The Gaussian process regression method was
chosen to establish a sub-prediction model for marine lysozyme fermentation in this paper [15]. For
Gaussian process regression models, the choice of hyperparameters substantially affects the
prediction model's precision. Traditional parameter selection methods rely heavily on experience and
trial and error; regression accuracy and calculation speed are not guaranteed. In order to generate a
sub-model with a better prediction effect, this paper uses the Improved Seagull Optimization
Algorithm (ISOA) for online optimization and adjustment of hyperparameters.

2.3. Improved Seagull Optimization Algorithm

The seagull optimization algorithm (SOA) is an intelligent algorithm that simulates individual
seagull flocks in nature and seeks to perform iterative optimization search in the solution space by
employing the long-distance migration and spiral attack behavior of individual seagulls with the
change of seasons [16].

In the conventional seagull optimization algorithm, the inertia weight decreases linearly as the
number of iterations increases. Even though the repetition speed is faster, it is easy to cause the
population variety to fall with each iteration. There is also a problem with weak global search ability
in the early stage and poor local mining ability in the later stage. So this paper proposes a non-linear
change in the inertia weight updating strategy. The specific expression is as follows:
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iteration

Where ¢ is the current number of iterations, Max, is the maximum number of iterations,

iteration
and f. isa constant whose initial value is set to 2.

In the early iterations of the improved seagull optimization algorithm, the inertia weight A
decreases abruptly to maintain population diversity while enhancing its global search capability; in
the later stages of execution, the inertia weight A4 decreases gradually to increase the local search
capability while ensuring that the algorithm is not easily trapped in a local optimum. Therefore, the
optimal adjustment for the hyperparameters with the improved seagull optimization algorithm will
undoubtedly result in a more accurate soft sensor model.

2.4. Submodel Selection and Fusion Strategy

This paper finds the weighted "center of mass" Z, that best represents the whole data subset

and describes the relationship between the sub-model and the test sample by the degree of association
between Z  and the test sample so that the right sub-model can be selected for integration
weighting. The correlation coefficient between the test sequences and the weighted "center of mass"
of the local subset was analyzed using an improved gray correlation algorithm that more accurately
reflects the fluctuation between the marine lysozyme fermentation data sequences to determine their
degree of correlation. Given a sample subset of marine lysozyme fermentation process data

r= {xl. si=12..., nm} , where x, € R%,n isthe number of samples in each subgroup and d isthe
feature variable's dimensionality. Let the reference sequence be X, :{xo (1),x0 (2),. c X (d )} and

calculate the gray correlation coefficient:

_ mnin mkin|A| + pmax m?x|A|

. = u 1
g(k) |A|+pmaxm?x|4|| pel0] ©)

J— —_ - d
Where A= \/(xo (k)—x, )2 - \/(xi (k)—x, )2 (k=12,...d) x =$in (k) p indicates the
k=1
resolution coefficient, which is taken as 0.5.

The correlation between the reference and comparison sequences is calculated as follows:

1
0=72.6(d) ©)

So that each sample of the local sample subset is used as a reference sequence and the remaining
samples are comparison sequences, the correlation matrix of the generated samples is calculated as

follows:
1 @, - o,
o= L )
e, @, - |1

The sample with the strongest correlation with all subsets is picked as the data set's initial center
of mass, and its correlation coefficients with other samples in that subset are reported to generate the
correlation coefficient matrix:
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In this paper, we present information entropy weighting to characterize the degree of variation
for each feature variable under the correlation coefficient matrix, assign objective weights to the

feature variables, and derive an objective subset of the "center of mass." In general, the lower a
feature variable's information entropy, the larger its degree of variation and the higher its

given weight. Conversely, when information entropy increases, the relevance of feature variables
decreases, and weights decrease. The characteristic weight of the jnd characteristic variable of the

i th sample is calculated as:

G)
5= =6 () ©)

Entropy value of the j characteristic variable:

e :_%n(n)27=131 #In(B,), B, #0

. (10)
lim P, #In(F;) = 0.5, =0
Then, the weights of each characteristic variable are in the correlation system matrix.
l-e,
— J
VTS, (11)
— Z e,

The previous computation produces the weighted center-of-mass Z, =w,Z " of the m sample

subsets of the fermentation process, assuming that the enhanced density peak clustering approach
correctly collects m local sample subsets. We obtained the x° correlation set
a):[a),,a)z,a)j,...,a)m] using the fermentation test sample as the reference sequence and the m
subsets of "center of mass" Z as the comparison sequence. We kept the ISOA-GPR sub-model
corresponding to a correlation degree greater than or equal @’ . Its corresponding fermentation
process sub-model prediction result is y,, :[ Vore12Yprers Y prezs+e s ypm]],ﬂé [1,m], so the final

prediction result of gray correlation weighted integration is:

. ) a
yprediction = a)l yprel * : ypre2 + : ypreS o . yprel] (12)
20,7 e, Yo, 2.9,

Modeling Process

Figure 3 depicts the specific flow of soft sensor modeling for marine lysozyme fermentation
process. The procedure of modeling is described as follows:

Stepl: Obtain data on marine lysozyme fermentation process through experiments, including
major environmental parameters and key biochemical parameters(bacteriophage concentration,
substrate concentration, relative enzyme activity). The upgraded density peak clustering technique

is utilized to define local sample subsets (R ={r1,r2,... ,rm} )as well as to calculate the weighted

center of mass (Z,,) for each local sample subset.
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Step 2: Calculate the consistent correlations degree between various enviornmental parameters
and key biochemical parameters,and select environmental parameters with correlations greater than
0.7 as auxiliary variables. Building a GPR sub-model for ISOA optimization.

Step 3: Send the measured data ( x" ) to be bested, caluculate its gray correlation (
. (i =1,2.. .,m) ) with each weighted "center of mass", and select the ISOA-GPR model (@. >0.7)

as a submodel. Determine the output weights of each sub-model and output predictions according
to equation (12).

Initialization

{

Get fermentation data

Delineate local _ Construct the local

Select auxilia
sample subsets —» Y
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Figure 3. Soft sensor modeling specific flow chart.

Example Simulation

In this study, simulations are done utilizing marine lysozyme fermentation process data to
demonstrate the efficiency of the proposed online soft sensor modeling method. The culture strain
was S-12-86, and the fermenter model was A103-500L. The Yellow Sea Fisheries Research Institute of
the Chinese Academy of Fisheries Sciences gave the marine lysozyme fermentation method, and the
Jiangsu University fermentation control system platform provided the navigational lysozyme
fermentation data.

With bacterium concentration (X), substrate concentration (S), and relative enzyme activity (P)
as the most critical variables for marine lysozyme fermentation, we used the consistent correlation
method to filter the auxiliary variables and took data from a total of 15 fermentation batches. The first
12 batches, which included 720 total data points, served as training samples, while the final three
batches, which had 180 total data points, served as test samples. These measurements were utilized
for training simulations based on a single global ISOA-GPR model and an ISOA-GPR-weighted
ensemble soft sensor model. The simulation results are depicted in Figures 4-9. To show that the
ISOA-GPR weighted ensemble soft sensor model performs better, root mean square and maximum
absolute errors compare how well the two models can predict. Table 1 displays the results.

1 m (9) ~ (1) 2
Chuse = ;ZM Wy (13)

0 _ 70

€y = MaAX |y =y (14)

Where y(i) represents the values of all actual key biological parameters (bacterial

~(0)
concentration, substrate concentration, and relative enzyme activity) for the tested samples and y
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represents the values of all predicted key biological parameters (bacterial concentration, substrate
concentration, and relative enzyme activity) for the tested samples.
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Figure 4. Predicted curve of bacterium concentration.
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Figure 7. Error variation curve of substrate concentration.
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Figure 8. Predicted curve of relative enzyme activity.
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Figure 9. Error variation curve of relative enzyme activity.

Table 1. Comparison of the errors of the two modeling methods.

€ e
Modeling Method MAE RMSE
X S p X S P

Single global ISOA-GPR

1.2 1.5017 7.1730 0.8153 0.6946 2.4651
model



https://doi.org/10.20944/preprints202308.0893.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 August 2023 d0i:10.20944/preprints202308.0893.v1

Weighted ensemble

ISOA-GPR model 0.5333 0.8103 0.8439 0.2561 0.3281 0.5509

The above results make it clear that the Gaussian process regression model can predict the key
biochemical parameters of marine lysozyme with fewer sample data. The suggested technique in this
research has a narrower range of overall error volatility in prediction results than a single global
ISOA-GPR-based soft sensor modeling approach, which can better monitor the actual values of key
biochemical parameters. Using bacteriophage concentration as an example, the maximum absolute
error of a single global ISOA-GPR soft sensor modeling is 1.2. In contrast, the maximum absolute
error of ISOA-GPR weighted ensemble soft sensor modeling is only 0.5333. The root means square
error of both is 0.8153 and 0.2561, respectively, implying that soft sensor modeling based on ISOA-
GPR weighted integration has better prediction and approximation accuracy.

Conclusions

The fundamental biological characteristics of marine lysozyme fermentation process are
challenging to assess online and in real-time. To handle the problem that a single global model
method is less reliable and does not guarantee global forecast accuracy. We present an ISOA-GPR-
weighted ensemble soft sensor modeling approach in this research. First, the fermentation process
data are adaptively partitioned on the improved density peak clustering algorithm. Then, a soft
sensor sub-model of the fermentation process was created with an enhanced seagull optimization
algorithm and the Gaussian process regression (ISOA-GPR) methodology. Finally, an improved grey
correlation algorithm is employed to extract the subset's entropy-weighted "centre of mass" and filter
the sub-model integration output. We use the developed soft sensor modeling approach to predict
key parameters of marine lysozyme. The simulation data show that the root means square errors of
the proposed method in marine lysozyme fermentation process are 0.5333, 0.8103, and 0.8439,
respectively, which can achieve the prediction of bacteriophage concentration based on less training
data, and the prediction errors are small enough to meet the demand for online measurement of key
parameters of marine lysozyme.
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