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Abstract

Streamflow generated from snowmelt is important, and changing, in snow dominated regions of the
world. We used a new technique [1] to estimate the start and end of snowmelt streamflow for 39
gauging stations across Colorado over a 40-year period. We determined the timing and volume of
water contributed from snowmelt. We analyzed the trend of these streamflow-snowmelt metrics and
correlated them to terrain (e.g., elevation, slope, solar loading), canopy, as the Normalized Difference
Vegetation Index (NDVI), winter precipitation from the Parameter-elevation Regression on
Independent Slopes Model (PRISM) dataset, and peak SWE from Snow Telemetry (SNTOEL) data.
There were some significant correlations with winter precipitation, peak SWE, slope, and latitude,
primarily for total annual flow, and the timing and volume of the end of snowmelt streamflow
contribution.

Keywords: streamflow; snowmelt timing; snowmelt volume

1. Introduction

Mountain snowmelt generates water for streams and rivers and is a major source for a
substantially increasing portion of the Earth’s population [2]. Across the semi-arid western United
States, a majority of the precipitation falls as snow [3-5]. The timing of the start of the melt season
and when the snowmelt enters streams in the high elevation watersheds is crucial for estimating
water availability [1,6]; this timing has shifted [7-11] due mostly to climate change [12-16].

1.1. Snowmelt Streamflow Timing Metrics

Peak flow date is a simple metric of streamflow timing but neglects the remaining data for a
given year [17]. Court [17] introduced the half-flow or Center of Volume date, i.e., the day when 50%
of total annual flow has passed a stream gauging station (toso), to assess the characteristics of
streamflow timing. This toso is used extensively as a streamflow timing metric [18-20], especially to
assess the impacts of climate change [1,13,15,21-23]. Other percentages of annual flow passage have
been used as proxies for the start of snowmelt contribution, i.e., the date of 20% (taz) [15] or 25% [22]
of flow, and the end of snowmelt, i.e., the date of 75% [22] or 80% (taso) [15] of flow. To highlight the
snowmelt period further, Dudley et al. [23] proposed the Center of Volume (COV) for 50% of the flow
from January to July (tepudiey). However, all these methods are static based on a specific quantity of
the total annual (or winter [23]) streamflow. The use of taz, teso, and toso are not appropriate indicators
specifically of snowmelt timing [24] and sometimes due to large precipitation events [20,24]. These
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metrics can be influenced by inter-annual variability in streamflow volume [24] and do not reflect
how a changing climate impacts streamflow timing [1].

1.2. Objectives of the Paper

An analytical approach considering the change in streamflow using a departure from baseflow
has previously been proposed to identify the start (tostart) and end of the snowmelt contribution to
streamflow (tqend), i.e., considering the characteristics of the hydrograph [1]. Here, we use that
approach to quantify the start and end of snowmelt from the hydrograph and to determine if and
how snowmelt timing is changing. Since snowmelt streamflow characteristics change for a variety of
reasons [25,26], we evaluate these changes considering the terrain parameters (e.g., elevation, aspect,
slope), canopy from the Normalized Difference Vegetation Index (NDVI), and winter precipitation
from the Parameter-elevation Regression on Independent Slopes Model (PRISM) dataset for 39
watersheds, less than 900 km? in size. Temperature has had a strong correlation to trends in the
specified percentage of flow that has passed [15,23]. However, there is a significant inhomogeneity
in the middle (approximately 1998 to 2007) of the time series at the high elevation Snow Telemetry
(SNOTEL) stations used to derived mountain temperatures across the Western U.S. [27-29].
Therefore, spatial temperature data were not used to investigate snowmelt streamflow changes in
Colorado mountain watersheds over the 40-year study period. We used the SNOTEL Snow Water
Equivalent (SWE) station closest to each streamflow gauge to identify annual peak SWE.

The objectives of this paper are as follows: 1) apply a new method of estimating snowmelt timing
and volume for streamflow for the Southern Rocky Mountains of Colorado, 2) conduct a trend
analysis of different snowmelt timing and volume variables, 3) determine possible explanations for
these trends based on time trends in vegetation, winter precipitation, and peak SWE, as well as terrain
parameters. We explored these high-elevation watersheds in Colorado, as the state of Colorado is a
headwater state. These include the Colorado River and its tributaries (Yampa, Gunnison,
Uncompahgre, San Miguel, Dolores, Animas, and San Juan) [20], the North and South Platte Rivers,
the Arkansas River, and the Rio Grande [15]. The highest mountain peaks reach over 4,400 meters in
elevation and snowcover persists from October through May [3]. Streamflow in these watersheds is
snowmelt dominated, with 60 to 80% of the annual streamflow coming from snow [4,6,15,16].

2. Methodology

The tostart, or timing (date) of the start of the snowmelt contribution to streamflow, was computed
as the increase in streamflow from baseflow by a change in slope of at least 10 mm/day [1]. The tqend,
or the date of the end of snowmelt contribution, was computed as the decrease in streamflow back to
baseflow as the change in slope of at least 17.5 mm/day [1]. The timing of snowmelt (tostartend) Was
computed as the number of days between tostart and toend (Figure Al). This was used in lieu of toso or
topudiey. We then determined volumes of flow, in particular the total annual runoff (Q1w), the volume
that passed the gauge prior to the start and end of snowmelt (Qstart and Qend, respectively), and the
volume in between (Qstart-end) (Figure Al).

The rate of change for the trends were calculated as the Theil-Sen’s Slope [31,32], and the
significance was calculated using the Mann-Kendall Test [33,34]. Since previous studies that have
examined trends in timing of streamflow snowmelt have primarily relied on climactic indices to
explain their observations [13,15,16,23], we used precipitation data from the Precipitation-Elevation
Regressions on Independent Slopes Model (PRISM) dataset [35] to evaluate winter precipitation
(October through March), starting in 1982.

We included mean incoming winter solar radiation, basin elevation, basin slope, and location
(latitude and longitude) [36] to evaluate parameters that could influence trends. To address changes
within the watershed from land use, beetle-kill, or wildfires, we collected NDVI data from the U.S.
Geological Survey [37]. These data start in July of 1989 but would still capture major changes in
vegetation because major fires and beetle-kill didn’t occur in the Southern Rocky Mountains until the
late 1990s and early 2000s [38,39]. We calculated the correlation coefficients between the trends in
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snowmelt streamflow timing and flow volume versus terrain parameters, plus trends in vegetation
and precipitation. Further, we evaluated multi-variate linear regressions using all the variables and
the most highly correlated variables from the individual regression. The independent variables were
standardized to between 0 and 1 so that the coefficients could be compared for each regression.

3. Study Domain

We examined 40-years of streamflow (1976 through 2015) for 39 United States Geological Survey
(USGS) gauging stations across the Southern Rocky Mountains of Colorado, each with at least 30
years of record (Figure 1; Table Al). Streamflow data were obtained from the National Water
Information System [30]. All were headwater streams gauged at an elevation higher than 2000 meters
above sea level (Figure 1; Table Al). The mean basin elevation varied from 2494 to 3644 m.a.s.L
(Figure 2a), with the mean April clear sky solar radiation loading of 1407 to 1760 Wh/m? (Figure 2b).
The basins had a mean slope from 17 to 26° (Figure 2c) and ranged in size from 4 to 878 km? in size
(Figure 2d). The stations are summarized in Pfohl and Fassnacht [1]. The SWE data were obtained
from the Natural Resources Conservation Service [40].

legend
@ gauging station
elevation (m)

1300

0

Figure 1. Distribution of gauging stations across Colorado in the Southern Rocky Mountains.
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Figure 2. Study watershed parameters of (a) mean basin elevation, (b) mid-April clear sky solar radiation input,
(c) slope, and (d) basin area (logarithmic scale). The time trend in the (e) NDVI, (f) winter precipitation, and (g)
peak SWE from the near SNOTEL station. The watersheds are ordered from top to bottom by latitude with
horizontal dashed lines separating the basins by proximity, as per Figure 1. Bars with solid outlines are

statistically significant trends at p <0.05 and dashed bars are moderately significant at p <0.1 (in e, £, g).

4. Results

The canopy density, as per NDVI was increasing for 37 of the 39 all watersheds (Figure 2e),
significantly at four (moderately significant at one). Both winter precipitation (Figure 2f) and the
adjacent SNOTEL peak SWE (Figure 2g) were decreasing for all but one watershed. Most of the trends
in winter precipitation and peak SWE were not significant.

The snowmelt characteristics of streamflow have changed across most of the watersheds over
the study period (Figure 3). Most (34) see a trend of an earlier start of the snowmelt streamflow, while
only three are later (Figure 3a), with a third being of the trends being significant (and five being
moderately significant). Twenty-nine watersheds see an earlier end of the snowmelt contribution and
seven are later (Figure 3b), with about 40% being significant (9 watersheds) or moderately significant
(7 watersheds). The change in timing of the peak, denoted tqstartend, is mixed, being earlier at 12
watersheds and later at 20 (1 significantly in each direction; Figure 3c). For 27 watersheds, both tostart
and tqend trends were earlier while for only one watershed both became later. Earlier trends were
observed for all three metrics in nine watersheds.

Trends for the volume of flow that has passed the gauge were more mixed (Figure 3d-g), i.e.,
both increasing and decreasing. Total annual streamflow (Q100) increased in 23 (1 significantly and 3
moderately significant) watersheds while it decreased at the (16) others (2 significantly and 1
moderately significant) (Figure 3d). Qstart changed by the smallest amount (Figure 3e). Trends for Qend
(Figure 3f) and Qstart-end (Figure 3g) were similar (16 with more and 23 with less) with 35 having the
same sign (15 watersheds where both increased streamflow and 20 where both decreased). The trend
was in the same direction for Qstart and Qend at 20 watersheds (7 less, 13 more), and for 18 watersheds
for all four metrics (6 less, 12 more). Trends were in the same direction and significant for three
watersheds: Joe Wright Creek (more streamflow), Vasquez Creek (more streamflow), and Conejos
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River (less streamflow). The trends in Q100, Qend and Qstart-end illustrated a latitudinal pattern with most
stations north of 39.7¢ increasing in flow volume and most south decreasing (Figure 3d,f,g).

With the exception of Qswrt, snowmelt streamflow trends are more correlated to winter
precipitation or peak SWE than NDVI (Figure 4). Winter precipitation is more correlated with NDVI
(R = 0.43) than with peak SWE (R = 0.29). Mean radiation and elevation are weakly correlated to
streamflow. Mean basin slope is significantly correlated (negatively) to trends in tqend, Q100, Qend and
Qstartend. Latitude is positively correlated to all streamflow characteristics (3 significantly) while
longitude is less correlated (except tqend and tostartend that are moderately significant) than latitude.
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Figure 3. Trends in the streamflow timing (a) tastart, (b) tQend, (€) tastartend), and volume (d) Qioo, (€) Qstart, (f) Qend,
and (g) Qstart-end) across the 39 study basins. Bars with solid outlines are statistically significant trends at p < 0.05
and dashed bars are moderately significant at p <0.1.
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Figure 4. Correlation between streamflow timing (t_Qstart, t_Qend, t_Qstart-end) or volume (Q_100, Q_start,
Q_end, Q_start-end) trends and changes in time trends in NDVI, winter precipitation, peak SWE, or watershed
terrain parameters (mean radiation, mean elevation, mean slope, basin area, latitude, longitude) across the 39

study basins.

A linear multi-variate regression illustrates some significant correlation between trends in
streamflow timing and volume metrics with terrain parameters (Table 1), but not with variables with
trends, i.e., NDVI, winter precipitation, or peak SWE. The strongest correlations were for Qend and
Qstartend including all variables (R? of 0.52 and 0.46, respectively). The regression between Qi and all
variables was moderately significant (p < 0.1). Considering only some of the variables made the
regressions for taend, Q100, Qend, and Qstart-end significant (Table 1b—d). The variance explained decreased,
as shown by R?, but the individual regression variables were more consistently significant. Slope was
negatively correlated, and latitude was positively correlated with snowmelt streamflow timing and
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volume trends. Trends in the start of snowmelt streamflow, i.e., tostart and Qstart, as well as tqstart-end,

were poorly explained by the regression, not significant, and R2 was mostly less than 0.1 (Table 1).

Table 1. Linear multi-variate regression results for (a) regression with all variables (NDVI, winter precipitation,

peak SWE) and parameters (basin mean solar radiation, basin mean elevation, basin mean slope, area, latitude,

longitude), (b) regression with winter precipitation, slope and latitude, and (c) regression with winter

precipitation, slope and latitude as the independent variables to estimate timing (tqstart, tQend, tQstart-end) and flow

volumes (Qioo, Qstart, Qend, Qstart-end). The coefficient of determination (R?) and the statistical significance are

presented, with the regression coefficients. The independent variables were standardized to a value between 0

and 1. The moderately significant correlations (p<0.1) are italicized and denoted with a +; the significant

correlations (p<0.05) are in bold and denoted with a *.

. . NDVI Winter Peak Solar Elev. Slope Area Lat. Long.
Variable R2? Sign. FIntercept P SWE Rad.
(a) regression with all variables/parameters
o 012 091 -196 -0306 020 -0.003 -0.002 0.002 -0.15 - 0.12 0.06
0.0002
foped 033 016 278 -248 078 -0.01 -0.014* -0.0004 -0.22 - 0.55 0.20
0.0006
tostartend 0.10 094 817 -1.86 0.17 0.006 -0.009 -0.003 -0.05 0.0008 0.28 0.65
Quo  0.37 0.09+ -1990 -125 257 054 -0.062 0.016 -5.41* 0.034 248 -11.1
Qs 031 022 -167 536 095 -0.01 0.007 0.006 -0.28 0.011+ -0.38 -1.47
Qenda  0.52 0.006* -1200 269 744 045 -0.076 -0.014 -3.28*-0.008 22.1* -5.44
Qstartena 0.56 0.02*  -977 -28 410 045 -0.066 -0.020 -3.27+-0.054 23.5+ -2.86
(b) regression with winter precipitation, slope and latitude
tostart 0.071 0.45 -5.9 0.23 -0.096 0.15
teend  0.21 0.043* -0.03 0.49 -0.25* 0.086
tostartena 0.21 0.80 423 0.006 -0.13 -0.046
Qo 0.23 0.024* -632 2.64 -4.17* 18.2
Qs 0.08 039 532 1.12 -0.03 -1.25
0.0004
Qi 040+ 686t 6.24 -3.25% 19.0*
Qstarend 0.36 0.001*  -962* 3.16 -3.74* 26.1*
(c) regression with solar radiation, slope and latitude
tostart  0.06  0.55 -0.001 -0.11 0.44
teend  0.25 0.02% -0.011+ -0.27% 1.1
tostartend 0.07  0.45 -0.008 -0.13 0.28
Qo 0.27 0.01* -0.12 -4.3* 25.9*
Qstart  0.006 0.97 -0.001 -0.09 0.22
Qenda  0.39 0.001% -0.083 -3.5% 29.6
Qstartend 0.36 0.001* -0.044 -3.9% 31.5*
(d) regression with slope and latitude
tostart  0.057 0.35  -16.9 -0.107 0.42
teend  0.17 0.035* -23.7 -0.271* 0.68
tostartend 0.028 0.60  3.94 -0.13 -0.039
Qo 0.23 0.009* -758+ -4.29% 21.3*
Qstart 0.006 090  -4.69 -0.86 0.20
0.0003
Qend
037 * -984* -3.54* 26.4*
Qstart-end 0.35 0.0004* -1113* -3.89% 29.8*

5. Discussion

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Snowmelt-driven streamflow is occurring earlier for most basins across the study domain (tqstart
in Figure 2e and the teend in Figure 2f), as has also been seen using time-constant streamflow metrics,
i.e., too, and toso [7-11,13,15,16,21,22]. However, the trends in the tostartend Or mean of start and end
timing were mixed (Figure 3¢, Figure 3, Table 1), reflecting tostart and taend trends (Table A2) and their
differences (Figure 3a versus Figure 3b). The time-constant metrics that are meant to represent the
middle of the snowmelt streamflow peak, i.e., toso [17] or topudiey [23], are getting earlier [15]. These
time-constant streamflow metrics are relative to the water year, while tostartend is relative to the
characteristics of the hydrograph [1], as recommended by Whitfield [24]. The change in slope for
identifying the start and end of melt (here 10 and 17.5 mm/day) can influence the estimation of the
timing metrics, possibly for other climate regions. For high-elevation Colorado streamflow gauges,
the values used herein were shown to be acceptable minima [1].

The title of this paper and the third objective of this study is to determine if trends in snowmelt
streamflow can be explained by watershed parameters or trends in canopy, precipitation and peak
SWE (temperature was not assessed as described above). The simple answer is that slope, negatively,
and latitude, positively, explained changes in total flow (Q1o), the end of snowmelt streamflow (tqend,
Qend), and Qstart-end (Figure 4 and Table 1). The negative correlation with mean basin slope could imply
that gentler sloped watersheds are possibly melting out later and thus having a later tqend and larger
Qend [41]. Higher elevation watersheds tend to be steeper (Table A2). However, slopes usually vary
substantially across mountain watersheds and the mean slope may not represent watershed
processes well [42]. Winter precipitation across the state of Colorado is correlated with latitude (R =
0.59 in Table A3) [43], with southern stations seeing a larger in snowfall (Figure 2f) since about 2000
[39,44]. This correlation is also seen between NDVI and winter precipitation (R = 0.43 in Table A3)
and thus NDVI and latitude (R = 0.40). Peak SWE trends were correlated with elevation (Table A3)
[45,46], but here (Figure 2g), less correlated with winter precipitation (R = 0.29 in Table A3). Peak
SWE was extracted from SNOTEL station data [40] and these may not be representative of the
watershed [47]. These are mostly small watersheds (Figure 2d), so current SWE products [48] may
not have the necessary resolution to assess changes. Snowpack and hydrological modeling could
provide more insight into changes of processes that may dictate altering of streamflow timing [49].

There are some spatial patterns in the changes in snowmelt-driven streamflow, specifically
latitude, and to a lesser degree longitude (Figures 3 and 4). Others [15] have used the Regional
Kendall test [50] to evaluate trends and their significance across an area; due to the limited spatial
patterns observed here (Figure 3), it is recommended that Mann-Kendall test [33,34] and Theil-Sen
slope [31,32] on individual stations. Using the Regional Kendall test can produce trends that are
smaller in magnitude than observed trends at individual sites [51].

The method used herein presents the timing and volume of water at the start, end, and average
of the peak (start-end) from snowmelt contribution [1]. This information may be helpful for water
forecasters and managers making decisions about water storage and reservoirs for the future [52],
especially if timing of peak flow is incorporated [53,54].

The approach used herein [1] identifies the start and end of the snowmelt contribution for
snowmelt dominated systems as an improvement to the traditional statics approaches, such as to,
taso, and toso [15,17]. It does not specifically identify baseflow, although it has been used for that
purpose [55]. Baseflow separation techniques could be used to identify when direct or non-baseflow
starts to contribute to streamflow. This could be applied to a snowmelt dominated system to
determine when snowmelt streamflow started and ended. There are analytical approaches [54] using
only streamflow data. Snowmelt is often separated from baseflow using isotopes [55]. However, such
measurements are labor and cost intensive. Specific conductance is measured as an in-situ water
quality variable in a few locations and has been used with streamflow to separate baseflow from non-
baseflow [56]. There are now some time series long enough to examine trends.

Temperature increases are a major indication and result of climate change [12-16]. Where
temperature data are reliable, these data can be used to assess changes to snowmelt-driven
streamflow. Across Colorado [29] and the western U.S. [27,28], the inconsistency in the temperature
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time series limited their use in this study. However, future investigations could use this time series,
as the period of record of the new SNOTEL time series is now 20 or more years long [40].

Here we used NDVI [37] to assess changes in canopy. Change in land cover type and the nature
of the canopy will influence snowmelt and thus streamflow timing [57,58]. There are other datasets
that may be more useful than NDVI, such as OpenET [59].

6. Conclusions

We applied the snowmelt timing and streamflow volume metrics previously proposed [1] for 39
watersheds higher than 2,500 meters across the U.S. state of Colorado. We found that the onset and
end of snowmelt-driven streamflow was occurring earlier in almost all of the watersheds. The total
annual streamflow increased at a majority of the watersheds, as did the volume before the onset of
snowmelt and the volume at the end of snowmelt. These trends were most correlated with winter
precipitation, slope (negatively), and latitude. There was correlation with peak SWE for total runoff
volume and the volume at the end of snowmelt; these two variables are highly correlated. Due to
climatic differences across the domain, in particular drying trends in southern Colorado, winter
precipitation was correlated with latitude. Multi-variate regressions illustrated the more highly
correlated variables.
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Appendix A. Sample Hydrograph

The appendix presents a sample daily hydrograph (Figure A1) to demonstrate the timing of the
start, end and 50% of snowmelt contribution to flow, as per the method of Pfohl and Fassnacht [1].
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Figure A1l. Sample daily (blue) and cumulative (brown) hydrograph for the Michigan River gauging stations in

northern Colorado for 1993, illustrating the timing of the start (tostart as a dashed vertical line with single dot)

and end (teend as a dashed vertical line with double dot) of the snowmelt contribution to streamflow, and the
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timing of 50% of flow between tqstart and tQend (tQstart-end as a dotted vertical line). The cumulative runoff is the sum

of the daily streamflow divided by the area of the basin to yield a depth of water.

Appendix B. Station Summary

This appendix presents the location and areas for each study watershed (Table Al).

Table Al. Name, USGS station number, latitude, longitude and gauge elevation, and basin area for the 39 gauges

presented in Figure 1.

name number latitude (°)  longitude (°) gauge basin area
elevation (m) (km?)

Joe Wright Creek 06746095 40.540 -105.883 3045 8

Michigan River 06614800 40.496 -105.865 3167 4

Colorado River 09010500 40.326 -105.857 2667 165
Cabin Creek 09032100 39.986 -105.745 2914 13
Ranch Creek 09032000 39.950 -105.766 2640 52
Vasquez Creek 09025000 39.920 -105.785 2673 72
St. Louis Creek 09026500 39.910 -105.878 2737 85
Fraser River 09022000 39.846 -105.752 2902 27
S Fork of Williams 09035900 39.801 -106.026 2728 71

Darling Creek 09035800 39.797 -106.026 2725 23
Piney River 09059500 39.796 -106.574 2217 219
Williams Fork 09035500 39.779 -105.928 2987 42
Bobtail Creek 09034900 39.760 -105.906 3179 15
East Meadow Creek 09058800 39.732 -106.427 2882 9

Dickson Creek 09058610 39.704 -106.457 2818 9

Freeman Creek 09058700 39.698 -106.446 2845 8

Red Sandstone Creek 09066400 39.683 -106.401 2808 19
Booth Creek 09066200 39.648 -106.323 2537 16
Middle Creek 09066300 39.646 -106.382 2499 15
Pitkin Creek 09066150 39.644 -106.303 2598 14
Bighorn Creek 09066100 39.640 -106.293 2629 12
Gore Creek 09065500 39.626 -106.278 2621 38
Black Gore Creek 09066000 39.596 -106.265 2789 32
Keystone Gulch 09047700 39.594 -105.973 2850 24
Tenmile Creek 09050100 39.575 -106.111 2774 239
Turkey Creek 09063400 39.523 -106.337 2718 61

Wearyman Creek 09063200 39.522 -106.324 2829 25
Eagle River 09063000 39.508 -106.367 2638 182
Blue River 09046600 39.456 -106.032 2749 319
Homestake Creek 09064000 39.406 -106.433 2804 92
Missouri Creek 09063900 39.390 -106.470 3042 17
Crystal River 09081600 39.233 -107.228 2105 433
Halfmoon Creek 07083000 39.172 -106.389 2996 61

Roaring Fork River 09073300 39.141 -106.774 2475 196
Rock Creek 07105945 38.707 -104.847 2000 18
Lake Fork 09124500 38.299 -107.230 2386 878
Uncompahgre River 09146200 38.184 -107.746 2096 386
Vallecito Creek 09352900 37.478 -107.544 2410 188
Conejos River 08245000 37.300 -105.747 3007 104

Appendix C. Cross-Correlation of Trends, Parameters and Variables
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This appendix presents the cross-correlation between the timing and volume trends across the
39 watersheds (Table A2) and between the variables/parameters used in the regression (Table A3).
The cross-correlation is represented by the correlation coefficient (R).

Table A2. Correlation coefficient between snowmelt timing and volume streamflow trends.

tQend tQstart-end Qoo Qstart Qend Qstart-end
tQstart 0.12 -0.56 0.29 0.34 0.37 0.37
tQend 0.66 0.20 0.01 0.37 0.34
tQstart-end -0.06 -0.21 -0.005 -0.03
Q100 0.12 0.89 0.82
Qstart 0.08 -0.09
Qend 0.94

Table A3. Correlation coefficient between time trend variables (NDVI, winter precipitation, peak SWE) and

parameters (basin mean solar radiation, basin mean elevation, basin mean slope, area, latitude, longitude).

Winter P Peak SWE  Solar Rad. Elevation Slope Area Latitude Longitude

NDVI 0.43 -0.13 0.04 -0.06 -0.05 -0.06 0.40 0.13
Winter P 0.29 0.31 0.17 -0.14 -0.30 0.59 0.46
Peak SWE -0.10 0.42 0.09 -0.04 0.25 0.02
Solar Rad. 0.14 -0.01 -0.45 0.33 0.36
Elevation 0.44 -0.03 0.19 0.20
Slope 0.13 -0.01 -0.26
Area -0.46 -0.57
Latitude 0.45
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