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Article

A Novel Mathematical Formalism for Modeling
Physical Phenomena
Yehonatan Knoll

yonatan2806@gmail.com

Abstract: The action principle, which had successfully guided physicists for centuries, now appears
to be leading them into dead ends. The reason for this is conjectured to be its inability to properly
represent scale covariant physics. As a result, absolute notions of large and small emerge, with the size
of a human observer determining which is which. An alternative to the action principle is proposed,
rectifying this relic of anthropocentric bias by postulating that physicists could exist at any scale, all on
equal footing. The consistency between their descriptions of physical phenomena severely restricts
the set of their possible observations. So much so that the set of well-behaved, scale-dependent and
compatible fields, φ(x, λ), representing spacetime phenomena at any scale, λ, could replace the set
of fields which are local extrema of an action, in its role as a “physical law". Observations which
appear inexplicable or bizarre when analyzed at any given scale become inevitable when viewed as
mere constant-scale ‘sections’, φ(x, λ = const), of such ‘scale-orbits’. Among them: Why particles
rather than a continuum, and why must they not be represented by mathematical points? Why
Einsteinian/Newtonian gravity seem to break down at small accelerations? What is the origin of
quantum nonlocality? Quantitative agreement with observations is demonstrated in simple cases
while in more complicated cases, exact paths to solutions are provided.

Keywords: mathematical modeling; multiscale; quantum foundations; nature of matter; missing mass
problem; dipole problem in cosmology

1. Introduction
This paper is about physics, an essential part of which is the activity of knowledge exchange

among physicists, at different locations, different eras, different orientations etc. The Lagrangian
formalism, also referred to as the (extremum-) action principle, is one of several equivalent tools
designed to achieve the common ground necessary for such social activity. Physicist A (mathematically)
representing a studied system by φ, is guaranteed that φ could (in principle) appear in physicist
B’s notes if they use a common action to generate the set of their permissible φ’s. To facilitate
communication between any two physicists there must also exist a consistent set of dictionaries,
translating φA ↔ φB, which is elegantly provided by the symmetry group of the action. The central
role of the Poincaré group in this regard stems from the fact that it provides a necessary and sufficient
set of such dictionaries for the vast majority of physicist ever registered. In this paper we ask: Why not
extend our Poincaré community of physicists to include also physicists of arbitrary scale? A cynical
reviewer might at this point suggest that this manuscript be resubmitted to a scaled journal, to which
there are two good replies. First, to this very day the social activity of physicists is limited to the firm
ground of planet earth and at small relative velocities. Yet the mere act of imagining the existence
of physicists anywhere else and at large velocities relative to us is what brought as so far, rescuing
physics multiple times from long periods of stagnation. Rejecting even the possibility that physicists
could have a size other than that of a physics professor, would be a blatant repetition of the original
sin of anthropocentrism. So why not imagine a giant observer for whom our galaxy, or even the
entire universe is a mere spec of dust? Or miniature ones, experiencing the creation and subsequent
annihilation of a short-lived subatomic particle over multiple generations?—which leads to the second
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reply: We currently don’t know how to identify a scaled physicist. The cynic might object that we do:
Just take all the dynamical fields, φ, and scale them according to

φ(x) 7→ Sλ φ = λα φ(λx) (1)

for some φ-specific scaling exponent α (its inverse ‘length dimension’); that’s the only way to preserve
the multiplicative group property

Sλ2 Sλ1 φ = Sλ2λ1 φ (2)

he would argue. This implies that scaled physicists are composed of scaled electrons which are seen
nowhere. Moreover, scaling (1) without alteration of the constants of nature requires physics to be scale
covariant, which it isn’t according to our best understanding.

A detailed model addressing the cynic’s concerns has previously been proposed by the author.
It accepts the premise (1) hence also the conventional action principle which was never meant to be
invariant under (1). There is only a handful of non trivial scale invariant actions, none of which come
close to being realistic. Attempting realism therefore required a very unorthodox application of the
action principle manifesting in various technical subtleties, which is never a good sign. However,
this is not the main motivation for the current paper. Rather, the form (1) of a scale transformation is
too simplistic for two reasons: First, it is only one part of what occurs when, e.g., zooming out of a
picture, the other part being a coarsening/smoothing operator. Such coarsening is familiar from the
Renormalization Group formalism where φ is assumed to be a scale-dependent effective representation
of some fundamental underlying reality. However, since we can’t allow such assignment of ontological
privilege to any particular scale, φ(x, λ) are equally fundamental irrespective of their λ. Second, even
standalone, (1) presupposes too much about φ. The Hubble expansion, for example, can formally be
viewed as a scale transformation satisfying (2), with the cosmological time playing the role of (the log
of-) λ, but not conforming with (1), in which different structures scale differently depending on their
‘φ’. As (1) results from integrating infinitesimal ‘naive’ scale transformations

λ∂λ φ = x · ∂x φ + αφ ,

a more flexible rescaling would ensue from substituting x · ∂x φ 7→ Z · ∂x φ (generalizing to a Lie
derivative along Z for tensors) where Z is a φ-dependent scaling field determined on consistency
grounds, reducing to x in the appropriate limit. The α-term could likewise locally depend on Z.
Combined with some λ-independent, local coarsening operator Ĉ, (1) is replaced with

λ∂λ φ = Ŝφ , with Ŝφ := Z · ∂x φ + αφ + Ĉφ (3)

That prescription (3) for scale transformations respects the group property (2) is easily seen by
changing the scale variable to s = ln λ, s ∈ (−∞, ∞), in which case (3) becomes

∂s φ = Ŝφ (4)

and (2) becomes the group property of a flow. Above and throughout the paper φ stands for φ(es, x)
whenever the logarithmic scale s is involved, which should be clear from the context. Crucially, while
the effect of Ĉ, as that of its RG counterpart, is to smooth φ (equivalently, attenuate its high frequencies)
it must not result in a projection, or else scale-flow would be possible only in the forward, viz. +s
direction, with some φ(x, s0) as initial condition, implicitly privileging the scale s0.1 Nonetheless,
since Ĉ is a coarsener, flowing backwards in scale typically leads to a singularity, often at finite-s,
as the high frequencies grow without bound. It further turns out that compatibility with Lorentz
transformations creates a similar problem also in the +s direction. In the proposed formalism, the tiny

1 The reader should not conflate the reversibility of the RG flow in parameters space with the irreversibility of the coarse-
graining operation on configuration-space variables, typically employed in RG calculations.
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subset of solutions of (3) which are well-behaved at any scale, s = ±∞ included, and any x, denoted
by S , plays the role of the set of all extrema of an action.

The set S is determined solely by the form of Ŝ in (3). In other words, given a definition of what
a scale transformation is, the mere requirement of consistency between the descriptions of physical
phenomena at any scale is what defines the laws of physics. Thus each member of S , referred to as a
scale orbit, consists of infinitely many fixed-scale sections, each corresponding to distinct yet compatible
representations of spacetime phenomena at different scales. It should therefore not come as a surprise
that analyzing an individual section not in the context of its full orbit could lead to ‘bizarre physics’.
Critically, unlike in the RG formalism, the scale, s, is not a resolution parameter an experimenter can
always control by changing the equipment with which he observes a system, but rather his native
scale, encapsulating the totality of instruments and materials he uses when arriving at measurement
results. The native scale is an identifier facilitating the dictionary between distinct-scale physicists.
A dwarf and a giant can determine whether they are studying the same system, i.e., whether their
sections are taken from a common orbit, by propagating in scale their sections at their native scale,
to the native scale of the other. Note that by s−translation invariance of (4) one’s native scale is only
defined up to a communal constant, i.e. only relative scales matter. Thus a spacetime phenomenon
(section) which we, humans, regard as being in the realm of condensed matter physics, a dwarf might
label “astrophysical", and so would be his attitude towards us, when slicing the orbit on which we
reside at λdwarf. However, when slicing his orbit at λdwarf he must arrive at a self-representation which
is isomorphic to ours, i.e., φdwarf(x, sdwarf) ∼ φhuman(x, shuman), or else we would not belong to the
same community of physicists (Such distinction between the representations of one’s self and of others
exists also in action based theories, perhaps the most radical example being a physicist boosted to
near light-speed becoming nearly two dimensional). The s-translation invariance of (4) then implies
φdarf(x, s) ∼ φhuman(x, s − ∆s) with ∆s = sdwarf − shuman.

Irrespective of its philosophical merits, the proposed formalism could be used as a phenomeno-
logical tool for modeling physical phenomena, with multi-scale phenomena, e.g., turbulent flow, being
the most natural candidates. However in this paper the main focus is on a model pretending to be
‘fundamental’. As such, it inevitably interfaces with diverse fields, ranging from astronomy to quantum
foundations and the nature of matter. Obviously, no single paper and no single brain can fully cover the
relevant existing body of knowledge. Moreover, the high degree of novelty involved in the proposed
formalism meant that, compromises in mathematical rigor i some of the proofs/argument had to
be made. Nonetheless, consistent equations for observables are eventually presented, and solved in
simple cases. Hopefully, by the end of the paper, the reader will be more open to the possibility that the
major open problems in physics are all different facets of a common problem: An outdated modeling
language, still clutching to the belief that we, humans, are special.

2. Exactly Solvable Linear Toy Model
In order for the notion of native scale to be fully meaningful, φ must be rich enough to be

able to describe: the system being observed; the observer—his equipment included; electromagnetic
phenomena involved in most observations etc. This ambitious task is differed to Section 3. A gentle
introduction to the jargon and techniques used in that section is provided by the flow (4) of a time-
independent scalar field in Euclidean D-dimensional space. In choosing the generator of coarsening,
Ĉ, the following properties should be included:

1. Averaging. If φ(xm) is a local maximum (minimum) then Ĉφ(xm) ≤ 0 (≥ 0 resp.)
2. Locality. Ĉ is second order and does not contain higher order derivatives or higher powers of the

second derivative.
3. Equivariance. Ĉ must commute with translations, rotations and reflections in RD.

The simplest Ĉ satisfying the above is the (D-dimensional) Laplacian, corresponding to the
(weighted) arithmetic average of φ in the neighborhood of a point. There are, of course, other
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choices corresponding to different averages2 such as: ∇ · (∇ f (φ)) for a monotonically increasing
f , or ∇2 φ + |∇g(φ)|2 for any g and combinations thereof (∇ and · are both D-dimensional). The
locality clause is a corollary of averaging. Indeed, in 1-dimension for simplicity, a ∂4

x term added to the
Laplacian would increase a local maximum of φ = −x2 + ax4 at x = 0 for a large enough, and similarly
with an added b

(
∂2 φ

)2 term for b > 1/2. However, when φ takes values in spaces lacking a clear-cut
definition of local extremum, locality becomes an independent clause, defining the local, infinitesimal
neighborhood of a point. Clause 3 is obviously needed due to the arbitrariness in positioning an
orienting one’s coordinate system. Equivalently, it is what defines the community of physicists in
Euclidean space.

Sticking with the Laplacian, and using the simplest scaling field, Zi = xi, (4) becomes

∂s φ = ℓ2
0∇2 φ + x · ∇φ + αφ (5)

with ℓ0 some parameter. It is tempting to attribute a ‘physical dimension of length’ to ℓ0, balancing the
double derivative it multiplies. However, being a description of physics on all scales, the prorposed
formalism is inexorably an attempted ‘theory of everything’ and as such aught to be able to represent
any measurement process. And since the result of any measurement is ultimately a dimensionless
number, e.g., the number pointed to by a pointer, or the minimal number of standard-length rods
exactly fitting a line segment, the notion of physical dimensions should ultimately be abolished.
Moreover, since (5) describes a flow in scale, endowing ℓ0 with a dimension of length may lead to
the wrong expectation that it too would flow in scale. Nonetheless, the developmental stage of the
proposed theory is currently insufficient to internally represent any measurement. To make contact
with empirical data associated with sections at our native scale, arbitrarily assigned the value s = 0
or λ = 1, dimensions will occasionally appear in this paper. Unless stated otherwise, ℓ0 = 1 is
assumed, i.e., the coordinate x at s = 0 is measured in multiples of ℓ0. Note that even this innocuous
statement relies on the existence of an affine structure of space whose physical validation requires
an affine structure of space! Thus without doing away with this circularity via a general covariant
extension of (5) (Section 3), our proposal cannot even pretend to be a fundamental physical theory.

2.1. The Particle Basis of φ

Of special interest are fixed-point solutions of the flow (5), i.e. scale-invariant φ, of which fixed-
points which are further global or local attractors stand out. To find the latter we note that, if φ is
integrable at s = 0—the case of a non-integrable φ is dealt with later—its zeroth moment, m0, satisfies
∂sm0 = (α − D)m0 and m0 explodes for |s| → ∞, implying φ /∈ S , unless α = D and m0(s) ≡ 1
without loss of generality by the linearity of (5), or else m0(0) = 0. Assuming the former for now, it
is helpful to represent φ by its cumulants. Taking the Fourier transform of (5) and dividing by the
Fourier transform φ̃ := F φ, which is also the generating function of its moments assumed all to exist,
leads to the following equation for the generating function of the cumulants, Z(k, s) := ln φ̃

∂sZ = −k2 − k · ∇Z , (v · w ≡ viwi , v2 ≡ v · v) (6)

Equation (6) is an infinite set of uncoupled o.d.e.’s for the coefficients of multinomials kn1
1 · · · knD

D ,
whose solutions, ∝ exp(−s ∑i ni), all vanish for s → ∞ except that of k2

1, . . . , k2
D, approaching − 1

2 .
Solving back, φ = F−1 exp Z, we get the Gaussian

φG = (2π)D/2 exp− 1
2 ∑

i
x2

i

2 An average of a real set b := {xk} is a map A : b 7→ R satisfying min{b} ≤ A ≤ max{b}. Any average can be put into the
form f−1 Ab f where f is some (monotonic) function, b f := { f (x1), f (x2), . . .}, and A is any average, e.g. arithmetic.
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which is therefore a global attractor of the flow (5) for (moment-determinate) functions with well
defined moments to any order at s = 0. However, not all moment determinate φ(x, s = 0) are sections
of orbits in S . A large subset that is, consists of linear combinations, discrete or continuous, of shifted
fixed-point Gaussians. This is so because any such sum has well defined moments to any order and
the effect of the flow on individual Gaussians is a trivial shift

φG(x − x0)|s=0 7→ φG

(
x − e−sx0

)
(7)

We strongly suspect that the converse is also true, namely, that any φ ∈ S can be decomposed
into a linear combination of shifting Gaussians. A formal proof will not be attempted here but the
intuition must be clear: The Laplacian increases (decreases) and ‘sharpens’ φ at its local maximum
(resp. minimum) when flowing in the −s direction of (5), and if the scaling part does not sufficiently
compensate for this, φ wildly diverges at a local extremum. Any section of φ ∈ S must therefore be
‘round’ enough on the scale set by ℓ0(= 1) and if so it should be decomposable into Gaussians of width
ℓ0. A clear illustration of the fate of a function not sufficiently round is provided by a Gaussian of
width less than 1 at s = 0, i.e., Z(0) = −( 1

2 − ϵ)k2. A finite-s singularity is reached at s = 1
2 ln(2ϵ)

where Z vanishes, corresponding to φ which is a ‘delta-function Gaussian’.
Closure under continuous sums is what distinguishes the shifted Gaussians basis of S , referred to

as the ‘particle basis’, from the scaled Fourier basis,

λαeiλk·x− 1
2 λ2k2

; k ∈ RD , λ ≡ es (8)

Although individually in S , infinite sums thereof may still lie outside S , as the above narrow-
Gaussian example demonstrates. Nonetheless, the pseudo basis (8) is not entirely useless. It clearly
shows the rapid decay of waves when their wave-vector is contracted beyond the cuttoff frequency
(ℓ−1

0 ) and will serve us in the sequel.
Returning to the case of non-integrable, or integrable but zero m0, the corresponding fixed-points

of (5) are fl(r)Ym
l (Ω) in D = 3 for a suitable fl , l ≥ 1, vanishing at r = 0, which happen to have a r−3

asymptotic tail hence are non-integrable. It can be shown that the basin of attraction of each consists
only of itself, rendering it uninteresting from our perspective.

Full justification for the name “particle" attached to Gaussians of width ℓ0 and 0th-moment equal
to 1 (or any other normalization) will have to await Section 3 but some can already be given at this stage.
If physicists of different native scales are to have isomorphic self-representations—their laboratory etc.
included—and if physicists exist at arbitrarily large or small scales (but not necessarily at any scale)
then they must all consist of the same particles and their ‘oppositely charged’ antiparticles—Gaussians
of width ℓ0 and 0th-moment −1. Otherwise particle-antiparticle pairs would not get fully annihilated
when flowing via (7) in the +s direction. As a result, the ‘vacuum’ would get increasingly contami-
nated with particles of arbitrary charge. Conversely, the vacuum could only acquire content when
zooming into an empty patch of it, if particle-antiparticle pairs are created out of it. Note that the
decomposablility of φ into a discrete sum of particles is required by the fact that φ would otherwise
trivialize to a uniform φ ≡ 0 for s → −∞. Thus our model requires for its consistency both particles
and the quantization of their charge. Moreover, in the point-particle limit, ℓ0 → 0, it would take
s → ∞ for any pair to annihilate even approximately, contradicting the existence of scaled physicists.
Point-particles, which are the source of all evil in mathematical physics, are excluded from the outset.

2.2. Adding Time Dependence

How should the flow (5) be generalized for a time-dependent φ? Guided by the equivariance
clause with the Poincaré group replacing the isometry group of Euclidean space, the unique general-
ization reads

∂s φ = ∇2 φ − ∂tt φ + x · ∇φ + t∂t φ + αφ (9)
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Multiplying the ∂tt φ term is a (ℓ0/c)2 coefficient, assumed to equal 1 unless stated otherwise. In
covariant notations (9) reads

∂s φ = □2 φ + xµ∂µ φ + αφ (10)

with □2 ≡ ηµν∂µ∂ν and ηµν = ηµν := diag(-1,1,1,1). Readers experiencing unease from the appearance
of Lorentz symmetry out of the blue are referred to [3]; It has been known since the early years
of Relativity Theory that Lorentz transformations were only serendipitously discovered within the
framework of electrodynamics. This symmetry group (the Galilean group being a limiting case
thereof) is an inevitability when the meaning of synchronized clocks is logically analyzed—which is
essentially what is being done in this paper with regard to scale transformations. Thus our proposed
time-dependent generalization of ∇2 φ(x, t) inexorably involves values of φ at times other than t, but
not because space and time form a ‘spacetime’ continuum—the Minkowskian/geometric view (if
that were the case then ∂tt would be expected to have the opposite sign). Instead, space and time
are fundamentally distinct and are mixed together on consistency grounds; without such mixing no
community of physicists would exist.

Generalizing static particles are—naturally—moving particles and in particular uniformly so,
obtained by boosting a static particle solution. In D = 1 for simplicity, the boost explicitly reads
φG(x, s) 7→ φG(γ(x − vt), s) with γ =

√
1/(1 − v2), making the Lorentz contraction of the particle in

the direction of motion manifest. Uniformly moving particles are therefore all members of S , but are
all members of S such? More accurately: Do they form a basis for S? To answer this question, (9) is
first integrated over three-space. Assuming the integral exists results in the following equation for the
zeroth moment

∂sm0 = −∂ttm0 + t∂tm0 + (α − D)m0 (11)

Plugging a scaled Fourier ansatz m0(ω; t, s) = fω(s) exp(iesωt) and continuing with the α = D
case, we get: d

ds fω = ω2 fω implying fω ≡ 0 ∀ω ̸= 0 or else it explodes for s → ∞. For ω = 0, fω is
some constant which can be assumed to equal 1 by the linearity of (9). We conclude that m0 which
is constant in both time and scale is a necessary condition for the corresponding φ to lie in S . Next,
consider the generalization of equation (6) for the time-dependent cumulants of φ,

λ∂λZ = −k2 − ∂ttZ + (∂tZ)2 + t∂tZ − k · ∇Z (12)

similarly obtained by Fourier transforming (9) and dividing by φ̃(k, t, λ). Using (12) we first argue that
the instability of the flow (9) in the −s direction, which mandates particles, in and of itself does not
further mandate their uniform motion. To show this we plug the following ansatz into (12), continuing
with D = 1 for clarity

Z(k, λ, t) =
∞

∑
n=1

cn(λt, λ)kn =
∞

∑
n=1

(
∞

∑
m=n−1

cm
n (λt)λ2m−n

)
kn (13)

where cm
n is a double-indexed function of the scaled time alone. Equating the coefficient of each power

of k to zero in increasing powers of λ (note that the series is missing the n = 0 term by our result
c0 ≡ ln m0 = 0). Starting with c−1

1 , dictating the asymptotic scaling form of the center-of-mass, i.e.
λ−1c−1

1 (λt), we see that it decouples from all other terms in the limit λ → 0 and can be an arbitrary
function. Successive terms, ck

1, can then be iteratively computed as the (∂tZ)2 term does not contain
the first power of k, and the ∂tt term pulls out an extra factor of λ2, e.g., c1

1 = − 1
2 c̈−1

1 , c3
1 = − 1

4 c̈1
1, . . . (all

evaluated at the scaled time λt). For c−1
1 with bounded time derivatives to all orders, the power series

of c1 clearly converges for λ < 1. Moving to n = 2, the leading order of (minus the-) variance reads
c0

2 = − 1
2 (1 − v2) with v = ċ−1

1 again manifesting the Lorentz contraction. Higher order corrections, ck
2,

can then be calculated in terms of c̈k−2
2 and products ċp

1 ċq
1, p+ q = k− 2 coming from the nonlinear term,

e.g., c2
2 = 1

4

(
−c̈0

2 + 2ċ−1
1 ċ1

1

)
. . .. The leading order term of the third cumulant, the so called “skewness",

reads λc1
3 = λ 2

3 v2v̇. It is likewise a relativistic effect in which the ‘front’ and ‘back’ of an accelerating
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(extended) particle experience different Lorentz contractions. Continuing this way, cm
n can be computed

in terms of c−1
1 and its first n − 1 derivatives. The results in a convergent power series for each at λ < 1.

As cn = O(λn−2), at small enough scale the shape of a particle is approximated arbitrarily well by
that of a uniformly moving particle (appropriately Lorentz contracted in the direction of motion). The
leading order correction appear in the form of a particle’s skewness in the direction of acceleration
(predicated on relativistic velocities). We conclude that a sufficient condition for φ to well-behave at
small scales is that it approaches a scaling particle solutions, generalizing the static-particle result and,
as in that case, we conjecture that any φ ∈ S approaches a sum of moving-particle solutions at small
scales. Although much more difficult to prove, there is no apparent reason why this conclusion should
not carry to nonlinear scale-flows in the case of a single particle, and this conjecture shall play a central
role in Section 3. However, unlike in the linear case, single particle solutions cannot be superposed,
hence the “‘basis" in “particle basis" becomes a misnomer. Instead, it is conjectured that any φ ∈ S
must approach at small scales a discrete sum of non-overlapping moving-particle solutions.

Returning to our original question, of whether c−1
1 necessarily describes a uniformly moving

particle, we turn to the fate of such a well localized moving particle solution at small λ, entirely
encoded in the single function c−1

1 , when it flows to large λ, outside the convergence radius of the
each cumulant’s power series. We prove that the answer is positive, viz., unless c−1

1 describes a globally
freely moving particles, λ−1c−1

1 (λt) = ζfree := λ−1x0 + vt for some x0 and v, its corresponding φ is not
in S . This is due to a new flow instability in the +λ direction, introduced by the minus sign of the
∂tt term in (9). To prove this, consider the equation for the center of the particle ζ ≡ c1 (switching
notations in order to not overload the upper index)

λ∂λζ i = −∂ttζ
i + t∂tζ

i − ζ i , i = 1, . . . , D (14)

obtained by equating the coefficients of ki in (12) to zero (i not a power!). Now plug into (14) the most
general solution

ζ i(t, λ) = ζ i
free(λ, t) + λ−1 ∑

ω

Ai
ω eiλωt+ 1

2 ω2λ2
(15)

with the sum representing also an integral, and the Aω’s are the Fourier coefficients of ζ i(1, t). Clearly,
unless Ai

ω ≡ 0, and insofar as φ still describes a localized particle, this particle (wildly) moves around
unbounded for λ → ∞ which in and of itself implies φ ̸∈ S . However, moving to higher order
cumulants, which are all morphological attributes of a particle-like φ hence independent of ζ i, a similar
divergence occurs, implying either the divergence φ or its complete delocalization.

Another way of seeing why only uniformly moving particles appear in S is by decomposing a
non-uniformly moving particle solution at s = 0 into its space-time Fourier components, and letting
them each flow to s = ∞. Their evolution in scale is just (8) with k · x meaning kµxµ (and k2 ≡ kµkµ).
Waves with k2 > 0 are strongly attenuated at large λ, while those with k2 < 0 blow-up. Now, it is
easily verified that any non-uniform, or uniform but superluminal motion at s = 0, must have some
time-like (k2 < 0) Fourier components in its decomposition, expelling the orbit on which it resides
from S . This method is applicable also to possible superpositions of non-uniformly moving particles
having ζ = ζfree for their joint φ. Rather than resorting to murky causal paradoxes, or to our current
inability to accelerate masses beyond the speed of light, the proposed formalism rejects Tachyons on
simple mathematical grounds. The dominance of waves with light-like k’s can also be appreciated
even before moving to more complicated models.

3. A Realistic Model
The alert reader must have anticipated the main result of the previous section, namely, that S

consists of freely moving particles. By linearity, particles can move through one another uninterrupted
and if so, they are non interacting particles which should better have straight paths. Enabling their
mutual interaction therefore requires some form of nonlinearity, either in the coarsener, Ĉ, or in
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the scaling part. Further recalling our commitment to general covariance as a precondition for any
fundamental physical theory, nonlinearity is inevitably and, in a sense, uniquely forced upon us. A
nonlinear model further supports a plurality of particles, having different sizes which are different
from the common ℓ0 in a linear theory. This frees ℓ0, ultimately estimated at ∼ 1020 km, to play a role
at astrophysical scales.

Our realistic model involves a spin-1, α = 1 field: The A-field. A straightforward (and unique up
to terms involving the curvature) way to render a differential operator generally covariant is through
the minimal-coupling prescription, of ‘dotting the commas’ which can be applied to the ‘Maxwell
coarsener’ ηµν□2 − ∂µ∂ν. The scaling piece of an α = 1 covariant vector is just its Lie derivative with
respect to the scaling field, Zµ, defined below. Combined, the scale flow of Aµ reads

∂s Aµ = ℓ2
0
(
∇ν∇ν Aµ −∇ν∇µ Aν

)
+ LZ Aµ (16)

with
LZ Aµ ≡ Zν∇ν Aµ +∇µZν Aν (17)

the Lie derivative of Aµ with respect to Zµ. In flat spacetime and Zµ(x) = xµ, (17) reduces to ‘naive’
α = 1 scaling, LZ Aµ → xν∂ν Aµ + Aµ. Equation (16) prescribes the generally covariant scale-flow of a
vector in one particular coordinate system common to all scales. Thus S is partitioned into equivalence
classes, the members of each are related by some coordinate transformation.

Analyzing an α = 1 model in D = 3 space is much more difficult as no moment of the associated
particle exists. This is clearly seen already in a linear, naive scaling, flat-space model. A non-spinning,
viz., A ≡ 0, fixed-point reads

A0(r) :=
1
r

erf
(

r√
2

)
(18)

having a non-integrable r−1 tail. To facilitate the analysis of such extended particles, we define a
auxiliary α = 3 model for the ‘center’ of Aµ

Jµ := −∇ν∇ν Aµ +∇ν∇µ Aν ≡ −∇νFνµ ≡ − 1√−g
∂ν
(√

−gFνµ

)
(19)

Operating with ∇µ on (19), using the antisymmetry of Fµν := ∇µ Aν −∇ν Aµ, the commutators of
covariant derivatives[

∇µ,∇ν

]
Vα = Rα

ρµνVρ ,
[
∇µ,∇ν

]
Tαβ = Rα

ρµνTρβ + Rβ
ρµνTαρ , etc. (20)

and the symmetries of the Riemann tensor, gives ∇µ Jµ ≡ 0, i.e., Jµ is covariantly conserved at any scale,

s. Operating with Ŵ µ
ρ := −∇α∇αg µ

ρ +∇ρ∇µ on (16), the second term of this operator annihilates
the coarsener by the above remarks. The scaling piece combines the covariant generalization of the flat
spacetime conversion α = 1 7→ 3 with a novel nonlinear term (see Section 3.2 below). On the l.h.s. we
have W µ

ρ ∂s Aµ. We would like to swap the order of W and ∂s, which would give ∂s Jν by (19). However,

W µ
ρ could implicitly depend on the scale s through gµν. Nonetheless the order is swapped and we

shall review the approximation involved in doing so once gµν is determined. The combined result
finally reads

∂s Jν = ℓ2
0∇α∇α Jν + W µ

ν LZ Aµ (21)

more suited for analysis. For example, in the case of flat spacetime and naive scaling, Zµ = xµ,
the particle solution of the J-field associated with (18) is the familiar Gaussian J0 = e−r2/2 from the
previous sections. It is emphasized that Jµ and its associated scale flow are merely analytic tools, not
to be put on equal footing with Aµ and its flow. As the nonlinear term arising from scaling does not
involve Jµ but rather Aµ, for a given Aµ and gµν equation (21) describes the linear but inhomogeneous
(in both spacetime and scale) flow of Jµ.
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Relation (19) is formally equivalent to Maxwell’s equations with Jµ sourcing Aµ’s wave equation.
However, Jµ is not an independent object as in classical electrodynamics but a marker of the locus of
privileged points at which the Maxwell coarsener does not annihilate Aµ (distinct Aµ’s differing by
some ∂µΛ therefore have identical Jµ’s). For Jµ and Aµ to mimic those of classical electrodynamics, Jµ

must also be localized along curved worldlines traced by solutions of the Lorentz force equation in Aµ

(which as already shown in the scalar case, necessitates a nonlinear scale flow). And just like in the
scalar-particle case, where higher order cumulants (n > 2) are ‘awakened’ by its center’s nonuniform
motion, deforming its stationary shape, so does the Aµ “adjunct" (in the jargon of action-at-a-distance
electrodynamics) to each such Jµ gets deformed. Due to the extended nature of an A-particle, and
unlike in α = 3 models3, these deformations at (t, x) are not encoded in the local motion of its center at
time t, but rather on its motion at retarded and advanced times, t ± |x| (assuming flat spacetime for
simplicity). However, associating such temporal incongruity with ‘radiation’ can be misleading, as it
normally implies the freedom to add any homogeneous solution of Maxwell’s equations to Aµ which
is clearly nonsensical from our perspective. Consequently, the retarded solution cannot be imposed on
Aµ and in general, Aµ contains a mixture of both advanced and retarded parts, which varies across
spacetime. The so-called radiation arrow of time manifested in every macroscopic phenomenon must
therefore receive an alternative explanation (see Section 3.4.2).

Now, why should Jµ be confined to the neighborhood of a worldline? As already seen in the
linear, time-dependent case, a scale-flow such as (16) suffers from instability in both s-directions: In
the −s direction it is due to the spatial part of the coarsener, whereas in +s direction it is its temporal
part. If we examine the scale flow of Aµ inside a ‘lab’ of dimension much smaller than ℓ0, centered
at the origin without loss of generality, then the coarsener completely dominates the flow. It follows
that Aµ ∈ S requires that it be almost annihilated by Ŵ µ

ρ , or else it would rapidly diverge. This can
be true if either: the scale of variation of Aµ is on par with ℓ0 or greater—as in the case of our static,

Gaussian fixed-point; or else Ŵ µ
ρ Aρ ≈ 0, except around privileged points where the scaling-field

grows to the order of ℓ0, balancing the non-vanishing coarsener piece. This is where Jµ is focused, as
shown in Section 3.1.2 below. “Almost" is emphasized above because exact annihilation would leave
a flow governed entirely by scaling. It is precisely the fact that, at distances from Jµ that are much
smaller than ℓ0, the action of the coarsener is on the order of that of the scaling piece, which gives rise
to nontrivial physics. This will be a recurrent theme in the rest of the paper.

3.1. Determining the Metric and the Scaling Field

The flow (16) of Aµ requires specifying both gµν(x, λ) and Zµ(x, λ) in a generally covariant way.
Starting with the former, we seek the scale flow of gµν. It is well known that, in Riemannian geometry,
the Ricci tensor is the unique, symmetric generally covariant tensor which can be constructed from
the metric tensor and its first two derivatives and does not contain higher power than the first of its
second derivative. By our definition of a coarsener, this leaves Ĉ = Rµν + bgµνR with Rµν := Rα

µαν

and R := Rµ
µ, as the only permissible coarsener for some constant b. Now, the flow (16) of Aµ is

‘guided’ by gµν via the minimal coupling prescription. On consistency grounds the flow of gµν must
also be guided by Aµ, or else the gravitational field would not focus around matter. The simplest way
to achieve this mutuality is through the use of the (symmetric) canonical energy-momentum tensor

Θµν = FµρF ρ
ν − 1

4 gµνFρσFρσ (22)

peaking around Jµ, which leads to the following scale flow of gµν:

∂sgµν = ℓ2
g
(
−Rµν − bgµνR + 4πG Θµν

)
+ LZgµν (23)

3 Retarded/advanced effects persist even in α = 3 models. In Section 2.2 it was shown that cn(t) depends on the first n − 1
time derivatives of c1(t), implicitly ‘informing’ it about c1(t′) at t′ ̸= t

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 June 2025 doi:10.20944/preprints202506.1571.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1571.v1
http://creativecommons.org/licenses/by/4.0/


10 of 31

with ℓg, G and b some constants, and

LZgµν ≡ Zρ∇ρgµν + gρν∇µZρ + gρµ∇νZρ = ∇µZν +∇νZµ (24)

The global sign of the coarsener piece reflects the following sign conventions for the Riemann tensor

Rµ
αβγ =

(
Γµ

αγ,β − Γµ
αβ,γ + Γµ

σβΓσ
γα − Γµ

σγΓσ
βα

)
Taking the covariant divergence of (23), and using ∇µ

(
Rµν − 1

2 gµνR
)

≡ 0 (as a result of the
Bianchi identity) implies that

∇µ
(

4πGℓ2
g Θµν + LZgµν − ∂sgµν +

(
b + 1

2

)
ℓ2

ggµνR
)
= 0 (25)

is a necessary condition for (23) to have a solution. Defining

4πGℓ2
g Pµν := LZgµν (26)

equation (25) can be rewritten as

∇µ
(
Θµν + Pµν

)
=

1
4πGℓ2

g
∇µ∂sgµν −

b + 1
2

4πG
∂νR (27)

Postulating that energy-momentum conservation is recovered in the limit gµν → ηµν mandates
b = − 1

2 , nullifying the last term on the r.h.s. of (27), which is assumed henceforth. The possibility that
gravity is essentially involved in the structure of elementary matter [4], and consequently gµν → ηµν is
nonphysical, has not been explored.

3.1.1. Determining Zµ in the Flat Spacetime Approximation

Assuming gµν = ηµν leads to significant simplification when determining Zµ, and is therefore
considered first. In this approximation covariant derivatives appear as ordinary derivatives, (27)
reduces to energy-momentum conservation

∂µTµν ≡ ∂µ
(
Θµν + Pµν

)
= 0 (28)

and LZgµν = ∂µZν + ∂νZµ. By virtue of definition (19) of Jµ (Maxwell’s equations) and ∂µ F̃µν ≡ 0
(F̃µν := ϵµνρσFρσ) alone, Poynting theorem is satisfied identically

∂µΘµν = −Fνµ Jµ (29)

hence (28) implies
∂µPµν = Fνµ Jµ (30)

Maxwell’s equations (19), along with (29) and (30), referred to henceforth as the basic tenets of clas-
sical electrodynamics, are nowadays taken as the definition of classical electrodynamics, encapsulating
its experimental success while avoiding the traditional use of the Lorentz force equation of a point
charge, with its infamous, unresolved classical self-force problem.

Equations (26) and (30) result in four second order equations for the four components of the
scaling vector Zµ,

□2Zν + ∂ν∂µZµ = 4πGℓ2
g Fνµ Jµ (31)

which, together with the boundary condition Zµ → xµ away from matter, define Zµ up to a solu-
tion of the homogeneous equation (31). Continuity in s severely, if not completely, removes this
remaining freedom.
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Summarizing, as a corollary of defining the scale flow of the metric, a definition of the scaling field
at each scale λ was obtained, constrained by continuity in λ. A generalization to curved spacetime
follows by adding the r.h.s. of (27) (with b = − 1

2 ) to the r.h.s. of (31), and using a covariant form for
the boundary condition

Pµν → 1
2πGℓ2

g
gµν far away from matter (32)

3.1.2. Time Independent Fixed-Point Aµ

Now that Aµ depends on Zµ via (16), and Zµ on Aµ via (31), the nonlinear nature of the flow (16)
can be appreciated, as well as the indirect mixing of A0 and A through Zµ, even in the time-independent
case. Analyzing and solving the fixed-point solutions of the nonlinear system (16) and (31) in the
general, time-independent case, deserves a separate paper. Here we analyze the spherically symmetric,
non-spinning (A ≡ 0) case in order to demonstrate how the nonlinearity introduces a second length
scale, governing particle physics, which unlike ℓ0 is an attribute of the solution rather than a parameter
of the model.

For A0 ≡ φ(r), A ≡ 0, the r.h.s. of (30) is an outwards-pointing radial force xi f (r) with

f (r) :=
(

2
φ′2

r2 +
φ′φ′′

r

)
Plugging

Zi = xi + zi ≡ xi + xiz(r) , Z0 = x0 + h(r) (33)

into (31) with boundary conditions z(∞) = 0, z′(0) = 0 (for the Laplacian to be well-defined at the
origin) and h′(0) = h(∞) = 0 translates into h = 0 and a second order ODE for z(r)

2z′′ +
8z′

r
= 4πGℓ2

g f , z(∞) = 0, z′(0) = 0 (34)

Setting ∂s A0 = 0 in (16) gives

ℓ2
0

(
φ′′ +

2φ′

r

)
+ r(1 + z)φ′ + φ = 0 , φ′(0) = φ(∞) = 0 (35)

The system (34) and (35) is symmetric under Aµ 7→ −Aµ, zµ 7→ zµ, guaranteeing that fixed-points
come in particle-antiparticle pairs, which is true also in the general case. Since z(∞) = 0 ⇒ φ(∞) = 0,
the system is underdetermined, i.e., its solutions involve four integration constants satisfying only
three independent conditions. Solutions of (34) are

z(r) = 2πGℓ2
g

∫ r

0
r.
′
∫ r′

0 r. ′′ r′′4 f (r′′)
r′4

− 2πGℓ2
g

∫ ∞

0
r.
′
∫ r′

0 r. ′′ r′′4 f (r′′)
r′4

(36)

A particle solution is defined by f (r) ≈ 0 for r ≳ rp, where rp is the radius of the support of
J0 (‘matter’), on the order of the proton radius. Inside matter f (r) > 0, implying z(0) < 0. Since
J0 = −∇2 φ, at r ≪ ℓ0 it must (almost) vanish by (35), unless |z| ≫ 1 there. Indeed, by (36) z is on the
order of the huge dimensionless number q2Gℓ2

g/r4
p ∼ 1036 inside J0, assuming that the particle’s mass

is entirely of electrostatic origin (which it is; see next) and using an estimate ℓg ∼ 1023km based on
cosmological observations (Section 3.4.2). Using f (0) = 1

3ℓ4
0

φ2(0) the system (34)(35) can be integrated

from r = 0 using φ(0) as a free parameter, adjusting z(0) to meet z(∞) = 0. It can then be shown that rp

is monotonically decreasing with increasing φ(0), i.e., the support of |z| shrinks with increasing | f (0)|.
Remarkably, parameters involved in gravity, viz., ℓ0, ℓg, G all appear in such fixed-point equations for
microscopic matter, even in the flat spacetime approximation.
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The Poincaré stress-energy tensor (26) reads

Pij =
1

2πGℓ2
g

(
ηij(1 + z) +

xixj

r
z′
)

, P00 = − 1
2πGℓ2

g
, P0i = 0 (37)

consisting of an Aµ-independent (negative) ‘vacuum energy-momentum’ piece, 1
2πGℓ2

g
ηµν, entirely

due to the boundary condition (32), and an Aµ-specific, G-and ℓg-independent piece, pµν, which is
colocalized with J0. The trace of pij is negative inside matter; Poincaré would have interpreted this as
the negative pressure holding the particle against its internal Coulomb expansion, and the non-trivial
scaling field, xiz, as (minus) the displacement vector due to the Coulomb stress. Outside matter
z ∼ −r−3, rendering pij traceless. The p00 component vanishes thus the particle’s energy is attributable
entirely to its electrostatic self-energy Θ00.

In conclusion of this section, a few final remarks. First, the above particle solution, although
involving a nonlinearity, must not be conflated with soliton solutions of nonlinear PDEs, having a a long
history in modeling of particles. The existence of particles in the proposed formalism does not hinge
on the flow being nonlinear (as seen in Section 2), but rather on a unique scaling operation countering
the coarsener. Second, at large r, the scaling piece completely dominates the fixed-point equation,
exactly annihilating only the monopole, ∼ r−1, of Jµ. No higher order multipoles are therefore part of
a fixed-point solution at r > ℓ0 (it would take, e.g., α = 2 for the dipole). However, since electro- and
magneto-statics are only testable at scales much smaller than ℓ0, higher order multipoles, required by
a spinning particle, need only extend to distances≪ ℓ0, where the coarsener completely dominates
when |z| ≪ 1, exactly annihilating any term in the multipole expansion. Second, charge quantization
could be explained by cosmological considerations, of the type discussed at the end of Section 2.1.
As in the linear case, and as seen in the spherically symmetric solution, fixed-points depend on a
continuous parameter, controlling both their charge and size this time, which is ‘spontaneously’ fixed
at its observed value by a global consistency condition. Alternatively, charge quantization may arise
just from the fixed-point condition for a spinning particle. Finally, some/most/all real-world particles
are more likely represented by time-dependent solutions, which are fixed-points only in the statistical
sense, when averaged over sufficiently long yet microscopic time intervals. Since p00 ∝ ∂0z0, the time-
averaged energy

∫
d3x p00 would vanish nonetheless. The time dependence of such solutions would

need to be chaotic, with a scale invariant power spectrum up to some cutoff frequency. Analyzing
the properties of such dynamical fixed-points is suited for a statistical theory, complementing the
proposed realistic model on such issues, which allegedly is quantum mechanics and its generalization;
see Section 3.3

3.1.3. A Particle’s Gravitational Field

Moving one step beyond the the flat spacetime approximation, the distortion to ηµν caused by a
fixed-point particle is calculated, assuming first that it is a static particle. To this end the flat metric is
replaced with a static metric

g00 = −(1 − Φ) , gij = ηij(1 + Φ) , gi0 = g0i = 0 , |Φ| ≪ 1 (38)

and we seek a fixed-point solution of the metric flow (23), with Tµν := Θµν + Pµν now calculated
using (38) instead of ηµν. Substituting (38) into (23) and setting ∂sgµν = 0 gives

∇2Φ +
2
ℓ2

g
= 4πG

(
Θ00 + pmet

00
)

(39)

with pmet
00 being the metric part of p00, resulting from ∂0z0 7→ ∇0z0 in (26) (the matter part vanishes;

see previous section), and the the vacuum piece (32) of Pµν, now reading Pvac
µν = −(1− Φ)/(2πGℓ2

g) ≈
−1/(2πGℓ2

g) moved to the l.h.s.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 June 2025 doi:10.20944/preprints202506.1571.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1571.v1
http://creativecommons.org/licenses/by/4.0/


13 of 31

In arriving at (39) we assumed Zi ≈ xi to leading order in Φ, which can be verified given ∇2Φ = 0.
The scaling piece coming from the Lie derivative, explicitly appearing in the fixed-point equation (35)
for Aµ, appears to be missing from (39). This is because it has been absorbed into pmet

00 :

pmet
00 ≈ 1

4πGℓ2
g

(
xi + zi

)
∂iΦ (40)

Moving pmet
00 to the l.h.s. of (39), using zi ≪ xi outside matter from the previous section, we obtain

the fixed-point equation for an inhomogeneous flow of a scalar Φ

−ℓ2
g

(
∇2Φ − 4πGΘ00

)
− 2 + xi∂iΦ = 0 (41)

with the zi∂iΦ term inside matter omitted by our assumption that gravity plays a negligible role in the
structure of matter. At distances from the source smaller than ℓg, ultimately estimated at ℓg ∼ 1023km,
solutions of (41) are approximately the usual solutions of Newtonian gravity, Φm = −m/|x|, with
m =

∫
d3x Θ00. A covariant generalization of (39) would be

Rµν − 1
2 gµνR − 2

ℓ2
g

gµν = 4πG
(
Θµν + pµν

)
(42)

which is just Einstein’s fields equation with a cosmological constant and G 7→ − 1
2 G. The physical

meaning of gµν solving (42) is only revealed through its effect on Aµ, and in the following sections the
reason for this peculiar coefficient of G becomes apparent.

In most realistic scenarios, Θµν is time-dependent, focused on the worldline, ζ(t, λ), of a particle,
and the adjunct metric perturbation solving

λ∂λΦ = −ℓ2
g

(
∇2Φ − ∂ttΦ − 4πGΘ00

)
+ xi∂iΦ + t∂tΦ (43)

becomes more complicated. For a uniformly moving ζ we can simply boost the previous static
perturbation as in Section 2.2. For non-relativistic non-uniform motion, we first note the freedom
to choose the scaling center at will: If Φ(x, t, λ) solves (43) with Θ00 focused on ζ(t, λ), then so does
Φ(x − λ−1x′, t − λ−1t′, λ) with ζ 7→ ζ(t − λ−1t′, λ) + λ−1x′ for any x′, t′. Using this freedom we can
focus on any point on the worldline traced by ζ, assuming t = 0. It is then readily verified that at
sufficiently small accelerations, ζ̈ (e.g., for a path ζ := λ−1ζscl(λt) in its scaling regime), Φm(x − ζ)

becomes a pointwise, arbitrarily good solution for (43) in a neighborhood,

|x − ζ| ≤ c2|ζ̈|−1 ≪ ℓg (44)

Since outside this neighborhood Φm ≈ 0, the standard, Newtonian approximation

Φ(x, t, λ) ≈ ∑
k

Φmk (x − ζk(t, λ)) (45)

where k is a particle label, becomes an arbitrarily good, point-wise, global solution of (43). The scale
dependence of Φ is therefore inherited from that of {ζk}. Note that the time-independence of Φ in (38)
must be relaxed to include this quasi-static change, resulting from the time dependence of {ζk}.

As Φ (45) flows to larger λ, the approximation (44) it involves gradually breaks due to the
shrinkage of that neighborhood of ζ at large accelerations. A better approximation is obtained as
follows. Choosing the scaling center such that all relevant particles contributing to Θ00 are in a ‘lab’
of radius much smaller than ℓg, the terms in (43) multiplied by ℓ2

g completely dominate the flow, and
∇2Φ− ∂ttΦ− 4πGΘ00 ≈ 0 must be satisfied at any λ for Φ not to rapidly blow up due to the instability
of the flow (43). In other words, Φ must be approximately a solution of a massless wave equation
sourced by that part of 4πGΘ00 which is associated with particles inside the lab. A weak-field metric
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ansatz more general than (38), gµν = ηµν − 1
2 hµν,

∣∣hµν

∣∣ ≪ 1, would have resulted in the standard,
linearized Einstein field equations.

3.2. The Motion of Matter Lumps in a Weak Gravitational Field

Equation (45) prescribes the scale flow of the metric (in the Newtonian approximation), given
the a set, {ζk(t, λ)}, of worldlines associated with matter lumps. To determine this set, an equation
for each ζk(t, λ), given Φ(t, x, λ), is obtained in this section. This is done by analyzing the scale flow
of the first moment of J0 associated with a general matter lump, using (21). An obstacle to doing so
comes from the fact that, ζ(t, λ) now incorporates both gravitation and electromagnetic interactions in
a convoluted way, as the existence of gravitating matter depends on it being composed of charged
matter. In order to isolate the effect of gravity on ζ(t, λ), we first analyze the motion of a body in the
absence of gravity, i.e., gµν ≡ ηµν, Zµ = xµ + zµ with xµ the Minkowskian coordinates. To this end
we first need to better understand the scale flow (21) of Jµ. Using (24) and (19) plus some algebra the
scaling piece in (21) reads

W µ
ν LZ Aµ = xµ∂µ Jν + 3Jν + Mν (46)

with
Mν := ∂µ Mµ

ν := ∂µ

(
∂ρzµF ρ

ν + ∂µzρF ρ
ν + ∂νzρF µ

ρ − ∂ρzρF µ
ν + zµ Jν

)
(47)

The first two terms in (46) are the familiar α = 1 7→ α = 3 conversion, to which a ‘matter vector’,
Mν, is added, consisting of inhomogeneous terms, and the homogeneous, ∂µ(zµ Jν) term, modifying
naive scaling in a way which conserves-in-scale charge for a time-independent J0

Zµ = xµ 7→ xµ + zµ , α = 3 7→ 3 + ∂µzµ (48)

In the absence of gravity, the swapping of W µ
ν and ∂s leading to the l.h.s. of (21) is fully justified.

Combined, we then get
∂s Jν = ℓ2

0□
2 Jν + xµ∂µ Jν + 3Jν + Mν (49)

Since ∂ν Jν ≡ 0, taking the divergence of (49) implies ∂ν Mν ≡ 0 ⇒
∫

d3x M0 := M(s), viz., a
conserved-in-time ‘matter charge’. Defining q(s) :=

∫
d3x J0 the (conserved in time-) electric charge,

and integrating (49) over three-space implies d
ds q = M(s) i.e., electric charge is conserved in scale if

and only if the matter charge vanishes. That the latter is identically true follows from

M =
∫

d3x ∂j M
j
0 +

∫
d3x ∂0M0

0 = 0 + 0 (50)

where the vanishing of the second integral follows, after integration by parts, from the explicit form (47)
of ∂0M0

0.
Next, multiplying (49) by xi/q and integrating over a ball, B, containing a body of charge q,

results in
λ∂λζ i = −ℓ2

0 ∂ttζ
i + t∂tζ

i − ζ i + q−1
∫

B
d3x xi M0(x, t, s) (51)

where ζ i(t, s) = q−1
∫

B d3x xi J0(x, t, s) is an object’s ‘center-of-charge’. Above and in the rest of this
section, the charge of a body, assumed nonzero for simplicity, is only used as a convenient tracer
of matter.

The integral in (51) is the first moment of a distribution, M0, whose zeroth moment vanishes. It
vanishes identically for a spherically symmetric M0, and even for a skewed M0, the result is a constant,
w ≪ ℓ0, on the order of the support of M0. For a particle’s path not passing close to the scaling enter
(without loss off generality), w ≪ |ζ|. This integral term is therefore ignored for the rest of the paper,
and the reader can easily verify that its inclusion would have had a negligible influence on the results.

With said integral ignored, (51) becomes (14). And as proved in that case, solutions for ζ i must
all be straight, non tachyonic worldlines. The effect of gravity on those is derived by including a
weak field in the the flow of the first-moment projection of (21). Since gravity is assumed to play a
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negligible role in the structure of matter, the way this field enters the flat spacetime analysis is via the
scaling field, Zµ = xµ + zµ 7→ z̃µ + zµ, with z̃µ incorporating the metric, and by ‘dotting the commas’
in partial derivatives. Before analyzing the first moment we note that, the previous zeroth-moment
analysis can be repeated with ∂ 7→ ∇, at most introducing curvature-terms corrections due to the non-
commutativity of covariant derivatives (20), which can be neglected in the Newtonian approximation.
As for the the swapping of Wν

µ and ∂s made in arriving at (49), using Fµν ≡ ∂µ Aν − ∂ν Aµ (viz.,
ordinary derivatives can replace covariant ones) in the definition (19) of Jµ, it is easily established
that the swapping introduces an error equal to 1

2 Fνµ∂s∂ν ln(−g) ≈ Fνµ∂s∂νΦ with the determinant
g = |gµν| ≈ −1 − 2Φ. This error is negligible when competing with ∂s∂νFνµ, containing extra spatial
derivatives of Aµ at its center. Thus J0 is not only covariantly conserved in time, which can be written
∂µ
(√−gJµ

)
= 0, by virtue of the last identity in (19), but also in scale,∫

d3x
√
−g J0(x, t, λ) ≡ q (52)

Continuing in the Newtonian approximation of the metric (38) for simplicity, and further assuming
non-relativistic motion, i.e., ||Ji|| ≪ ||J0|| (say, in the L1 sense), a straightforward calculation of the
Christoffel symbols to first order in Φ incorporating ∇2Φ = 0 gives

□2
GR J0 ≡ ∇α∇α J0 ≈ −(1 + Φ)∂tt J0 + (1 − Φ)∂j

(
∂j J0 + ∂jΦJ0

)
(53)

Ignoring O(Φ) corrections to the isotropic coarsener, the net effect of of the potential in the Newto-
nian approximation is to render the coarsener unisotropic through its gradient. Multiplying (49) with
the modified d’Alembertian (53) by

√−gxi/q ≈ (1 + Φ)xi/q and integrating over B, the (1 + Φ) can-
cels (to first order in Φ) the (1− Φ) factor multiplying the spatial piece in (53), which is then integrated
by parts, assuming ∂iΦ is approximately constant over the extent of the body. Since z̃µ = xµ + O(Φ)

and ∇µ J0 ≈ ∂µ(J0(1 + O(Φ))) the modification to the scaling piece (46) only introduces an O(Φ)

correction to the −ζ i term in (51) which is neglected in the Newtonian approximation. Further ne-
glecting the O(Φ) contribution to the double time-derivative piece, the first moment projection of (21)
finally reads

λ∂λζ i = ℓ2
0

(
−∂ttζ

i − ∂iΦ(ζ, t, λ)
)
− ζ i + t∂tζ

i (54)

This equation is just (14) with an extra ‘force-term’ on its r.h.s. which could salvage a non
uniformly moving solution, ζ i, from the catastrophic fate at λ → ∞ suffered by its linear counterpart.

At sufficiently large scales, λ, when all relevant masses contributing to Φ occupy a small ball of
radius ≪ ℓ0 centered at the origin of scaling without loss of generality, the scaling part on the r.h.s
of (54) becomes negligible compared with the force term, rather benefiting from such crowdedness
(t ≪ ℓ0 can similarly be assumed without loss of generality). It follows that each |ζ| would grow—
extremely rapidly as we show next—with increasing λ even when the weak-field approximation is
still valid, implying that the underlying Aµ is not in S . The only way to keep the scale evolution of ζ

under control is for the acceleration term to similarly grow, almost canceling the force term but not
quite, which is critically important; it is the fact that the sum of these two terms, both originating from
the coarsener, remains on the order of the scaling term, which is responsible for a nontrivial, non pure
scaling ζ. This means that each worldline converges at large scales to that satisfying Newton’s equation

∂ttζ
i = − ∂iΦ(ζ, t, λ) (55)

At small scales the opposite is true. The scaling part dominates and any scaling path, i.e.,
ζ i(t, λ) = λ−1ζ i

scl(λt) is well behaved. Combined: at large scales ζ i is determined, then simply scaled
at small scales, gradually converging locally to a freely moving particle. Finally, (55) must be true
also for a loosely bound system, e.g. a wide binary moving in a strong external field, implying that
Newton’s law applies also to their relative vector, not merely to their c.o.m.
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Deriving a manifestly covariant generalization of (54) is certainly a worthwhile exercise. However,
in a weak field the result could only be

λ∂λζµ = (λℓ0)
2
(
−∂ττζµ − Γ̄µ

νρ∂τζν∂τζρ
)
− zµ (56)

with τ some scalar parameterization of the worldline traced by ζµ. Above, Γ̄µ
νρ is the Christoffel

symbols associated with gµν(x, λ;−2G), i.e., the analytic continuation of the metric, seen as a function
of Newton’s constant, to −2G. Recalling from Section 3.1.3 that the fixed-point gµν is a solution of the
standard EFE analytically continued to G 7→ − 1

2 G, Γ̄ in that case is therefore just the Christoffel symbol
associated with standard solutions of EFE’s. The previous, Newtonian approximation is a private
case of this, where Φ contains a factor of G. Note however that the path of a particle in our model
is a covariantly defined object irrespective of the analytic properties of gµν. Resorting to analyticity
simply provides a constructive tool for finding such paths whenever gµν is analytic in G. In such cases,
the covariant counterpart of (55) becomes the standard geodesic equation of GR which gives great
confidence that this is also the case for non-analytic gµν.

The reasons for trusting (56) are the following. It it is manifestly covarinat, as is our model; At
nonrelativistic velocities and weak field, (56) implies ζt ≡ t ≈ λ−1τ which, when substituted into
the i-components of (56), recovers (54); It only involves local properties of ζµ(τ) and gµν(x), i.e., their
first two derivatives, which must also be a property of a covariant derivation, as is elucidated by
the non-relativistic case. Thus (56) is the only candidate up to covariant, higher derivatives terms
involving ζµ and gµν, or nonlinear terms in their first or second derivatives, all becoming negligible in
weak fields/ at small accelerations.

In conclusion of this section we wish to relate (56) to the fact that Tµν is not covariantly conserved
by virtue of (27). It was well known already to Einstein that the geodesic equation follows from local
energy-momentum conservation under reasonable assumptions. Similarly, the Lorentz force equation
follows quite generally from the basic tenets of classical electrodynamics (30),(29),(19). Referring to
Figure 1, both results are derived by integrating ∇µTµν = 0 over a world-cylinder, C, with the ∂ττζν

term obtained by converting part of the volume integral into a surface integral over the Σ’s via (a
relativistic generalization of-) Stoke’s theorem, leaving the remaining part for the ‘force term’, which
gives Γ̄µ

νρ∂τζν∂τζρ in the case of gravity. The integral over T represents small radiative corrections to
the geodesic/Lorentz-force equation which can be ignored in what follows. A crucial point in that
derivation is that the result is insensitive to the form of C so long as the Σ’s contain the support of the
particle’s energy-momentum distribution. This insensitivity would not carry to the r.h.s. of (27) should
it be transferred sides, whether or not gµν is to include the self-field of the particle. Thus attempting to
generalize the geodesic equation based on (27) in the hope that it would reproduce fixed-λ solutions
of (56) is bound to fail. Nonetheless, since the conservation-violating r.h.s. of (27) is a tiny O(ℓ−2

g ),
it can consistently be ignored for any reasonable choice of C whenever the individual terms in the
geodesic equation are much larger, i.e., at large scales; it is only at small scales that each term becomes
comparable to the r.h.s. even for reasonable choices of C. And since in the limit ℓ0 → ∞ paths become
simple geodesics at any scale according to (56), the two length parameters, ℓ0, ℓg are not independent,
constrained by consistency of solutions such as the above, and likely additional ones involving the
structure of matter, as hinted to by the fixed-point example in Section 3.1.2.
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Figure 1. A 1 + 1 cross section of a world cylinder whose boundary consists of two space-like surfaces, Σ and
a time-like world tube T. The integral over T results in radiative corrections, ignored at small accelerations.
Figure adapted from appendix D of arXiv:0902.4606v10 [quant-ph] where a detailed derivation of the Lorenz force
equation can be found.

3.2.1. Application: The Rotation Curve of Disc Galaxies

As a simple application of (54), let us calculate the rotation curve, v(r), of a scale-invariant mass,
M, located at the origin, as it appears to an astronomer of native scale λ = 1. Above, r is the distance
to the origin of a test mass orbiting M in circles at velocity v. Since Φ in (54) is time-independent, the
time-dependence of ζ i can only be through the combination Ω(λ)t for some function Ω. Looking for a
circular motion solution in the x1 − x2 plane,

ζ1(λ, t) = r(λ) sin
(
Ω(λ)t

)
, ζ2(λ, t) = r(λ) cos

(
Ω(λ)t

)
and equating coefficients of sin(Ωt) and cos(Ωt) for each component, the system (54) reduces to two,
first order ODE’s for Ω(λ) and r(λ). The equation for Ω readily integrates to Ω = ωλ for some
integration constant ω, and for r it reads

λ
dr
dλ

= ℓ2
0

(
λ2ω2r − GM

r2

)
− r (57)

Solutions of (57) with r(1) ≡ r1 as initial condition, all diverge in magnitude for λ → ∞ except for
a single value of ω for which r(λ) → 0 in that limit; for any other ω′ ≷ ω, r(λ) rapidly diverges to ±∞
respectively; the map r1 7→ ω is invertible. We note in advance that, for a mistuned ω this divergence
starts well before the the weak field approximation breaks down due to the r−2 term, and neglected
relativistic and self-force terms become important, and being so rapid, ∼ eλ2

, those would not tame a
rogue solution. It follows that there is no need to complicate our hitherto simple analysis in order to
conclude that ω′ = ω is a necessary conditions for r to correspond to an Aµ ∈ S .

Solutions of (57) which are well-behaved for λ → ∞ admit a relatively simple analytic form.
Reinstating c and defining λ̄ := ωℓ0λ/c the result is

r(λ̄) :=
1
λ̄

(
GMℓ2

0
6c2

)1/3[
6λ̄ −

√
6πe

3
2 λ̄2
(

erf
(√

3/2 λ̄
)
− 1
)]1/3

, (58)

having the following power law asymptotic forms

r(λ̄) ∼
(

GMℓ2
0

c2

)1/3

×

λ̄−2/3 for λ̄ ≫ 1 , ‘coarsening regime’(
π
6
)1/6

λ̄−1 for λ̄ ≪ 1 , ‘scaling regime’
(59)
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with the corresponding asymptotic circular velocity, v = (ωλ)r

v(λ̄) ∼
(

GMc
ℓ0

)1/3
×

λ̄1/3 for λ̄ ≫ 1,(
π
6
)1/6 for λ̄ ≪ 1

(60)

With these asymptotic forms the reader can verify that, in the large λ̄ regime, (55), which in this
case takes the form:

v2

r
=

GM
r2 (61)

is indeed satisfied for any λ̄. This almost certainly generalizes to the following: The paths, ζk(t, λ),
solving (54)(45) for a bound system of scale-independent masses (indexed by k), approach at large λ

the form
ζk(t, λ) ∼

λ≫1
λ−2/3ζN

k (λt) (62)

where ζN
k are the Newtonian paths of such a system; (62) is an exact symmetry of Newtonian gravity.

Finally, for a scale-dependent mass in (57), an r(λ; ω) is obtained by the large-scale regularity condition
which is not of the form r

(
λ̄
)
. This results in a rotation curve v(r1) ≡ ω(r1)r1 which is not flat at large

r1, and an r(λ) which, depending on the form of M(λ), may not even converge to zero at large λ.
Moving, next, to a more realistic representation of disc galaxies. For a general gravitational

potential, Φ, sourced via (45) by a planar, axially symmetric mass density Tmat
00 (ρ)—ρ being the

radial distance from the galactic axis in the galactic plane—and for a test mass circularly orbiting the
symmetry axis in the galactic plane, the counterpart of (57) reads

λ
r.

dλ
= ℓ2

0

(
ω2λ2r − ∂ρΦ(r, λ)

)
− r (63)

The time-independent mass density, Tmat
00 , is approximated by a (sufficiently dense) collection

of concentric line-rings, each composed of a (sufficiently dense) collection of particles evenly spaced
along the circumference. Next, recall that in the above warm-up exercise, the solution of (63) for
each such particle is well behaved only for one, carefully tuned value of ω. This sensitivity results
form instability of the the o.d.e. (63) in the +λ direction, inherited from that of Aµ, and is not a
peculiarity of the Coulomb potential. To find the rotation curve one needs to simultaneously propagate
with (63) each ring—or rather a single representative particle from each ring—rr1(λ), using an initial
guess for ω(r1) (where r1 is now a ring index, labeling the ring whose radius at λ = 1 equals r1, viz.,
rr1(1) = r1). Unlike in the previous case, the (mean-field) Newtonian potential of the disc at scale
λ, Φ(ρ, λ), solution of (39), must be re-computed at each λ. The rotation curve is obtained as that
(unique) guess, ω(r1), for which no ring diverges in the limit λ → ∞. In so finding the rotation curve
the scale dependence of individual particles comprising the disc needs to be specified. If those are
fixed-point particles then their mass is scale-independent by definition. Moreover, as mentioned above,
a scale-dependent mass leads to manifest contradictions with observations. In light of this, a scale
independent mass is assumed modulo some caveats discussed in Section 3.4. Note the implication of
the scale-invariant-mass approximation, applicable to any gravitating system: Although ζ i(t, s = 0) is
the desired spacetime path, by construction and the s-translation invarinace of (54), ζ i(t, s) for any s
would also be a permissible path at s = 0. In other words, (54) with the regularity condition at s → ∞,
generates a continuous family of spacetime paths which could be observed at any fixed native scale,
s = 0 in particular.

The algorithm described above for finding the rotation curve, although conceptually straight-
forward, could be numerically challenging and will be attempted elsewhere. However, much can be
inferred from it without actually running the code. Mass tracers lying at the outskirts of a disc galaxy,
experience almost the same, −MG/r potential, where M is the galactic mass, independently of λ. This
is clearly so at λ = 1, as higher order multipoles of the disc are negligible far away from the galactic
center, but also at larger λ, as all masses comprising the disc converge towards the center, albeit at
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different paces. The analytic solution (59) can therefore be used to a good approximation for such
traces, implying the following power-law relation between the asymptotic velocity, vf, of a galaxy’s
rotation curve and its mass, M,

M =

(
6
π

)1/2 ℓ0

Gc
v3

f (64)

Such an empirical power law, relating M and vf, is known as the Baryonic Tully-Fisher Relation
(BTFR), and is the subject of much controversy. There is concensus regarding the conssistency of
observations with a zero intrinsic scatter, nor is there an agreemnet about the value of the slope—3 in
our case—when plotting log M vs. log vf. Some groups [5] see a slope ∼ 3 while other [6] insisting
it is closer to 4 (both ‘high quality data’ representatives, using primary distance indicaors). While
some of the discrepancy in slope estimates can be attributed to selection bias and different methods of
estimating the galactic mass, the most important factor is the inclusion of relatively low-mass galaxies
in the latter. When restricting the mass to lie above ∼ 1010M⊙, almost all studies support a slope close
to 3. The recent study [7] which includes some new, super heavy galaxies, found a slope ∼ 3.26 and a
log M/M⊙-axis intercept of ∼ 3.3 for the massive part of the graph. Since the optimization method
used in finding those two parameters is somewhat arbitrary, imposing a slope of 3 and fitting for the
best intercept is not a crime against statistics. By inspection this gives an intercept of ∼ 4.2, consistent
with [5], which by (64) corresponds to ℓ0 ∼ 4.6 × 1020 km.

With an estimate of ℓ0 at hand, yet another prediction of our model can be put to test, pertaining
to the radius at which the rotation curve transitions to its flat part. The form (59) of r(λ) implies
that the transition from the scaling to the coarsening regime occurs at λ̄ ≈

√
2/3. At that scale the

radius assumes a value rtr ≈
(

MGℓ2
0/c2)1/3

= vf ℓ0/c. Using standard units where velocities are
given in km/s and distances in kpc, gives rtr ≈ 1

20 vf. Now, in galaxies with a well-localized center—a
combination of a massive bulge and (exponential) disc—most of the mass is found within a radius
rM < rtr, lying to the right of the Newtonian curve’s maximum. Approximating the potential at r ≥ rM

by −GM/r, the transition of the rotation curve from scaling to coarsening, with its signature rise from
a flat part seen in Figure 2, is expected to show at rtr, followed by a convergence to the galaxy-specific
Newtonian curve. This is corroborated in all cases—e.g. galaxies NGC2841, NGC3198, NGC2903,
NGC6503, UGC02953, UGC05721, UGC08490... in fig.12 of [8]

Figure 2. The rotation curve v(r) ≡ ω(r)r|λ=1 obtained from (58) by setting λ = 1 (blue). The Newtonian curve
for the same parameters (red).
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The above sanity checks indicate that the rotation curve predicted by our model cannot fall too
far from that observed, at least for massive galaxies; it is guarantied to coincide with the Newtonian
curve near the galactic center, depart from it approximately where observed, eventually flattening at
the right value.

However, the above checks do not apply to diffuse, typically gas dominated galaxies, several
orders of magnitude lighter. More urgently, a slope= 3 is difficult to reconcile with [6] which finds
a slope≈ 4 when such diffuse galaxies are included in the sample. Below we therefore point to
two features of the proposed model possibly explaining said discrepancy. First, our model predicts
that vf attributed in [6] to such galaxies would turn out to be a gross overestimation should their
rotation curves be significantly extended beyond the handful of data points of the flat portion. To see
why, consider an alternative solution strategy for finding a rotation curve (which may also turn out to
be computationally superior):

1. Start with a guess for the mass distribution of a galaxy at some large enough scale, λ>, such that
its rotation curve is fully Newtonian (If our conjecture regarding (62) is true then the flow to even
larger λ is guaranteed not to diverge for any such initial guess).

2. Let this Newtonian curve flow via (63)(45) to λ = 1—no divergence problem in this, sta-
ble direction of the flow—comparing the resultant mass distribution at λ = 1 with the
observed distribution

3. Repeat step 1 with an improved guess based on the results of 2, until an agreement is reached.
By construction the solution curve is Newtonian at λ>, having a v ∼

√
GM/r tail past the

maximum, whose rightmost part ultimately evolves into the flat segment at λ = 1. We can draw
two main distinctions between the flows to λ = 1 of massive and diffuse galaxies’ rotation curves.
First, since the hypothetical Newtonian curve at λ = 1—that which is based on baryonic matter
only—is rising/leveling at the point of the outmost velocity tracer in the diffuse galaxies of [6],
we can be certain that this tracer was at the the rising part/maximum of the λ> curve, rather
than on its v ∼

√
GMr tail as in massive galaxies. This means that, in massive galaxies, the

counterpart of the short, flat segment of a diffuse galaxy’s r.c., is rather the short flat segment near
its maximum, seen in most such galaxies near the maximum of the hypothetical Newtonian curve.
Second, had tracers further away from the center been measured in diffuse galaxies, the true
flat part would have been significantly lower relative to this maximum than in massive galaxies.
With some work this can be shown via the inhomogeneous flow of v ≡ λωr derived from (63)

λ̄∂λ̄v = λ̄2v − ∂ρΦ(r, λ̄)λ̄ (65)

where r is a solution of (63) (re- expressed as a function of λ̄). The gist of the argument is that,
solutions of (65) deep in the coarsening regime, upon flowing to smaller λ̄, decay approximately
as λ̄1/3, whereas in the scaling regime they remain constant (see (60)). In massive galaxies the
entire flow from λ̄> to λ̄ = 1 of a tracer originally at the maximum of the r.c. is in the coarsening
regime, while in diffuse galaxies it is mostly in a hybrid, coarsening scaling intermediate mode.
The velocity of that tracer relative to the true vf therefore decays more slowly in diffuse galaxies.
Note that to make the comparison meaningful a common λ> must be chosen for both galaxies
such that v

(
λ̄>
)
/vf is equal in both.

The second possible explanation for the slopes discrepancy, which could further contribute to
an intrinsic scatter around a straight BTFR, involves a hitherto ignored transparent component of
the energy-momentum tensor. As emphasized throughout the paper, the A-field away from a non-
uniformly moving particle (almost solving Maxwell’s equations in vacuum) necessarily involves
both advanced and retarded radiation. Thus even matter at absolute zero constantly ‘radiates’, with
advanced fields compensating for (retarded) radiation loss, thereby facilitating zero-point motion of
matter. The A-field at spacetime point (t, x) away from neutral matter is therefore rapidly fluctuating,
contributed by all matter at the intersection of its worldline with the light-cone of (t, x). We shall refer

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 June 2025 doi:10.20944/preprints202506.1571.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1571.v1
http://creativecommons.org/licenses/by/4.0/


21 of 31

to it as the Zero Point Field (ZPF), a name borrowed from Stochastic Electrodynamics although it does
not represent the very same object. Being a radiation field, the ZPF envelopes an isolated body with
an electromagnetic energy ‘halo’, decaying as the inverse distance squared—which by itself is not
integrable!—merging with other halos at large distance. Such ‘isothermal halos’ served as a basis for a
‘transparent matter’ model in a previous work by the author [2] but in the current context its intensity
likely needs to be much smaller to fit observations. Space therefore hosts a non-uniform ZPF peaking
where matter is concentrated, in a way which is sensitive to both the type of matter and its density.
This sensitivity may result both in an intrinsic scatter of the BTFR, and in a systematic departure from
ZPF-free slope=3 at lower mass. Indeed, in heavy galaxies, typically having a dominant massive center,
the contribution of the halo to the enclosed mass at rtr is tiny. Beyond rtr orbiting masses transition
to their scaling regime, minimally influenced by additional increase in the enclosed mass at r. The
situation is radically different in light, diffuse galaxies, where the ratio of ρZPF/ρbaryon is much higher
throughout the galaxy, and much more of the non-integrable tail of the halo contributes to the enclosed
mass at the point where velocity tracers transition to their scaling regime. This under estimation of the
effective galactic mass, increasing with decreasing baryonic mass, would create an illusion of a BTFR
slope greater than 3.

3.2.2. Other Probes of ‘Dark Matter’

Disc galaxies are a fortunate case in which the worldline of a body transitions from scaling to
coarsening at a common scale along its entire worldline (albeit different scales for different bodies).
They are also the only systems in which the velocity vector can be inferred solely from its projection on
the line-of-sight. In pressure supported systems, e.g., globular clusters, elliptical galaxies or galaxy
clusters, neither is true. Some segments of a worldline could be deep in their scaling regime while
others in the coarsening, rendering the analysis of their collective scale flow more difficult. One solution
strategy leverages the fact that, all the worldlines of a bound system are deep in their coarsening
regime at sufficiently large scale, where their fixed-λ dynamics is well approximated using Newtonian
gravity. Starting with such a Newtonian system at sufficiently large λ>, the integration of (54) to
small λ is in its stable direction, hence not at risk of exploding for any initial choice of Newtonian
paths. If the Newtonian system at λ> is chosen to be virialized, a ‘catalog’ of solutions of pressure
supported systems extending to arbitrarily small λ can be generated, and compared with line-of-sight
velocity projections of actual systems. As remarked above, the transition from coarsening to scaling
generally doesn’t take place at a common scale along the worldline of any single member of the system.
However, if we assume that there exists a rough transition scale, λtr, for the system as a whole in
the statistical sense, which is most reasonable in the case of galaxy clusters, then immediate progress
can be made. Since in the scaling regime velocities are unaltered, the observed distribution of the
line-of-sight velocity projections should remain approximately constant for λ < λtr, that of a virialized
system, viz., Gaussian of dispersion σv. On the other hand, at λ > λtr a virialized system of total mass
M satisfies

σv ≈
√

GM/r (66)

where σv is the velocity dispersion, and r is the radius of the system, which is just (61) with σv 7→ v.
On dimensional grounds it then follows that σv would be the counterpart of v f from (64), implying
σv ∝ M1/3 which is in rough agreement with observations. The proportionality constant can’t be
exactly pinned using such huristic arguments, but its observed value is on the same order of magnitude
as that implied by (64).

Applying our model to gravitational lensing in the study of dark matter requires better under-
standing of the nature of radiation. This is murky territory even in conventional physics and in next
section initial insight is discussed. To be sure, Maxwell’s equations in vacuum are satisfied away
from Jµ, although only ‘almost so’, as discussed in Section 3. However, treating them as an initial
value problem, following a wave-front from emitter to absorber is meaningless for two reasons. First,
tiny, O(ℓ−1

0 ) local deviations from Maxwell’s equations could become significant when accumulated

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 June 2025 doi:10.20944/preprints202506.1571.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1571.v1
http://creativecommons.org/licenses/by/4.0/


22 of 31

over distances on the order of ℓ0. Second, in the proposed model extended particles ‘bump into
one another’ and their centers jolt as a result—some are said to emit radiation and other absorb it, and
an initial-value-problem formulation is, in general, ill-suited for describing such process. Nonetheless,
incoming light—call it a photon or a light-ray—does posses an empirical direction when detected. In
flat spacetime this could only be the spatial component of the null vector connecting emission and
absorption events, as it is the only non arbitrary direction. A simple generalization to curved spacetime,
involving multiple, freely falling observers, selects a path, ζµ, everywhere satisfying the light-cone
condition ζ̇2(τ) ≡ 0. Every null geodesic satisfies the light-cone condition, but not the converse. In
ordinary GR, the only non arbitrary path connecting emission and absorption events which respects
the light-cone condition and locally depends on the metric and its first to derivatives is indeed a null
geodesic. In our model, a solution of (56) which is well behaved on all scales, further satisfying the
light-cone condition for λ → ∞, is an appealing candidate: It becomes a null geodesic at large scales,
while the scaling operator alone preserves the light-cone condition.

Furthermore, in GR the deflection angle of a light ray due to gravitational lensing, by a compact
gravitating system of mass M, is ϕ = 4GM/(c2R), where R is the impact parameter. When ζµ is in
its scaling regime, our model’s ϕ remains constant. If the system is likewise in its scaling regime,
(66) implies that its virial mass, Mvir = σ2

v r/G, scales according to Mvir 7→ λ−1Mvir, as does the
impact parameter of ζµ, R 7→ λ−1R. The conventional mass estimate based on the virial theorem,
of this λ-dependent family of gravitating systems, would then agree with that which is based on
(conventional) gravitational lensing, Mlens = c2Rϕ/4G, up to a constant, common to all members—
recall that this entire family appears in the ‘catalog’ of λ = 1 systems. Extending this family to large λ,
the two estimates will coincide by construction. Thus if the system and ζ i transition approximately at
a common λ, this proportionality constant can only be close to 1. This is apparently the case in most
observations pertaining to galaxy clusters. Nonetheless, the two methods according to our model need
not, in general, produce identical results. The degree to which they disagree depends on the exact
scale-flow of ζµ, which is one of those calculations avoided thus far, involving a path non-uniformly
(in scale) transitioning from coarsening to scaling.

A final caveat regarding the application of (56) to imaging, is that it is not clear whether the
light-cone condition is automatically satisfied by all paths thus defined or that it should be imposed as
an additional constraint. Nor is it even obvious that this condition must be satisfied exactly. In trying
to figure this out one should remember that, in general, solutions of (56) that are well behaved on all
scales are not solutions of any o.d.e. in τ for a fixed λ.

3.3. Quantum Mechanics as a Statistical Description of the Realistic Model

The basic tenets of classical electrodynamics (19), (29) and (30), which must be satisfied at any scale
on consistency grounds (up to neglected curvature terms), strongly constrain also statistical properties
of ensembles of members in S , and in particular constant-λ sections thereof. In a previous paper by
the author [1] it was shown that these constraints could give rise to the familiar wave equations of
QM, in which the wave function has no ontological significance, merely encoding certain statistical
attributes of the ensemble via the various currents which can be constructed from it. It is through this
statistical description that h̄ presumably enters physics, and so does ‘spin’ (see below).

This somewhat non-committal language used to describe the relation between QM wave-
equations and the basic tenets is for a reason. Most attempts to provide a realist (hidden variables)
explanation of QM follow the path of statistical mechanics, starting with a single-system theory,
then postulating a ‘reasonable’ ensemble of single-systems—a reasonable measure on the space of
single-system solutions—which reproduces QM statistics. Ignoring the fact that no such endeavor
has ever come close to fulfillment, it is rarely the case that the measure is ‘natural’ in any objective
way, effectively defining the statistical theory/measure (uniformity over the impact parameter in an
ensemble representing a scattering experiment being an example of an objectively natural attribute of
an ensemble). Even the ergodicity postulate, as its name suggests, is a postulate—external input. When
sections of members in S are the single-systems, the very task of defining a measure on such a space, let
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alone a natural one, becomes hopeless. The alternative approach adopted in [1] is to derive constraints
on any statistical theory of single-systems respecting the basic tenets, showing that QM non-trivially
satisfies them. QM then, like any measure on the space of single-system solutions, is postulated rather
than derived, and as such enjoys a fundamental status, on equal footing with the single-system theory.
Nonetheless, the fact that the QM analysis of a system does not require knowledge of the system’s
orbit makes it suspicious from our perspective. And since a quantitative QM description of any system
but the simplest ones involves no less sorcery than math, that fundamental status is still pending
confirmation (refutation?).

Of course, the basic tenets of classical electrodynamics are respected by all (sections of-) members
of S , not only those associated Dirac’s and Schrödinger’s equations. The focus in [1] on ‘low energy
phenomena’ is only due to the fact that certain simplifying assumptions involving the self-force can be
justified in this case. In fact, the current realization of the basic tenets, involving fields only instead of
interacting particles, is much closer in nature to the QFT statistical approach than to Schrödinger’s.

3.3.1. The Origin of Quantum Non-Locality

“Multiscale locality", built into the proposed formalism, readily dispels one of QM’s greatest
mysteries—its apparent non-local nature. In a nutshell: Any two particles, however far apart at our
native scale, are literally in contact at sufficiently large scale.

Two classic example where this simple observation invalidates conventional objections to local-
realist interpretations of QM are the following. The first is a particle’s ability to ‘remotely sense’ the
status of the slit through which it does not pass, or the status of the arm of an interferometer not
traversed by it (which could be a meter away). To explain both, one only needs to realize that for a
giant physicist, a fixed-point particle is scattered from a target not any larger than the particle itself,
to which he would attribute some prosaic form-factor; At large enough λ the particle literally passes
though both arms of the interferometer (and through none!). This global knowledge is necessarily
manifested in the paths chosen by it at small λ. Of course, at even larger λ the particle might also
pass through two remote towns etc., so one must assume that the cumulative statistical signature of
those infinitely larger scales is negligible. A crucial point to note, though, is that the basic tenets, which
imply local energy-momentum conservation at laboratory scales, are satisfied at each λ separately.
For this large-λ effect to manifest at λ = 1, local energy-momentum conservation alone must not be
enough to determine the particle’s path, which is always the case in experiment manifesting this type
of non-locality. Inside the crystal serving as mirror/beam-splitter in, e.g., a neutron interferometer,
the neutron’s classical path (=paths of bulk-motion derived from energy-momentum conservation) is
chaotic. Recalling that, what is referred to as a neutron—its electric neutrality notwithstanding—only
marks the center of an extended particle, and that the very decomposition of the A-field into particles is
an approximation, even the most feeble influence of the A-field awakened by the neutron’s scattering,
traveling through the other arm of the interferometer, could get amplified to a macroscopic effect.
This also provides an alternative, fixed-scale explanation for said ‘remote sensing’. In the double-slit
experiment such amplification is facilitated by the huge distance of the screen from the slits compared
with their mutual distance.

The second kind of non-locality is demonstrated in Bell’s inequality violations. As with the
first kind, the conflict with one’s classical intuition can be explained both at a fixed scale, or as a
scale-flow effect. Starting with the former, and ever so slightly dumbing down his argument, Bell
assumes that physical systems are small machines, with a definite state at any given time, propagating
(deterministically or stochastically) according to definite rules. This generalizes classical mechanics,
where the state is identified with a point in phase-space and the evolution rule with the Hamiltonian
flow. However, even the worldlines of particles in our model, represented by sections of members in
S , are not solutions of any (local) differential equation in time. Considering also the finite width of
those worldlines, whose space-like slices Bell would regard as possibly encoding their ‘internal state’,
it is clear that his modeling of a system is incompatible with our model; particles are not machines, let
alone particle physicists. Spacetime ‘trees’ involved in Bell’s experiments—a trunk representing the
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two interacting particles, branching into two, single particle worldlines—must therefore be viewed
as a single whole, with Bell’s inequality being inapplicable to the statistics derived from ‘forests’ of
such trees.4 This spacetime-tree view gives rise to a scale-flow argument explaining Bell’s inequality
violations: The two branches of the tree shrink in length when moving to larger scale, eventually
merging with the trunk and with one another. Thus the two detectors at the endpoints of the branches
cannot be assumed to operate independently, as postulated by Bell.

3.3.2. Fractional Spin

Fractional spin is regarded as one of the hallmarks of quantum physics, having no classical analog,
but according to [1], much like h̄, it is yet another parameter—discrete rather than continuous—entering
the statistical description of an ensemble. At the end-of-the-day, the output of this statistical description
is a mundane statement in R3, e.g., the scattering cross-section in a Stern-Gerlach experiment, which
can be rotated with O(3). Neither Bell’s- nor the Kochen-Specker theorems are therefore relevant
in our case as the spin is not an attribute of a particle. For this reason the spin-0 particle from
Section 3.1.2 is a legitimate candidate for a fractional-spin particles, such as the proton, for its ‘spin
measurement/polarization’ along some axis is by definition a dynamical happening, in which its
extended world-current bends and twists, expands and contracts in a way compatible with- but not
dictated by the basic tenets. As stressed above, there is no natural measure on the space of such objects,
and the appearance of two strips on Stern & Gerlach’s plate rather than one, or three etc. need not have
raised their eyebrows. Nonetheless, the proposed model does support spinning solutions, viz. J ̸≡ 0
in the rest frame of the particle, and there is a case to be made that those are more likely candidates for
particles normally attributed with a spin, integer or fractional.

3.3.3. Photons and Neutrinos (or Illusion Thereof?)

Einstein invented the ‘photon’ in order to explain the apparent violation of energy conservation
occurring when an electron is jolted at a constant energy from an illuminated plate even when the
plate is placed far enough from the source, such that the time-integrated Poynting flux across it
becomes smaller than that of the jolted electron. It is entirely possible that Einstein’s explanation
can be realized in the proposed formalism, although the rest-frame analysis of a fixed-point particle
from Section 3.1.2 must obviously be modified for massless (neutral) particles which might further
require extending Aµ and Zµ to include distributions. Maxwell’s equations would then act as the
photonic counterpart of a massive-particle’s QM wave equation, describing the statistical aspects of
ensembles of photons. Indeed, since in a ‘lab’ of dimension ≪ ℓ0 individual photons (almost) satisfy
the basic tenets of classical electrodynamics (and (31)) for a chargeless current (i.e.,

∫
d3 J0 = 0), the

construction from [1] would result in Maxwell’s equations, with the associated Θµν being the ensemble
energy-momentum tensor. However, since the A-field (almost) satisfies Maxwell’s equations regardless
of it being a building block of photons, it is highly unlikely that photons exhaust all radiation-related
phenomena. For example, is there any reason to think that a radio antenna transmits its signal via
radio photons, rather than radio (A-) waves? This suggests an alternative explanation for photon-
related phenomena, which does not require actual, massless particles. Its gist is that, underlying the
seeming puzzle motivating Einstein’s invention of the photon, is the assumption that an electron’s
radiation field is entirely retarded which, as emphasized throughout the paper, cannot be the case
for the A-field. Advanced radiation converging on the electron could supply the energy necessary
to jolt it, further facilitating violation of Bell’s inequality in entangled ‘photons’ experiments. This
proposal, first appearing in [1] and further developed in [2], was, at the time, the only conceivable
realist explanation of photon related phenomena. In the proposed model, apparently capable of
representing ‘light corpuscles’, it may very well be the wrong explanation. Photons would then be
just ephemeral massless particles created in certain structural transitions of matter, then disappearing

4 See philarchive.org/rec/KNOQTM for more details; Non-machines—as they are dubbed there—are expected to have statistical
properties which are incompatible with those of machines, whether micro- or macroscopic.
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when detected. Note that these two processes are entirely mundane, merely representing a relatively
rapid changes in Aµ and Zµ at the endpoints of a photon’s (extended) worldline. Such unavoidable
transient regions might result in an ever-so-slight smoothing of said distributions, which are otherwise
excluded from S .

“God is subtle but not malicious" was Einstein’s response to claims that further repetitions of the
Michelson-Morley experiment did show a tiny directional dependence of the speed of light. This
attitude is adopted vis-a-vis the neutrino’s mass problem. All direct measurements based on time-of-
flight are consistent with the neutrino being massless; the case for a massive neutrino relies entirely
on indirect measurements and a speculative extension of the Standard Model. Neutrinos would then
be quite similar to photons, only probably spinning (J ̸= 0), whose creation and annihilation involve
structural transitions at the subatomic scale. However, as with photons, and even more so due to their
elusiveness, neutrinos might not be the full story, or even the real one. The classical model of photons
cited above assumes that only Aµ contributes to the radiative Tµν which is therefore identified with
Θµν. In the proposed model Tµν consists also of

Pµν =
1

4πGℓ2
g

(
∂µZν + ∂νZµ

)
with Zν satisfying (31) in the flat spacetime approximation, rewritten here

□2Zν + ∂ν∂µZµ = 4πGℓ2
g Fνµ Jµ

This is a massless wave equation, not too dissimilar to Maxwell’s, therefore expected to participate
in radiative, energy-momentum transfer. However, two features set it apart. First, the two terms on
the l.h.s. of (31) enter with the ‘wrong’ relative sign, spoiling gauge covariance. As a result an extra
longitudinal mode exists, i.e., Zµ = ϵµ f (kνxν) with ϵµ ∝ kµ (which in the Maxwell case is a pure
gauge), on top of the two transverse modes, ϵµkµ = 0. Second, unlike Θµν, Pµν is only linear in Zµ, an
impossibility for a Noether current. Combined, these two features imply that only the longitudinal
mode can radiate energy-momentum and only during transient, ‘structural changes’ to the radiating
system. Indeed, consider the integral of the energy flux of Pµν over T = S2 ×R in Figure 1.∫

dt
∫

S2
P0idσi ≡

∫
dt
∫

S2
P · dσ (67)

where S2 is a large sphere centered at the location of the system and dσ is an outward pointing vector
orthogonal to S2 of length dσ. Clearly, only the longitudinal mode, whose energy flux at each point
on S2 is ∝ k0k ∥ dσ, contributes to the integral (67). Moreover, we saw in Section 3.1.1 that outside of
fixed-points, zµ must be negligible. So long as the system qualifies as a fixed-point, as during bulk
acceleration, no net flux is being generated by it, and it is therefore only while transitioning between
distinct fixed-points that P is involved in energy changes (and even then only its ∂rZ0 piece—r being
the radial coordinate when S2 and the system are co-centered at the origin—as the ∂tZr piece integrates
to zero over time). The Z-field is therefore a natural candidate for a ‘classical neutrino field’, whose
relation to neutrino phenomena parallels that of the A-field to photon phenomena. As with photons, it
is a particle’s advanced Z-field converging on it which supplies the energy-momentum necessary to
jolt it, conventionally interpreted as the result of being struck by a neutrino. Similarly, hitherto ignored
retarded Z-field is allegedly generated in structural changes of a system, e.g., when nuclei undergo
β-decay. As pointed out in Section 3.3.2 above, the (fractional) spin- 1

2 attributed to the neutrino, as is
the spin-1 of the photon, only labels the statistical description of phenomena involving such jolting of
charged particles.
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3.4. Cosmology

Cosmological models are stories physicists entertain themselves with; they can’t truly know what
happened billions of years ago, billions of light-years away, based on the meager data collected by
telescopes. Moreover, in the context of the proposed model, the very ambition implied by the term
“cosmology" is at odds with the humility demanded of a physicist, whose entire observable universe
could be another physicist’s microwave oven. On the other hand, astronomical observations associated
with cosmology, also serve as a laboratory for testing ‘terrestrial’ physical theories, e.g., atomic-,
nuclear-, quantum-physics, and this would be particularly true in our case, where the large and
the small are so intimately interdependent. When the most compelling cosmological story we can
devise requires contrived adjustments to terrestrial-physics theories, confidence in those, including
GR, should be shaken.

Reluctantly, then, a cosmological model is outlined below. Its purpose at this stage is not to
challenge ΛCDM in the usual arena of precision measurements, but to demonstrate that it plausibly
avoids the aforementioned flaw, while also addressing the infamous dipole problem [9], which
undermines the very foundations of any Friedmann cosmological model.

3.4.1. A Newtonian Cosmological Model

As a warm-up exercise, we wish to solve the system (54)(45) for a spherical, uniform, expanding
cloud of massive particles originating from the scaling center (without loss of generality), described by

ζ i
n(t, λ) = ri

na(t, λ) (68)

where n is a particle index, ri
n a constant vector, and {rn} are uniformly distributed when averaged

over a large enough volume. It is easily verified that the same homogeneous expanding cloud would
appear to an observer fixed to any particle, not just the one at the origin. The mass density of the
cloud depends on a via ρ ∝ a−3, retaining its uniformity at any time and scale. The gravitational force
acting on particle n is given by f i

n = − 4πG
3 ρ(t, λ)ri

na (the uniform vacuum energy is ignored as its
contribution to the force can only vanish by symmetry) and (54) gives a single, particle-independent
equation for a

λ∂λa = ℓ2
0

(
−ä − 4πG

3
ρa
)
− a + tȧ (69)

with ȧ ≡ ∂ta etc.
Two types of solutions for (69) that are well behaved on all scales should be distinguished:

Bounded and unbounded. In the former a(t, λ) becomes arbitrarily small ∀t at sufficiently large λ, and
is identically zero at t = 0 and a λ-dependent ‘big-crunch’ time, tf. By our previous remarks, at large
scale the coarsening terms—those multiplied by ℓ2

0 on the r.h.s. of (69)—dominate the flow and must
almost cancel each other or else a would rapidly blow up with increasing λ. The resulting necessary
condition for a regular a(t, λ) on all scales is a λ-dependent o.d.e. in time, which is simply the time
derivative of the (first) Friedmann equation for non-relativistic matter

ȧ2 + k(λ) =
8πG

3
ρa2 , ρ ∝ a−3 (70)

Note that k disappears as a result of this derivative, meaning that it resurfaces as a second integration
constant of any magnitude—not just k ∈ {−1, 0, 1}. During the flow of a(t, λ) to large λ, k increases
without bound, and as a consequence maxt a(t, λ) shrinks to zero for λ → ∞. In other words, as λ grows
the initial explosion becomes increasingly less energetic—as evaluated at some fixed, small t > 0 to avoid
a trivial infinity. Given a solution of (70) at large enough λ one can then integrate (69) in its stable, small λ

direction, where the scaling piece becomes important, but due to the a(t = 0, λ) = a(tf, λ) ≡ 0 constraint,
some parts of a solution remain deep in their coarsening regime. The same is true for unbounded solutions,
but in this case there is no a(t, λlarge) to start from. This renders the task of finding solutions more difficult,
which is addressed below, in the appropriate, relativistic context.
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The Newtonian-cloud model, while mostly pedagogical, nonetheless captures the way cosmology
is to be viewed within the proposed framework: It does not pertain to the Universe but rather to a
universe—an expanding cloud as perceived by a dwarf amidst it. A relative giant, slicing the cloud’s
orbit at a much larger λ, might classify the corresponding section as the expanding phase of a Cepheid,
or that of a red-giant, supernova, etc. An even mightier giant may see a decaying radioactive atom.
Of course, matter must disappear in such flow to larger and larger scales—a phenomenon already
encountered in the linear case which is further discussed below. A simplifying aspect of the proposed
formalism already exploited in the case of galaxies is that dynamical aspects of small-λ sections can be
analyzed independently of those large-λ sections. However, one must not lose sight of the orbit view.
For example, a possible singularity at t = 0 should not be interpreted as “the beginning of time" or
what have you, but merely the breakdown of the dwarf’s phenomenological description of his section.

Suppose for concreteness that a giant’s section is an expanding star. The dwarf’s entire observable
universe would in this case correspond to a small sphere, non-concentrically cut from the star. The hot
thermal radiation inside that sphere at λgiant, after flowing with (16) to λdwarf, would be much cooler,
much less intense, and much more uniform, except for a small dipole term pointing towards the star’s
center, approximaely proportional to the star’s temperature gradient at the sphere, multiplied by the
sphere’s diameter. Similarly for the matter distribution at λdwarf, only in this case the distribution of
accumulated matter created during the flow is expected to decrease in uniformity if new matter is
created close to existing matter. Thus the distribution of matter at λdwarf is proportional to the density
at λgiant only when smoothed over a large enough ball, whose radius coresponds to a distance at λgiant

much larger than the scale of density fluctuations. This would elegantly explain the so-called dipole
problem [9]—the near perfect alignment of the CMB dipole with the dipole deduced from matter
distribution, but with over 5σ discrepancy in magnitude; Indeed, the density and temperature inside
a star typically have co-linear, inward-pointing gradients, but which differ in magnitude. Note that
a uniform cloud ansatz is inconsistent with the existence of such a dipole discrepancy and should
therefore be taken as a convenient approximation only, rendering the entire program of precision
cosmology futile. The horizon problem of pre inflation cosmology is also trivially explained away by
such orbit view of the CMB. Similarly, the tiny but well-resolved deviations from an isotropic CMB
(after correcting for the dipole term) might be due to acoustic waves inside the star.

Returning to the scale-flow of φ ≡
(

Aµ, gµν

)
interpolating between ‘a universe’ and a star, and

recalling that φ(x, s) stands for a spacetime phenomenon as represented by a physicist of native scale
s, a natural question to ask is: What would this physicist’s lab notes be? A primary anchor facilitating
this sort of note-sharing among physicists of different scales is a fixed-point particle, setting both
length and mass standard gauges. We can only speculate at this stage what those are, but the fact that
the mass of macroscopic matter must be approximately scale invariant—or else rotation curves would
not flatten asymptotically—makes atomic nuclei, where most of the mass is concentrated, primary
candidates. Note that in the proposed formalism the elementarity of a particle is an ill-defined concept,
and the entire program of reductionism must be abandoned. For if zooming into a particle were to
‘reveal its structure’, even a fixed-point would comprise infinitely many copies of itself as part of its
attraction basin.

If nuclei approximately retain their size under scale-flow to large λ, while macroscopic molecular
matter shrinks, a natural question to ask is: What aspects of spacetime physics (at a fixed-scale section)
have changed? Instinctively, one would attribute the change to a RG flow in parameter space of
spacetime theories, e.g., the Yukawa couplings of the Standard Model of particle physics, primarily
that of the electron. However, this explanation runs counter to the view advocated in this paper, that
(spacetime) sections should always be viewed in the context of their (scale) orbit; If the proposed
model is valid, then the whole of spacetime physics is, at best, a useful approximation with a limited
scope. Moreover, an RG flow in parameter space cannot fully capture the complexity involved in such
a flow, where, e.g., matter could annihilate in scale (subject to charge conservation); ‘electrons’ inside
matter, which in our model simply designate the A-field in between nuclei—the same A-field peaking
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at the location of nuclei—‘merging’ with those nuclei (electron capture?); atomic lattices, whose size is
governed by the electronic Bohr radius ∼ m−1

e , might initially scale, but ultimately change structure.
At sufficiently large λ an entire star or even a galaxy would condense into a fixed-point—perhaps a
mundane proton, or some more exotic black-hole-like fixed-point which cannot involve a singularity
by definition. Finally, we note that, by definition, the self-representation of that scaled physicist
slicing φ(x, s) at his native scale s, is isomorphic to ours, viz., he reports being made of the same
organic molecules as we are made of, which are generically different from those he observes, e.g.,
in the intergalactic medium. So either actual physicists (as opposed to hypothetical ones, serving as
instruments to explain the mathematical flow of φ) do not exist in a continuum of native scales, only at
those (infinitely many) scales at which hydrogen atoms come in one and the same size; or else they do,
in which case we, human astronomers, should start looking around us for odd-looking spectra, which
could easily be mistaken for Doppler/gravitational shifts.

3.4.2. Relativistic Cosmology

In order to generalize the Newtonian-cloud universe to relativistic velocities, while retaining
the properties of no privileged location and statistical homogeneity, it is convenient to transfer the
expansion from the paths of the particles to a maximally symmetric metric—a procedure facilitated by
the general covariance of the proposed formalism. Formally, this corresponds to an ‘infinite Newtonian
cloud’ which is a good approximation whenever the size of the cloud and the distance of the observer
from its edge are both much greater than ℓ0 and ℓg. Consider first a spatially flat (k = 0 in the FLRW
metric), maximally symmetric space, with metric

gtt = −1 , gij = ηija2(t) , git = 0 (71)

for which the only non-vanishing Christoffel symbols are

Γt
ij = a∂taδij , Γi

tj =
∂ta
a

δi
j (72)

The gravitational part of the scaling field, z̃µ, appropriate for the description of a universe which
is electrically neutral on large enough scales, i.e.,

〈
Jµ

〉
≈ 0, is given by solutions of the homogeneous,

generally covariant counterpart of (31)

∇µ∇µ z̃ν +∇µ∇ν z̃µ = 0

However, the generally covariant boundary condition (32) “far away from matter" is not applicable
here. Instead, ∇µ z̃ν +∇ν z̃µ is required to be compatible with the (maximal) symmetry of space—its
Lie derivative along any Killing field of space must vanish. Such a scaling field is readily verified to be
just naive scaling

z̃t = t , z̃i = xi ⇒ z̃t = −t , z̃i = a2xi (73)

No generalization exists for a k ̸= 0 FLRW metric. A formal proof will be provided elsewhere, but
for k = 1 the reader can easily be convinced by (unsuccessfully) trying to visualize such a field on a
sphere. The flatness problem of pre-inflation cosmology is thus solved.

Calculating the metric-flow (23) for the above, maximally symmetric metric and associated scaling
field is somewhat more subtle than the transition from EFE to cosmology. The energy-momentum
tensor on its r.h.s. of EFE is a phenomenological device, equally valid whether applied to the hot
plasma inside a star or to the ‘cosmic fluid’. In contrast, Θµν and the scaling field from which Pµν is
derived, both enter (23) as fundamental quantities, on equal footing with gµν. To make progress, this
fundamental status must be relaxed, and Tµν := Θµν + Pµν is to be seen as the phenomenological Tµν
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in standard cosmology—a step that can be made fairly rigorous. Specifically, for Zµ = zµ + z̃µ, with zµ

the scaling field inside matter, we shall use a maximally symmetric ansatz

T00(t, λ) = ρ(t, λ)− 1
2πGℓ2

g
, Tij(t, λ) = a2

(
p(t, λ) +

1
2πGℓ2

g

(
1 +

ȧ
a

t
))

δij (74)

with ρ and p incorporating Θµν and pµν, while the remaining terms are entirely due to z̃µ. Plug-
ging (74) and (71) into the metric flow (23), results in space-space and time-time components given,
respectively, by

2aλ∂λa = ℓ2
g

(
−2aä − ȧ2 + 4a2πGp

)
+ 2a2 + 2aȧt (75)

0 = ℓ2
g

(
3

ȧ2

a2 + 4πGρ

)
− 2 (76)

which can be combined to

λ∂λa = ℓ2
g

(
−ä +

2πGa
3

(ρ + 3p) +
2

3ℓ2
g

a

)
+ ȧt (77)

Another equation which can be extracted from those two, or directly from energy-momentum
(non-)conservation (27) is

∂t p a3 − ∂t

(
a3(ρ + p)

)
= − 3

2πGℓ2
g

(
aλ∂λaȧ − aȧ2t

)
(78)

Only two of the above equations are independent due to the Bianchi identity.
Equation (77) is just (69) for p = 0, but with five differences:

(a) ℓ0 7→ ℓg, which is due to the fact that different flow equations are involved.
(b) G 7→ − 1

2 G; Since the paths of co-moving masses can be deduced by analytically continuing
solutions of (23), G 7→ −2G, and solving (56) in the resultant metric, we might as well solve the
above equations directly for G 7→ −2G.

(c) A cosmological constant term, (2/3ℓ2
g)a, appears, corresponding to a positive cosmological con-

stant Λ = 2/ℓ2
g; it would have made it into the Newtonian equations had the negative energy

density appearing in the Newtonian approximation (39) been included in ρ (which, as remarked
above, is not a valid step to take within the Newtonian approximation).

(d) The scaling term −a is missing from (77); its absence can be understood as follows: Solving (56)
in the metric (71) and using (72) it is readily verified that ζ i

n = λ−1ri
n, ζt

n = λ−1τ is a solution.
Now, unlike in (56), |ζn − ζn′ | is not the proper distance between two particles, viz., the minimal
number of fixed-point-standard-length-gauges exactly fitting between them (that this is so in the
former is not entirely trivial to show). Instead, it is |ζn − ζn′ |a = |rn − rn′ |λ−1a := |rn − rn′ |apr.
Assuming that the number of particles is conserved in both time and scale as in the Newtonian
model, we also have ρ ∝ a−3

pr . Setting p = 0 in (77) and substituting a = λapr, restores the scaling
term, written now for the proper metric scale-factor apr.

(e) Proviso ρ ∝ a−3
pr in (70) must be dropped as it is inconsistent with (78) (see next).

As in standard cosmology, solutions of the Friedmann equations require additional physical input
regarding the nature of the energy-momentum tensor, e.g., an equation of state relating p and ρ. In the
proposed model, both ρ and p represent some large-volume average of Θµν + Pµν removed of Pµν’s
trivial cosmological constant component. The contribution from inside matter (where J0 ̸≡ 0), denoted
ρm, is assumed to be that of non-relativistic (“cold") matter, i.e., pm ≈ 0. Outside matter the A-field
is nearly a vacuum solution of Maxwell’s equations with an associated traceless Θµν contributing ρr

and pr =
1
3 ρr to the total ρ and p. The scaling field, Zµ, outside matter, which is responsible for the

cosmological constant, might have an additional, radiative contribution to Pµν which is neglected
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due to Pµν being oscillatory and linear in Zµ—the cosmological constant being the sole survivor of a
volume average. If we proceed as usual, identifying ρr with the energy of retarded radiation emitted
by matter, observations would then imply ρr ≪ ρm in the current epoch. However, ρr incorporates also
the ZPF which could outweigh ρm. The contribution of the ZPF, being an ‘extension’ of matter outside
the support of its Jµ, although having a distinct p(ρ) dependence, is not an independent component.
Properly modeling the relation between the two would likely require a deeper dive into details.

Once the physics behind ρ and p is understood, the computational challenge is well-defined:
Finding anative(t) ≡ a(t, λ = 1) such that when propagated in scale to large-λ with (77) does not
rapidly diverge. In so propagating anative one needs to

1. Solve (76) for ρ(t, λ) at each scale step, and
2. Determine p, e.g., via some equation-of-state p(ρ).

This conceptually straightforward but numerically challenging approach will be attempted
elsewhere, but some progress can still be made. Since the Friedman equation (76) is satisfied (also) at
λ = 1, reasonably assuming that ρ

∣∣t=t0,λ=1 is on the order of the current baryonic density based on
direct ‘count’, ρb ≈ 3 × 10−19 kg/km3, most likely a lower bound, Friedman’s equation (76) mandates

ℓg ≳ c

(
2

H2
0 −

8πG
3 ρb

)1/2

= 1.9 × 1023km , H0 :=
ȧ
a

∣∣∣
a=a0=1

= 70 km/sec/Mpc (79)

(Note that a0 = 1 is assumed, which is a standard practice in cosmology, equivalent to ‘absorbing’
a0 into the definition of the standard length gauge). With such a large ℓg, (78), rewritten

∂tρ + 3H(ρ + p) =
3

2πGℓ2
g

(
λ

∂λa
a

H − H2t
)
≡ 3

2πGℓ2
g

λ
∂λaσ

aσ
H (80)

with the scaled-time scale factor, aσ(t, λ) := a(λt, λ), implies almost energy conservation, but not quite.
Indeed, building on our experience from galactic solutions which implies λ∂λaσ/aσ ≳ 0, the r.h.s.
represents a tiny rate of energy gain which could nevertheless become substantial when integrated
over cosmological time scales. Since Θµν is identically conserved outside of matter, such energy gain
must involve matter creation. The arrow-of-time—both thermodynamic and radiation—might also
stem from the time-asymmetry of (80).

Deducing astronomical observations from a solution, anative, entails extra steps, which must be
modified in the proposed model. To calculate the redshift, two time-ordered points along the worldline
of a distant, comoving standard clock are to be matched with similar two points on earth. The matching
is done by finding two solutions of (56) which are well behaved on all scales, satisfying the light-cone
condition, connecting the corresponding points at λ = 1. Using (71), the equation for ζ1 (assuming
ζ2 = ζ3 = 0 without loss of generality) of such a light signal becomes

λ∂λζ1 = (λℓ0)
2
(
−∂ττζ1 − 2

∂τ ā
ā

∂τζ1
)
− ζ1 (81)

λ∂λζt = (λℓ0)
2
(
−∂ττζt − ā∂τ ā

∂τζt

(
∂τζ1

)2
)
− ζt (82)

with ā(τ, λ) := a
(
ζt(τ, λ), λ

)
. Placing the origin of scaling now and here, on earth, a necessary

condition for ζµ to not rapidly diverge at large λ when ζµ is negligible, is for the expression in each
bracket to almost vanish, viz., ζµ must be almost a geodesic, in which case solutions satisfying the
light-cone condition are: ∂τζ1 = ā−2, ∂τζt = ā−1, parameterizing a trajectory x. 1 = a−1t.. Recalling
that a0 = 1, as long as a ≈ a0, such trajectories are nearly straight, unit-speed lines. But such lines are
also exact solutions of the flow (81)(82) for the scaling part alone. It follows that for a ≈ a0 straight
lines connecting transmission and detection events are stable under the flow (81)(82) to large λ, and
therefore z = a0/a − 1 is a good approximation for the redshift as prescribed above, vindicating
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standard estimates of H0 which are derived from local observations. At large redshifts our prescription
would give a different result. Nonetheless, it is readily verified that the standard relation between the
luminosity and angular-diameter distances, dL = (z + 1)2dA, remains valid. In this regard the reader is
reminded that dL = (L/4πF )1/2, where L is the luminosity of an object and F is the measured flux,
involving Θµν only, is derived assuming exact energy conservation over cosmological times, viz., zero
on the r.h.s. of (80).
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