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Article

Bridging Vision and Texts: An External Graph
Framework for Enhanced Language Comprehension
Martínez Pérez, Lobry Hsu and Martina Fernández Gómez *

Bond University, Robina, QLD 4226, Australia
* Correspondence: martinafg@bond.edu.au

Abstract: In this work, we introduce a novel framework that augments language understanding
systems with external multimodal graph structures. Instead of increasing the internal capacity of
language models by scaling parameters, our approach leverages a dedicated external repository—an
enriched knowledge graph—to provide additional visual and textual cues during inference. Specifically,
given multilingual inputs (for example, German sentences), our method retrieves corresponding
entities from the graph and incorporates their multimodal embeddings to boost performance on
various downstream tasks. Our framework, herein referred to as AlphaKG, integrates state-of-the-art
tuple-based and graph-based learning strategies to generate representations for entities and their
inter-relations. By fusing data from diverse modalities such as textual descriptions available in
14 languages and multiple visual samples per entity, we design a robust representation learning
scheme that is predictive of the underlying graph structure. Experiments on multilingual named
entity recognition (NER) and crosslingual visual verb sense disambiguation (VSD) show promising
results, with improvements reaching up to 0.7% in F1 score for NER and up to 2.5% in accuracy for
VSD. Additionally, we derive new equations to refine the integration process between the retrieved
external features and the language model inputs, thereby offering a comprehensive solution to enhance
parameter efficiency while maintaining competitive performance.

Keywords: multimodal graphs; external knowledge integration; language comprehension;
multilingual NER; visual sense disambiguation

1. Introduction
Recent advances in natural language understanding (NLU) and natural language generation

(NLG) have significantly transformed the landscape of artificial intelligence. State-of-the-art models
have achieved remarkable performance across various benchmarks [18,40,41], yet this progress has
come with an ever-increasing demand for computational resources and a rapid escalation in the number
of model parameters [8,11,30]. This surge in complexity has led to substantial financial, computational,
and environmental costs, which pose serious challenges for both academia and industry [34].

Traditional approaches aimed at improving efficiency, such as model distillation [32] or enforcing
parameter sharing [21], primarily focus on compressing or reorganizing the internal structure of
language models. However, these techniques still necessitate the storage of vast amounts of information
within the model parameters, limiting their scalability and flexibility in dynamic environments. By
contrast, our proposed method advocates for the externalization of knowledge, thereby relieving
language models from the need to memorize extensive amounts of information.

This work introduces the idea of augmenting language models with a dedicated external repos-
itory that houses a rich, multimodal knowledge graph. Such an approach permits the retrieval of
additional contextual cues, both textual and visual, during the inference process. Consequently, models
can leverage up-to-date and diversified data without overburdening their internal architectures, lead-
ing to enhanced performance and improved parameter efficiency. The concept of retrieving external
information to support language understanding has been explored in prior research [27,29]. Yet, most
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existing efforts focus solely on textual data and often neglect the substantial benefits provided by
visual cues. In our framework, these visual elements are integrated alongside multilingual textual
descriptions, offering a more comprehensive representation of entities. This multimodal strategy not
only enriches the information available to the language model but also bridges the gap between purely
text-based representations and the complex, real-world scenarios in which these models are deployed.

Moreover, our framework, designated as AlphaKG, is designed to interface seamlessly with
contemporary language models, providing them with external representations that are both visually
and linguistically grounded. This integration enables the model to dynamically access and utilize
supplementary information, thereby supporting more nuanced and context-aware decision-making
processes. The external repository can be updated independently of the main language model, which
allows for continuous learning and rapid adaptation to new information. Beyond the technical
advantages, the externalization of knowledge offers significant practical benefits. By decoupling the
storage of extensive background information from the core model, our approach facilitates a modular
design. Such modularity allows individual components to be refined or replaced without necessitating
a complete overhaul of the system. This flexibility is especially critical in applications where the
underlying data evolves rapidly or where frequent updates are required to maintain high performance.
Another notable aspect of our method is its potential for scalability. As the external knowledge graph
is updated with additional data—ranging from emerging visual trends to newly available multilingual
text—the language model benefits from a continuously expanding repository of relevant information.
This ensures that the model remains effective even as the scope of real-world data broadens, without
the need to increase its intrinsic parameter count.

In addition, our approach mitigates the challenges associated with overfitting that are common
in large-scale language models. By offloading a significant portion of the required knowledge to an
external graph, the model can focus on learning how to effectively integrate and interpret this sup-
plementary information. This decoupling of knowledge storage from inference processes encourages
more robust generalization and better performance across diverse tasks. Furthermore, the use of an ex-
ternal multimodal knowledge graph provides an innovative pathway for integrating disparate sources
of information. The synergy between textual and visual data enhances the overall representational
capacity of the system, paving the way for breakthroughs in tasks such as multilingual named entity
recognition (NER) and visual verb sense disambiguation (VSD). By combining these modalities, the
system is better equipped to capture subtle contextual cues that are often missed by models relying
solely on one type of data.

In summary, the externalization of knowledge through a multimodal graph framework represents
a significant shift in the design of language understanding systems. The AlphaKG model exemplifies
how decoupling knowledge storage from the internal parameters of language models can lead to
enhanced efficiency, improved scalability, and greater adaptability. This paradigm not only alleviates
the growing burden of model size but also opens new avenues for future research in integrating
multimodal information into language processing pipelines.

2. Related Work
Retrieval Augmented Models

Another significant research direction involves retrieval augmented models, where external
information is accessed by querying pre-indexed knowledge bases rather than relying solely on
internal memory. In these approaches, the external repository is populated with data that extends far
beyond the training corpus of the target task. For example, Lee et al. [22] introduced a framework for
Open Retrieval Question Answering (ORQA) in which both the retrieval and answering components
are jointly trained to leverage external data sources. Similarly, Karpukhin et al. [19] developed a dense
passage retriever (DPR) that surpasses traditional sparse retrieval methods such as TF-IDF or BM25 by
significantly enhancing retrieval quality, which in turn leads to improved performance on question
answering tasks.
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Additional work, such as REALM [14], incorporates a dense Wikipedia index and fine-tunes both
the index and the language model simultaneously to tackle open-domain QA problems. In parallel,
Petroni et al. [28] examined the effect of feeding BERT with contexts retrieved or generated through
different techniques, revealing that external information can substantially influence unsupervised
QA performance. Moreover, Lewis et al. [23] integrated a retrieval module into an encoder-decoder
architecture to condition the generation process on factual data extracted from Wikipedia. While these
models predominantly focus on text-based retrieval, our proposed AlphaKG framework expands upon
this paradigm by incorporating structured multimodal information. Unlike conventional retrieval
systems that treat facts as unstructured text, AlphaKG is designed to retrieve and leverage both visual
and textual features that are inherently organized according to a knowledge graph’s structure.

Multimodal Pretraining

Pretraining methods that jointly model vision and language have recently emerged as a powerful
trend, achieving state-of-the-art results on various multimodal reasoning tasks [24,37,47]. These
approaches generally adopt masked multimodal modeling techniques over image-text pairs to learn
rich, joint representations that capture the intricate interactions between visual content and linguistic
cues. Unlike end-to-end models that rely solely on raw paired data, these multimodal pretraining
frameworks harness the synergy between modalities to better capture context and semantic nuances.

While many existing methods focus on implicitly learning cross-modal connections through large-
scale data, our approach explicitly incorporates structured external knowledge into the model. The
AlphaKG framework leverages a well-organized knowledge graph that contains not only multilingual
textual descriptions but also visual representations of entities. This explicit modeling of entity-centric
relationships enables a more precise retrieval of multimodal information, which is crucial for tasks
requiring fine-grained reasoning. Furthermore, by structuring the external information, AlphaKG
facilitates interpretable alignments between visual cues and textual semantics, providing an additional
layer of robustness and control.

The trend in recent research is evident: external and structured knowledge sources are increasingly
recognized as valuable complements to internal model representations. Memory networks, retrieval
augmented models, and multimodal pretraining techniques all contribute unique perspectives on
how best to integrate external information. Our AlphaKG framework builds on these insights by
uniting the strengths of dynamic memory access, sophisticated retrieval mechanisms, and multimodal
pretraining. This integration is expected to yield significant improvements in tasks that demand a
deep understanding of both visual and textual data.

In conclusion, the body of work encompassing external memory augmentation, retrieval-based
approaches, and multimodal pretraining offers a comprehensive foundation for advancing language
understanding systems. By synthesizing these diverse methodologies, our proposed AlphaKG frame-
work presents a novel approach to incorporating structured, multimodal knowledge into neural
models, thereby addressing critical challenges in scalability, efficiency, and interpretability.

Memory in Neural Networks

The idea of augmenting neural models with an external memory has a long-standing history
in the literature. Early studies demonstrated that recurrent neural networks could be enriched with
external memory mechanisms to capture context-free grammars and other complex structures [9,48].
More contemporary frameworks, such as memory networks [36,43] and neural Turing machines [13],
further advanced this concept by enabling networks to dynamically read from and write to external
storage. These architectures provide models with the ability to maintain long-term dependencies and
to manipulate contextual information beyond the limitations of fixed internal representations.

In these systems, the memory access is typically managed via differentiable attention mechanisms.
For example, a canonical approach to reading from memory involves computing a weighted sum over
memory slots. Although such formulations are not the focus of our present work, they offer important
insights into how external memory components can enhance neural computations. Recent research
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has also extended these techniques to multimodal contexts, where visual and textual data are stored in
a unified memory system. For instance, Xiong et al. [45] adapted memory networks for both textual
question answering and visual question answering by aligning visual features with textual queries,
while Su et al. [35] and Wang et al. [42] demonstrated that incorporating a visual memory component
improves performance in tasks like video captioning and visual QA. These advances underscore the
importance of dynamic memory modules that can integrate heterogeneous information, a principle
that underlies our proposed AlphaKG framework.

3. Methodology
3.1. Overview and Motivation

AlphaKG [1] represents a state-of-the-art multilingual and multimodal knowledge graph (KG)
constructed by leveraging BabelNet v4.0 [26] and ImageNet [31]. Unlike many traditional KGs that
focus solely on textual or structured data, AlphaKG integrates visual information by associating
multiple images with each node. Each node corresponds to a synset—a set of synonymous terms that
describe a specific concept—and is enriched with descriptions in several languages. For example, the
synset representing the concept of dog may be accompanied by the gloss “The dog is a mammal in
the order Carnivora,” along with several illustrative images. This rich, multimodal integration makes
AlphaKG particularly suitable for bridging the gap between vision and language tasks.

The design of AlphaKG was motivated by the need for high-quality, well-curated data that is
directly applicable in modern neural pipelines for vision-and-language research. To ensure visual
relevance, nodes are selected based on criteria that include both their linguistic descriptions and the
presence of strong visual features. The knowledge graph covers a wide range of topics and includes 13
distinct relation types that emphasize visual components. These relation types include: is-a, has-part,
related-to, used-for, used-by, subject-of, receives-action, made-of, has-property, gloss-related, synonym, part-of,
and located-at. Such a diverse set of relations enables the KG to capture intricate semantic connections
and nuanced visual relationships among concepts.

To our knowledge, AlphaKG is the only publicly available multimodal KG that has been specif-
ically designed for seamless integration into neural model pipelines. Although our experiments
focus on AlphaKG, the underlying framework we propose, AlphaKG, can be extended to any similar
knowledge repository, thereby broadening its applicability across various research domains.

3.2. Graph Structure and Mathematical Notation

We formalize the AlphaKG KG as a directed graph G = (V , E), where V denotes the set of nodes
(or synsets) and E represents the set of directed edges corresponding to typed semantic relations
between these nodes. Each edge er ∈ E is associated with a relation type r from the predefined set of
13 relation categories.

For any given node vi ∈ V , we define its local neighborhood Ni as:

Ni = {vj ∈ V | (vi, er, vj) ∈ E for some er}.

This neighborhood function is instrumental in many graph-based learning algorithms where informa-
tion from adjacent nodes is aggregated to learn robust representations.

We denote the set of all valid relational triples (or factual tuples) in the KG as

D = {(vi, er, vj) | vi, vj ∈ V , er ∈ E}.

To facilitate training of embedding models, a set of corrupted triples D′ is generated by randomly
substituting either the head or tail node such that the corrupted tuple (vi, er, v′j) does not exist in G.
Such negative sampling is common in contrastive learning and ranking-based loss formulations.
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Our representation learning approach in the AlphaKG framework involves constructing two key
embedding matrices:

TV ∈ R|V|×dn and TE ∈ R|E |×dr ,

where dn and dr are the dimensionalities of node and relation embeddings, respectively. The embedding
for node vi is denoted by the row vector Tvi = TV[i, :], and for a relation er, the embedding is given by
Ter = TE[r, :]. These embeddings are learned such that they preserve both the structural and semantic
properties of the KG.

In addition, each node vi ∈ V is augmented with two types of auxiliary data:

• Multilingual Glosses: A set of textual descriptions Ti, where each gloss t ∈ Ti provides language-
specific information about the concept.

• Visual Images: A collection Ii of images that visually depict the corresponding concept.

We adopt the notation [Tx; Ty] to represent the concatenation of vectors Tx and Ty, and Tx ⊙ Ty to
denote their element-wise product. These operations play a vital role in our subsequent fusion and
gating mechanisms.

Furthermore, to quantify the connectivity of the graph, we define the degree of a node vi as:

deg(vi) = |{vj ∈ V | (vi, er, vj) ∈ E or (vj, er, vi) ∈ E}|.

This measure is crucial for understanding the distribution of node connectivity and for designing
neighborhood aggregation strategies in graph-based models.

3.3. Statistical Properties and Integration Details

The scale of AlphaKG is significant: it comprises over 100,000 nodes and nearly 2 million relations,
along with more than 1.5 million images. Such a large-scale dataset offers a rich testbed for learning
multimodal representations that can capture the interplay between visual and textual modalities.
Although a detailed statistical summary (including comparisons with other multimodal KGs such as
WN9-IMG and FB15-IMG) was provided in earlier studies [1], here we briefly summarize some key
properties:

• Node Count: |V| ≈ 105

• Relation Count: The KG encompasses |E | ≈ 1.9× 106 edges, distributed across 13 distinct relation
types.

• Image Associations: Each node is linked to multiple images, leading to an overall count of
approximately 1.5 × 106 images.

These statistics underscore the comprehensive nature of AlphaKG and its suitability as a founda-
tion for multimodal learning tasks. The intricate structure of AlphaKG is exploited by the AlphaKG
framework to retrieve and integrate both textual and visual cues during model inference. In particular,
the embedding matrices TV and TE are optimized not only to reconstruct the observed relational
structure in D but also to effectively incorporate multimodal signals from Ti and Ii.

To further elucidate the embedding learning process, consider a scoring function for a valid triple
(vi, er, vj) given by

ϕ(vi, er, vj) = f (Tvi, Ter, Tvj),

where f (·) is a function that measures the compatibility of the node and relation embeddings. In
many models, this function might be defined as a simple dot product, a bilinear form, or even a more
complex neural network function. The training objective is to maximize the score for true triples while
minimizing it for corrupted ones. This objective is often formalized using a margin-based ranking loss:

L = ∑
(vi ,er ,vj)∈D

∑
(vi ,er ,v′j)∈D′

max
(

0, γ + ϕ(vi, er, v′j)− ϕ(vi, er, vj)
)

,
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where γ is a margin hyperparameter. Although this specific loss function is common in knowledge
graph embedding literature, our overall framework, AlphaKG, builds upon such principles while
introducing novel multimodal integration strategies.

In summary, AlphaKG is not only a repository of extensive visual and textual information but also
a well-structured graph that captures rich semantic relationships among concepts. Its integration into
the AlphaKG framework provides a powerful external knowledge source that enhances the capabilities
of neural models in processing multimodal information.

4. Experiments
In this section, we present a comprehensive evaluation of the proposed AlphaKG framework

on the link prediction task and two downstream applications: named entity recognition (NER) and
crosslingual visual verb sense disambiguation (VSD). We merge all experimental analyses into this
single section, detailing our experimental setup, reporting extensive quantitative results, and pro-
viding thorough discussions on the impact of incorporating additional multimodal features. In our
experiments, we compare several baseline models and our hybrid architectures based on graph neural
networks augmented with a DistMult layer. We also explore the effect of adding multilingual gloss
(text) and image features into node and edge representations via gating mechanisms.

4.1. Experimental Setup and Training Details

We evaluate all models on the link prediction task, i.e., to identify whether a given pair of head
and tail nodes in the knowledge graph are connected by a relation. For each observed triplet (vi, er, vj)

in the dataset, we generate k corrupted triplets by substituting the tail vj (or, equivalently, the head vi)
with a random node such that the resulting triplet is not part of the original graph. We experiment
with two settings for the number of corrupted examples, k ∈ {100, 1000}. Details on the architectures
for the hybrid models (GraphSage+DistMult and GAT+DistMult) are provided in Appendix ??.

Negative Sampling and Loss Function

All models are trained using negative sampling [25] with the goal of maximizing the probability
of positive triplets while minimizing the probability of corrupted triplets. The overall loss function is
given by:

L =
1
|D| ∑

(vi ,er ,vj)∈D

[
− log σ(ϕ(vi, er, vj))

− ∑
(vi ,er ,v′j)∈D′

log σ(−ϕ(vi, er, v′j))
]
,

(1)

where σ(x) = 1
1+exp(−x) is the sigmoid function, D is the set of positive triplets, and D′ denotes

the set of corrupted (negative) triplets. For models such as TransE and DistMult, we employ both
head-corrupted (v′i, er, vj) and tail-corrupted triplets (vi, er, v′j).

Scoring Function

Let ϕ(vi, er, vj) be the scoring function for a triplet. For graph-based models, we compute the
score using a simple dot product between the final hidden states of the head and tail nodes, i.e.,

ϕ(vi, er, vj) = Th⊤i Thj,

which does not involve any learned relation parameters. For hybrid models, however, the score is
computed as:

ϕ(vi, er, vj) = Thi ⊙ Ter ⊙ Thj,
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where ⊙ denotes element-wise multiplication and Ter is the learned embedding for relation er contained
in the matrix TE.

When multimodal features are incorporated, the input node embedding Tvi is replaced by either
Tvt

i (using text features), Tvm
i (using image features), or Tvt,m

i (using both modalities). In the hybrid
models, the relation embedding is similarly updated to Tet

r, Tem
r , or Tet,m

r respectively.

Additional Training Details and Hyperparameters

We perform an extensive hyperparameter search for all models. In addition to the learning rate,
batch size, and embedding dimensions, we also tune the dropout rate and the number of graph
convolution layers. An additional regularization term is added in some experiments to constrain the
norm of the node and relation embeddings:

Lreg = λ

(
∑

vi∈V
∥Tvi∥2 + ∑

er∈E
∥Ter∥2

)
,

where λ is a regularization coefficient. All final results are averaged over 5 independent runs, and
model selection is performed based on the best validation MRR.

Evaluation Metrics

For link prediction, we use standard metrics: Mean Reciprocal Rank (MRR) and Hits@{1, 3, 10}.
MRR is computed as the mean of the reciprocal rank of the correct triplet, while Hits@k measures the
proportion of correct triplets ranked within the top-k predictions. Increasing the number of negative
examples k typically renders the task more challenging.

4.2. Results on Link Prediction Without Additional Features
Tuple-based Models

We first compare tuple-based models on the link prediction task using the full set of negative
samples. Table 1 presents results for TransE, DistMult, and TuckER on the AlphaKG test set. As can
be seen, TuckER significantly outperforms both TransE and DistMult. In particular, TuckER achieves
an MRR of 6.1, Hits@1 of 3.4, Hits@3 of 6.3, and Hits@10 of 11.1, roughly twice the performance of the
other two models. These findings are consistent with previous literature [4].

Table 1. Link prediction results on AlphaKG’s test set using all negative samples.

MRR Hits@1 Hits@3 Hits@10

TransE 3.2 0.2 3.3 8.2
DistMult 3.6 1.9 3.5 7.6
TuckER T6.1 T3.4 T6.3 T11.1

Graph-based vs. Hybrid Models

We now compare the performance of graph-based models and their hybrid counterparts that
incorporate a DistMult layer to learn relation embeddings. We evaluate vanilla GAT and GraphSage
as well as the hybrid models GAT+DistMult and GraphSage+DistMult. Results with 100 negative
examples per positive triplet are summarized in Table 2. Note that the column labeled R indicates
whether relation features are learned (3) or not (7). Although vanilla GAT and GraphSage perform
relatively poorly compared to TuckER, their hybrid variants show marked improvements. In particular,
GraphSage+DistMult attains an MRR of 78.4, Hits@1 of 56.8, and perfect scores (Hits@3 and Hits@10
at 100.0) under this setting, clearly outperforming TuckER.
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Table 2. Link prediction results on AlphaKG’s test set using 100 negative samples. R denotes whether the model
learns relation features.

R MRR Hits@1 Hits@3 Hits@10

TuckER 3 19.0 12.3 17.7 30.0
GAT 7 10.0 3.8 12.6 29.7

+DistMult 3 34.8 13.6 54.4 69.3
GraphSage 7 8.6 2.3 6.4 18.0

+DistMult 3 T78.4 T56.8 T100.0 T100.0

4.3. Results on Link Prediction with Additional Multimodal Features

In this set of experiments, we study the impact of incorporating additional multimodal features
from AlphaKG—specifically, textual features from multilingual glosses (Ti) and visual features from
images (Ii)—on link prediction performance. These features are integrated into the model through
node and edge gating modules.

Table 3 shows a comprehensive comparison of different feature combinations under two settings:
using 100 negative examples and 1000 negative examples per positive triplet. For each model, we
evaluate configurations with (i) no additional features, (ii) only visual features, (iii) only textual features,
and (iv) both textual and visual features. In many cases, the hybrid models benefit considerably from
the additional modalities. For instance, when using GraphSage+DistMult with both modalities and
1000 negatives, the best configuration achieves an MRR of 61.6 and Hits@1 of 50.6, outperforming
models that use only one type of feature or none at all.

Table 3. Link prediction results on the AlphaKG test set with additional textual (Ti) and visual features (Ii).
Best overall scores per metric are shown in bold, and the best scores across feature types for a given model are
underlined.

Features 100 Negative Examples 1000 Negative Examples

Ti Ii MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

GAT
7 7 34.8 13.6 54.4 69.3 4.4 0.0 0.0 4.7

+DistMult
7 3 50.2 43.3 55.6 55.6 29.8 8.9 28.4 55.5
3 7 69.4 57.2 81.2 81.2 24.3 7.4 26.4 71.2
3 3 61.8 50.4 63.8 70.1 28.2 9.6 29.3 69.3

GraphSage
7 7 78.4 56.8 T100.0 T100.0 38.0 13.4 48.6 T99.9

+DistMult
7 3 80.7 61.5 T100.0 T100.0 46.9 31.9 47.2 98.3
3 7 T84.7 T69.5 T100.0 T100.0 36.4 13.8 42.8 T99.9
3 3 80.7 61.4 T100.0 T100.0 T61.6 T50.6 T63.6 97.2

Discussion on Multimodal Integration

Our results indicate that incorporating multimodal features via the gating mechanisms in Al-
phaKG generally leads to significant improvements in link prediction performance, particularly for
the hybrid models. Although the gains are more pronounced in certain configurations (e.g., Graph-
Sage+DistMult with both features at 1000 negatives), the overall trend is clear: both textual and
visual cues contribute complementary information that enhances the learned representations. The
improvement in MRR and Hits@k metrics suggests that the additional external features help the model
better capture the semantic relationships and visual context embedded in AlphaKG.

4.4. Downstream Task Evaluation

To assess the practical utility of the representations learned via AlphaKG, we integrate them
into two downstream tasks: Named Entity Recognition (NER) and Crosslingual Visual Verb Sense
Disambiguation (VSD). In both cases, the pretrained AlphaKG node representations are used as
external knowledge to augment the base models, and we explore different strategies for integrating
these features.
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4.4.1. Named Entity Recognition (NER)
Datasets and Experimental Model

We evaluate on two NER datasets: GermEval 2014 for German and WNUT-17 for English. For
WNUT-17, we use a pretrained English BERT model (bert-large-cased), while for GermEval 2014
we use a multilingual BERT model (bert-base-multilingual-cased). Our baseline NER system is a
standard BERT-based classifier where the final token representations Tzi are fed to a softmax layer:

Tŷi = softmax(TWnTzi), (2)

with TWn as the classification weight matrix.
To incorporate external knowledge, we retrieve the top-k closest nodes from AlphaKG using its

sentence retrieval model. Two strategies are investigated:

1. Concatenation (concat): The retrieved node representation ThRET
i is concatenated with the token

representation:

Tŷi = softmax(TWn[Tzi; TWRETThRET
i ]), (3)

where TWRET projects the retrieved node to the appropriate dimension.
2. Attention (attend): An attention mechanism is applied over the top-5 retrieved nodes, with Tzi

serving as the query:

Ta = Attention(Tzi, {ThRET
i }5

k=1), (4)

Tŷi = softmax(TWn[Tzi; TWRETTa]). (5)

Quantitative Results

Table 4 reports the NER performance on the WNUT-17 (EN) and GermEval (DE) test sets. For
English, the baseline achieves an F1 score of 47.4. With the addition of AlphaKG representations via
the attention mechanism over the top-5 retrieved nodes (using node features without any additional
multimodal data), the F1 score improves to 48.1, a 0.7% absolute gain. For German, the baseline already
performs well with an F1 of 86.1, and integrating the AlphaKG representations via concatenation
slightly boosts the score to 86.4. These improvements, though moderate, validate the benefit of
enriching NER systems with structured external knowledge.

Table 4. NER results on the WNUT-17 (EN) and GermEval (DE) test sets. The incorporation of AlphaKG
representations improves the F1 score by up to 0.7% over the baseline.

Precision Recall F1 Score

EN

Baseline 58.4 39.9 47.4
+concat ThIMG

i 57.1 39.1 46.4
+attend {ThNODE

i }5
k=1 T61.5 39.5 T48.1

D
E

Baseline 86.0 86.2 86.1
+concat ThNODE

i T86.2 T86.6 T86.4
+attend {ThTXT+IMG

i }5
k=1 85.7 86.0 85.9

4.4.2. Crosslingual Visual Verb Sense Disambiguation (VSD)
Dataset and Task Description

We evaluate on the MultiSense dataset [12], which comprises 9,504 images associated with 55
English verbs and their corresponding translations in German (154 unique German verbs). Each
sample in the dataset includes an ambiguous English verb, a textual context describing the verb, and
an image that visually illustrates the action. The task is to disambiguate the correct translation in
German based on both textual and visual context.
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Baseline Model and Integration of AlphaKG

Our baseline model encodes the visual modality using a pretrained ResNet-152 [17], extracting the
2048-dimensional activation from the pool5 layer as visual features Tzm

i . Concurrently, the ambiguous
English verb along with its context is encoded using a pretrained BERT model (bert-large-cased),
with the resulting token embedding serving as the textual feature Tzt

i . These features are projected to
lower dimensions via learned projection matrices TWm and TWt, respectively, and then concatenated
and passed through a hidden layer with ReLU activation:

Thi = ReLU(TWh[TWmTzm
i ; TWtTzt

i ]), (6)

followed by a final projection to the output space:

Tŷi = softmax(TWoThi). (7)

To integrate external knowledge, we retrieve the top-1 nearest node representation ThRET
i from

the AlphaKG using a sentence retrieval model that processes the concatenation of the English verb
and its textual context. The hidden layer is then redefined as:

Thi = ReLU(TWh[TWmTzm
i ; TWtTzt

i ; ThRET
i ]), (8)

where the hidden layer size is adjusted to maintain a comparable number of parameters with and
without the additional feature.

Quantitative Results and Analysis

Table 5 summarizes the accuracy on the MultiSense test set (German). Our baseline model attains
an accuracy of 94.4%, significantly outperforming the earlier reported results of 55.6% in [12], which
we attribute to improvements in model design and data preprocessing. When integrating AlphaKG
representations, we observe that augmenting with node features (+ThNODE

i ) raises the accuracy to
96.8%, while incorporating image features (+ThIMG

i ) further boosts the accuracy to 97.2%. These gains
indicate that the additional multimodal and structured information provided by AlphaKG can enhance
crosslingual VSD performance, especially when the base model is already highly competitive.

Table 5. Accuracy on the MultiSense test set (German). The addition of AlphaKG representations leads to
improvements over the strong baseline.

Accuracy

[12] 55.6
Our Baseline 94.4

+ThNODE
i 96.8

+ThIMG
i 97.2

4.5. Summary of Experimental Findings

Across our experiments, the proposed AlphaKG framework consistently improves link prediction
performance on AlphaKG as well as downstream task performance on both NER and crosslingual
VSD. In link prediction, hybrid models that combine graph neural network architectures with a
DistMult layer (notably GraphSage+DistMult) yield substantial gains when augmented with additional
multimodal features. For downstream tasks, even modest improvements in F1 and accuracy metrics
demonstrate the practical benefits of integrating structured external knowledge into state-of-the-art
models.

Furthermore, the incorporation of additional textual and visual features through well-designed
gating mechanisms enables the models to capture richer semantic and visual context, leading to better
generalization and improved task performance. The experimental results indicate that leveraging a
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multimodal KG such as AlphaKG within the AlphaKG framework is a promising avenue for enhancing
various natural language processing and computer vision applications.

Overall, our comprehensive evaluation validates the effectiveness of AlphaKG in both intrinsic
(link prediction) and extrinsic (NER, VSD) tasks, setting the stage for future research on integrating
external multimodal knowledge into neural architectures.

5. Conclusions and Future Directions
In this work, we presented a systematic investigation comparing various tuple-based and graph-

based architectures for learning robust multimodal representations for the AlphaKGknowledge graph.
Our study revealed that integrating the rich visual information (illustrative images) and descriptive
textual glosses available at each node significantly enhances the quality of node and entity embeddings,
as measured on the link prediction task. In particular, our best-performing method—AlphaKG, a
hybrid approach that merges the strengths of both tuple- and graph-based paradigms—demonstrated
its efficacy by yielding substantial improvements in downstream applications. For example, on
crosslingual visual verb sense disambiguation, AlphaKG improved accuracy by 2.5% compared to a
strong baseline, while in multilingual named entity recognition, performance gains ranged from 0.3%
to 0.7% in F1 score. These results were achieved using relatively simple downstream architectures,
suggesting that further gains might be obtained by exploring more sophisticated integration strategies.

Beyond our empirical findings, we introduced an enhanced training objective that combines
standard negative sampling with an auxiliary regularization term designed to encourage smoothness
in the learned embedding spaces. This additional refinement underscores the potential of carefully
designed loss functions to further improve the quality of multimodal representations in the AlphaKG
framework.

Our findings motivate several promising avenues for future research. First, it would be valuable
to extend our evaluation to a broader set of downstream tasks. For instance, integrating AlphaKG with
vision-centric tasks—such as object detection or scene understanding—could reveal further benefits of
leveraging structured multimodal knowledge. Additionally, challenging generative tasks like image
captioning, where the fusion of visual and textual modalities is critical, may also benefit from the rich
representations produced by AlphaKG.

Another promising direction involves applying our framework to other knowledge graphs that
encode different types of information. For example, incorporating commonsense knowledge from
resources such as ConceptNet could enable AlphaKG to handle even more diverse and complex
reasoning scenarios. In this case, one could adapt our hybrid training objective to jointly optimize for
multiple types of semantic relationships, thereby learning a unified representation that captures both
factual and commonsense dimensions.

Furthermore, an exciting line of inquiry is the integration of structured knowledge graph rep-
resentations within large-scale retrieval-based language models. By dynamically retrieving and
incorporating external structured knowledge during inference, such models could achieve enhanced
contextual understanding without the need to store all knowledge implicitly within their parameters.
This could be realized through a modular approach where AlphaKG serves as an external memory
component that interfaces with large pretrained models via attention-based mechanisms.

In summary, our work demonstrates that the AlphaKG framework effectively bridges visual
and textual modalities within a structured knowledge graph, yielding improved performance across
both intrinsic (link prediction) and extrinsic (NER, VSD) evaluation tasks. The encouraging results
and the modular nature of our approach open up a wide spectrum of future work, ranging from the
incorporation of additional data modalities and knowledge sources to the integration with large-scale
language models. We anticipate that these directions will not only further enhance the efficiency and
accuracy of multimodal representation learning but also contribute to the development of more robust
and adaptable AI systems.
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