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Abstract: Variable-Angle Tow (VAT) laminates can improve straight fiber composites mechanical properties
thanks to the application of curvilinear fibers. This characteristic allows to achieve ambitious objectives for design
and performance purposes. Nevertheless, the wider design space and the higher number of parameters result
in a more complex structural problem. Among the various approaches that have been used for VATs study,
Carrera’s Unified Formulation (CUF) allows to obtain multiple theories within the same framework, guaranteeing
a good compromise between the results accuracy and the computational cost. In this article, the linear buckling
behavior of VAT laminates is analyzed through the extension of CUF 2D plate models within the Reissner’s Mixed
Variational Theorem (RMVT). Results show that RMVT can better approximate the prebuckling non-uniform
stress field of the plate when compared to standard approaches, thus improving the prediction of the linear

buckling loads of VAT composites.

Keywords: buckling analysis; finite element method; variable-angle tow plates; carrera’s unified formulation;

reissner’s mixed variational theorem

1. Introduction

Composite materials have attracted considerable interest in various fields of application over the
last decades. Thanks to their high stiffness-to-weight ratio, these materials gained great importance
in those contexts where light structures with good mechanical properties are needed: this is the case
of aerospace, automotive and construction industries. Despite this, a prevailing belief is that the
optimal use of laminate structures can still be improved, in order to fully unlock the potential of
fibres properties. For instance, when utilizing composites with straight fibers and a constant thickness,
it becomes challenging to fully profit from the directional properties of this kind of materials. This
limitation becomes especially problematic for complex geometries featuring geometrical discontinuities
such as cut-outs. VAT plates are distinguished by the variation of fiber angles within the structure plane,
which significantly enhances the design possibilities for a specific structure. Originally, VATs were
produced using automated tape placement and automated fiber placement techniques [1]. Modern
production techniques, such as Additive Manufacturing (AM) technologies, enable the overcoming of
limitations related to automated processes, such as the existence of defects like overlaps. AM entails the
incremental deposition of materials layer by layer to fabricate a three-dimensional object. In the context
of VAT composites, AM processes are employed to deposit and cure layers of composite materials
with varying fiber orientations, as explained by Zhuo et al. [2]. A key challenge in employing VATs
lies in the complexity of the analysis. In such scenarios, it becomes essential to account for a higher
number of variables, and during the optimization process, it is possible to end up with unfeasible fiber
patterns.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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The following is a concise summary of typical techniques employed in the analysis of the me-
chanical behavior of VATs, with particular emphasis on buckling investigations. One of the early
methods made the assumption of constant fiber angle within each element in a Finite Element (FE)
framework. This approach approximates the continuous variation of fiber direction discretely in a
stepwise manner. Hyer and Lee in [3] used this technique to maximize the buckling load of a composite
plate through a sensitivity analysis. The fibers angle corresponding to the maximum buckling load
was identified for each element. Through a gradient-search technique, the influence of orientation
changes on the buckling load was assessed. The buckling load was then optimized through recursive
modifications of elements orientations, also considering the interactions between elements. However,
a key limitation of these approaches arises from their reliance on an element-wise representation of the
fiber paths. With this approach, the optimized solutions might exhibit fragmented fiber paths, making
them impractical for manufacturing and necessitating a computationally expensive post-processing
phase for adjustment [4]. A discrepancy between the structural responses computed based on the
optimized fibers path and those computed after the optimized solution has undergone post-processing
(recovery) has been often observed.

Giirdal et al. [5] utilized the classical lamination theory to analyze the mechanical response of
VAT plates. They used the Rayleigh-Ritz method to conduct buckling analyses. The same method was
applied by Oliveri and Milazzo [6] for analyzing the postbuckling behavior of VAT stiffened panels
through the first-order shear deformation theory. The structures were modeled through the domain
discretisation into plate-like subdomains by imposing boundary conditions for each component. Hao
et al. [7] used the Mindlin plate theory within an isogeometric analysis to perform a linear buckling
study of variable-stiffness panels, ensuring the continuity of fiber angle on the whole structure plane.
Hao et al. [8] introduced a flow field function for the representation of fibers paths through a reduced
numbers of variables. The buckling optimization of variable-stiffness composite panels with multiple
cut-outs was performed through a bi-level optimization framework. In the first level, straight fiber
paths with optimized orientation angles were first established to achieve a quasi-optimal design for
maximizing buckling load and, in the second level, the flow field function was utilized to represent
the fiber path. Raju et al. [9] used the Airy’s stress function to accurately predict the prebuckling
behavior of VAT plates. They used the differential quadrature method and the classical laminated
plate theory to analyze the buckling response of VATs modelled. Sciascia et al. [10] studied VAT
shells considering buckling, free vibrations and prestressed vibrations. The eigenvalue problem was
solved through the Ritz formulation, while the shell kinematics was described with the first-order shear
deformation theory. Chen et al. [11] presented an analytical model to predict the global, mixed and local
buckling response of VAT plates with delaminations. The Rayleigh-Ritz approach was used to solve
the prebuckling and buckling problems. Wu et al. [12] introduced a two-level optimization framework
for the buckling of VAT plates. VATs were defined through lamination parameters represented by
B-spline entities.

The Multi-Scale Two-Level (MS2L) approach leverages a dual-scale analysis of composite struc-
tures. It considers both micro and macro levels, enabling a detailed examination of material properties
at the microscopic level while accounting for the overall structural behavior. This method allows
to split the optimization problem into two levels. In the first step, the composite is considered as
an equivalent homogeneous anisotropic plate, aiming to determine the optimal distribution of ge-
ometric and mechanical design variables governing VAT structure behavior at this scale. Among
various macroscopic anisotropy representations, the most efficient one utilizes polar parameters (see
Montemurro [13,14]). In the second step, the focus shifts to the mesoscopic scale and the objective
is to identify at least one stack that aligns with the optimized arrangement of the polar parameters
obtained from the initial optimization phase. The MS2L technique was applied by Montemurro and
Catapano [15] with the aim of maximizing the buckling load of VAT plates. In the initial step, B-spline
surfaces are used to represent the distribution of the polar parameters across the structure, while in
the subsequent step, manufacturing constraints are taken into consideration. The initial framework
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for the gradient-based optimization of VAT structures was introduced by Montemurro and Catapano
in [16,17]. Its application to eigenvalue buckling problems was done by Fiordilino et al. [18], who
introduced the analytical expression of the gradient of objective and constraint functions in buckling
problems.

Carrera’s Unified Formulation (CUF) has shown accurate results in the analysis of VATs. Consid-
ering plate geometries, CUF allows to choose a-priori the approximation functions along the thickness
(Carrera [19,20]). Early works concerning CUF, presented the development of a Navier closed-form
solution, which has been applied by Carrera et al. [21] and Carrera and Giunta [22] to perform, respec-
tively, the static and failure analysis of isotropic plates under various loading conditions. Giunta et
al. [23] used a Navier-type solution in order to perform the indentation failure analysis of composite
sandwich plates. Giunta et al. [24] used CUF in order to study the linear buckling of thin-walled beams.
Hui et al. [25] conducted a multiscale nonlinear analysis of composite beam structures using a series of
one-dimensional (1D) CUF models. The asymptotic numerical method was employed to study the
impact of microscopic imperfections on the macroscale response. Specifically, the influence of fiber
defects was investigated by introducing sinusoidal geometries. By considering these imperfections,
this work aimed to understand how they affect the overall behavior of the composite beam structures
at a larger scale. A data-driven computational mechanics approach has been also employed with CUF
models. In this context, Hui et al. [26] used 1D CUF models for static analysis of beam structures and
found that the accuracy is dependent on the number of layers in the database. This demonstrates the
potential for CUF models to be integrated with modern computing techniques. Viglietti et al. [27] and
Fallahi et al. [28] employed a 1D CUF model to conduct free-vibration and buckling analyses of VAT
structures, respectively. Fallahi et al. [29] further investigated buckling optimization in VATs using
a genetic algorithm, applied to a one-dimensional CUF model. Sanchez-Majano et al. [30] studied
the effects of manufacturing defects, such as varying fibre volume and fibre misalignments, on the
buckling response of VAT plates. The Monte Carlo method was applied to perform stochastic buckling
analyses. Pagani and Sdnchez-Majano [31] incorporated Monte Carlo simulations and layer-wise CUF
models in order to explore the impact of meso-scale fiber misalignments as defects in VAT laminates.
The extension of CUF allows for the use of different expansions for each component of the displace-
ment vector. This approach was demonstrated by Demasi et al. [32] for the study of VAT plates using
triangular elements. Vescovini and Dozio [33] used Ritz’s method within CUF for vibrational and
buckling analyses of VATs. CUF offers an additional advantage through its compatibility with various
variational formulations. Reissner’s Mixed Variational Theorem, an alternative to the traditional
Principle of Virtual Displacements, considers both displacements and out-of-plane transverse stresses
as unknowns, demonstrating the flexibility of CUF in its applications. RMVT was widely used within
CUF for the study of straight fibers composite structures. Carrera and Demasi [34] showed how to
apply RMVT to CUF from a theoretical point of view, whereas in the second part of the article [35]
static analyses were performed on straight fibers plates.

Inspired from the above works, the goal of this paper is to extend the previous works by Giunta
et al. [36] and Iannotta et al. [37] on an RMVT-based family of plate finite elements within the CUF
framework for dynamic and static analyses of VAT plates, respectively, to accurately predict buckling
loads when curvilinear fibers are present.

The structure of the paper is as follows. Section 2 introduces the CUF approach and demonstrates
its application to the two variational statements mentioned earlier. Section 3 considers three benchmark
problems and performs linear buckling analyses with various loading conditions to discuss the
differences between PVD and RMVT models and the reference solutions obtained in Abaqus using
three-dimensional (3D) elements. Finally, Section 4 draws the conclusive remarks.

2. Carrera’s Unified Formulation

A plate is a flat and thin structural element having in-plane dimensions significantly greater than
its thickness. A global Cartesian reference system is considered to describe displacements, strains and
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stresses. The x-axis and y-axis are aligned with the in-plane sides of the plate, whose dimensions are
indicated as a4 and b, respectively. The z-axis is oriented perpendicular to the plane of the plate, in
the same direction of the thickness h, which is negligible in comparison with 2 and b. The problem
geometry and global reference system are illustrated in Figure 1.

b

Figure 1. Plate geometry and reference system.
The displacement field is expressed as:

u=< uy . (1)

The strain vector can be represented through Voigt’s notation and, then, divided in its in-plane
and out-of-plane components:

€xx Yxz
€p=19 €y ¢ En=13 Vyz (- )
€xy Yzz

The assumption of small displacements permits the utilization of a linear relationship:

€y =Dpu, 3)
€yp = (DnQ + Dnz)u s
where Dy, D, and Dy are the following differential operators:
9 d
= 0 0 9 Z 0
ox ) 00 = oz )
D,=| 0 — 0| D= 9 |, Dy = 2 . 4
p ; ag/ nQ 0 0 @ nz 0 % 0 4)
3y ax 0 00 O 0 0 Py
The non-linear part of the strains can be introduced in a Green-Lagrange sense (see [38]):
1/0uydu, = Ouyduy  Ju, du
bell = - (X2 4+ XY TR ) withid,j = .
i =2 ( ai 9 | oi o o o )T AIE ©)

The complete Cartesian components of strain can be obtained by summing the linear and non-
linear terms. The in-plane and out-of-plane stress components can be written as:

ap = O'yy , Op = U'yz . (6)
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Hooke’s law reads: ~ ~
op = Cppep + Cpnén ,
oy = Cnpep + Cnnen ’

)
where the terms (~pr, épn, (Nan and C,,;, are the components of the material stiffness matrix.

2.1. Variable-Angle Tow Composite Plates

VAT laminates are characterized by a point-wise variation of the material stiffness matrix compo-
nents along the in-plane directions. Because of the laminate stacking sequence, the material stiffness
matrix is also subjected to a layer-wise variation along the thickness of the plate. The equation enabling
the rotation of the material stiffness matrix C by a designated angle 6 around the z-axis is expressed as
follows:

C=T1CT’. 8)

Here, C denotes the material stiffness matrix in the material reference system, whereas C repre-
sents the matrix after a rotation. The rotation matrix T is a function of the angle 6. For conciseness, the
specific components of C and T are omitted in this context (refer to Reddy [38] for detailed information).
A linear variation law can be formulated as:

T, — T
m@:¢+n+iqimy 9)

The angle ® represents the initial direction of variation for 6, « is a spatial variable given as:

a = x' cos (P) + 1 sin (D) . (10)

where x” and y’ denote the axes of the angle reference system. Ty indicates the initial fiber angle when
« = 0, and T represents the fiber angle when a = d as shown in Figure 2.

Figure 2. Example of in-plane fibers path.

Within this paper (and without loss of generality), the fibers angle is measured with respect to
the ¥’ axis. The direction of variation of 6 can be along x’, y’ or a combination of theirs, depending on
the specific case. The notation & < Ty, T; > is used to describe the in-plane path of the fibers, which
is based on the parameters introduced earlier. More details about the variation law of the local fiber
orientation can be found in Giirdal et al. [5].

2.2. Variational Formulation

The governing equations are here derived through the consideration of PVD and RMVT vari-
ational statements. The key distinction lies in PVD focusing solely on displacements as unknowns,
whereas RMVT incorporates both displacements and transverse stresses, denoted as ¢, as primary
unknowns. To effectively address the buckling problem, a prebuckling analysis is essential for de-
termining the non-uniform stress distribution resulting from an external load. For the PVD case, the
virtual internal work can be expressed as:

SV = /Q /h ((5erT)G opH + el fan) dz dQ) . (11)
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The subscript ‘G’ refers to components derived from geometrical relations outlined in Egs. (3),
whereas the subscript “H’ corresponds to components obtained through Hooke’s law as specified in
Egs. (7). The term Q) represents the mid surface of the plate in the in-plane directions and the subscript
“T” stands for the transpose of a vector/matrix. The virtual internal work for the RMVT case is

SLIT _ /Q /h (€l i + Sel aum + 60y (€ — €nir) | dzd0), (12)

where the ‘M’ subscript refers to the transverse stress components considered as primary unknowns
in the mixed formulation. In the RMVT formulation, Hooke’s law is expressed as follows:

OpH = ?ppepG + Aépno'nM ’ (13)
€nt = Cup€pc + Canonm ,
where épp, Cpn, Cnp and C,,, are obtained by the following relations (see Carrera and Demasi [34]):

CPP - CPP CW’CWI C”P ’
Cpn — Cpncnn 7

14
Cup = :C Cnp , (14
Cun = Cyf
2.2.1. Prebuckling Problem
In the context of a prebuckling analysis, the following balance equation applies:
6L; = OL,, (15)
where the virtual work associated with external loads reads:
L = / sul pdQ, (16)
Qp

where p is a surface load applied on the surface (), at z coordinate zy,.

2.2.2. Linear Buckling Problem

The stress field obtained through the prebuckling analysis can be integrated for the computation
of the pre-stresses virtual work 6L o which reads:

0Ly = /Q /h (éei‘}cagx + 56;; gy + 56“1 0 , + sellol + 56“1 O .+ 562;022) dzdQ, (17)

where 07 are the pre-stresses energetically conjugate to the non-linear strains €
linear buckhng problem can be written for both PVD and RMVT cases as:

l],w1th1 j=x,y,z. The

SL; = 6Ly . (18)

2.3. Kinematic Assumption and Finite Element Approximation

CUF allows to introduce an axiomatic approximation in order to mathematically represent the
primary unknowns along the direction parallel to the thickness (see Carrera [20]). Considering
f = f(x,y,z) as a generic unknown component, the following expansion can be introduced:

f(x,y,z) = Fe(2)g(x,y), 7=0,1,...,N. (19)

In this context, f can represent solely a displacement component within a formulation derived by
the PVD or a displacement or an out-of-plane stress component in the case of a RMVT formulation.
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F: serves as an approximation function along the thickness, while g represents an unknown two-
dimensional function that approximates the in-plane variation. The used Einstein’s notation assumes
that a twice repeated index implies a sum over that index range. This notation simplifies mathematical
expressions and calculations. N represents the approximation order, which can be chosen a-priori.
Similarly, F; can also be imposed beforehand. The flexibility of the CUF enables the formulation of
multiple theories within the same framework, making it a versatile tool for VATs analysis. Equivalent
Single Layer (ESL) and Layer-Wise (LW) theories can be obtained through the adequate choice of F;
and a coherent implementation of the layers stiffness matrices assembly.

2.3.1. Equivalent Single-Layer Theories

In the ESL framework, 1D polynomials of the type z* are used as F; in order to obtain Taylor’s
expansion for the representation of primary variables:

Fe(z)=z', t=0,1,...,N. (20)

In this case, the number of layers does not affect the total number of unknowns. The components
of the stiffness matrix are computed by summing the integrals of the thickness functions for each layer,
each multiplied by its corresponding stiffness coefficient. Even if ESL models are characterized by a
diminished computational complexity /cost and show a good prediction of thin laminates behavior,
they lack in accuracy when thick plates are considered. Due to their reliance on C* approximation
functions, ESL approaches are unable to accurately capture the zigzag displacements effect. However,
it might be feasible to incorporate this feature by introducing Murakami’s function, as detailed in
Carrera [39].

2.3.2. Layer-Wise Theories

Lagrange or Legendre polynomials can be used to approximate the unknown fields independently
for each layer resulting, in this way, in a LW model for which it is possible to write the following
approximation along the z-axis:

fA(xy2) = Fy(2)g4(x,y) + Fr(2)88 (x,y) + F(2)gf (x,y) , r=2,..., N. (21)

The superscript k" denotes a generic layer within the structure, with k ranging from one to
N}, where Nj represents the total number of layers. Subscripts ‘t’ and ‘b’ correspond to the top and
bottom faces of the generic layer, respectively. In the case of Legendre polynomials, the approximating
functions along z-axis are:

RE@) = 2 Re@) =50, RE@) =P -Po r=2,..,N, @

2 2
where P; = P;({y) represents the ith-order Legendre polynomial defined within the domain of the kth
layer with the dimensionless through-the-thickness local coordinate {; bounded within —1 and +1.
LW models can accurately predict the zig-zag through-the-thickness behavior of the displacement
field. However, they come with a higher computational cost, as the number of unknowns depends on
the number of layers.

2.3.3. Finite Element Formulation

When a FE approximation is applied, it is necessary to incorporate the shape functions into the
formulation. In the case of a 2D model, Eq (19) becomes:

f(x,y,z) = Fr(2)Ni(x,¥)8zi, T=0,1,...,N, i=1,..., Ny, (23)
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where N; denotes the shape functions of the element and N;, corresponds to the number of nodes
utilized for the domain discretisation. Classical Lagrange shape functions are used. They are not
explicitly detailed here for the sake of brevity and interested readers can refer to [40] for further
information.

2.4. Acronym System

A comprehensive acronym system is implemented to identify the derived theories. The first letter
designates the employed approximation level: ‘E” corresponds to ESL models, while ‘L’ corresponds to
LW models. The second letter denotes the variational statement: ‘D’ or ‘M’ signifies PVD or RMVT,
respectively. The final number indicates the expansion order utilized along the plate thickness. If the
first number is present, it signifies the number of virtual layers employed for the LW model to represent
each physical layer. If the acronym begins without a numerical value, it is implicitly understood that
only one virtual layer has been used for each physical layer. This system is shown in Figure 3.

Variational Statement Examples:
-PVD: D. ED2: Equivalent single layer, PVD, second order expansion.
-RMVT: M. LD3: Layer-wise, PVD, third order expansion, one virtual

leyer per physical layer.
2LD3: Layer-wise, PVD, third order expansion, two virtual

Kinematic model leyers per physical layer.
- Equivalent Single Layer: E. 3LM4: Layer-wise, RMVT, fourth order expansion, three
- Layer-Wise: L. virtual layers per physical layer.

~ T — CLT: Classical Lamination Theory.

FSDT: First-Order Shear Deformation Theory.

Notation: |
Number of virtual layers per |Polynomia| order along thickness.
physical layer in LW theories

(1 if none).

EE/L oM | [N

Figure 3. Acronym system.

For instance, the displacement field in EDN models corresponds to the following vectorial form:
u=FKu+Fu + ---+Fyuy=Fu, 7=0,1,..., N, (24)

where F; = z¥ and u; = u.(x,y). Classical theories arise as specific cases of the ED1 solution:
Classical Lamination Theory (CLT) and First-order Shear Deformation Theory (FSDT) are denoted as
CLT and FSDT, respectively. FSDT is derived by penalizing the u,; term in a first-order through-the-
thickness approximation, whereas CLT requires penalization of the therms coming from the work of
the transverse shear stresses. The material stiffness matrix is reduced to account for a plane stress state
in both CLT and FSDT and avoid thickness locking.

For LDN solutions, only displacements are considered as unknowns:

v =FRuf+Ful+ - Ryl =Fuf, t=01...,N, k=1,2,...,N,. (25)
For LMN solutions, also transverse stresses are included among the unknowns:
k _ k k k _ _
oy, =Fkoy+Fo;+Foy, r=2,...,N, k=1,2,..., N;. (26)

In both cases, N refers to the approximation order employed in each layer. Noticeably, ESL
theories can be viewed as specific instances of LW theories. In ESL, integration along the thickness is
carried out to represent composite properties through an equivalent single layer. In contrast, in LW
theories, integration is computed layer by layer. This allows for the individual representation of the
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kinematics of each layer in LW models. Unless otherwise specified, LDN solutions are derived using
Lagrange polynomials with equally spaced nodes, while LMN solutions utilize Legendre polynomials.

2.5. Stiffness Matrices Expression

Considering PVD, the displacement field groups the primary unknowns. In a PVD context,
displacements from Eq (23) can be written as follows:

xti

u=FNi{ qyui ¢ =FNiqq; - (27)

qzti

Through the substitution of Egs. (3), (7), (27) and (11) into Egs. (18), the PVD governing equations
are obtained:

/5% (D, (NN ZE D, (NiT) + Dy (N Z5, Dy (NJT) + Dy (N Z 55 (N;T) +

+D/ 0 (NDZTD, (NJT) + D)o (N ZT5, Dy (NJT) + D)o (NI ZJ5 (NJT) + (28)
+HINDZ" Dy (NT) + (NDZi" Do (N]T) + (NI ZE= (N]T) ) 4,;4Q = 6L 0

where:
(Z;;Srr Z-Iu';%s/ Z;Sr/z, ZT S Z) = (éerTS/ éerT,ZS/ EZUTETS,Z/ éerT,ZS,Z> L w,r=p,n, (29)
(Evs, Evss v Eros) = [ (FeFi, FeFo, FeFis, FeFi )iz (30)

Index ‘z” when preceded by a comma refers to the derivative along z-axis. In a compact vectorial
form, Eq (28) reads:
g1 K™q,; = 6Ly, 31)

where K™/ is a 3 x 3 Fundamental Nucleus (EN). The loops on the indices 1, 5, i and j allow to build
the stiffness matrix of the whole plate element expanding over the kinematic approximation and the
finite element approximation, respectively.

In the RMVT case, also transverse stresses constitute an unknown field:

8xzti
on=FEN{ guei ¢ =FNigy; . 32)

8zzti

Through the substitution of Egs. (3), (13), (27), (32) and (12) into Egs. (18), the governing equations
of the RMVT can be written as follows:

/‘Squ DT NI ZTS DP(N I)]qS] +(5qu [DT(NI)Z;Z (N]I) +DrTlQ(NiI)(E’L'51) (le)+

+(N) (Er,osT) (NjT) ] g5; + 68 3; [(NiT) (EesT)Dya (NJT) + (NJT) (Ers, 1) (NGT) + 33)
~(NID)Z7 Dy (N]1)] q; — 085 (NI) 275, (NT) g2 = 6L o

where:

(Z;Sr/ Z;rufsz Z;rusyz/ ZT 2z Z) = (éerTS/ CZUI’ET,ZS/ erETS,Z/ erET,Zs,Z) L w,r=p,n. (34)

d0i:10.20944/preprints202405.1103.v1
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In a compact form:

Tsij Tsij

5K 9si + 597 Kug 8sj = 0Ly,

081 Ko qs; + 081 Koo' 85 = 0.

(35)

In this case, four fundamental nuclei are obtained. Gauss quadrature has been used to compute
the in-plane integrals. Due to the varying stiffness coefficients of the materials, the number of Gauss
points must be adjusted for a given analytical formula describing the local fibers orientation to ensure
converged integration. A reduced integration is used to correct the shear locking phenomenon. A 4 x 4
grid of Gauss points is used for the fully integrated terms, while a 2 x 2 grid is used for the reduced
ones. Through the substitution of Egs. (5) and (27) into Egs. (17), it is possible to obtain the pre-stresses
virtual work:

o x

L0 = /Q /h g% [FeFN;, N;, 0%, + FEN; Nj, 08, + FTFS(Ni,X Nj, +N;,N; )a,‘?y+

+ (EeFo Ni, Nj + Fe FsNiNj, ) 0% + (FeFo,Ni, Nj + Fo, ENiN;, ) of.+ (36)

X

+ Fr, s, NiNjo2. ] 1q,;dzdQ) .

In a compact form it reads:
0Ly = 095K q,;, (37)

where K;gl] is the fundamental nuclues of the geometric stiffness matrix.

3. Numerical Results

This section presents some numerical investigations to assess the proposed finite element formu-
lation. Three benchmark cases are considered: a monolayer plate, a multilayer plate and a multilayer
plate with a central circular cut out. For all the cases, a square plate (@ = b) is considered, whereas
different boundary and load conditions are applied in order to obtain a variety of results as wide as
possible. Two materials are used whose properties are represented in Table 1.

Table 1. Material properties.

Case EL [GPa] ET [GPa] GLT [GPa] GTT [GPa] VLT, VTT
1 50 10 5 5 0.25
2,3 181 10.27 7.17 3.78 0.28

Where 'L” and ‘T~ stand for longitudinal and transverse direction, respectively. Abaqus 3D
models are deve as reference solutions. For these models, the mesh is constituted by quadratic solid
elements with reduced integration and three degrees of freedom per node (C3D20R). A refined in-plane
mesh is needed to obtain accurate results in Abaqus due to the element-wise constant orientation of
the fibres. Nine-node square elements (QUAD?Y) are used for CUF solutions. Results are presented in
terms of an equivalent critical force F;" for the ith buckling mode defined as:

Fr = \jalh, (38)

where A; is the ith buckling eigenvalue represenative of an applised lateral surface load (whose units
are [Pa]).

The following equation is used to compute the percentage errors:
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5 = -100 . (39)

3.1. Monolayer Plate

The first benchmark problem is a monolayer plate characterized by the following dimensions:
a =>b=1m,h = 0.01 m. Fibers angle is represented as a function of y’. In this case, the local frame of
the fibers path is aligned with the global reference frame of the structure. Hence, the characteristic
length in Eq. (9) is set as d = b. Figure 4 represents the law of fibres angle, which can be written as
90 < 0,90 >. This law is taken from Viglietti et al. [27], where it is applied on a rectangular plate for
vibration analyses.

A

y=y .. 90<090>

Figure 4. In-plane fibers variation path, case 1.

The plate is clamped in correspondence of the side where y/b = 0, while only the displacement
uy is free at y = b. A constant pressure ng = 1Pais applied at y = b, as shown in Figure 5.

AL

u=u,=u,=0 [x

>
>

Figure 5. Boundary and loading conditions, case 1.

Abaqus reference solution contains 80 elements along each side and 16 elements along the
thickness. Table 2 shows the results of the preliminary convergence analysis, considering the ED2
model. The first four buckling loads are shown for each mesh, together with the number of Degrees Of
Freedom (DOF). It is possible to observe that by increasing the number of in-plane elements, the results
get progressively closer to the reference solution. The 8 x 8 mesh is considered as the best compromise
between computational cost and results accuracy, for this reason it is used in the following analyses in
order to study the behavior of higher-order CUF theories.


https://doi.org/10.20944/preprints202405.1103.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 May 2024 doi:10.20944/preprints202405.1103.v1

12 of 21

Table 2. Comparison of DOF and critical loads F{" [N] between Abaqus 3D and ED2 mesh, case 1.

DOF Fr-1073 Fr-1073 F§r-1073 F{r-1073
Abaqus 3D 1,310,499 28.926 57.366 85.585 122.498
2x2 225 29.901 57475 136.926 170.607
4x4 729 28.126 55.545 88.768 125.994
6x6 1521 28.333 56.023 85.550 122.138
8x8 2601 28.473 56.323 85.196 121.744
10 x 10 3969 28.565 56.524 85.160 121.739

Table 3 shows the DOF for different theories and expansion orders. FSDT and CLT show the
smallest number of DOF. Because of the way in which they are modeled through CUF, FSDT and CLT
theories have the same number of DOF. It is possible to observe that mixed CUF models, which can be
considered as the computationally most expensive ones, are characterized by a number of DOF which
is two magnitude orders smaller than the Abaqus reference solution.

Table 3. Number of degrees of freedom, case 1.

Model DOF
Abaqus 3D 1,310,499
3LM4 22,542
3LM2 12,138
3LD4 11,271
3LD2 6069
ED4 4335
ED2 2601
FSDT 1734
CLT 1734

In order to retrieve the plate non-uniform stress field when a compression load is applied, a
prebuckling analysis is performed. Figures 6, 7 and 8 show the in-plane contour plots of the in-plane
displacement ug and the in-plane normal stresses ¢, and Ugy, respectively. The comparison between
3LM4 and Abaqus 3D results can be observed, showing a good agreement between the two approaches.

o 17 L 0

7.37e-12 7.37e-12
1 47611 -147e-11
221611 221e-11

-2.95-11 -2.95e-11

368011 -3.6%-11

-4.42e-11 -4.42e-11

516611 -5.16e-11
-5.89e-11 -5.9e-11
-6.63e-11 -6.64e-11
737611 -7.37e-11

u,[m] Y u, [m]

z X g Y
0 025 05 05 075 1 \LX

(a) 3LM4 (b) Abaqus 3D
Figure 6. Contour plots of the displacement along y axis ug [m], case 1.
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-0.585
-0.946

-131

42
o,, [Pa]

Y
0 0.25 0.5 075 1 0 025 0.5 0.75 1 \Z—X

(a) 3LM4 (b) Abaqus 3D
Figure 7. Contour plots of the in-plane normal stress U’Sy [Pa], case 1.

0083
00416
0.0002
-0.0412
-0.0826
-0.124

-0.165

I T T T
0 025 05 075 1

(a) 3LM4 (b) Abaqus 3D
Figure 8. Contour plots of the in-plane normal stress o2, [Pa], case 1.

Table 4 shows the first four critical loads for different theories. The CLT model is not able to
predict the buckling loads of the plate and it is not reported in the table. This behavior allows to
observe the importance of transverse shear stresses for this case, which can not be computed through
CLT. The approximation given by the FSDT model shows a percentage error of 5.3% on the first
buckling load. This error can be reduced to 1.6% through an ED2 model. 3LD2 and 3LD4 models show
a similar approximation, since they both show an error of 0.2% on the first buckling load. The best
approximation of the first critical load is given by 3LM2 and 3LM4 models, which show an error of
0.1%. As far as the higher critical loads are concerned, LM models are closer to the reference solution.
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Table 4. Critical loads F{" [N], case 1.

Fr-1073 F§r-1073 F§r-1073 F{r-1073
Abaqus 3D 28.926 57.366 85.585 122.498
3LM4 28.962 57.319 85.796 122.756
3LM2 28.958 57.309 85.788 122.743
3LD4 28.979 57.478 85.891 122.928
3LD2 28.979 57.479 85.892 122.929
ED4 28.468 56.296 85.154 121.683
ED2 28.473 56.323 85.196 121.744
FSDT 30.461 59.571 90.594 128.661

3.2. Multilayer Plate

The second benchmark problem is a multilayer plate is considered and it has been taken from
Hao et al. [7]. It has been also studied by Fallahi et al. [28]. The plate is square and composed of sixteen
layers with of equal thickness. In-plane dimension are 2 = b = 254 mm and each ply has a thickness
of 0.15 mm. Fibers angle is expressed as a function of the x"-axis. Axes x’" and i’ of the local reference
system of the fibers path are parallel to axes x and y of the global reference system of the plate, but they
are translated such that their origin is located at the center of the plate (a/2,b/2). In this case, the char-
acteristic length in Eq. (9) is /2, hence d = a/2. A symmetric and balanced stack is considered with
the following fibers path parameters: [0 < 60,15 > |0 < —60, —15 > |0 < —60, —15 > [0 < 60,15 >],.
The stacking sequence is represented in Figure 9 for the representative layers 0 < 60,15 > and
0 < 60, —15 > in the symmetric pattern.

1y layers 2,3: 0<-60,-15> |V layers 1,4: 0<60,15>

60°

X X

Figure 9. In-plane fibers path and stacking sequence, case 2.

As for the previous case, the Abaqus reference solution contains 80 elements along each side
and 16 elements along the thickness. For CUF results, a 8 x 8 mesh is considered. At each side of the
plate, the displacement along z axis is equal to zero (1, = 0). At the lower left corner (0, 0) also the
displacement along y is zero (u, = 0), while at the lower right corner (a, 0) all the displacements are
constrained (uy = u, = 0). Two loading conditions are considered: a pure compression case along x
axis (PY, = 1 Pa) and a combined compression-shear case (P, = P,ey = 1 Pa). Boundary and loading
conditions are shown in Figure (10).

d0i:10.20944/preprints202405.1103.v1
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A 0 _
y Pu=1Pa §y Pou=1Pa, P’ =1Pa
— u, = 0 -—
) — u,=0 ~
JE— < —> |«
— | <
—{ . _ <
—Jw=0 u, =0 —{{u,=0 u, =0
N «
— — — S
> u,=0 ~ — u,=0 — .
Point 1: Point2: X Point 1: Point 2:
u, =0 u, =u,=0 u, =0 u =u, =0
(a) Pure compression load. (b) Combined compression-shear load.

Figure 10. Boundary and loading conditions, case 2.

Table 5 shows the first four buckling loads for the pure compression case. In this case the model
using CLT is able to approximate the results given by Abaqus 3D. Nevertheless, this theory shows a
percentage error of 2.7% for the first critical load, which grows up to 4.4% for the fourth critical load.
The error on F{" can be reduced to 0.04% considering the ED4 model. Through LW models this error
can lower than 0.001%. In this case, the best approximation of F;" is given by the LM4 model.

Table 5. Critical loads F{" [N], pure compression load P2, = 1 Pa, case 2.

F{r-1073 F§r-1073 F{"-1073 F{r-1073
Abaqus 3D 13.63 21.57 35.42 54.46
Ref. [7] 13.63 21.64 35.41 54.56
Ref. [28] 13.67 21.68 35.69 54.60
LM4 13.63 21.57 35.62 54.47
LM2 13.63 21.57 35.62 54.47
LD4 13.63 21.57 35.62 54.47
LD2 13.63 21.57 35.62 54.47
ED4 13.64 21.71 35.80 54.60
ED2 13.67 21.74 35.85 54.81
FSDT 13.84 22.03 36.46 55.47
CLT 14.00 22.35 36.97 56.83

Table 6 shows the first four buckling loads for the compression-shear case. For this loading
condition CLT shows an higher maximum error of 7.7% in correspondence of F;". This error is reduced
to 1.2% with LD4 and LM4 theories. 0.090% is the minimum error on the first buckling load and is
obtained by a LM4 model. It is possible to notice that, because of the combined load case, lower order
theories show higher errors in comparison with the pure compression load.
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Table 6. Critical loads F{" [N], compression-shear load P = ng =1 Pa, case 2.

Fr-1073 Fr-1073 F§r-1073 F{r-1073
Abaqus 3D 12.04 18.46 30.86 41.87
Ref. [7] 12.04 18.49 30.83 41.84
LM4 12.05 18.51 31.03 42.39
LM2 12.05 18.51 31.03 42.39
LD4 12.05 18.51 31.03 42.39
LD2 12.05 18.51 31.03 42.39
ED4 12.07 18.55 31.14 42.56
ED2 12.08 18.58 31.20 42.75
FSDT 12.49 19.31 32.50 44.12
CLT 12.65 19.55 32.98 45.08

3.3. Multilayer Plate with a Central Cut-Out

The third case of analysis is represented by a square multilayer plate with a central circular

cut-out. The plate is composed of eight layers, each of them 0.15 mm thick. The in-plane dimensions
are @ = b = 254 mm. The material properties are the same of the second case. The center of the cut-out
is placed at (a/2,b/2) and its radius is = 40 mm. Fibers angle distribution is the same of the previous
case and the following stack is considered:
[0 < 60,15 > [0 < —60,—15 > |0 < —60, —15 > |0 < 60,15 >],. In this case, the Abaqus reference
solution is made of 100’352 elements: 6272 elements are defined into the plane of the plate and 16
elements are defined along the thickness. For CUF results, 72 plate elements have been used. The
boundary and loading conditions are the same presented for case 2. Table 7 shows the first four
buckling loads for the pure compression load. It is possible to observe that LM theories give the best
approximation of Fi" and Fj’, while F;" and F;" are better approximated by LD ones. LM2 shows
a minimum error of 0.2% in correspondence of F;", while LM4 shows a minimum error of 0.3% in
correspondence of F;". CLT and FSDT models can predict the buckling loads for this case, even though
they present higher errors in comparison with other theories.

Table 7. Critical loads F{" [N], compression load PV, =1Pa, case 3.

F{r-1072 F§r-102 F{" 1072 F{r-102
Abaqus 3D 13.322 22.522 31.974 36.974
LM4 13.294 22.386 31.352 37.071
LM2 13.298 22.390 31.360 37.077
LD4 13.378 22.534 31.661 37.280
LD2 13.383 22.539 31.672 37.288
ED4 13.369 22.554 31.763 37.301
ED2 13.420 22.633 31.916 37.432
FSDT 13.562 22.937 32.317 38.092
CLT 13.637 23.144 32.757 38.402

Table 8 shows the first four buckling loads for a compression-shear combined loading. Also in
this case the results get progressively closer to the reference solution when LD and LM theories are
applied.
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Table 8. Critical loads F{" [N], compression-shear load P = PSy =1 Pa, case 3.

Fr-1072 F§r-10-2 F§r-1072 F{r-10-2
Abaqus 3D 11.152 19.396 23.956 32.302
LM4 11.146 19.322 23.491 32.337
LM2 11.149 19.326 23.496 32.343
LD4 11.204 19.436 23.638 32.519
LD2 11.207 19.440 23.646 32.526
ED4 11.228 19.490 23.730 32.611
ED2 11.253 19.536 23.808 32.709
FSDT 11.355 19.761 24.078 33.190
CLT 11.416 19.943 24.372 33.519

Even if CLT and FSDT models show a worse approximation of reference solutions, they can
correctly match the buckling modes obtained through Abaqus 3D. The buckling modes for the
compression-shear case are presented in Figures 11, 12, 13 and 14 where a comparison between
Abaqus 3D and LM4 model is shown.

(a) LM2 (b) Abaqus 3D
Figure 11. First buckling mode, compression-shear load PY, = ng = 1Pa, case 3.

(a) LM2 (b) Abaqus 3D
Figure 12. Second buckling mode, compression-shear load PY, = P,?y = 1Pa, case 3.

(a) LM2 (b) Abaqus 3D
Figure 13. Third buckling mode, compression-shear load PY, = P,(c)y =1 Pa, case 3.
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(a) LM2 (b) Abaqus 3D
Figure 14. Fourth buckling mode, compression-shear load PO = ng =1 Pa, case 3.

4. Conclusions

In this study, linear buckling analyses of VAT plates have been performed by developing two-
dimensional CUF finite elements within Reissner’s Mixed Variational Theorem. Thanks to its adaptability
to a wide range of structural problems and the possibility to choose the approximation theory a-priori, CUF
shows a good prediction of buckling loads with an acceptable computational cost. Even though only linear
laws have been considered in the numerical simulations for the variation of fibres angle, the implemented
numerical framework allows to address a generic variation law. Three numerical examples of plates contain-
ing curvilinear fibres have been analyzed and results are compared to Abaqus 3D and literature reference
solutions. The comparison among the various results allows to distinguish the developed models according
to their accuracy and numerical complexity. Even though CLT and FSDT show a reduced amount of degrees
of freadom, allowing to correctly predict buckling loads for the considered benchmark structures 2 and 3,
they show a higher loss of accuracy when plates which are not symmetric and balanced are considered, as
observed in the first benchmark case. Increasing the through-the-thickness polynomial order, general ESL
displacements theories are obtained, which allow to improve the results accuracy. A further improvement
in the prediction of buckling loads is obtained through the development of LW displacements models. ESL
and LW theories can correctly predict Abaqus 3D results with a limited number of DOF, but being derived
from a PVD variational statement show a lack in accuracy for the out-of-plane stresses, which strongly
influence the evaluation of the geometric stiffness matrix needed for the linear buckling analysis. Hence,
the derivation of LW models to RMVT allows to overcome this problem, enhancing the solution accuracy,
specially in the case of the first critical load. Even if LM models allow to improve the prediction of the
through-the-thickness behavior, they are characterized by the maximum computational cost among the
two-dimensional theories developed in this study, and yet their application is still advantageous mainly
when plates characterized by complex stacking sequences are considered especially when compared to the
cumberson three-dimensional simulations. In summary, the utilization of RMVT in the context of CUF has
demonstrated the potential to enhance the precision and efficiency of modeling VAT plates for buckling
analyses. Nevertheless, the scope of this approach extends beyond plate analysis, as there are promising
prospects for employing, as a future perspective, this framework in the examination of more challenging
VAT structures such as shells.
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This appendix reports the FN of the structure stiffness matrix for the PVD and RMVT variational
statements. The components of the FN for the PVD case can be written as follows in the case of an

orthotropic material:

K — / (Z551aNj Ni, + Z516N;, Niy + ZpsnsN N, + ZingsNj, Niy + Zi3i NiNg Q2

K — /Q (Z5212Niu Ny + Zis16Ni Ni, + ZisasNi, Ni, + ZipssNj, Ni, + 253 NN A0,

K27 = [ (ZyisNiNe, + Zys6NiNi, + ZuNj, N+ 255N, Ny Q2

K= /Q (Zrs12Ni Ny, + Z556Ni, Ni, + Z5s16Nj Ny, + ZisesNi, Ny, + 253 NiN; ) dQ2,

KT = /Q (Z5s22Ni, Niy + Z556N; Niy + ZsagNj Ny, + ZisgNj, Ny, + ZEeNiNg)dQ, (A1)
Ko — /Q (Z53sNiNi, + Z53gNiN, + Zi7ias Ny N; + Z575N;, N; 40

K — /Q( NNy, + ZEsNiN;, + ZEiN;, Ny + ZE3eN;, N )dQ ,

K = / (ZiisNiNi, + Z5zssNiNy, + Zi3sN;, Ny + ZEgs Nj N 0,

Ko = / ( N Ni + Z50sN; Ny + Z554sN; N; + Z755sN; Ny +Z;;§§N/Ni)d0.

The subscripts ‘x” and “y” when preceded by a comma refer to the derivative versus the corresponding
in-plane direction. The components of the FN for the RMVT case can be written as follows:

K& — / (Zi 1N} Ny, + 28551 N) Ni, + Z5515N;, N, +ZT;33N],yN,,y)dQ,

K, = /Q (Z5512Ni, Ny, + 25530N;, Ny, + 25515} Ny + Z5553Nj, ;)

K;sz = /Q(Z ;21N N,/V + 25231NJ,XN1,X + ZPZZSN/VNZ/y +Z;;33 Jry l/x)dQ ’

K;Z% = /Q (pr22NJ/v N;, + ZPP32N]'V N, + ZPP23NM N, + ZP;33 Jox l/x)dQ 4

Kie =0, K, =0, Kili=0, Kl =0, Kul =0,

K& — /Q (ETZSNN)dQ K — / (ZTZBN]N,-,X +Z;§33NjNi,y)dQ,

Kish, = /Q (EeasNiNi )0, Kighe = / (Z5s2sNilNi, + Z5553NiN;, )d©2,

K, = / (EesNjN;, )dO,  Kigh, = / (EesNjN;, )i, Kial = / (Ex.oNjN;)d0y
0 Q Q (AZ)

Kighy =0, Kighx =0,

Kok = [ (Ees.NiN)Jd2, KL = [ (ExoNj N0, Kiidy = [ (Ees.NiNi )02,

K = /Q (BN, N )0, Ky = — / (Z5551N) Ni = Z5533Nj, Ni 402,

Koy = = [ (255N, N = 255Ny, N i, KRG = [ (Ees NN, )d,

Kouly =0, Koy =0,

K&l = /Q nfﬂlNN dQ K;Sriiy = */Q(ZfllezNjNi)dQ ,

K;frzx / nftZlNN dQ Kigle = — /K_I(ZZZZZNjNi)dQ ,

Kigh: =0, Kig==0, Kole=0, Kol =0, Kil =
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