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1. Introduction and Preliminaries

With the development of q-calculus started appearing in the nineteenth cen-
tury, Many authors made generalizations to special functions and polynomial families
based on the q-analogs (cf. [1-12, 18, 20]). During the process, properties and rela-
tions have been demonstrated and contributed to solving different kinds of problems
in other subjects (see [4, 5, 20]). The applications of q-calculus in various fields of
mathematics, physics and engineering.

Throughout this presentation, we use the following standard notions N = {1, 2, · · · },
N0 = {0, 1, 2, · · · } = N ∪ {0}, Z− = {−1,−2, · · · }. Also as usual Z denotes the set of
integers, R denotes the set of real numbers and C denotes the set of complex numbers.

The q-analogue of the shifted factorial (a)n is given by

(a; q)0 = 1, (a; q)n =
n−1∏
m=0

(1− qma), n ∈ N.

The q-analogue of a complex number a and of the factorial function are given by

[a]q =
1− qa

1− q
, q ∈ C− {1}; a ∈ C,

[n]q! =

n∏
m=1

[m]q = [1]q[2]q · · · [n]q =
(q; q)n
(1− q)n

, q ̸= 1;n ∈ N,

[0]q! = 1, q ∈ C; 0 < q < 1.

The Gauss q-binomial coefficient

(
n
k

)
q

is given by(
n
k

)
q

=
[n]q!

[k]q![n− k]q!
=

(q; q)n
(q; q)k(q; q)n−k

, k = 0, 1, · · · , n.

The q-analogue of the function (x+ y)nq is given by
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(x+ y)nq =
n∑

k=0

(
n
k

)
q

qk(k−1)/2xn−kyk, n ∈ N0. (1.1)

The q-analogue of exponential function are given by

eq(x) =
∞∑

n=0

xn

[n]q!
=

1

((1− q)x; q)∞
, 0 <| q |< 1; | x |<| 1− q |−1, (1.2)

Eq(x) =
∞∑

n=0

qn(n−1)/2 xn

[n]q!
= (−(1− q)x; q)∞, 0 <| q < 1;x ∈ C. (1.3)

Moreover, the functions eq(x) and Eq(x) satisfy the following properties:

Dqeq(x) = eq(x), DqEq(x) = Eq(qx), (1.4)

where the q-derivative Dqf of a function f at a point 0 ̸= z ∈ C is defined as follows:

Dqf(z) =
f(qz)− f(z)

qz − z
, 0 <| q |< 1.

For any two arbitrary functions f(z) and g(z), the q-derivative operator Dq satisfies
the following product and quotient relations:

Dq,z(f(z)g(z)) = f(z)Dq,zg(z) + g(qz)Dq,zf(z), (1.5)

Dq,z

(
f(z)

g(z)

)
=

g(qz)Dq,zf(z)− f(qz)Dq,zg(z)

g(z)g(qz)
. (1.6)

The Apostol type q-Bernoulli polynomials B
(α)
n,q (x, y;λ) of order α, the Apostol

type q-Euler polynomials E
(α)
n,q (x, y;λ) of order α and the Apostol type q-Genocchi

polynomials G
(α)
n,q(x, y;λ) of order α are defined by means of the following generating

function (see [9-12, 18]):

(
t

λeq(t)− 1

)α

eq(xt)Eq(yt) =

∞∑
n=0

B(α)
n,q (x, y;λ)

tn

n!
, (| t+ log λ |) < 2π, 1α = 1, (1.7)

(
2

λeq(t) + 1

)α

eq(xt)Eq(yt) =
∞∑

n=0

E(α)
n,q (x, y;λ)

tn

n!
, (| t+ log λ |) < π, 1α = 1, (1.8)

(
2t

λeq(t) + 1

)α

eq(xt)Eq(yt) =

∞∑
n=0

G(α)
n,q(x, y;λ)

tn

n!
, (| t+ log λ |) < π, 1α = 1. (1.9)

Clearly, we have

B(α)
n,q (λ) = B(α)

n,q (0, 0;λ), E
(α)
n,q (λ) = E(α)

n,q (0, 0;λ), G
(α)
n,q(λ) = G(α)

n,q(0, 0;λ).

Recently, Ozarslan [13] introduced the following unification of the Apostol Bernoulli,
Apostol Euler and Apostol Genocchi polynomials. Explicitly Ozarslan sudied the fol-
lowing generating function:

f
(α)
a,b (x; t, a, b) =

(
21−ktk

βbet − ab

)α

ext =
∞∑

n=0

P
(α)
n,β (x; k, a, b)

tn

n!
, (1.10)

(
|t+ b ln(

β

α
)| < 2π, k ∈ N0; a, b ∈ ℜ\{0};α, β ∈ C

)
.
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For α = 1 in (1.10), we get

fa,b(x; t, a, b) =
21−ktk

βbet − ab
ext =

∞∑
n=0

Pn,β(x; k, a, b)
tn

n!
, (1.11)

(
|t+ b ln(

β

α
)| < 2π, k ∈ N0; a, b ∈ ℜ+;β ∈ C

)
.

From (1.10) and (1.11), we have

P
(1)
n,β(x; k, a, b) = Pn,β(x; k, a, b), (n ∈ N),

which is defined by Ozden and Simsek [15] and Ozden et al. [14] introduced many
properties of these polynomials.

Very recently, Riyasat and Khan [18] introduced a new type of q-Hermite based
Appell polynomials as follows.

Definition 1.1. The 2D q-Hermite based Appell polynomials HA
(s)
n,q(q ∈ C, 0 <| q |<

1) are defined by means of the following generating function

1

gq(t)
eq

(
xt− st2

1 + q

)
Eq(yt) =

∞∑
n=0

HA(s)
n,q(x, y)

tn

[n]q!
, (1.12)

HA(s)
n,q = HA(s)

n,q(0, 0).

Definition 1.2. The 2D q-Hermite polynomials H
(s)
n,q(x, y)(0 <| q |< 1, 0 ̸= s ∈ R)

are defined by means of the following generating function

eq

(
xt− st2

1 + q

)
Eq(yt) =

∞∑
n=0

H(s)
n,q(x, y)

tn

[n]q!
, (1.13)

where H
(s)
n,q = H

(s)
n,q(0, 0) are the q-Hermite numbers defined by

eq

(
st2

1 + q

)
=

∞∑
n=0

H(s)
n,q(0)

tn

[n]q!
.

The generalized Stirling numbers of the second kinds S(n, ν, a, b, β) of order ν
are defined in [21] as follows:

∞∑
n=0

S(n, ν, a, b, β)
tn

n!
=

(βbet − ab)ν

ν!
. (1.14)

For β = λ, a = b = 1, (1.14) reduces to

∞∑
n=0

S(n, ν, λ)
tn

n!
=

(λet − 1)ν

ν!
. (1.15)

In this paper, we introduce unified q-Hermite based unified Apostol Bernoulli,
Euler and Genocchi polynomials of order α and to investigate some properties of
them. Moreover, we consider q analog of new generalization of Stirling numbers of
the second kind of order ν by which we derive a relation including unified q-analog of
Apostol type polynomials of order α.

2. q-Hermite-based unified Apostol type polynomials HP
(α,s)
n,β,q (x, y; k, a, b)
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In this section, we introduce q-Hermite-based unified Apostol type polynomials

(qHbAtp) HP
(α,s)
n,β,q (x, y; k, a, b) by means of the generating function and series repre-

sentation. Certain relations for these polynomials are also derived by using various
identities. Now we start at the following definition.
.
Definition 2.1. Let q ∈ C, k ∈ N0, a, b ∈ R \ {0}, α, β ∈ N, 0 <| q |< 1. The q-
Hermite-based Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials
of order α are defined by means of the following generating function:(

21−ktk

βbeq(t)− ab

)α

eq

(
xt− st2

1 + q

)
Eq(yt) =

∞∑
n=0

HP
(α,s)
n,β,q (x, y; k, a, b)

tn

[n]q!
. (2.1)

When x = y = s = 0 in (2.1), HP
(α,0)
n,β,q (0, 0; k, a, b) = P

(α)
n,β,q(k, a, b) are called the

nth q-unified Apostol type numbers of order α.

Remark 2.1. For x = y = 0 in (2.1), HP
(α,s)
n,β,q (k, a, b) = HP

(α,s)
n,β,q (0, 0; k, a, b) are the

q-Hermite based unified Apostol type numbers defined by(
21−ktk

βbeq(t)− ab

)α

eq

(
st2

1 + q

)
=

∞∑
n=0

HP
(α,s)
n,β,q (k, a, b)

tn

[n]q!
. (2.2)

Remark 2.2. For s = 0 in (2.1), the result reduces to known result of Kurt [6] as
follows (

21−ktk

βbeq(t)− ab

)α

eq(xt)Eq(yt) =

∞∑
n=0

P
(α)
n,β,q(x, y; k, a, b)

tn

[n]q!
. (2.3)

Remark 2.3. Taking q −→ 1 and s = y = 0 in (2.1), we get the known result of
Ozarslan [13] as follows

lim
q→1

∞∑
n=0

HP
(α,0)
n,β,q (x, 0; k, a, b)

tn

[n]q!
=

(
21−ktk

βbet − ab

)α

ext. (2.4)

Theorem 2.1. Unified q-Hermite-based Apostol-Bernoulli, Apostol-Euler and Apostol-
Genocchi polynomials of order α holds true:

HP
(α,s)
n,λ,q (x, y; 1, 1, 1) = HB(α,s)

n,q (x, y;λ),

HP
(α,s)
n,λ,q (x, y; 0,−1, 1) = HE(α,s)

n,q (x, y;λ),

HP
(α,s)

n,λ2 ,q
(x, y; 1,−1

2
, 1) = HG(α,s)

n,q (x, y;λ). (2.5)

Theorem 2.2. The following series representation for the q-Hermite-based unified

Apostol type polynomials HP
(α,s)
n,β,q (x, y; k, a, b) of order α holds true:

HP
(α,s)
n,β,q (x, y; k, a, b) =

n∑
m=0

(
n
m

)
q

P
(α)
n−m,β,q(o, y; k, a, b)H

(s)
m,q(x). (2.6)

Proof. Using equation (1.10) and (1.12) in the l.h.s. of equation (2.1) and then
applying the Cauchy product rule and equating the coefficients of same powers of t
in both sides of resultant equation, we get representation (2.6).

Theorem 2.3. The following summation formula for the q-Hermite-based unified

Apostol type polynomials HP
(α,s)
n,β,q (x, y; k, a, b) of order α holds true:

HP
(α,s)
n,β,q (x, y; k, a, b) =

n∑
m=0

(
n
m

)
q
HP

(α,s)
m,β,q(0, 0; k, a, b)(x+ y)n−m

q . (2.7)
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HP
(α,s)
n,β,q (x, y; k, a, b) =

n∑
m=0

(
n
m

)
q
HP

(α,s)
m,β,q(0, y; k, a, b)x

n−m. (2.8)

HP
(α,s)
n,β,q (x, y; k, a, b) =

n∑
m=0

(
n
m

)
q

q(n−k)(n−k−1)/2
HP

(α,s)
m,β,q(x, 0; k, a, b)y

n−m. (2.9)

Proof. Suitably using equations (1.1)-(1.3) in generating function (2.1) to get three
different form. Further making use of the Cauchy product rule in the resultant expres-
sions and then comparing the like powers of t in the both sides of resultant equation,
we find formulas (2.7)-(2.9).

Theorem 2.4. The following recursive formulas for the q-Hermite-based unified

Apostol type polynomials HP
(α,s)
n,β,q (x, y; k, a, b) of order α holds true:

Dq,xHP
(α,s)
n,β,q (x, y; k, a, b) = [n]qHP

(α,s)
n−1,β,q(x, y; k, a, b), (2.10)

Dq,yHP
(α,s)
n,β,q (x, y; k, a, b) = [n]qHP

(α,s)
n−1,β,q(x, qy; k, a, b). (2.11)

Proof. Differentiating generating function (2.1) with respect to x and y with the
help of equation (1.4) and then simplifying with the help of the Cauchy product rule
formulas (2.10) and (2.11) are obtained.

Theorem 2.5. The following relation for the q-Hermite-based unified Apostol-type

polynomials HP
(α,s)
n,β,q (x, y; k, a, b) of order α holds true:

abHP
(s)
n,β,q(x, y; k, a, b) = βb

n∑
r=0

(
n
r

)
q
HP

(s)
n−r,β,q(x, y; k, a, b)−

[n]q!

[n− k]q!
21−kH

(s)
n−k,q(x, y).

(2.12)
Proof. Consider the following identity

ab

(βbeq(t)− ab)eq(t)
=

βb

βbeq(t)− ab
− 1

eq(t)
.

Evaluating the following fraction using above identity, we find

ab21−ktkeq

(
xt− st2

1+q

)
Eq(yt)

(βbeq(t)− ab)eq(t)
=

βb21−ktkeq

(
xt− st2

1+q

)
Eq(yt)

βbeq(t)− ab

−
21−ktkeq

(
xt− st2

1+q

)
Eq(yt)

eq(t)

ab
∞∑

n=0

HP
(s)
n,β,q(x, y; k, a, b)

tn

[n]q!

= βb
∞∑

n=0

HP
(s)
n,β,q(x, y; k, a, b)

tn

n!

∞∑
k=0

tr
tr

[r]q!
− 21−k

∞∑
n=0

H
(s)
n−k,q(x, y)

tn

[n− k]q!
.

Applying the Cauchy product rule in the above equation and then equating the
coefficients of like powers of t in both sides of the resultant equation, assertion (2.12)
follows.

Theorem 2.6. The following relation for the q-Hermite-based unified Apostol-type

polynomials HP
(α,s)
n,β,q (x, y; k, a, b) of order α holds true:

HP
(α,s)
n,β,q (x, y; k, a, b)
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= 2k−1
n∑

k=0

(
n+ k
m

)
q

[
βbPn−m+k,β,q(1, 0; k, a, b)HP

(α,s)
m,β,q(x, y; k, a, b)

−abPn−m+k,β,q(0, 0; k, a, b)HP
(α,s)
m,β,q(x, y; k, a, b)

]
. (2.13)

Proof. Consider generating function (2.1), we have

∞∑
n=0

HP
(α,s)
n,β,q (x, y; k, a, b)

tn

[n]q!

=

(
21−ktk

βbeq(t)− ab

)(
βbeq(t)− ab

21−ktk

)(
21−ktk

βbeq(t)− ab

)α

eq

(
xt− st2

1 + q

)
Eq(yt)

=
2k−1

tk
βb

(
21−ktk

βbeq(t)− ab

)
eq(t)

(
21−ktk

βbeq(t)− ab

)α

eq

(
xt− st2

1 + q

)
Eq(yt)

−ab
2k−1

tk

(
21−ktk

βbeq(t)− ab

)(
21−ktk

βbeq(t)− ab

)α

eq

(
xt− st2

1 + q

)
Eq(yt)

=
2k−1

tk
βb

∞∑
n=0

Pnβ,q(1, 0; k, a, b)
tn

[n]q!

∞∑
m=0

HP
(α,s)
m,β,q(x, y; k, a, b)

tm

[m]q!

−2k−1

tk
ab

∞∑
n=0

Pn,β,q(0, 0; k, a, b)
tn

[n]q!

∞∑
m=0

HP
(α,s)
m,β,q(x, y; k, a, b)

tm

[m]q!
.

Applying the Cauchy product rule in the above equation and then equating the
coefficients of like powers of t in both sides of the resultant equation, assertion (2.13)
follows.

Theorem 2.7. The following recurrence relation for the q-Hermite-based unified

Apostol-type polynomials HP
(α,s)
n,β,q (x, y; k, a, b) of order α holds true:

HA
(s)
n+1,q(x, y;λ) = −

(
2s

1 + q

)
[n]qHA

(s)
n−1,q(qx, qy;λ) + xHA(s)

n,q(x, y;λ)

+yHA(s)
n,q(qx, qy;λ) +

1

(λ− 1)2

n∑
k=0

(
n
k

)
q
HA

(s)
n−k,q(x, y;λ)q

n−kAk,q(1, λ− 1;λ).

(2.14)
Proof. Taking α = 1 and then applying q-derivative on both sides of generating
function (2.1), it follows that

∞∑
n=0

HP
(s)
n+1,β,q(x, y; k, a, b)

tn

[n]q!
= 21−kDq,t

 tkeq
(
xt− st2

1+q

)
Eq(yt)

βbeq(t)− ab

 ,

which on performing differentiation in l.h.s. using formula (1.6) yields

∞∑
n=0

HP
(s)
n+1,β,q(x, y; k, a, b)

tn

[n]q!
= 21−k

 (βbeq(qt)− ab)Dq,t

(
tkeq(xt)eq

(
− st2

1+q

)
Eq(yt)

)
(βbeq(t)− ab)(βbeq(qt)− ab)

−
eq(qxt)Eq(yqt)eq

(
− sq2t2

1+q

)
Dq,t(e

t(λ−1)
q − λ)

(e
t(λ−1)
q − λ)(e

qt(λ−1)
q − λ)


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= −
(

2s

1 + q

)(
1− λ

e
t(λ−1)
q − λ

)
eq

(
qxt− st2

1 + q

)
Eq(qyt)t

+x

(
1− λ

e
t(λ−1)
q − λ

)
eq

(
xt− st2

1 + q

)
Eq(yt)

+y

(
1− λ

e
t(λ−1)
q − λ

)
eq

(
qxt− st2

1 + q

)
Eq(qyt)

+
1

(λ− 1)2

(
1− λ

e
t(λ−1)
q − λ

)
eq

(
qxt− st2

1 + q

)
Eq(qyt)

(
1− λ

e
t(λ−1)
q − λ

)
e(λ−1)t
q ,

which on making use of the Cauchy product rule in the r.h.s. and comparing the co-
efficients of tn

n! on both sides of the resultant equation gives recurrence relation (2.13).

3. Summation formulae for q-Hermite based unified Apostol type polyno-
mials

In this section, we provide implicit and explicit formulae, Stirling numbers of
the second kind and some relationships for q-Hermite based Apostol type polynomials
of order α related to Apostol type Bernoulli polynomials, Apostol type Euler poly-
nomials and Apostol type Genocchi polynomials. We now begin with the following
theorem.

Theorem 3.1. The following summation formulae for q-Hermite based unified Apos-

tol type polynomials HP
(α,s)
n,β,q (x, y; k, a, b) of order α holds true:

HP
(α,s)
r+l,β,q(z, y; k, a, b)

=

r,l∑
n,m=0

(
l
m

)
q

(
r
n

)
q

(z − x)n+m
HP

(α,s)
r+l−n−m,β,q(x, y; k, a, b). (3.1)

Proof. We replace t by t+ w and rewrite the generating function (2.1) as(
21−ktk

βbeq(t+ w)− ab)

)α

Eq(y(t+ w))eq

(
−s(t+ u)2

1 + q

)
= eq(−x(t+ w))

∞∑
r,l=0

HP
(α,s)
r+l,β,q(x, y; k, a, b)

tr

[r]q!

wl

[l]q!
, (see [16, 17]). (3.2)

Replacing x by z in the above equation and equating the resulting equation to
the above equation, we get

eq ((z − x)(t+ w))

∞∑
r,l=0

HP
(α,s)
r+l,β,q(x, y; k, a, b)

tr

[r]q!

wl

[l]q!

=
∞∑

k,l=0

HP
(α,s)
r+l,β,q(z, y; k, a, b)

tr

[r]q!

wl

[l]q!
. (3.3)

On expanding exponential function (3.3) gives
∞∑

N=0

[(z − x)(t+ w)]N

[N ]q!

∞∑
r,l=0

HP
(α,s)
r+l,q(x, y; k, a, b)

tr

[r]q!

wl

[l]q!

=
∞∑

r,l=0

HP
(α,s)
k+l,β,q(z, y; k, a, b)

tr

[r]q!

wl

[l]q!
, (3.4)
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which on using formula [19,p.52(2)]

∞∑
N=0

f(N)
(x+ y)N

N !
=

∞∑
n,m=0

f(n+m)
xn

n!

ym

m!
, (3.5)

in the left hand side becomes
∞∑

n,m=0

(z − x)n+mtnwm

[n]q![m]q!

∞∑
k,l=0

HP
(α,s)
r+l,β,q(x, y; k, a, b)

tr

[r]q!

wl

[l]q!

=
∞∑

r,l=0

HP
(α,s)
r+l,β,q(z, y;λ)

tr

[r]q!

wl

[l]q!
. (3.6)

Now replacing r by r − n, and l by l −m in the left hand side of (3.6), we get

∞∑
r,l=0

r,l∑
n,m=0

(z − x)n+m

[n]q![m]q!
HP

(α,s)
r+l−n−m,q(x, y; k, a, b)

tr

(r − n)q!

wl

(l −m)q!

=
∞∑

r,l=0

HP
(α,s)
r+l,β,q(z, y; k, a, b)

tr

[r]q!

wl

[l]q!
. (3.7)

Finally on equating the coefficients of the like powers of t and w in the above equation,
we get the required result.

Remark 3.1. By taking l = 0 in Eq. (3.1), we immediately deduce the following
result.

Corollary 3.1. The following summation formula for q-Hermite based unified Apos-

tol type polynomials HP
(α,s)
n,β,q (x, y; k, a, b) of order α holds true:

HP
(α,s)
k+l,β,q(z, y; k, a, b) =

r∑
n=0

(
r
n

)
q

(z − x)nHP
(α,s)
r−n,β,q(x, y; k, a, b). (3.8)

Remark 3.2. On replacing z by z + x and setting y = 0 in Theorem (3.1), we
get the following result involving q-Hermite based unified Apostol type polynomials

HP
(α,s)
n,β,q (x, y; k, a, b) of one variable

HP
(α,s)
r+l,β,q(z + x; k, a, b)

=

r,l∑
n,m=0

(
l
m

)
q

(
r
n

)
q

zn+m
HP

(α,s)
r+l−n−m,β,q(x; k, a, b), (3.9)

whereas by setting z = 0 in Theorem 3.1, we get another result involving q-

Hermite based unified Apostol type polynomials HP
(α,s)
n,β,q (x, y; k, a, b) of one and two

variables

HP
(α,s)
r+l,β,q(y; k, a, b)

=

r,l∑
n,m=0

(
l
m

)
q

(
r
n

)
q

(−x)n+m
HP

(α,s)
r+l−n−m,β,q(x, y; k, a, b). (3.10)

Theorem 3.2. The following summation formulae for q-Hermite based unified Apos-

tol type polynomials HP
(α,s)
n,β,q (x, y; k, a, b) of order α holds true:

HP
(α+1,s)
n,β,q (x, y; k, a, b) =

n∑
m=0

(
n
m

)
q

Pn−m,β,q(k, a, b)HP
(α,s)
m,β,q(x, y; k, a, b). (3.11)
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Proof. From (2.1), we have

21−ktk

βbeq(t)− ab

(
21−ktk

βbeq(t)− ab

)α

eq

(
xt− st2

1 + q

)
Eq(yt)

=
21−ktk

βbeq(t)− ab

∞∑
m=0

HP
(α,s)
m,β,q(x, y; k, a, b)

tm

[m]q!

∞∑
n=0

HP
(α+1,s)
n,β,q (x, y; k, a, b)

tn

[n]q!
=

∞∑
n=0

Pn,β,q(k, a, b)
tn

[n]q!

∞∑
m=0

HP
(α,s)
m,β,q(x, y; k, a, b)

tm

[m]q!
.

Now replacing n by n −m and equating the coefficients of tn leads to formula
(3.11).

Theorem 3.3. The following summation formulae for q-Hermite based unified Apos-

tol type polynomials HP
(α,s)
n,β,q (x, y; k, a, b) of order α holds true:

HP
(α,s)
n,β,q (x+ 1, y; k, a, b) =

n∑
m=0

(
n
m

)
q
HP

(α,s)
m,β,q(x, y; k, a, b). (3.12)

Proof. Using definition (2.1), we have

∞∑
n=0

HP
(α,s)
n,β,q (x+ 1, y; k, a, b)

tn

[n]q!
−

∞∑
n=0

HP
(α,s)
n,β,q (x, y; k, a, b)

tn

[n]q!

=

(
21−ktk

βbeq(t)− ab

)α

eq

(
xt− st2

1 + q

)
Eq(yt)(eq(t)− 1)

=

( ∞∑
m=0

HP
(α,s)
m,β,q(x, y; k, a, b)

tm

[m]q!

)( ∞∑
n=0

tn

[n]q!

)
−

∞∑
n=0

HP
(α,s)
n,β,q (x, y; k, a, b)

tn

[n]q!

=

∞∑
n=0

n∑
m=0

HP
(α,s)
m,β,q(x, y; k, a, b)

tn

(n−m)q!
−

∞∑
n=0

HP
(α,s)
n,β,q (x, y; k, a, b)

tn

[n]q!
.

Finally, equating the coefficients of the like powers of tn, we get (3.12).

Theorem 3.4. The following relationship holds true:

abαα!
n∑

r=0

(
n
r

)
q
HP

(α,s)
n−r,β,q(x, y; k, a, b)S

(
r, α,

(
β

a

)b
)

= 2(1−k)αH
(s)
n−kα,q(x, y)

[n]q!

[n− kα]q!
.

(3.13)
Proof. By using equation (1.13) and (1.14), we have

∞∑
n=0

HP
(α,s)
n,β,q (x, y; k, a, b)

tn

[n]q!
=

(
21−ktk

βbeq(t)− ab

)α

eq

(
xt− st2

1 + q

)
Eq(yt)

=
2(1−k)αtkα

abα
((

β
a

)b
eq(t)− 1

)eq

(
xt− st2

1 + q

)
Eq(yt) =

2(1−k)αtkαeq

(
xt− st2

1+q

)
Eq(yt)

abαα!
∞∑
r=0

S

(
r, α,

(
β
a

)b)
tr

[r]q !

∞∑
n=0

HP
(α,s)
n,β,q (x, y; k, a, b)

tn

[n]q!
abαα!

∞∑
r=0

S

(
r, α,

(
β

a

)b
)

tr

[r]q!
= 2(1−k)αtkα

∞∑
n=0

H(s)
n,q(x, y)

tn

[n]q!

∞∑
n=0

abαα!

n∑
r=0

(
n
r

)
q
HP

(α,s)
n−r,β,q(x, y; k, a, b)S

(
r, α,

(
β

a

)b
)

tn

[n]q!
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= 2(1−k)α
∞∑

n=0

H
(s)
n−kα,q(x, y)

tn

(n− kα)q!

By comparing the coefficients of tn

n! , we obtain the desired result (3.13).

Theorem 3.5. The following relationship holds true:

HP
(α,s)
n−νk,β,q(x, y; k, a, b) =

[ν]q!2
(k−1)ν [n− νk]q!

[n]q!

×
n∑

l=0

(
n
l

)
q

S(n− l, ν, a, b, β)HP
(α−ν,s)
l,β,q (x, y; k, a, b). (3.14)

Proof. From (2.1) and (1.14), we have
∞∑

n=0

HP
(α,s)
n,β,q (x, y; k, a, b)

tn

[n]q!
=

(
21−ktk

βbeq(t)− ab

)α

eq

(
xt− st2

1 + q

)
Eq(yt)

(
βbeq(t)− ab

)ν
[ν]q!

× [ν]q!

(βbeq(t)− ab)
ν

=
[ν]q!

(21−ktk)ν

∞∑
l=0

HP
(α−ν,s)
l,β,q (x, y; k, a, b)

tl

(l)q!

∞∑
n=0

S(n, ν, a, b, β)
tn

[n]q!

∞∑
n=0

HP
(α,s)
n−νk,β,q(x, y; k, a, b)

tn

[n− νk]q!

= [ν]q!2
(k−1)ν

∞∑
n=0

(
n∑

l=0

(
n
l

)
q

S(n− l, ν, a, b, β)HP
(α−ν,s)
l,β,q (x, y; k, a, b)

)
tn

[n]q!
.

On comparing the coefficients of tn in both sides, we get (3.14).

Theorem 3.6. The following relationship holds true:

HP
(α−m,s)
n,β,q (x, y; k, a, b) =

n∑
r=0

(
n
r

)
q
HP

(α,s)
n−r,β,q(x, y; k, a, b)P

(−m)
r,β,q (0, 0; k, a, b).

(3.15)
Proof. By using generating function (2.1), we have

∞∑
n=0

HP
(α−m,s)
n,β,q (x, y; k, a, b)

tn

[n]q!
=

(
21−ktk

βbeq(t)− ab

)α−m

eq

(
xt− st2

1 + q

)
Eq(yt)

= eq

(
xt− st2

1 + q

)
Eq(yt)

(
1− eq((λ− 1)t)− 1

1− λ

)−α

=

( ∞∑
n=0

HP
(α,s)
n,β,q (x, y; k, a, b)

tn

[n]q!

)( ∞∑
r=0

P
(−m)
r,β,q (0, 0; k, a, b)

tr

[r]q!

)
.

Using Cauchy product and comparing the coefficients of tn in both sides, we
arrive at the required result (3.15).

Theorem 3.7. The following relation between the q-Hermite based unified Apos-

tol type polynomials HP
(α,s)
n,β,q (x, y; k, a, b) and q-Apostol type Bernoulli polynomials

Bn,q(x;λ) holds true:

HP
(α,s)
n,β,q (x, y; k, a, b) =

n+1∑
m=0

(
n+ 1
m

)
q

(
λ

m∑
r=0

(
m
r

)
q

Bm−r,q(x;λ)−Bm,q(x;λ)

)
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×HP
(α,s)
n−m+1,q(0, y; k, a, b). (3.16)

Proof. Consider generating function (2.1), we have
∞∑

n=0

HP
(α,s)
n,β,q (x, y; k, a, b)

tn

[n]q!

=

(
21−ktk

βbeq(t)− ab

)α

eq

(
xt− st2

1 + q

)
Eq(yt)

(
t

λeq(t)− 1

)(
λeq(t)− 1

t

)
=

1

t

(
λ

∞∑
n=0

HP
(α,s)
n,β,q (0, y; k, a, b)

tn

[n]q!

∞∑
m=0

Bm,q(x;λ)
tm

[m]q!

∞∑
r=0

tr

[r]q!

−
∞∑

n=0

HP
(α,s)
n,β,q (0, y; k, a, b)

tn

[n]q!

∞∑
m=0

Bm,q(x;λ)
tm

[m]q!

)
. (3.17)

On equating the coefficients of same powers of t after using Cauchy product rule in
(3.17), assertion (3.16) follows.

Theorem 3.8. The following relation between the q-Hermite based unified Apostol

type polynomials HP
(α,s)
n,β,q (x, y; k, a, b) and q-Apostol type Euler polynomials En,q(x;λ)

holds true:

HP
(α,s)
n,β,q (x, y; k, a, b) =

1

2

n∑
m=0

(
n
m

)
q

(
λ

m∑
r=0

(
m
r

)
q

Em−r,q(x;λ) + Em,q(x;λ)

)

×HP
(α,s)
n−m,β,q(0, y; k, a, b). (3.18)

Proof. Consider generating function (2.1), we have
∞∑

n=0

HP
(α,s)
n,β,q (x, y; k, a, b)

tn

[n]q!

=

(
21−ktk

βbeq(t)− ab

)α

eq

(
xt− st2

1 + q

)
Eq(yt)

(
2

λeq(t) + 1

)(
λeq(t) + 1

2

)
=

1

2

(
λ

∞∑
n=0

HP
(α,s)
n,β,q (0, y; k, a, b)

tn

[n]q!

∞∑
m=0

Em,q(x;λ)
tm

[m]q!

∞∑
r=0

tr

[r]q!

+

∞∑
n=0

HP
(α,s)
n,β,q (0, y; k, a, b)

tn

[n]q!

∞∑
m=0

Em,q(x;λ)
tm

[m]q!

)
. (3.19)

On equating the coefficients of same powers of t after using Cauchy product rule in
(3.19), assertion (3.18) follows.

Theorem 3.9. The following relation between the q-Hermite based unified Apos-

tol type polynomials HP
(α,s)
n,β,q (x, y; k, a, b) and q-Apostol type Genocchi polynomials

Gn,q(x;λ) holds true:

HP
(α,s)
n,β,q (x, y; k, a, b) =

1

2

n+1∑
m=0

(
n+ 1
m

)
q

(
λ

m∑
r=0

(
m
r

)
q

Gm−r,q(x;λ) +Gm,q(x;λ)

)

×HP
(α,s)
n−m+1,β,q(0, y; k, a, b). (3.20)

Proof. Consider generating function (2.1), we have
∞∑

n=0

HP
(α,s)
n,β,q (x, y; k, a, b)

tn

[n]q!
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=

(
21−ktk

βbeq(t)− ab

)α

eq

(
xt− st2

1 + q

)
Eq(yt)

(
2t

λeq(t) + 1

)(
λeq(t) + 1

2t

)

=
1

2t

(
λ

∞∑
n=0

HP
(α,s)
n,β,q (0, y; k, a, b)

tn

[n]q!

∞∑
m=0

Gm,q(x;λ)
tm

[m]q!

∞∑
r=0

tr

[r]q!

+
∞∑

n=0

HP
(α,s)
n,β,q (0, y; k, a, b)

tn

[n]q!

∞∑
m=0

Gm,q(x;λ)
tm

[m]q!

)
. (3.21)

On equating the coefficients of same powers of t after using Cauchy product rule in
(3.21), assertion (3.20) follows.
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