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1. Introduction and Preliminaries

With the development of g-calculus started appearing in the nineteenth cen-
tury, Many authors made generalizations to special functions and polynomial families
based on the g-analogs (cf. [1-12, 18, 20]). During the process, properties and rela-
tions have been demonstrated and contributed to solving different kinds of problems
in other subjects (see [4, 5, 20]). The applications of g-calculus in various fields of
mathematics, physics and engineering.

Throughout this presentation, we use the following standard notions N = {1,2,- -},
Ny ={0,1,2,---} =NU{0}, Z~ ={-1,-2,---}. Also as usual Z denotes the set of
integers, R denotes the set of real numbers and C denotes the set of complex numbers.

The g-analogue of the shifted factorial (a),, is given by

n—1

(a;9)0 = 1,(a;q)n = H (1—-¢™a),n € N.

m=0
The g-analogue of a complex number a and of the factorial function are given by

1—qg%
la], = 17qq,q€(C—{1};ae(C,

il = T g = [Wal2ly - o], = (iq_q;)q ALneN,

0], =1,¢eC;0<¢g<1.

m=1

The Gauss g-binomial coefficient < Z ) is given by
q

n) _ [t (@ 01
( k >q Kl n — K] (Q§Q)k(q;q)n_k’k*0’1v ..

The g-analogue of the function (x +y)7 is given by
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n _ - n k=1)/2,n—k k
(:1:+y)q—z<k> gFk-n/ y¥,n € No. (1.1)
k=0 q
The g-analogue of exponential function are given by
" 1 1
eq(ﬂc)=z[ = O<lgl<ifz|<[1-q|, (1.2)

—nld (1-d)79)w

o0 xn
=> q”("*l)/QW =(~(1-9)7¢)e,0<[g< Lz eC.  (L3)
A

Moreover, the functions eq(z) and Ey(x) satisfy the following properties:
Dyeq(x) = eq(x), DgEq(x) = Eq(qx), (1.4)
where the g-derivative D, f of a function f at a point 0 # z € C is defined as follows:
flgz) — ()
O

For any two arbitrary functions f(z) and g(z), the g-derivative operator D, satisfies
the following product and quotient relations:

,0<] g < 1.

D= (f(:)9(2)) = F(=)Dg29(2) + 9(a2) Dy -1 (2), (15)
£\ 9(a2)Das f(2) — £(a2) Dy g(2)
D (g<z>) = 9(29(a2) | (1.6)

The Apostol type g-Bernoulli polynomials Bﬁffq) (z,y; \) of order «, the Apostol

type ¢-Euler polynomials Ey(laq) (z,y; A) of order o and the Apostol type g-Genocchi

polynomials Ggfg (z,y; \) of order « are defined by means of the following generating
function (see [9-12, 18]):

n

t m a t o
<)\eq(t)—1> () Eq(yt) *2; (@53 0) 5, ([t +log A [) < 2m, 1% =1, (1.7)

2 « > tm
—_— Ey(yt) =Y B (z,y;\)— 1 1°=1, (1
(sogra) @lenBn = Y- Bl e+ togal) <m1® =1, (19

2 \° o -
— = (@) ) a_
<)\eq(t) n 1) eq(xt) Eq(yt) ZGn q(m,y,)\)n! Al t+1ogA|) <m 1% =1. (1.9)

Clearly, we have

BN = BL(0,0: 1), ES)(N) = EL(0,0: 1), G(N) = GL)(0,0: 0.

)

Recently, Ozarslan [13] introduced the following unification of the Apostol Bernoulli,
Apostol Euler and Apostol Genocchi polynomials. Explicitly Ozarslan sudied the fol-
lowing generating function:

1—k4k o
f(a) z;t,a,b) = 2 P(“ (w3 k, a, b 1.10
a,b

Bbet — ab

<t+bln( )| < 2w,k € No;a,b € R\{0}; a,ﬁe@)
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For a =1 in (1.10), we get

ol—kyk & tn
Jap(xit,a,b) = m = an,ﬁ(x;kaaa b)ﬁa (1.11)
n=0 ’

<|t+b1n( )| < 27,k € Ny; a, be%*,,@’e(c)

From (1.10) and (1.11), we have

P (23k,a,b) = Py (a;k,a,b), (n € N),

which is defined by Ozden and Simsek [15] and Ozden et al. [14] introduced many
properties of these polynomials.

Very recently, Riyasat and Khan [18] introduced a new type of ¢g-Hermite based
Appell polynomials as follows.

Definition 1.1. The 2D ¢-Hermite based Appell polynomials HA (q €eC,0<|q|<
1) are defined by means of the following generating function

Le (mt_stQ> Z Als (z,y)
9q(t) 1 1+gq A [nly!

AR, = 5 AL)(0,0).

]q. (1.12)

Definition 1.2. The 2D g-Hermite polynomials Hfft)](x,y)(() <lq|<1,0#s€eR)
are defined by means of the following generating function

st? i "
t— E (yt) =Y H — 1.13
€q <$ 1 +q) q(y ) nz:;) n,q(xvy) [n]q!7 ( )

where H,(Ls()z = Hff’t)]((), 0) are the g-Hermite numbers defined by

“a 1+q) T ]

n=0

The generalized Stirling numbers of the second kinds S(n,v,a,b, 3) of order v
are defined in [21] as follows:

tn bt _ b\
ZSnyabﬂ M. (1.14)
For =)\, a=0b=1, (1.14) reduces to
ZS n,v, >\ (’\eyi_'l) (1.15)

In this paper, we introduce unified ¢-Hermite based unified Apostol Bernoulli,
Fuler and Genocchi polynomials of order a and to investigate some properties of
them. Moreover, we consider ¢ analog of new generalization of Stirling numbers of
the second kind of order v by which we derive a relation including unified g-analog of
Apostol type polynomials of order a.

2. g-Hermite-based unified Apostol type polynomials HPT(Laﬁ’Sg (z,y; k,a,b)
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In this section, we introduce ¢-Hermite-based unified Apostol type polynomials
(qHbAtp) Péaﬁsg (z,y; k,a,b) by means of the generating function and series repre-
sentation. Certain relations for these polynomials are also derived by using various

identities. Now we start at the following definition.

Definition 2.1. Let ¢ € C,k € Ny,a,b € R\ {0},a,8 € N,0 <] ¢ |< 1. The ¢-
Hermite-based Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials
of order « are defined by means of the following generating function:

n

( 21—ktk )O‘ < , 8t2 ) > ( t) i P(a S)( i b) t (2 1)
—— | eq|at— = z,y; k,a, . .
Begt) —av) O\ T Tg) PO T 2 MR GO

When z =y = s = 01in (2.1), g P*%2(0,0;k,a,b) = P'*) (k,a,b) are called the

n,B,q n,B,q
nth g-unified Apostol type numbers of order a.

Remark 2.1. For z = y = 0 in (2.1), HPr(L?‘B”Sg(k,a,b) Pr(laﬁsg(O 0; k,a,b) are the
g-Hermite based unified Apostol type numbers defined by

9l—kyk @ ( ny
ples) (k,a,b 2.2
<5beq(t)_ab) <1+Q> Z nﬁq )[ ina 22)
Remark 2.2. For s = 0 in (2.1), the result reduces to known result of Kurt [6] as
follows

(5w ) el EGn =3 S rkan @9
——— | eq(xt)E,(yt) = Pna x,y; k,a,b . 2.3

Beq(t) — ab ! ! 0 a [n]q!

Remark 2.3. Taking ¢ — 1 and s = y = 0 in (2.1), we get the known result of
Ozarslan [13] as follows

m 1—k4k @
; (@0) 27 at
,}I_)H{ E HPan z,0;k,a, b)[ I <ﬁbet —ab> et (2.4)

Theorem 2.1. Umﬁed g-Hermite-based Apostol-Bernoulli, Apostol-Euler and Apostol-
Genocchi polynomials of order a holds true:

P2,y 1,1,1) = g B (2,43 \),

n,\,q
# P (@, y;0,-1,1) = g B (2,93 0),
«,Ss 1 «,s
1P (2,51, — 5, 1) = nGD (2,43 \). (2.5)
n,5,q 2 )

Theorem 2.2. The following series representation for the g-Hermite-based unified

Apostol type polynomials HPT(LQB? (z,y; k,a,b) of order « holds true:

n n N .
Pﬁég(x,y;k,a,b)zz:(m) P o (oyikab)HE) (x).  (2.6)
q

m=0
Proof. Using equation (1.10) and (1.12) in the Lh.s. of equation (2.1) and then
applying the Cauchy product rule and equating the coefficients of same powers of ¢
in both sides of resultant equation, we get representation (2.6).

Theorem 2.3. The following summation formula for the g-Hermite-based unified
Apostol type polynomials HP(Q s)(x, y; k,a,b) of order a holds true:

n,B,q
P(a&) -k b) = n P(aé)OOk b n—m 2.7
(@ ik, a,b) = Y m B a,b)(z +y)g~ ™. (2.7)
m=0 q
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n
n a,s
HP(ﬁq(xy,kab) Z<m> " fnﬂq((}y,kab) (2.8)
m=0 q
= n
Prgaﬁsg(aj,y; k,a,b) = Z ( m ) q("fk)("fkfl)/QHng;’)q(x,0;k,a, b)y" ™. (2.9)
m=0 q
Proof. Suitably using equations (1.1)-(1.3) in generating function (2.1) to get three
different form. Further making use of the Cauchy product rule in the resultant expres-
sions and then comparing the like powers of ¢ in the both sides of resultant equation,
we find formulas (2.7)-(2.9).

Theorem 2.4. The following recursive formulas for the g-Hermite-based unified

Apostol type polynomials HP( ¥ ;(ﬂc y; k,a,b) of order « holds true:

Dyerr P3N, ys b, a,0) = [nlgm Py (2, y3 K, a,b), (2.10)
Dq,yHPyﬁSq)(%y;k,a?b) n]qm P( 1Bq(x qy; k, a,b). (2.11)

Proof. Differentiating generating function (2.1) with respect to = and y with the
help of equation (1.4) and then simplifying with the help of the Cauchy product rule
formulas (2.10) and (2.11) are obtained.

Theorem 2.5. The following relation for the g-Hermite-based unified Apostol-type

polynomials HP( A ;(x y; k,a,b) of order a holds true:

n n s
Prggq(x,y;k,a,b):ﬁbz< . ) HRS )rﬁq(x yik,a,b)— [n[]k]q21 kHT(L)k'q( Y)-

r=0
(2.12)
Proof. Consider the following identity
ab Bt 1
(Bheq(t) — abeq(t) — Bleg(t) —ab  eg(t)’
Evaluating the following fraction using above identity, we find
ab2t=ktke (mt — m) Eq(yt) Br2t-ktke, (ﬂct 1+q> E,(yt)
(BYeq(t) — a)eq(t) Bleq(t) — a®
21 Ftke, (xt — %) E,(yt)
- eq(t)
0o . m
ab Z HPT(L7,()37q(x, Y; ka a, b)W
n=0 a
:5172 ps) (z y'kab)ﬁiﬂ tr _ol- kZH(s L
— mB,g i ST nl = [r]y! n—k:]q!'

Applying the Cauchy product rule in the above equatlon and then equating the
coefficients of like powers of ¢ in both sides of the resultant equation, assertion (2.12)
follows.

Theorem 2.6. The following relation for the g-Hermite-based unified Apostol-type
polynomials HP(aﬁ (@, y;k, a,b) of order o holds true:

HP(ﬁg(x y; k,a,b)


https://doi.org/10.20944/preprints201905.0077.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2019 d0i:10.20944/preprints201905.0077.v1

— gk— 1z<n+k> [ﬂPn m+k,8.q(1,0;k,a,b) g P ,Bq(xy,k:ab)
q

0" P 300,03 s 0, 0) 1 PSS (@, 0, )] (2.13)

Proof. Consider generating function (2.1), we have

[ee]

(a,5) t
Pn (xay;k7a’ab)7
,;) i [n]q!

o ol—kyk ,Bbe (t) —ab ol—kyk @ 12
= (Bbeq(t) — ab) ( qu_ktk ) (ﬁbeq(t) — ab> €q (xt — 1+q) E,(yt)
gk—1 . ol—kyk ol—k gk o o2
— B (Bbeq(t) — ab> eq(t) (M)_ab) €q (xt - 1-1-(]) E,(yt)

_aka—l 21—ktk 21—ktk O‘e o St2 E(t)
th \Ble,(t) —a? ) \ Bre,(t) —a?) 1+q) "V

n

2k 1 el s s m
= ﬂbZPngql()kab) ZHP(”B)q(:E y; k, a,b)il
n=0 [ ]Q' m=0 [m]tJ'

2k 1 & e tm

a*>" Py 5,4(0,05k,a,b) n] NP (xys b a, b)[ e
n=0 7" m=0 a
Applying the Cauchy product rule in the above equation and then equating the
coefficients of like powers of ¢ in both sides of the resultant equation, assertion (2.13)
follows.

tk

Theorem 2.7. The following recurrence relation for the ¢-Hermite-based unified

Apostol-type polynomials HPT(I, /353 (z,y; k,a,b) of order « holds true:

2s
1+¢

HAL L (@53 A) = — ( ) gAY | (az, qy; N) + 2 AL) (2,55 \)
IR s -
+yHAn q(qx qy; A) + m Z ( Z > HAilm(xvy;)\)q kAk,q(la)‘ —1A).
k=0 q

(2.14)
Proof. Taking o = 1 and then applying g¢-derivative on both sides of generating
function (2.1), it follows that

i the, (mt - ﬁ) E,(yt)
_ol—k Itq) 1
ZH +16qu’kab)[]q =2""Dqs Bbeg(t) — ab ’

which on performing differentiation in l.h.s. using formula (1.6) yields

" ik (B%q(qt) — a”) Dyt (tkeq(xt)eq <_ ISfQ) Eq@t))
ZH +1 8,4 (x,y;k, a, b)[ Iy =2 (Bbeq(t) — ab)(Bleqy(qt) — ab)

eq(qzt) Ey(yqt)eq (— 81q+z ) D, t(ef](/\ b =)
(e =N =
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2s 1-A st?
=— (1 + q> (ez()\—l) B )\) €q (qxt i q) E,(qyt)t
I (efpl—l))\,\> % <‘m - i) Eq(qyt)
o —1 1) (eg(j—UA_ A) “a (qmt - ﬁjq) Eq(qyt) (M) X1t

which on maklng use of the Cauchy product rule in the r.h.s. and comparing the co-
efficients of " on both sides of the resultant equation gives recurrence relation (2.13).

3. Summation formulae for ¢-Hermite based unified Apostol type polyno-
mials

In this section, we provide implicit and explicit formulae, Stirling numbers of
the second kind and some relationships for g-Hermite based Apostol type polynomials
of order « related to Apostol type Bernoulli polynomials, Apostol type Euler poly-
nomials and Apostol type Genocchi polynomials. We now begin with the following
theorem.

Theorem 3.1. The following summation formulae for g-Hermite based unified Apos-

tol type polynomials HPVEQB‘? (z,y; k,a,b) of order « holds true:

HP(.?_ZS; q(Z,y; ka a, b)

™l
7 l r n+m a,s
- Z ( m ) < n ) (Z—[[J) i HP7§+l )n mﬂq(x y,k,a,b). (31)
q q

n,m=0

Proof. We replace t by ¢ + w and rewrite the generating function (2.1) as

9l—ktk a _S(t +u)2
(ﬂbeq(t+w) ab)> Eq(y(t +w))e, <1+q)
(a,s) tr ’LUl
=t +w)) Z RN P kv‘%b)WWv (see [16, 17]). (3.2)
r,01=0 q tq-

Replacing x by z in the above equation and equating the resulting equation to
the above equation, we get

s tr ’U)l
((Z—.'I} t+w E HPT+lqu.'I}y;k,a,b)Wq!m
r,0=0
T l
_ Z (o) : row
P?”-‘rlﬂq Z,Y; k,a,, b) [r}q'm (33)

k,1=0
On expanding exponential function (3.3) gives

Z [(z —2)(t +w)N Z Hprjlsq x,y; k,a,b) v

Z N 2 GEIE

tr l

= Z P,E?‘Hsggq(z vk, a b)—w— (3.4)
ot [rlg! [1]4!
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which on using formula [19 p.52(2)]

n,m=0
in the left hand side becomes
oo (Z N x n+mtn m (as) LIL
aP, (z,y;k,0,b) =
n,%;o [ k;() +hAa [T]q! [l]q!
(as r U)l
= Z HPSSh (g N e (3.6)

P Ml T
Now replacing r by r —n, and | by [ —m in the left hand side of (3.6), we get
n+m tr wl

(G
P .
E E 1[m],! T Hi i Za— mq(l“’yy k,a,b) (r—n)g! (I —m),!

r,l=0n,m=0

- i P (2 yika b)ii. (3.7)
2 s T

Finally on equating the coefficients of the like powers of ¢ and w in the above equation,
we get the required result.

Remark 3.1. By taking 1 = 0 in Eq. (3.1), we immediately deduce the following
result.

Corollary 3.1. The following summation formula for ¢-Hermite based unified Apos-

(v,

tol type polynomials g P, 3 q(x y; k,a,b) of order « holds true:

" T
uPSEh (2yik,a,b) = Z( ) (z—2)"u P, (@ysk,a,b).  (3.8)
q

n=0 "
Remark 3.2. On replacing z by z + z and setting y = 0 in Theorem (3.1), we
get the following result involving ¢-Hermite based unified Apostol type polynomials

vaaﬁsq) (x,y; k,a,b) of one variable
aPSY) (2 + aik,a,b)
r,l ! .
= 20( m )q ( n )qszrmHPr(i}S)nmﬁﬁ’q(m;k,a,b), (3.9)

whereas by setting z = 0 in Theorem 3.1, we get another result involving g¢-
s)

P (z,y; k,a,b) of one and two

Hermite based unified Apostol type polynomials HPT(LQB

variables
HP(ilsg ik, a,b)
7l
’ l r LS
- Z ( m) ( n > (=2)""" P7§+l )n mﬁq(x7y;k7aab)- (3.10)
n,m=0 q q

Theorem 3.2. The following summation formulae for g-Hermite based unified Apos-
tol type polynomials HP(a s)(:p, y; k,a,b) of order « holds true:

a+l,s < n 8
HPTE,,ﬁJ’,_q )(x,y;k,a,b) = Z ( m > Pn_mvﬁv‘I(k7a7b)HP7(n 5)11(x’y; k7a’b)' (311)
m=0

q
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Proof. From (2.1), we have

217ktk: 217ktk: @ . St2 5 ( t)
Breg(t) — a? \Breg(t) —av) “\" " 14q) 7Y

o0 m

21 ktk )
- (e (z,y; k,a,b
= Foeg b 2 7 il

’I’L

Z u Pt @,y K, a,b)

Now replacing n by n — m and equating the coefficients of ¢ leads to formula
(3.11).

(as tm
o Z)Pnquabn'ZHPm6q$y,kab)[ e

Theorem 3.3. The following summation formulae for g-Hermite based unified Apos-

)(ac y; k,a,b) of order a holds true:

tol type polynomials HP( B

s = n ,
HP( ,)(x+1 y; k,a,b) = Z<m> H ,(nﬁ)q(x y; k,a,b). (3.12)
m=0 q
Proof. Using definition (2.1), we have
tn > $n
ZHP(O" $) (z+1,y;k,a,b)—— HP,Saﬂ’Sq(a: y; k,a,b)
[n]tI' n=0 [ }q'
2

oo (a s) tm oo tn oo (a7s) tn
= E aP) s (x,y;k,a,b) —— — | = aP, 5 (x,y;k,a,b
( B, q( )[m]q!> <Z ng) Z ,B,q( )[n]q!

m=0 n=0

n

ocs) (ocs) t
_ZZ P! ﬂqu,kab ' ZHPﬁqzy,ka,b)[n]q!.

n=0m=0

Finally, equating the coefficients of the like powers of ¢, we get (3.12).

Theorem 3.4. The following relationship holds true:

n b
bar n (a,5) . B (1—k)a 17(5) []4!
a a.;( , > ab,” Tﬁq(m,y,k,a,b)S <7’,a, <a) > 2 H\ q( ’y)i[n—k‘a]q!'

(3.13)
Proof. By using equation (1. 13) d (1.14), we have
> s 91— ktk @ st2
S wPinte kb = (Gt ) e (st = 5 ) B
n=0

2(17k)atka

2
8t2 2(1_k)atka (:L‘t — ﬁ) Eq(yt)
= - eq | ot — m q(y )= s b ,
abe ((f) eq(t) — 1) abo‘a!TZ::OS <r7a, (g) ) [Tt]q!
() " e N B\"\ ¢ (1—k)a ke N 77(s) t"
aP % (x,y;k, a,b) ——a"a! S|ra, () —— = 2T Ragha HY) (z,y)——
Z B RREPD ) )T 2 M@y

n=0

n b
bo n (av,8) . ﬂ tr
;CL OZ';( r > Pn Tﬁq(z7y7kaa7b)s <7’,OL, <a) ) [TM
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tn
_ 2(1 k) H(S s
Z ~kaal (n — ka),!

By comparing the coefficients of L;, we obtain the desired result (3.13).

nl

Theorem 3.5. The following relationship holds true:

V]2~V [n — vk,
[n]q!

- n a—v,s
XZ( ! > S(n—l,y,a,b,B)HPl(,Bﬂ )(x,y;k,a,b). (3.14)
1=0 q

Proof. From (2.1) and (1.14), we have
s tm ol-=kgk N\ st? Ble,(t) — ab)”
ZHPn ) {L‘ y;kaavb) = (Bb ) €q (xt— (J) Eq(yt)((IEH

[n],! eq(t) —a®

Péaj;gﬁq( 7y;kaa7b):

[V]q! - (a—v,s)
= (21—ktk)v ZHPL,& (x yik,a, b
=0

(G :
ZHPn ok f.q (T yakvaab)m

n

=[]y (Z ( ; )qsm—z,u,a,b, B P @ ys by, b)) [;]q!.

n=0 \1=0
On comparing the coefficients of ¢ in both sides, we get (3.14).

Theorem 3.6. The following relationship holds true:

n
HPéfyﬁ_’:L’s)(x,y;k,a,b) = Z( " ) HPéaf)ﬁ Ty k,a b)PT(ﬁTZ)(O 0; k,a,b).
q

r
r=0
(3.15)
Proof. By using generating function (2.1), we have

n 1—-k1k a—m 2
E PO (0 ek a by — 2 1 PR oo
ub, n,8,q (z,y:k, a, )[n]q! Bbey(t) — ab €q |\ T 1+gq q(yt)

e, (xt - ij) Eq(yt) (1 - e((Afl);)_l) :

<ZHPTEBS;xy,kab )(Z rﬁq OOkab)HTq).

Using Cauchy product and comparing the coefficients of ¢t in both sides, we
arrive at the required result (3.15).

Theorem 3.7. The following relation between the g-Hermite based unified Apos-
tol type polynomials HP,SQBS; (x,y; k,a,b) and g-Apostol type Bernoulli polynomials
By, 4(z; A) holds true:

P 2,y K a,b) = %(”“) <>\§:( ) mr,q(x;A)Bm,q(z;/\)>

m=0
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(a,s)
Pn m+1,q

(0,y;k,a,b).
Proof. Consider generating function (2.1), we have

n

a,s) t
E P s kya,b)——
H nﬁqu’ , @y )[N]q'

d0i:10.20944/preprints201905.0077.v1
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(3.16)

21Kk A\ st? t
- (ﬂ”eq(t) - ab) ‘s <” B 1+q> Eqlut) <Aeq<t> =

H—\»—t

(AZHPanOy,kab i !ZB

~ Z 1P 0,51k, a,b)

tm t
m£3m~q<m>w

e

m

(3.17)

On equating the coefﬁments of same powers of ¢ after using Cauchy product rule in

(3.17), assertion (3.16) follows.

Theorem 3.8. The follovvlng relation between the g-Hermite based unified Apostol

type polynomials HP(

holds true:

aﬁ (@, Y3k, a,b) and g-Apostol type Euler polynomials E, 4(z; A)

(a,s) . 7]- . n - m . .
Pnﬂq(z7y7kaa7b) - 5 Z ( m )q (AZ< r )qu—T,q(za/\)+Emyq(‘rv)‘)>

m=0 r=0
< P o (0,5k,a,b). (3.18)
Proof. Consider generating function (2.1), we have
a,s "
ZHPn,Bq z,y; k, a, b)[ I
_ ol—kh N\ oMt Aeg(t) +1
Beq(t) — ab e )\eq 2
1 (a, s) - " - tr
Q(Azﬂpmw, 3 Ee S
m=0
s tm
+ZHPn5qu,kab oL 'Z ,q:c/\]'>. (3.19)
q!

On equating the coefﬁments of same powers of t after using Cauchy product rule in

(3.19), assertion (3.18) follows.

Theorem 3.9. The following relation between the g-Hermite based unified Apos-

(;8)

tol type polynomials g P, . q(w y; k,a,b) and g-Apostol type Genocchi polynomials

Gh,q(z; X) holds true:

a P (x,y; k,a,b) = % ni < n+l > (AZ< > e T,q(:c;A)Jer,q(x;A))

m=0

XH-Py(La_’2+17ﬁ7q(0, Y; ka a, b)
Proof. Consider generating function (2.1), we have

n

Z () ¢
P ik,a,b
H n,B,q l’ yYs R, @, )[n]q|

(3.20)
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217ktk «
(7o =) (wt—
(@)
= o (AZ aP, %00, y;
m=0 r=
(@5) () o). ¢ L
+ZHPan 0,y; k. a, )[n]q! Z()Gm,q(:c,/\ ) (3.21)

On equating the coefﬁments of same powers of ¢ after using Cauchy product rule in
(3.21), assertion (3.20) follows.

References

[1] Al-Salam, W. A., ¢-Appell polynomials, Ann. Mat. Pura Appl., (4)17(1967),
31-45.

[2] Andrews, G. E., Akey, R., Roy, R., Special functions, Cambridge University
Press, Cambridge, 1999.

[3] Cheon, G.S., Jung, J. H., The ¢g-Sheffer sequence of a new type and associated
orthogonal polynomials, Linear Algebra Appl., 491(2016), 247-260.

[4] Ernst, T., ”¢-Bernoulli and ¢g-Euler polynomials, an umbral approach”, Inter.
J. Diff. Equt., 690(1)(2006), 31-80.

[5] Gasper, G., Rahman, M., ”Basic hypergeometric series” (Vol. 96). Cambridge
University Press (2004).

[6] Kurt, B., Notes on unified g-Apostal type polynomials, Filomat, 30(4)(2016),
921-927.

[7] Keleshteri, M. E., Mahmudov, N. 1., A study on ¢-Appell polynomials from
determinantal point of view, Appl. Math. Comput., 260(2015), 351-369.

[8] Keleshteri, M. E., Mahmudov, N. I., On the class of 2D ¢-Appell polynomials,
arXiv:1512.03255v1.

[9] Mahmudov, N. I., On a class of ¢g-Bernoulli and ¢-Euler polynomials, Adv.
Difference Equ., 108(2013), 1-11.

[10] Mahmudov, N. I., Difference equations of g-Appell polynomials, Appl. Math.
Comput., 245(2014), 539-543.

[11] Mahmudov, N. I., Keleshteri, M. E., g-extensions for the Apostol type poly-
nomials, J. Appl. Math., (2014) Art. ID 868167, 1-8.

[12] Mahmudov, N. I., Momenzadeh, M., On a class of ¢-Bernoulli, ¢-Euler and
g-Genocchi polynomials, Abstr. Appl. Appl. Anal., (2014), Art. ID 696454,
1-10.

[13] Ozarslan, M. A., Unified Apostol-Bernoulli, Euler and Genocchi polynomials,
Comp. Math. Appl., 62(2011) 2482-2462.

[14] Ozden, H., Simsek, Y., Srivastava, H. M., A unified presentation of the gener-
ating function of the generalized Bernoulli, Euler and Genocchi polynomials,
Comp. Math. Appl., 60(2010), 2779-2789.

[15] Ozden, H., Simsek, Y., Modification and unification of the Apostol-type num-
bers and polynomials, Appl. Math. Comp., 235(2014), 338-351.

[16] Pathan, M. A., Khan, W. A., Some implicit summation formulas and sym-
metric identities for the generalized Hermite-Bernoulli polynomials, Mediterr.
J. Math., 12(2015), 679-695.

[17] Pathan, M. A., Khan, W. A., A new class of generalized polynomials asso-
ciated with Hermite and Euler polynomials, Mediterr. J. Math., 13(2016),
913-928.


https://doi.org/10.20944/preprints201905.0077.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2019 d0i:10.20944/preprints201905.0077.v1

13

[18] Riyasat, M, Khan, S, Some results on g-Hermite based hybrid polynomials,
Glasnik Matematicki, 53(73)(2018), 9-31.

[19] Srivastava, H. M., Manocha, H. L., A treatise on generating functions, Ellis
Horwood Limited, New York, 1984.

[20] Srivastava, H. M. and Junesang, Ch., Zeta and g-zeta functions and associated
series and integrals, Editorial Elsevier, Boston, (2012).

[21] Simsek, Y., Generating functions for generalized Stirling type numbers, array
type polynomials, Eulerian type polynomials and their applications, Fixed
Point Theory Appl., 2013(2013) 87.


https://doi.org/10.20944/preprints201905.0077.v1

