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The common dandelion uses a bundle of drag-enhancing bristles (the pappus) that enables seed
dispersal over formidable distances; however, the scaling laws of pneumatic/aerodynamic drag un-
derpinning pappus-mediated flight remains unresolved. In this paper, we will study the pneu-
matic/aerodynamic shape of dandelion and the scaling law of resistance, and find that the drag
resistance coefficient is proportional to the -2/3 power of the dandelion pappus Reynolds number.
As a by-product, the terminal velocity analytical expression of the dandelion seed is also obtained.
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The seeds of plants on Earth, such as dandelion, leave
the mother and fly with the wind during the ripening sea-
son, and it is a very interesting phenomenon that plants
use natural wind to spread seeds. After hundreds of mil-
lions of years of natural evolution, different seeds have e-
volved various but unique structures and thus have their
own drag-enhancing pneumatic/aerodynamic behaviors.
In order for seeds to spread over long distances, their
structure is generally a disc structure composed of flex-
ible filaments. During the process of seed flight, due to
the action of hydrodynamic pressure, the flexible filament
will deform to form an aerodynamic shape, thereby re-
ducing the flow resistance [1–8].

The common dandelion uses a bundle of drag-
enhancing bristles (the pappus) that helps to keep their
seeds aloft (as shown in Fig.1). This passive flight mech-
anism is highly effective, enabling seed dispersal over
formidable distances and decreasing its terminal veloc-
ity; however, the physics underpinning pappus mediated
flight had not been understood until the discovery of the
separated vortex ring attached to the pappus [1].

FIG. 1: Dandelion wind dispersal.

Inspired by the amazing aerodynamics features of the
dandelion, very recently, Lyer et al.[8] demonstrated
wind-dispersal of battery-free wireless sensing devices.

Whether it is the experimental study of Cummins, et
al.[1], or the sensing devices development of Lyer et al.[8],
it is necessary to understand the pneumatic/aerodynamic
shape and resistance behavior of dandelion structures.
Regarding the aerodynamic resistance of dandelion, their
study only gave experimental scatter plots of resistance
versus Reynolds numbers, and did not obtain a universal
scale law; As for the pneumatic/aerodynamic shape of
the dandelion, as far as the author knows, there have
been no relevant theoretical and experimental research
reports so far.

It is not difficult to understand that the resis-
tance of dandelion is closely related to its pneumat-
ic/aerodynamic shape. During the movement of the dan-
delion, its filaments are pneumatically deformed, so that
the dandelion is deformed as a whole. This least resistant
shape is the aerodynamic shape of a dandelion.

This article will examine the aerodynamic shape and
resistance of dandelion. According to the structural char-
acteristics of dandelion, assuming that all filaments are
the same, the elastic deformation of each filament is first
studied. To simplify, the filament is seen as a free elastic
cantilever beam with a fixed bipartisan in the middle, and
hydrodynamic pressure acts on the filament. In this way,
the pneumatic shape of the elastic filament is obtained.
We regard the overall aerodynamic resistance of the dan-
delion as the sum of the resistance of each filament, and
obtain the relationship between the aerodynamic resis-
tance coefficient and the dandelion Reynolds number.

Dandelion have evolved mechanisms to use wind for
seed dispersal over a wide area [1–5] including creating
lightweight diaspores with plumose or comose structures
that act as drag-enhancing parachutes [6–8]. A bundle
of flexible filaments bend in a wind in order to absorb
deformation energy and reduce the drag force of the wind
on the dandelion as shown in Fig.1. The flexible filaments
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immersed in a flowing medium will adjust its shape to
counteract flow resistance to minimizes drag by reducing,
or delaying, the turbulence in boundary layer of the flow
nearest the moving body.

Similar to the flexible fibre modelling in [1, 8], the dan-
delion pappus (a bundle of filaments) structure is regard-
ed as a porous disk composed of many flexible filaments
as shown in Fig.2.

FIG. 2: The dandelion seed, structural features of the drag-
generating pappus [1], beam modelling of flexible filaments.

Consider a flexible filament in the flow medium as
shown in Fig.3. The filament is modelled as a thin, in-
extensible elastic beam loaded by the difference in fluid
pressure p between its upstream and downstream sides.
The flow characteristic velocity is U and no wake is con-
sidered, thus the flexible filament acted fluid pressure
[p] ≈ 1

2ρU
2 uniformly.

FIG. 3: The filament is supported by a thin stainless-steel
rod, which is clamped at one end. Fluid drag force acting on
the filament deflects this support slightly downwards.

The centerline of the beam is represented by an inex-
tensible curve x(s) with arch length s and curvature κ(s),
Assume x(s) as a reference (middle) centerline and n(s)

as the unit normal vector to the centerline of inextensible
planar curve. The unit tangent of the centerline is given
by t = dx

ds , |t| = 1, which is orthogonal to the normal,
ie., t · n = 0. The curvature of the reference (middle)
inextensible curve is κ(s) = dθ

ds = |d
2x
ds2 | = | dtds |, where

θ is denoted as the angle between t and horizontal axis
x. The shape of the centerline can be reconstructed by
relationsµdx

ds = cos θ(s) and dy
ds = sin θ(s).

The Euler-Bernoulli beam under fluid dynamic pres-
sure was formulated by Alben et al. [9, 10], Sun and
Guo [11] and can be used to dandelion flexible filament
as follows:

− d

ds
(T t) +

d

ds
(J
dκ

ds
n) = d[p]n, (1)

where d is the diameter of the filament, T is the line ten-
sion, J = EI is the bending rigidity, the Young modulus
is E, area moment of inertia is I, [p] = 1

2ρU
2 is the fluid

pressure jump across the filament.
At the fibre ends, there are no bending moment,

transverse shear force and extensional force, so that the
boundary conditions areµT = κ = dκ

ds = 0. Using
planar Frenet’s frame formula, namely dt

ds = κn and
dn
ds = −κt, Eq.1 can be decomposed into tangential and
normal componentsµIntegrating one of it with respect to
arc length and applying the boundary condition, we have
T = − 1

2Jκ
2. And leads to a single ordinary differential

equation (ODE): J d
2κ
ds2 + 1

2Jκ
3 = 1

2ρU
2d. If introducing

s̄ = s/L and κ̄ = dθ/ds̄ = Lκ, The ODE and correspond-
ing boundary conditions can be noncommissioned as to
the form:

d2κ̄

ds̄2
+

1

2
κ̄3 = η2, κ̄s̄= 1

2
=

(
dκ̄

ds̄

)
s̄= 1

2

= 0, (2)

in which, the Alben number was introduced by Alben,et

al. [9] as follows: η =
[

1
2ρU

2dL2

(J/L)

]1/2
.

The aerodynamic shape of the fibre can be reconstruct-
ed by relationsµdx̄

ds̄ = cos θ(s) and dȳ
ds̄ = sin θ(s), where

x̄ = x/L, ȳ = y/L, and shown in Fig.4.

FIG. 4: The aerodynamics shape (x̄, ȳ) for different parameter
η = 3n/2, n = 1, 2, 3..., 7, the aerodynamic shape is symmet-
ric to the y axis.

For the problem, there are 6 quantities, namely
D, ρ, J , , ν, U , A, where ν is kinematic viscosity and
A = Ld. The quantity dimensions are listed in the fol-
lowing table I:
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TABLE I: Dimensions of physical quantities
Variables Notation Dimensions

Filament’s Drag Df MLT−2

Mass density ρ ML−3

Rigidity J ML3T−2

Kinematic viscosity ν L2t−1

Flow velocity U LT−1

Area(= Ld) A L2

The dimensional basis used is length (L), mass (M) and time (T).

The drag Df can be expressed as the function of quan-
tities ρ, E, , ν, U , A, namely,

Df = f(ρ, E, , ν, U , A). (3)

In the above relation, there are 6 quantities, two of them
are dimensionless. Since only 3 dimensional basis L,M,T
are used, so according to dimensional analysis of Buck-
ingham [12], Eq. 3 produces 3 dimensionless quantities
Π. The first one is: ΠD = DρaU bAc = L0M0T 0„ we have
ΠDf

=
Df

1
2ρU

2A
, Similarly, for J , we have ΠJ = J

1
2ρU

2A2

and for ν, we have Πν = ν
ρU
√
A
.

From Buckingham Π theorem [12–14], the Eq.3 can be
equivalency expressed as ΠDf

= f(ΠJ , Πν), namely

Df =
1

2
ρU2Af(

J
1
2ρU

2A2
, Πν). (4)

For single filament, its Reynolds number Πν can be ig-
nored, we can propose an approximate f( J

1
2ρU

2A2 , Πν) ≈

C0

(
J

1
2ρU

2A2

)α
, therefore

Df ≈ C0
1

2
ρU2A

(
J

1
2ρU

2A2

)α
, (5)

where C0 is a constant and α is an exponent to be deter-
mined by experiments.

From Alben, Shelley and Zhang [9, 10], Sun and Guo
[11], for η ≤ 1, we have α = 0, for η ≥ 1, we have α = 1

3 ,
therefore the drag of single filament is given by

Df =

{
C1

1
2ρLdU

2, (η ≤ 1),

C
[
( 1

2ρ)2JLd
]1/3

U4/3, (η ≥ 1).
(6)

where C1, C are a constants
If the pappus of the dandelion are consist of n fila-

ments, the total drag of the dandelion is the summation
of each filament and since we assumed all filaments are
the same, therefore we have the total drag of the dande-
lion

D = nDf =

{
nC1

1
2ρLdU

2, (η ≤ 1),

nC
[
( 1

2ρ)2JLd
]1/3

U4/3, (η ≥ 1).
(7)

Thus we can get the total drag coefficients of the dande-
lion as follows

CD =
D

1
2ρU

2nLd
=

 C1, (η ≤ 1),

C
[

J
1
2ρU

2(Ld)2

]1/3
, (η ≥ 1).

(8)

in which, the case of η ≤ 1 is corresponding to the rigid
filament. we will not going to use C1.

With the total drag in Eq.7, if we assume the weight of
total dandelion seed is mg, then we have balance relation
mg = D = nDf , which gives the terminal velocity U of
the dandelion as follows

U = CU (mg)1/12, (9)

Analytically predict the terminal velocity has
not been reported, where the coefficient CU =

41/4(nC)−1/12(ρ2JLd)−1/4. The terminal velocity
log profile is depicted in Fig.5.

FIG. 5: Terminal velocity vs. mg.

The Reynolds number is a non-dimensional parameter
characterizing the relative importance of inertial to vis-
cous forces in a fluid. The flow through and around the
pappus involves two different Reynolds numbers: that of
the entire pappus (Re = ρUL/µ, in which U is the veloc-
ity of the seed, L is the diameter of the pappus and µ the
dynamics viscosity of the fluid) and that of an individual
filament (Ref = ρUd/µ). The study of Cummins et al.[1]
revealed that the pappus of a dandelion benefits from a
-wall effect.at low Ref = ρUd/µ. Neighbouring fila-
ments interact strongly with one another because of the
thick boundary layer around each filament, which causes
a considerable reduction in air flow through the pappus.

From the Reynolds numbers of the entire pappus Re =

ρUL/µ, we have U = µRe
ρL . Replaying the velocity U

in the 2nd expression of Eq.8, we have the total drag
coefficient in terms of entire pappus Reynolds number as
follows

CD = C

(
2ρJ

µ2d2

)1/3

Re−2/3, (η ≥ 1). (10)
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The expression reveals that the total drag of the dan-
delion is proportional to −2/3 power law of the pappus
Reynolds number, namely CD ∼ Re−2/3.

If assume all filaments are circular solid cross-section,
then the area moment of inertia I can be calculated as
I = πd4/64, inserting it to Eq.10, we have

CD = C

(
πρEd2

32µ2

)1/3

Re−2/3, (η ≥ 1). (11)

To verify our scaling law in Eq.10, we depicted com-
parisons with Cummins et al. [1] and Lyer, et al. [8] in
Fig. 6 and Fig.7, respectively.

With the help of our scaling law in Eq.10 and data
fitting, we obtain CD − Re approximate analytical rela-
tions for Cummins et al. [1]. The solid lines are from our
formula Eq.10, for blue solid line CD = 350Re−2/3 and
for red solid line CD = 250Re−2/3 as shown in Fig. 6.

FIG. 6: Comparisons with experimental data provided Cum-
mins et al. [1]. The drag coefficient CD for natural (red filled
circle) and artificially weighted/clipped (black filled circle)
dandelion seeds as a function of Re.

In the same way, we obtain CD −Re approximate an-
alytical relations for Lyer et al. [8]. The solid lines
are from our formula Eq.10, for green solid line CD =

380Re−2/3, for blue solid line CD = 295Re−2/3 and for
red solid line CD = 250Re−2/3 as shown in Fig.7.

Our study obtained not only the pneumat-
ic/aerodynamic shape of the filament, but also the
universal drag scaling laws of the dandelion. As a

by-product, the terminal velocity analytical expression
of the dandelion seed is also obtained.

To the best of the authors.knowledge, this is the first
detailed study of dandelion’s drag in the context of the
dimensional analysis. The total drag of the dandelion is
proportional to −2/3 power law of the pappus Reynolds
number, namely CD ∼ Re−2/3, reveals that the softer
filament the smaller the drag, which is the secret of re-
ducing drag by fine hairs [15].

For insight perspectives, due to the generality of the
scale law we obtain using dimensional analysis, we can

FIG. 7: Comparisons with experimental data provided Lyer
et al. [8]. The drag coefficient CD for disk with film thickness
7.5µm (red filled circle), for disk with film thickness 12µm

(blue filled circle) and for disk with film thickness 25µm (green
filled circle) dandelion seeds as a function of Re.

even bravely predict that the resistance coefficients of all
structures with flexible filaments obey the same law as
CD ∼ Re−2/3.
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