

1 Article

2 Dynamic optimization of a subcritical steam power 3 plant under time-varying power load

4 Chen Chen ¹ and George M. Bollas ^{2*}

5 ¹ Department of Chemical & Biomolecular Engineering, University of Connecticut, 191 Auditorium Road,
6 Unit 3222, Storrs, CT 06269, USA; chen.chen@uconn.edu

7 ² Department of Chemical & Biomolecular Engineering, University of Connecticut, 191 Auditorium Road,
8 Unit 3222, Storrs, CT 06269, USA; george.bollas@uconn.edu

9 * Correspondence: george.bollas@uconn.edu; Tel.: +1-860-486-6037

10

11 **Abstract:** The increasing variability in power plant load, in response to a wildly uncertain electricity
12 market and the need to mitigate CO₂ emissions, lead power plant operators to explore advanced
13 options for efficiency optimization. Model-based, system-scale dynamic simulation and optimization
14 are useful tools in this effort, and the subject of the work presented here. In prior work, a dynamic
15 model validated against steady-state data from a 605 MW subcritical power plant was presented.
16 This power plant model is used as a test-bed for dynamic simulations, in which the coal load is
17 regulated to satisfy a varying power demand. Plant-level control regulates plant load to match an
18 anticipated trajectory of the power demand. The efficiency of the power plant operating at varying
19 load is optimized through a supervisory control architecture that performs set point optimization
20 on the regulatory controllers. Dynamic optimization problems are formulated to search for optimal
21 time-varying input trajectories that satisfy operability and safety constraints during the transition
22 between plant states. An improvement in time-averaged efficiency of up to 1.8% points is shown
23 feasible with corresponding savings in coal consumption of 184.8 tons/day and carbon footprint
24 decrease of 0.035 kg/kWh.

25 **Keywords:** Power plants, supervisory control, dynamic simulation, dynamic optimization

26 1. Introduction

27 The excessive emissions of CO₂ from fossil-fueled power plants contribute to the greenhouse
28 effect and global warming. Increasing the efficiency of power generation cycles and integration with
29 CO₂ capture units, are nowadays accepted as the most promising short-term approaches to reducing
30 CO₂ emissions while we transition to renewable and carbon free energy sources [1,2]. Efficiency
31 improvements can be achieved through the optimization of power plant operating strategies or
32 modification of the plant design. For instance, new fossil-fueled power plants use a combination
33 of steam and gas turbines to generate electricity, resulting in thermal efficiencies as high as 61% [3].
34 Moreover, modern coal-fired Rankine cycle systems can achieve efficiencies as high as ~47%, using
35 ultra-supercritical boilers [4]. For instance, the commercial power plant of Lünen (Germany) burns
36 low-sulfur hard coal [5], at an efficiency up to 46%, in a 750 MW ultra-supercritical once-through
37 boiler, operating at steam conditions of 600°C and 280 bar [6]. Nonetheless, subcritical coal-fired
38 steam power plants that operate on the principle of the Rankine Cycle still serve more than 1/3 of
39 the electricity demand in the U.S. [7]. Subcritical power plants, operating at pressure lower than 220
40 bar, have a nominal efficiency of 37% [8]. Compared to supercritical and ultra-supercritical plants, the
41 more common subcritical plants are advantageous in terms of lower installation costs, operating and
42 maintenance experience [5,7]. Therefore, optimization of the efficiency of subcritical power plants is
43 the first realistic step in our efforts to reduce CO₂ emissions from the power sector.

44 Due to seasonal and daily fluctuations in power demand, and new deployment programs focused
45 on renewable energy, dynamic simulation and optimization are required for power plants in order to

46 respond to the resulting time-varying power demand. The contribution of electricity generation from
47 renewable energy sources in the world will expand from the current 21% to 29.8% in 2040 [7]. The
48 impact of this increase in penetration of renewable sources has been explored by many researchers.
49 For example, Shah et al. [9] showed that the higher penetration of large-scale photovoltaic plants
50 in the power grid will lead to significant variations in the power flow across the grid and unstable
51 power generation profiles for the balancing conventional plants. The work by Edmunds et al. [10]
52 showed that today's power plants are subject to more intense ramping operations, due to the increasing
53 variable renewable penetration. Critz et al. [11] focused on the challenges arising from the inability to
54 accurately forecast renewable power generation. Correspondingly, Eser et al. [12] showed that the
55 high penetration of renewable energy sources will result in an increase of periodic start-ups of thermal
56 power plants. Thus, the simulation of the dynamic behavior of the integrated electricity sector and
57 in particular the dynamicity of the fossil-fueled power plants, which will provide the balance power
58 (between renewables input and market demand) is increasingly of interest to improve productivity
59 and stability, and reduce cost and emissions.

60 The efficiency of conventional fossil-fueled power plants that are based on the Rankine Cycle
61 mostly depends on the steam temperature and pressure [4], with the majority of previous work on
62 efficiency optimization of these plants focusing on steady-state analyses. The work by Fu et al. [13]
63 showed an average efficiency increase of 0.1% points for every increment of 8°C in boiler feedwater
64 temperature, every decrement of 4.5°C in flue gas temperature, and every increment of 10 bar in
65 main steam pressure, compared to a reference case with an efficiency of 45.5%. Sanpasertparnich and
66 Aroonwilas [14] presented potential efficiency improvements of up to 8.88% points for subcritical
67 coal-fired power plants. They identified the preheated air temperature, main steam temperature and
68 the pressure of streams extracted from the high-, intermediate-, and low-pressure turbines (HP, IP
69 and LP, respectively), as the most critical variables in the optimization of power plant performance.
70 In the work by Tzolakis et al. [15], an absolute net efficiency gain of 0.55% was shown to be feasible,
71 by reducing the mass flow rate of the steam exiting the HP turbines and increasing the mass flow
72 rate of the steam exiting the IP and LP turbines. These significant efforts in the area of steady-state
73 optimization of power plants paved future work on dynamic optimization. Moreover, advancements
74 in process modeling tools, such as Dymola [16] and gPROMS [17], have made it easier to simulate
75 these processes dynamically. For instance, Chen et al. [18] developed a Dymola [16] dynamic model of
76 a combined cycle power plant integrated with chemical-looping combustion, with the combustion
77 process optimized in gPROMS [17] to maximize the power plant efficiency. Franke et al. [19] presented
78 a model-based, dynamic optimization framework exploiting the Modelica language [20] for improving
79 power plant performance. Their work illustrated efficiency benefits from applying offline optimization
80 results to online power plant operations. Lind and Sallberg [21] used modern acausal simulation and
81 optimization tools to optimize the start-up procedure of a combined cycle power plant. Their analysis
82 showed that the thermal stress in the heat recovery steam generator is the major constraint limiting the
83 rapid start-up of the gas turbines to full load.

84 One practical approach to improve the efficiency of existing fossil-fueled power plants is to deploy
85 supervisory control schemes targeted to efficiency optimization. Supervisory control architectures are
86 often used to perform tasks of process optimization without changing the plant infrastructure and
87 design. Skogestad [22] presented a systematic procedure for designing advanced control structures at
88 the supervision level for complex chemical plants. The critical first steps in designing a supervisor
89 logic are to define the operational and economic objectives and the available degrees of freedom.
90 Common degrees of freedom include the set points of the regulatory controllers, system boundaries
91 not controlled and system parameters tuned to a particular operating scheme. For instance, Lestage
92 et al. [23] presented linear supervisory control designs for constrained real-time optimization of an ore
93 grinding plant, in which they optimized the set points of the local controllers, to maximize throughput.
94 Baillie and Bollas [24] presented the key steps in the development of a high-fidelity model for a chiller
95 plant which was used in supervisory resilient control architectures for plant optimization under fault

96 scenarios by Mittal et al. [25]. Obviously, supervisory control is a promising approach for efficiency
97 optimization of power plants, wherein there exists a large number of regulatory controllers, which
98 must be maintained for safety and performance reasons. In one such effort, Sáez et al. [26] developed
99 a supervisory algorithm based on adaptive predictive control to optimize the operation of the gas
100 turbine of a combined cycle power plant in Chile. They showed the potential of 3% fuel consumption
101 savings, by manipulating variables such as the fuel flow, air flow and steam flow. Ponce et al. [27]
102 presented a dynamic simulator of an integrated solar combined cycle power plant, incorporating a
103 supervisory control strategy. Fuel savings of 1.7%~3.7% were shown feasible, by manipulating the
104 set points of the regulatory controllers of the steam pressure, gas turbine power and steam turbine
105 power. These efforts focused mostly on the optimization of a few power plant components instead
106 of solving a problem that maximizes the power plant efficiency using all or most of the degrees of
107 freedom. In this work, the optimization problem serving the supervisory controller deals with the
108 integrated coal-fired steam power plant.

109 In prior work [28], a power plant model was developed and validated against steady-state
110 data from a fossil-fueled subcritical power plant with a reheat, regenerative cycle [29]. The power
111 plant modeled exhibits full-load power generation of 605 MW at efficiency of 38.7%. Conventional
112 proportional-integral-derivative (PID) controllers were incorporated into the system model. Dynamic
113 simulation of the power plant operating with step changes in fuel load, showed that the controllers
114 are robust in maintaining the controlled variables at set point. In this work, open-source data of
115 time-varying power demand along with its forecast from the New England area are used to study
116 this plant at realistic operating conditions [30]. A fuel load controller is implemented to meet the
117 time-varying power demand, and controllers are added to adjust the air flow and water flow for
118 time-varying load. Supervisor control strategies are applied for static and dynamic optimization of
119 the power plant efficiency. This optimization is accomplished by manipulating the set points of the
120 regulatory controllers of the temperature of the superheated steam and preheated air, and the mass
121 flow rates of steam extracted from the steam turbines. Steady state and dynamic optimization results
122 are compared and discussed in an effort to explore the value proposition of each.

123 2. Power plant studied and plant model

124 The power plant studied and simulated in prior work [28] was the fossil fuel-fired subcritical
125 power plant shown in Figure 1, with operating conditions at full load as reported by Singer [29]. The
126 plant employs a reheat, regenerative cycle to produce 605 MW electricity by burning fossil-fuel, with
127 nominal turbine conditions of 174 bar and 538°C steam. Combustion of bituminous B coal [5] with
128 preheated air produces hot flue gas that evaporates and superheats water. The feedwater is converted
129 to high temperature superheated steam, through a series of heat exchange steps in the boiler, including
130 the Economizer, Evaporator, Reheater, and Superheater. The superheated steam produced in the
131 boiler is expanded in a series of high-pressure (HP), intermediate-pressure (IP) and low-pressure (LP)
132 turbines connected to a generator to convert the heat to mechanical torque and produce electricity.
133 The steam exiting the last LP turbine is condensed in the Condenser. The condensate is preheated
134 in four heat exchange steps, including a deaerator and three water preheaters, which are supplied
135 with steam streams extracted from the HP, IP, and LP turbines. Three pumps, namely the condensate
136 booster pump, condensate pump and boiler feed pump, are used for re-circulating the water after
137 being condensed in the condenser. The preheated condensate re-enters the boiler at high pressure and
138 closes the loop.

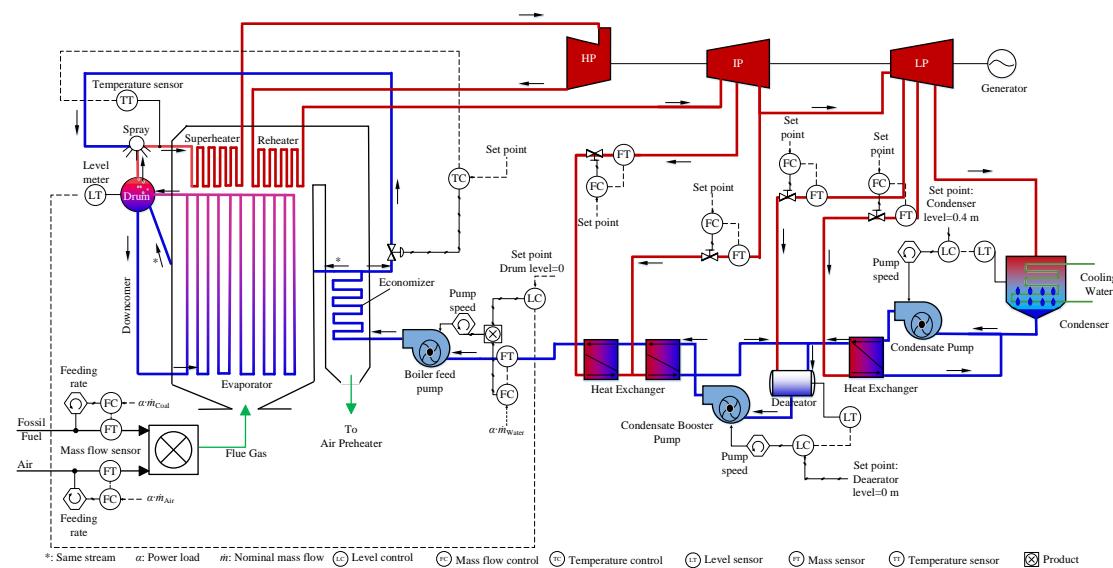


Figure 1. Reheat regenerative cycle, 605 MW subcritical-pressure fossil power plant with control system design [29].

The plant of Figure 1 was simulated with a dynamic power plant model developed in Dymola [16] using the Modelon ThermalPower library [31]. The Modelica language used in Dymola is a non-proprietary, object-oriented, equation-based language for the modeling of complex physical systems [20], well-suited for the objective of large-scale dynamic simulation of power plants. A comprehensive list of the operating data of the power plant was provided in prior work, and the plant model was provided as Supporting Information to that work [28]. The model of the plant operating at full load was shown to be in excellent agreement with steady state data from the reference power plant. Figure 1 also shows the design of the control system of that plant, including controllers for safety regulation (marked with black solid lines), plant-level controllers (marked with blue dashed lines), and controllers for plant optimization (marked with red dotted lines). The regulatory control system, including the controllers of superheated steam temperature, and of the water level in the Drum, Condenser and Deaerator, was discussed in detail in prior work [28]. This regulatory control system was tuned using bump tests and the dynamic responses of the model were assessed qualitatively in terms of robustness and plant stability. The multilayer control scheme designed in this work and the controllers required to meet the time-varying power load are discussed in the following.

3. Power plant under time-varying power demand

Extensive studies of the power demand and its forecasting have resulted in excellent models of the power demand per market sector, such as gray-box prediction models, to forecast real-time electricity demand with an error less than 8% [32,33]. The forecasted power demand is typically used by utility companies to predict the grid load and maintain service reliability. In this work, the data of power demand (along with its forecast) in the New England area were used. In particular, the data of the day of April 17, 2016 was used as a realistic sample of power demand fluctuations [30]. The duration for the temporal forecasted power demand studied was 24 hours. To meet the full power load of the reference power plant (605MW), the ISO New England data (maximum value is 18000 MW) was uniformly scaled-down, as shown in Figure 2 (a). The underlying assumption in this normalization was that the power demand from one power plant is proportional to the total power consumed. Therefore, it was considered that a fraction of the total power demand (scaled by a constant factor) and its daily fluctuation need to be met by one power plant. The reality with renewable inputs in the grid is, as mentioned, a more abruptly fluctuating load for the power plant. It is thus anticipated

168 that the efficiency gains from the analysis presented herein are a lower bound to the potential efficiency
 169 gains when renewable energy becomes a more dominant contribution to the electric grid.

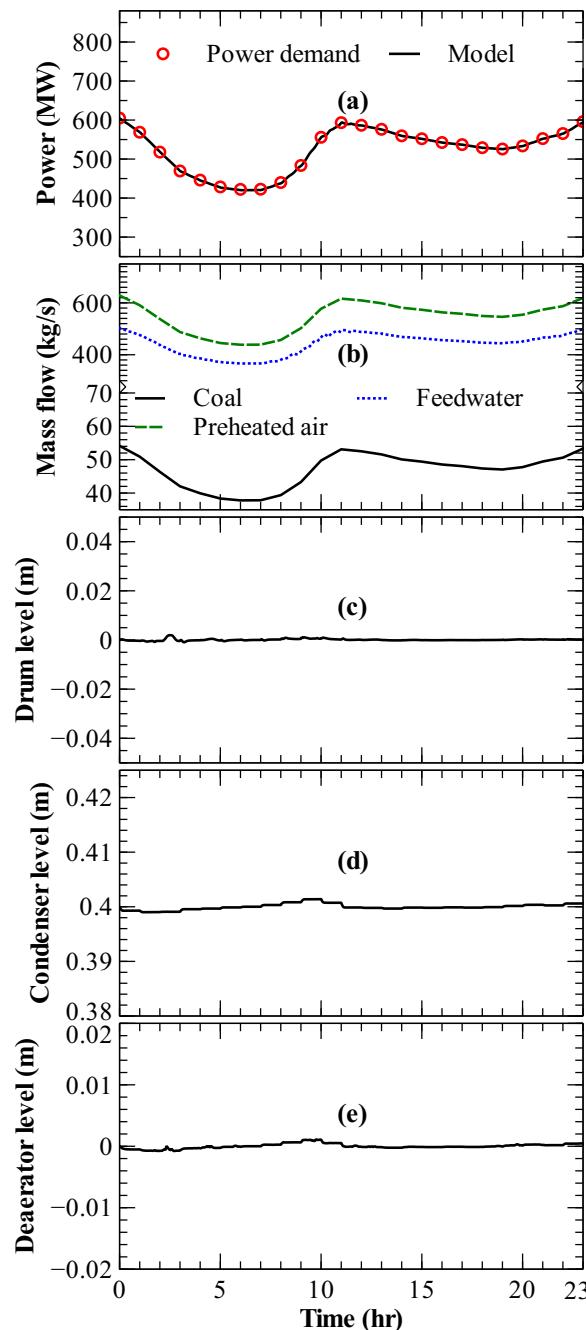


Figure 2. Dynamic performance of the power plant model: (a) power demand and power generated by the plant model; (b) mass flow rates of coal, preheated air and feedwater; (c) water level in the Drum; (d) water level in the Condenser; (e) water level in the deaerator.

170 In prior work [28], the power plant model was validated dynamically, showing fast responses to
 171 sudden changes in coal load. The regulatory control system incorporated in the power plant model
 172 was shown to be robust in maintaining controlled variables at set points. Here, plant-level controllers
 173 were added to the plant model, as shown in Figure 1, to adjust the coal load, preheated air flow and
 174 feedwater flow so that the plant meets the time-varying power load of Figure 2(a). The mass flow rate
 175 of feedwater (\dot{m}_{FW}) circulating in the plant and the mass flow rate of preheated air (\dot{m}_{Air}) mixed with

176 the fuel were assumed to be proportional to the power load [34]. The mass flow rates of feedwater
 177 and preheated air were set to adjust with plant load, by multiplying the nominal \dot{m}_{Air} and \dot{m}_{FW} by
 178 the temporal power load change ratio. The mass flow rate of coal was adjusted by a PID fuel load
 179 controller to match the temporal power demand. Table 1 presents the tuning parameters of the
 180 feedforward control of water and air feed rates and the PID controller of fuel load. The measurement
 181 for the fuel load controller is the power generation (P), the manipulated variable is the coal mass flow
 182 (\dot{m}_{Coal}), and the set point is the temporal profile of the normalized power demand of the New England
 183 area [30]. These new controllers were tuned following standard methodologies discussed elsewhere
 184 [28]. Figure 2(a) shows that the power generated by the plant model matches the power demand
 185 of the normalized New England area data [30]. Figure 2(b) shows the transient responses of \dot{m}_{Coal} ,
 186 \dot{m}_{Air} and \dot{m}_{FW} to the dynamically varying power demand of Figure 2(a). Figures 2(c–e) show that the
 187 safety-critical regulated variables (water levels in the drum, condenser and deaerator) are robustly
 188 controlled, and exhibit negligible oscillations. The dynamic performance of the plant model over the
 189 entire 24-hour period suggests that the model provides a robust test-bed of the plant physics and its
 190 controls, and is used in the following for steady state and dynamic optimization.

Table 1. Controllers for the power plant in response to a time-varying power load.*

Feedforward control: Air and feedwater controllers			
Controlled variables	\dot{m}_{Air}	\dot{m}_{FW}	
PID control: Fuel load controller			
Controlled variables	Manipulated variables	K_p	K_i
P	\dot{m}_{Coal}	1e-8	1e-10
			1e-6

* P : Power generation; \dot{m}_{Air} : Mass flow rate of air; \dot{m}_{FW} : Mass flow rate of feedwater; \dot{m}_{Coal} : Mass flow rate of coal; K_p : Coefficient of the proportional term; K_i : Coefficient of the integral term; K_d : Coefficient of the derivative term.

191 4. Optimization for an integrated power plant

192 4.1. Objective and Optimization Variables

193 The objective of plant-level optimization is to maximize the efficiency of the power plant while
 194 operating at steady state, or the integral of the efficiency over time if the power plant is operating
 195 in a transient fashion. This was accomplished by calculating optimal set points for the regulatory
 196 controllers, without violating operability and safety constraints. The plant efficiency was calculated as
 197 [29]:

$$\eta = \frac{P_{ST} - P_{Pumps}}{\dot{m}_{Coal} LHV_{Coal}} \quad (1)$$

198 where η is the efficiency of the plant, \dot{m}_{Coal} is the mass flow rate of coal, LHV_{Coal} is the lower heating
 199 value of coal, P_{ST} is the power generated by steam turbines, and P_{Pumps} is the power consumed
 200 by pumps. Here, high-volatile bituminous B coal with an average LHV of 28 MJ/kg was used [5].
 201 Other auxiliary energy losses were not considered in Eq.(1), as previous work has shown that
 202 auxiliary efficiency losses are small, often of the order of ~ 2 MW for coal-fired steam cycles for a
 203 plant size similar the one studied here [29,35]. As discussed in the introduction, the power plant
 204 efficiency of Eq.(1) can be improved by manipulating several plant variables. Table 2 summarizes the
 205 optimization variables, ranges of variability and the efficiency improvements achieved in relevant
 206 previous work. In the majority of previous analyses [13–15,36–44], plant efficiency optimization was
 207 performed by manipulating the temperature of superheated steam (T_{SH}). For example, Xiong et al.
 208 [41] showed that the higher superheated steam temperature increases the power generated by the
 209 HP turbine, improving cycle efficiency. Several other variables have been explored in the literature
 210 for their capability to improve plant efficiency. Sanpasertparnich et al. [14,36] presented the impact
 211 of preheated air temperature (T_{Air}) on power plant efficiency. Tzolakis et al. [15,42] optimized the

212 plant efficiency at full load, by manipulating the mass flow extracted from steam turbines (\dot{m}_{ST} , which
213 includes \dot{m}_{HP} , \dot{m}_{IP} and \dot{m}_{LP}). Other optimization variables, such as the moisture content of coal
214 [45], mass flow rate of feedwater [42], isentropic efficiency of turbines [41], temperature of flue gas
215 exiting the boiler [43], and the pressure of steam extracted from turbines [14,36], require changes in
216 the existing infrastructure, and were not considered here. In summary, the common plant efficiency
217 optimization variables T_{SH} , T_{Air} , and \dot{m}_{ST} were chosen in this work. For the purpose of illustration,
218 two optimization cases were considered. Case study I presents plant optimization by manipulating
219 T_{SH} and T_{Air} within an operation horizon of 24 hours. Case study II presents plant optimization by
220 manipulating \dot{m}_{ST} with an operation horizon of 4 hours. The inputs of each optimization problem are
221 discussed in detail in the following.

Table 2. Review of power plant optimization efforts and respective variables.*

Ref.	$\Delta\eta$ (%)	Optimization variables						
		T_{SH} (°C)	$\dot{m}_{IP1}/\dot{m}_{IP2}$ / $\dot{m}_{LP1}/\dot{m}_{LP2}$ (kg/s)	T_{Air} (°C)	\dot{m}_{FW} (kg/s)	p_{SH} (bar)	β (%)	Others
[14,36]	7.8	[530,600]	[3.9,19.6] / [6.2,43.3] / [15.1,28.7] / [11.1,42.1]	[166,190]	[250,350]	[166,190]	[11.1,17.6]	
[15]	0.55		[0,30.8] / [0,51.2] / [0, 21.1] / [0,0.94]					
[37]	0.41	[600,625]	[16,26] / [14,24] / [12.6,24] / [34,57]		[400,475]	[20,30]		
[38,39]	2.8	[550,700]		[35,275]		[230,350]		Excess air $\in [0,25\%]$, $T_{RH} \in [580,620]$
[40]	2	[550,700]				[230,350]		$\eta_{ST} \in [0.75,0.87]$, $p_{HP/IP/LP}(\text{bar}) \in [60/9/0.0356, 80/25.5/2.68]$
[13]	5.9	[487,1076]				[150,450]		
[41]	2.5	[535,545]						$\eta_{ST} \in [0.8,0.95]$
[42]	1.3	[485,537]			[45,57]			
[43]	0.79	[115,278]			[21,38.4]			$T_{FG}(\text{°C}) \in [85,125]$
[44]	3.5	[460,530]				[64,110]		$p_{CON}(\text{bar}) \in [0.01,0.05]$

* T_{SH} : Temperature of superheated steam; \dot{m}_{HP} : Mass flow rates of steam extracted from high-pressure turbine; \dot{m}_{IP} : Mass flow rates of steam extracted from intermediate-pressure turbine; \dot{m}_{LP} : Mass flow rates of steam extracted from low-pressure turbine; p_{SH} : Pressure of the superheated steam; T_{Air} : Temperature of the preheated air; \dot{m}_{FW} : Mass flow rate of feedwater; β : Coal moisture content; η_{ST} : Isentropic efficiency of steam turbines; T_{RH} : Temperature of reheat steam; T_{FG} : Temperature of flue gas; $p_{HP/IP/LP}$: Pressure of streams extracted from HP, IP and LP steam turbines; p_{CON} : Condenser pressure.

222 4.2. *Supervisory control*

223 The control system of a plant is usually divided into several layers, typically separated by different
224 time scale requirements and objectives. Control architectures include regulatory control (seconds),
225 supervisory control (minutes), local optimization (hours), site-wide optimization (days) and scheduling
226 (weeks) [22]. Supervisory control can be designed to manipulate regulatory control set points and the
227 remaining degrees of freedom of the plant (if any) to optimize the plant efficiency, within constraints
228 imposed by the local controllers [46]. The critical first steps in designing a supervisor logic are to define
229 the operational and economic objectives and the available degrees of freedom. Common degrees of
230 freedom include the set points of the regulatory controllers, system boundaries not controlled and
231 system parameters tuned to a particular operating scheme.

232 Figure 3 illustrates a scheme for such a supervisory control strategy for the power plant studied.
233 The control system includes the supervisory control, regulatory control and plant level control. The
234 regulatory control structure includes optimization controllers (marked as red dotted lines in Figure
235 1), which are the regulatory controllers used for plant optimization; and safety controllers (marked
236 as black solid lines in Figure 1), which regulate the level of water in the drum, condenser and
237 deaerator. The main function of the supervisory control is to update the set points of the optimization
238 controllers (y_O^{sp}), to maximize the plant efficiency of Eq.(1). The plant level controllers (marked with
239 blue dashed lines in Figure 1) adjust the mass flow rates of coal, preheated air and feedwater according
240 to the market power demand (y_P^{sp}). The set points of the control system include the set points of
241 the safety controllers, plant-level controllers and optimization controllers, i.e. $y^{sp} = \{y_S^{sp}, y_P^{sp}, y_O^{sp}\}$.
242 These controllers manipulate control inputs ($u = \{u_S, u_P, u_O\}$) to maintain the controlled variables
243 at their set points. In principle, one should consider disturbance (ω^x) and measurement noise (ω^y),
244 which are responsible for a difference (e) between model (y^{pred}) and power plant outputs (y^{meas}). An
245 estimator could update model parameters ($\hat{\theta}$) and filter plant states (x), to eliminate this model–plant
246 mismatch. In this work, disturbance and measurement noise are not considered, mostly for reasons of
247 simplifying the analysis, as the efficiency benefits are not affected by them (although the robustness
248 of the supervisor will be). Therefore, ω^x and ω^y were considered negligible, and data filtering and
249 state estimation (blocks in gray in Figure (3)) are not discussed. The supervisory control updates the
250 optimal y_O^{sp} according to an objective function maximizing Eq.(1) in a formulation that includes the
251 system model equations as discussed in the following.

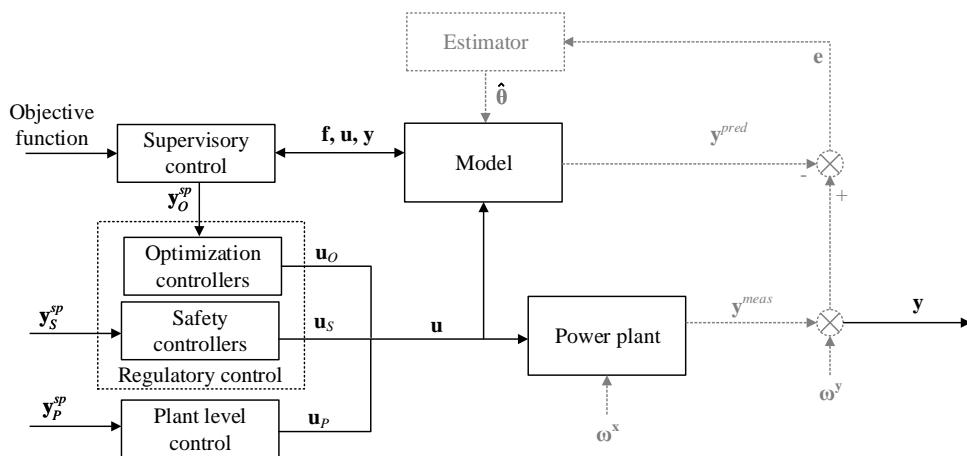


Figure 3. Multilayer control scheme for reheat regenerative cycle, 605 MW subcritical-pressure coal-fired power plant. y_O^{sp} : Set points of the optimization controllers; y_S^{sp} : Set points of the safety controllers; y_P^{sp} : Set points of the plant level controllers; u_O : Control inputs of the optimization controllers; u_S : Control inputs of the safety controllers; u_P : Control inputs of the plant level controllers; u : Control inputs; ω^x : Disturbance; ω^y : Measurement noise; y^{pred} : Predicted outputs; y^{meas} : Measured outputs; y : System outputs; e : Error; $\hat{\theta}$: Estimated model parameters; f : System model.

252 4.3. Optimization formulation

253 As described previously, the set points of the optimization controllers are manipulated by
 254 the supervisory layer as first-level variables to improve plant efficiency (η), Eq.(1). This efficiency
 255 optimization also translates to coal consumption reduction and decrease of the plant carbon footprint.
 256 The intent of this work was to compare steady-state and dynamic optimization results of the plant
 257 of Figure 2 to those of the plant operating at nominal conditions. This comparison also includes an
 258 exploration of the added benefits of dynamic optimization, compared to those from steady state optimal
 259 operation. First, steady state optimization of the power plant operating at full load was performed by
 260 calculating optimal set points (constant with time) for the optimization controllers (y_O^{sp}), and specifically
 261 the set points of the superheat steam temperature controller, preheat air temperature controller, and
 262 mass flow controllers of steam extracted from steam turbines. The steady state optimization problem
 263 formulation is shown in Eq.(2):

$$\begin{aligned}
 & \max_{y_O^{sp}} \eta(y, u_P) \\
 & \text{subject to:} \\
 & f(x, u, \theta) = 0, \\
 & u = F(y_O^{sp}, y) \\
 & y = h(x, u, \theta), \\
 & x^{min} \leq x \leq x^{max}, \\
 & u^{min} \leq u \leq u^{max}, \\
 & y^{sp,min} \leq y^{sp} \leq y^{sp,max}, \\
 & y^{min} \leq y \leq y^{max},
 \end{aligned} \tag{2}$$

264 where the plant efficiency η is a function of power plant outputs (y) and admissible variable values (u_P)
 265 determined by the updated regulatory controllers level controller set points y_O^{sp} ; $f(\cdot)$ is the vector of
 266 steady state equations describing the system in terms of states, x , admissible inputs, u , and parameters,

267 Θ ; and F describes the control functions, with y being the measured system outputs, mapped to x, u ,
 268 and Θ through $h(\cdot)$.

269 Dynamic optimization was performed for the reference power plant operating under a
 270 time-varying power demand normalized from the New England area data [30]. The objective was to
 271 maximize the integral of plant efficiency over a predetermined time horizon, τ . This was accomplished
 272 by calculating time-varying optimal set points for the optimization controllers. The generic formulation
 273 of the dynamic optimization problem solved for the power plant of Figure (1) is presented in Eq.(3),
 274 where f is the system of differential algebraic equations describing the conservation of mass and energy,
 275 x is the vector of temporal state variables, x^0 is the vector of initial state variables, y_O^{sp} is the temporal
 276 set points of the optimization controllers, y are the temporal system outputs, t_n is the vector of control
 277 action time points, with constant interval, τ_n , τ is the optimization horizon, and t is the time.

$$\begin{aligned}
 & \max_{y_O^{sp}(t_n)} \int_0^\tau \eta(y_O^{sp}(t), u_P(t)) dt \\
 & \text{subject to:} \\
 & f(\dot{x}, x, u, \Theta, t) = 0, \\
 & u = F(y_O^{sp}(t_n), t), \\
 & y = h(x, u, \Theta, t), \\
 & x(t=0) = x^0, \\
 & x^{min} \leq x \leq x^{max}, \\
 & u^{min} \leq u \leq u^{max}, \\
 & y^{sp,min} \leq y^{sp} \leq y^{sp,max}, \\
 & y^{min} \leq y \leq y^{max}, \\
 & t \in [0, \tau], \quad t_n \in [0, \tau],
 \end{aligned} \tag{3}$$

278 Table 3 shows optimization variables bounds and time interval constraints for the problems of Eqs.
 279 (2–3) of the two cases studied. The set points of the controllers regulating T_{SH} , T_{Air} , and \dot{m}_{ST} (including
 280 \dot{m}_{IP1} , \dot{m}_{IP2} , \dot{m}_{LP1} and \dot{m}_{LP2}) were manipulated by the supervisory control layer as degrees of freedom
 281 seeking for an optimal input. In Case study I, only the set points of T_{SH} and T_{Air} were manipulated.
 282 Although not shown in Fig. 2, preheating of the air fed to the combustor to T_{Air} was accomplished by
 283 manipulating the mass flow of the Economizer exhaust gas sent to the air preheater (with the balance
 284 being waste heat). In Case study II plant optimization was performed by manipulating the set points
 285 of \dot{m}_{ST} , i.e. the set points of the mass flow rates of steam streams extracted from the first IP turbine
 286 (IP1), the second IP turbine (IP2), the first LP turbine (LP1), and the second LP turbine (LP2) (\dot{m}_{IP1} ,
 287 \dot{m}_{IP2} , \dot{m}_{LP1} , and \dot{m}_{LP2} , respectively). The ranges of the admissible inputs, shown in Table 3, are based
 288 on common practice and previous work [13–15,27,36,38,41–43,45]. The optimization horizon, τ , was
 289 set to 24 hours in Case study I and 4 hours in Case study II, and the control action interval, τ_n , was set
 290 to 1 hour. Large control actions where not penalized in the optimization problems solved, as the plant
 291 load profiles matched during the real-time plant optimization were relatively smooth. For instance
 292 the temperature of the superheated steam feeding the steam turbine was seen to change gradually
 293 over time in response to load changes, which is adequate for the protection of the steam turbines by
 294 thermal stress [14,36].

Table 3. Inputs for the optimization problems studied.

Case I				
Admissible inputs (y_O^{sp})	T_{SH}^{sp} (°C)		T_{Air}^{sp} (°C)	
Min	520		150	
Max	610		250	
Case II				
Admissible inputs ^a (y_O^{sp})	\dot{m}_{IP1}^{sp} (kg/s)	\dot{m}_{IP2}^{sp} (kg/s)	\dot{m}_{LP1}^{sp} (kg/s)	\dot{m}_{LP2}^{sp} (kg/s)
Min	16	10	10	28
Max	28	28	28	47
Temporal inputs ^b				
τ_n (hr)	1			
τ (hr)	24 for Case I (4 for Case II)			

^a \dot{m}_{IP1} : Mass flow rate of steam stream extracted from IP1 turbine; \dot{m}_{IP2} : Mass flow rate of steam stream extracted from IP2 turbine; \dot{m}_{LP1} : Mass flow rate of steam stream extracted from LP1 turbine; \dot{m}_{LP2} : Mass flow rate of steam stream extracted from LP2 turbine; sp: Set point.

^b If the plant is operating under time-varying power load.

295 5. Results

296 For each case study in the following, the static optimization of the power plant operating at
 297 full load with the optimization formulation of Eq.(2) is discussed first, followed by the dynamic
 298 optimization of the power plant operating under time-varying power load with the optimization
 299 formulation of Eq.(3). In the results discussed in the following, the power plant was formulated
 300 with the object-oriented language Modelica [20], in the commercial software Dymola [16] and set
 301 point optimization was performed in Matlab [47] using an interior-point algorithm. Model exchange
 302 between the software packages of Dymola and Matlab was accomplished with use of the Functional
 303 Mockup Interface, a tool-independent standard for seamlessly integrating models in various simulation
 304 environments [48].

305 5.1. Case study I: optimization variables T_{SH} and T_{Air}

306 Table 4 presents steady state optimization results at full load using the superheated steam
 307 temperature set point, T_{SH}^{sp} , and that of the preheat air temperature, T_{Air}^{sp} , as the optimization variables.
 308 Manipulation of T_{SH}^{sp} and T_{Air}^{sp} led to a power plant efficiency improvement from 38.3% to 40.23%. This
 309 efficiency improvement translates to fuel savings of 3.78%, with the fuel flow rate decreasing from
 310 56.38 kg/s to 54.25 kg/s. The carbon footprint of the plant also decreased from 0.8 kg/kWh to 0.77
 311 kg/KWh. This efficiency optimization was accomplished by increasing T_{Air} from 200°C to 248°C,
 312 and increasing T_{SH} from 538°C to 560°C. This is consistent with earlier reports [13,14,27,38,41–43],
 313 showing that increasing T_{SH} and T_{Air} translates to efficiency improvements. The higher T_{SH} enables
 314 the HP turbine to produce the same mechanical torque at lower coal consumption, while increasing
 315 T_{Air} recovers more waste heat from the boiler exhaust gas. It should be noted that the nominal steady
 316 state data used as baseline in Table 4, are as reported by Singer [29] for the reference power plant, and
 317 correspond to the design point of this plant. In principle the set points for T_{SH} and T_{Air} reported by
 318 Singer refer to an optimal plant configuration. The further improvement presented here could relate to
 319 better integrated plant-level optimization, model-plant differences and relaxation of plant constraints
 320 compared to the study reported in [29]. For an off-design operating point the efficiency benefits of
 321 solving Eq.(2) would, of course, have been much higher.

Table 4. Steady state optimization results of Case study I.

System output	Nominal	Optimal
T_{SH}^{sp} (°C)	538	560
T_{Air}^{sp} (°C)	200	248
η (%)	38.3	40.23
\dot{m}_{Coal} (kg/s)	56.38	54.25
carbon footprint (kg/kWh)	0.8	0.77

322 The results of dynamic optimization for a horizon of 24 hours of plant operation are presented
 323 in Figure 4. Data and plant performance results are in response to time-varying power demand
 324 normalized from the New England area data [30] shown in Figure 4(a). In the absence of disturbances
 325 and noise, the solution of Eq.(3) in the period $t = 0 - \tau$ ($= 24hr$) is equivalent to an off-line
 326 optimal control problem and is valid for the entirety of the time horizon considered. The optimization
 327 variables were T_{SH}^{sp} and T_{Air}^{sp} , but in this case they were updated in time intervals, $\tau_n = 1hr$. Figure
 328 4 presents the dynamic power plant performance at nominal and optimal operation. The nominal
 329 dynamic operation is the result of constant T_{SH}^{sp} at 538°C and T_{SH}^{sp} at 200°C. Figures 4(d) and 4(e) show
 330 that the controlled variables, T_{SH} and T_{Air} , are robustly controlled at their optimal set points by the
 331 regulatory controller. The values of T_{SH} and T_{Air} from the dynamic optimization solution are always
 332 higher than their respective nominal values. In particular, Figure 4(d) shows that the optimal T_{SH}^{sp}
 333 trajectory is inversely proportional to that of the plant load. The optimal temporal T_{SH}^{sp} for a plant
 334 load higher than maximum, is higher than the 560°C of the optimal steady state at full load. This
 335 enhances heat transfer from the flue gas side to the steam side in the Superheater, at low plant load.
 336 Figure 4(e) shows that the optimal temporal profile of the temperature of air preheated by the flue
 337 gas exiting the boiler, is varying proportionally to plant load. The temperature of the exhaust gas is
 338 also proportional to the power load, due to the time-varying mass flow rates of feedwater, air and
 339 coal load. As Figure 4(c) shows, the improvement in time-averaged efficiency is 1.8% points. This
 340 efficiency improvement translates to coal savings of 184.8 tons/day (Figure 4(d)) and time-averaged
 341 carbon footprint decrease of 0.0351 kg/kWh (Figure 4(e)). In summary, the optimized power plant
 342 operates at higher $T_{Air}(t)$ and $T_{SH}(t)$, and this is consistent with the results of steady state optimization.
 343

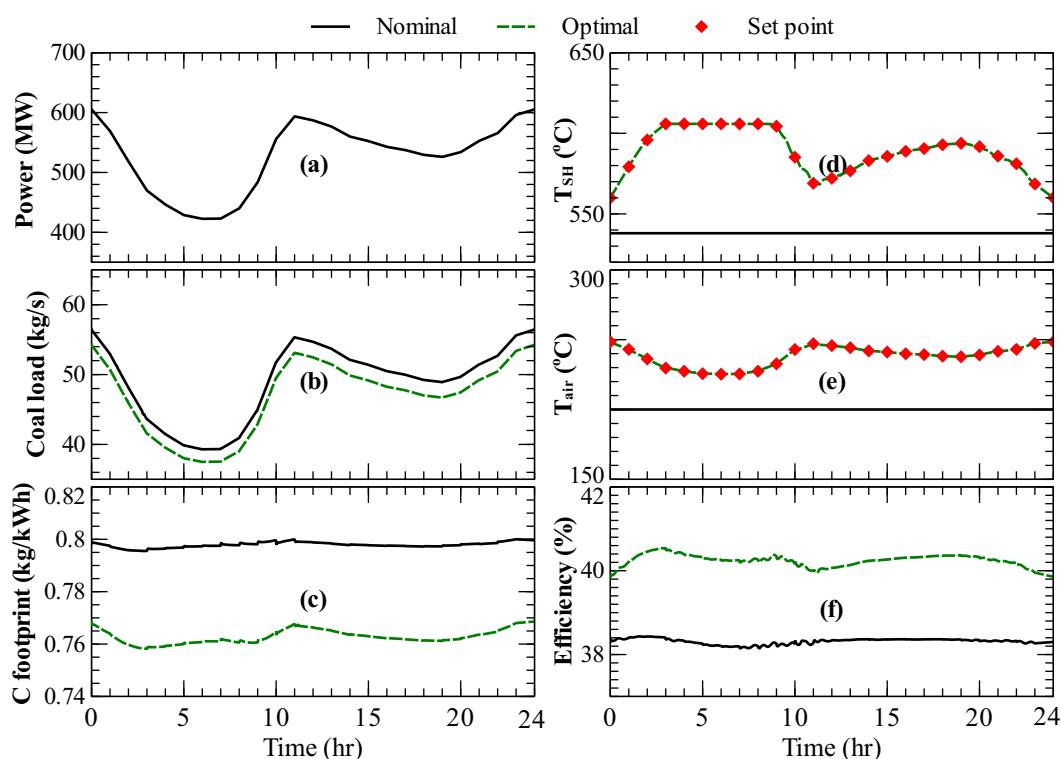


Figure 4. Dynamic optimization results of Case study I: (a) time-varying power load; (b) coal load; (c) carbon footprint; (d) temperature of preheated air; (e) temperature of superheated steam; (f) Power plant efficiency.

344 Figure 5 presents the dynamic performance of the power plant operating with constant nominal
 345 set points for T_{SH} and T_{Air} , constant optimal T_{SH}^{sp} and T_{Air}^{sp} (from the steady state optimization solution),
 346 and with time-varying optimal T_{Air}^{sp} and T_{SH}^{sp} (set by the dynamic optimization solution). The coal
 347 consumption and carbon footprint of the power plant operating with set points calculated by the
 348 static and dynamic optimization problem formulations are both lower than that by the power plant at
 349 nominal operation. The power plant operating with set points determined by dynamic optimization is
 350 the most efficient with the lowest coal consumption and the smallest carbon footprint. As shown in
 351 Table 5, the fuel savings accomplished by the power plant with steady state optimization are 160.9
 352 tons/day, whereas the fuel savings accomplished with dynamic set point optimization are 184.8
 353 tons/day. The reduction of coal load and decrease of carbon footprint of the dynamically optimal
 354 operation are pronounced when the power plant is operating at lower load. At different loads the
 355 plant has slightly different optimal regulatory control points compared to those of the steady state
 356 optimization at full load, which is exploited by the formulation of Eq.(3). As shown in Figure 4(d), the
 357 values of T_{SH}^{sp} calculated from Eq.(3) at low loads are higher than the constant T_{SH}^{sp} calculated from Eq.(2)
 358 at full load. Dynamically optimizing T_{SH}^{sp} improves the heat transfer in the Superheater at low loads
 359 and converts more heat from the superheated steam to mechanical torque. This increase in mechanical
 360 torque leads to improved power generation and efficiency. Moreover, the temperature profile of the
 361 preheated air in Figure 4(e) shows that the values of T_{Air}^{sp} calculated from Eq.(3) at low loads are lower
 362 than the constant T_{Air}^{sp} calculated from Eq.(2) at full load. At low loads, heat transfer between the water
 363 side and flue gas side in the boiler is enhanced, leading to lower flue gas temperatures, which in turn
 364 are to preheat the air. Thus, the supervisor drives T_{Air}^{sp} down to satisfy system constraints. Depending
 365 on the dynamic response times of the plant and the selection of the interval between control actions,
 366 τ_h , a multi-step steady state optimization problem could have resulted to similar performance benefits
 367 as those of Eq.(3). Nonetheless, Eq.(3) is more generic and robust for a dynamic system. It should
 368 be noted that one could execute the same analysis but with an objective function that maximizes

369 profit for varying electricity prices. This would have resulted in different plant load profiles, but the
 370 optimization procedure (not the objective function) and results would have been similar.

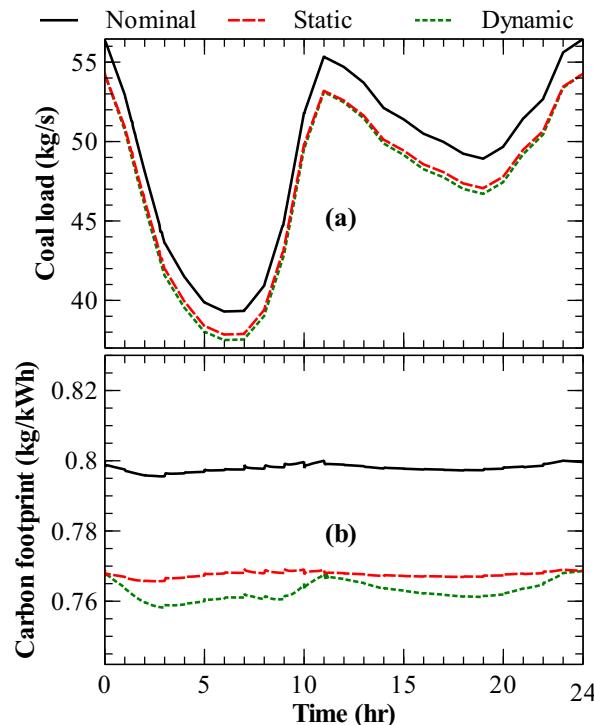


Figure 5. Comparison of the dynamic performance of the power plant with nominal operation set points, steady state optimal set points, and dynamic optimal set points: (a) coal load; (b) carbon footprint.

Table 5. Comparison of static and dynamic optimization of the power plant for Case study I.*

Output	Static optimization	Dynamic optimization
$\Delta \dot{m}_{coal}$ (tons/day)	160.9	184.8
$\Delta \bar{c}_f$ (kg/kWh)	0.0303	0.0351
$\Delta \dot{m}_{CO_2}$ (tons/day)	440.2	511.9

* $\Delta \dot{m}_{coal}$: Coal savings; $\Delta \bar{c}_f$: Decrease of the time-averaged carbon footprint; $\Delta \dot{m}_{CO_2}$: reduction of CO_2 emissions.

371 5.2. Case study II: Optimization variables \dot{m}_{IP1} , \dot{m}_{IP2} , \dot{m}_{LP1} and \dot{m}_{LP2}

372 As shown in Figure 1, four proportional–integral (PI) controllers were used to regulate the mass
 373 flow rates of steam extracted from the turbines. The parameters of these controllers are presented in
 374 Table 6. These controllers manipulate the respective valves to regulate the mass flow rates of streams
 375 extracted from the IP1, IP2, LP1 and LP2 turbines. In this case study, the supervisory control variables
 376 are the set points of the mass flow controllers of steam extracted from turbines, namely the set points
 377 of \dot{m}_{IP1} , \dot{m}_{IP2} , \dot{m}_{LP1} , and \dot{m}_{LP2} .

Table 6. PI Controllers regulating the mass flow rates of steam extracted from turbines.

Controllers	IP1	IP2	LP1	LP2
Controlled variables	\dot{m}_{IP1}	\dot{m}_{IP2}	\dot{m}_{LP1}	\dot{m}_{LP2}
Manipulated variables	Valve opening	Valve opening	Valve opening	Valve opening
K_p	0.1	0.1	0.1	0.1
K_i	0.0001	0.0001	0.0001	0.0001

378 As before, steady state optimization was first performed for the plant operating at full load.
 379 The set points of \dot{m}_{IP1} , \dot{m}_{IP2} , \dot{m}_{LP1} and \dot{m}_{LP2} were manipulated by the supervisory control layer to
 380 maximize the plant efficiency of Eq.(2). The bounds of admissible inputs are shown in Table 3, with
 381 the optimal values presented in Table 7. The power plant efficiency was improved from 38.3% to
 382 38.78%. The corresponding coal load decreased from 56.38 kg/s to 55.68 kg/s and the carbon footprint
 383 decreased from 0.8 kg/kWh to 0.79 kg/kWh. Compared with the nominal case, the optimal case
 384 has lower \dot{m}_{IP1}^{sp} , and higher \dot{m}_{IP2}^{sp} , \dot{m}_{LP1}^{sp} , and \dot{m}_{LP2}^{sp} , as shown in Table 7. The mass flow rate of steam
 385 extracted from the IP1 turbine is less than that of other steam turbine extractions. The IP1 turbine
 386 extraction has the highest pressure and temperature of all steam extractions. Thus, it is better utilized
 387 for electricity production than water preheating. Meanwhile, the steam extracted from IP2, LP1 and
 388 LP2 turbines is better utilized for preheating the condensed feedwater to reach higher temperature
 389 before entering the boiler. These results are consistent with the findings of the study by Chaibakhsh
 390 and Ghaffari [49] who proposed to reduce (or remove) the high pressure and temperature steam
 391 extraction stream and increase the steam extracted from the remaining IP and LP turbine stages.
 392

Table 7. Steady state optimization results for Case study II.

System output	Nominal	Optimal
\dot{m}_{IP1}^{sp} (kg/s)	27.4	16.8
\dot{m}_{IP2}^{sp} (kg/s)	14	23.1
\dot{m}_{LP1}^{sp} (kg/s)	16.5	23.7
\dot{m}_{LP2}^{sp} (kg/s)	30	43.8
η (%)	38.3	38.78
\dot{m}_{Coal} (kg/s)	56.38	55.68
carbon footprint (kg/kWh)	0.8	0.79

393 Dynamic optimization was performed for an optimization horizon of 4 hours. The interval 9–13
 394 hr of the New England power demand data was used, as shown in Figure 6(a). In this interval the
 395 power plant is operating in response to a abrupt increase in power demand, with a power load change
 396 from 79.9% to 98.1%, followed by a decrease from 98.1% to 95.2%. This time interval includes the most
 397 abrupt change in power demand of the New England ISO data used, as well as a change in the sign of
 398 change in power demand. To solve this problem, the power plant model was first initialized to steady
 399 state at the load of 79.9% ($t = 0$ in Figure 6). As shown in Figure 6(a), the power generated by the
 400 plant model matches the time-varying power demand, which was accomplished by the plant load
 401 controllers shown in Figure 1.
 402

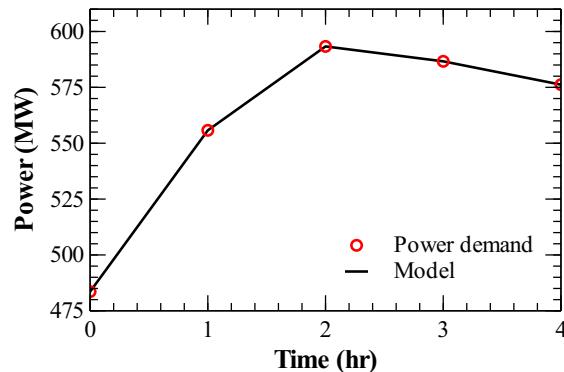


Figure 6. Time varying power demand and plant load for Case study II.

403 Figure 7 presents the transient operation of the virtual power plant in response to nominal inputs
 404 and to those calculated with dynamic optimization for the power plant load of Figure 6. The supervisor
 405 updated the set points of the controllers regulating $\dot{m}_{IP1}(t)$, $\dot{m}_{IP2}(t)$, $\dot{m}_{LP1}(t)$ and $\dot{m}_{LP2}(t)$, to seek for
 406 the maximum of the integral of efficiency over the time horizon of 4 hours. The nominal operation
 407 of the power plant corresponds to constant set points for the mass flow rate of turbine extraction
 408 streams, shown in Table 7. For the optimal dynamic operation, these set points were treated as dynamic
 409 optimization variables that are updated every hour by the supervisory controller. Figure 7(a) shows
 410 that the mass flow rate of the steam streams extracted from the turbines is robustly maintained at the
 411 respective temporal set points (updated in 1 hour intervals), set according to the dynamic optimization
 412 solution of the supervisor. Dynamic optimization requires the mass flow rate of IP1 steam extraction to
 413 be lower than that of the other steam extractions, similarly to the results from steady state optimization.
 414 The optimal mass flow rate of all the steam extraction streams follow the load profile. This is because
 415 the total mass flow rate of water circulating in the steam cycle is proportional to the power load. The
 416 improvement in the time-averaged efficiency is 0.43% points, as shown in Figure 7(b). Figures 7(c) and
 417 7(d) show that the coal savings for four hours and the decrease of time-averaged carbon footprint are
 418 7.72 tons and 0.00859 kg/kWh, respectively. These benefits become more profound at higher plant
 419 loads, which is in accordance to the relative contribution of the steam side of the plant to the overall
 420 power production.

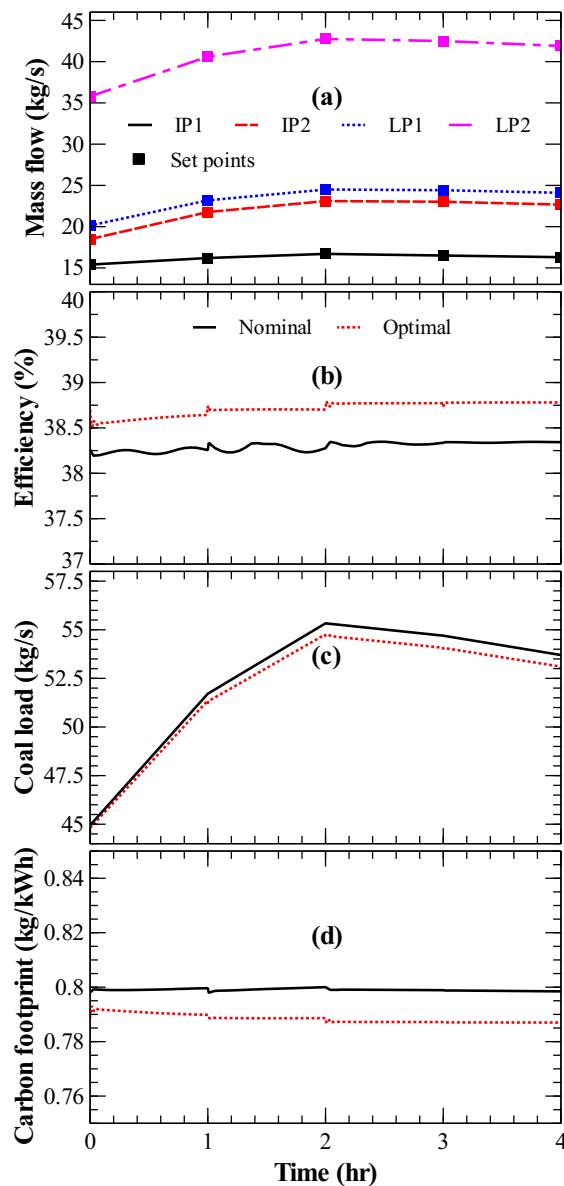


Figure 7. Dynamic optimization results of Case study II: (a) dynamic measurements and set points of mass flow rates of steam extracted from turbines; (b) coal load; (c) efficiency; (d) carbon footprint.

421 6. Conclusions

422 A dynamic power plant model was used as test-bed for dynamic simulation and optimization
423 in response to variable plant load. Plant-level controllers were added to the plant model to meet a
424 transient market power demand. Thereafter, optimization problems were formulated and solved
425 with the objective to optimize power plant efficiency at steady state and dynamically. A supervisory
426 control architecture was designed to manipulate the set points of regulatory controllers according to
427 the solution of the optimization problems explored. The optimization variables T_{SH}^{sp} and T_{Air}^{sp} , and \dot{m}_{ST}^{sp} ,
428 chosen in this work after a comprehensive literature review, enabled an improvement in time-averaged
429 efficiency of up to 1.95% points with corresponding savings in coal consumption of 184.7 tons/day
430 and carbon footprint decrease of 0.0352 kg/kWh. Comparison of the static and dynamic optimization
431 formulations serving the supervisory controller showed that dynamic optimization offers higher
432 time-averaged efficiency, fuel savings and CO₂ reduction.

433 **Author Contributions:** "Conceptualization, G.M.B. and C.C.; Methodology, G.M.B.; Software, C.C.; Validation,
434 C.C.; Investigation, C.C.; Resources, G.M.B.; Writing—Original Draft Preparation, C.C.; Writing—Review &
435 Editing, G.M.B.; Visualization, C.C.; Supervision, G.M.B.; Project Administration, G.M.B; Funding Acquisition,
436 G.M.B."

437 **Funding:** This material is based upon work supported by the National Science Foundation under Grant No.
438 1054718.

439 **Acknowledgments:** CC gratefully acknowledges support by the GE Graduate Fellowship for Innovation and
440 helpful advice and guidance from Alstom Power. This work was partially sponsored by the United Technologies
441 Corporation Institute for Advanced Systems Engineering (UTC-IASE) of the University of Connecticut. Any
442 opinions expressed herein are those of the authors and do not represent those of the sponsor.

443 **Conflicts of Interest:** "The authors declare no conflict of interest."

444 References

- 445 1. Han, L.; Bollas, G.M. Chemical-looping combustion in a reverse-flow fixed bed reactor. *Energy* **2016**,
446 102, 669–681.
- 447 2. Han, L.; Bollas, G.M. Dynamic optimization of fixed bed chemical-looping combustion processes. *Energy* **2016**,
448 112, 1107–1119.
- 449 3. Ibrahim, T.k.; Mohammed, M.K.; Awad, O.I.; Rahman, M.; Najafi, G.; Basrawi, F.; Abd Alla, A.N.; Mamat,
450 R. The optimum performance of the combined cycle power plant: A comprehensive review. *Renewable and
451 Sustainable Energy Reviews* **2017**, 79, 459–474. doi:10.1016/j.rser.2017.05.060.
- 452 4. Viswanathan, R.; Henry, J.; Tanzosh, J.; Stanko, G.; Shingledecker, J.; Vitalis, B.; Purgert, R. U.S. Program
453 on Materials Technology for Ultra-Supercritical Coal Power Plants. *Journal of Materials Engineering and
454 Performance* **2005**, 14, 281–292. doi:10.1361/10599490524039.
- 455 5. Hasler, D.; Rosenquist, W.; Gaikwad, R. New coal-fired power plant performance and cost estimates.
456 *Sargent and Lundy Project* **2009**, pp. 1–82.
- 457 6. Cziesla, F. Lünen – State-of-theArt Ultra Supercritical Steam Power Plant Under Construction Andreas
458 Senzel. *Power Generation Europe*, 2009, pp. 1–21.
- 459 7. U.S. Energy Information Administration. Energy Information Administration: Annual Energy Outlook
460 2018, 2018.
- 461 8. Masters, G.M. *Renewable and Efficient Electric Power Systems*; John Wiley & Sons, Inc.: Hoboken, NJ, USA,
462 2004; p. 712. doi:10.1002/0471668826.ch6.
- 463 9. Shah, R.; Mithulanthan, N.; Bansal, R. Oscillatory stability analysis with high penetrations
464 of large-scale photovoltaic generation. *Energy Conversion and Management* **2013**, 65, 420–429.
465 doi:10.1016/j.enconman.2012.08.004.
- 466 10. Edmunds, R.; Davies, L.; Deane, P.; Pourkashanian, M. Thermal power plant operating regimes in future
467 British power systems with increasing variable renewable penetration. *Energy Conversion and Management*
468 **2015**, 105, 977–985. doi:10.1016/j.enconman.2015.08.067.

469 11. Critz, D.K.; Busche, S.; Connors, S. Power systems balancing with high penetration renewables:
470 The potential of demand response in Hawaii. *Energy Conversion and Management* **2013**, *76*, 609–619.
471 doi:10.1016/j.enconman.2013.07.056.

472 12. Eser, P.; Singh, A.; Chokani, N.; Abhari, R.S. Effect of increased renewables generation on operation of
473 thermal power plants. *Applied Energy* **2016**, *164*, 723–732. doi:10.1016/j.apenergy.2015.12.017.

474 13. Fu, C.; Anantharaman, R.; Jordal, K.; Gundersen, T. Thermal efficiency of coal-fired power plants:
475 From theoretical to practical assessments. *Energy Conversion and Management* **2015**, *105*, 530–544.
476 doi:10.1016/j.enconman.2015.08.019.

477 14. Sanpasertparnich, T.; Aroonwilas, A. Simulation and optimization of coal-fired power plants. *Energy
478 Procedia* **2009**, *1*, 3851–3858. doi:10.1016/j.egypro.2009.02.187.

479 15. Tzolakis, G.; Papanikolaou, P.; Kolokotronis, D.; Samaras, N.; Tourlidakis, A.; Tomboulides, A. Simulation
480 of a coal-fired power plant using mathematical programming algorithms in order to optimize its efficiency.
481 *Applied Thermal Engineering* **2012**, *48*, 256–267. doi:10.1016/j.aplthermaleng.2012.04.051.

482 16. Elmqvist, H.; Brück, D.; Otter, M. Dymola User's Manual, 1996.

483 17. Process Systems Enterprise. gPROMS Advanced User Guide, 2004.

484 18. Chen, C.; Han, L.; Bollas, G.M. Dynamic Simulation of Fixed-Bed Chemical-Looping Combustion
485 Reactors Integrated in Combined Cycle Power Plants. *Energy Technology* **2016**, *4*, 1209–1220.
486 doi:10.1002/ente.201600079.

487 19. Franke, R.; Babji, B.; Antoine, M.; Isaksson, A. Model-based online applications in the ABB Dynamic
488 Optimization framework. Proceedings of the 6th International Modelica Conference, 2008, pp. 279–285.

489 20. Modelica Association. Modelica - A Unified Object-Oriented Language for Physical Systems Modeling,
490 2010.

491 21. Lind, A.; Sällberga, E.; Velutb, S. Start-up Optimization of a Combined Cycle Power Plant. Proceedings of
492 the 9th International Modelica Conference, 2012.

493 22. Skogestad, S. Control structure design for complete chemical plants. *Computers & Chemical Engineering*
494 **2004**, *28*, 219–234. doi:10.1016/j.compchemeng.2003.08.002.

495 23. Lestage, R.; Pomerleau, A.; Hodouin, D. Constrained real-time optimization of a grinding circuit
496 using steady-state linear programming supervisory control. *Powder Technology* **2002**, *124*, 254–263.
497 doi:10.1016/S0032-5910(02)00028-1.

498 24. Baillie, B.P.; Bollas, G.M. Development, Validation, and Assessment of a High Fidelity Chilled Water Plant
499 Model. *Applied Thermal Engineering* **2017**, *111*, 477–488.

500 25. Mittal, K.; Wilson, J.; Baillie, B.; Gupta, S.; Bollas, G.; Luh, P.B. Supervisory Control for Resilient Chiller
501 Plants under Condenser Fouling. *IEEE Access* **2017**, *5*, 14028–14046.

502 26. Sáez, D.; Ordys, A.; Grimble, M. Design of a supervisory predictive controller and its application to thermal
503 power plants. *Optimal Control Applications and Methods* **2005**, *26*, 169–198. doi:10.1002/oca.757.

504 27. Ponce, C.V.; Sáez, D.; Bordons, C.; Núñez, A. Dynamic simulator and model predictive control of an
505 integrated solar combined cycle plant. *Energy* **2016**, *109*, 974–986. doi:10.1016/j.energy.2016.04.129.

506 28. Chen, C.; Zhou, Z.; Bollas, G.M. Dynamic modeling, simulation and optimization of a subcritical steam
507 power plant. Part I: Plant model and regulatory control. *Energy Conversion and Management* **2017**,
508 *145*, 324–334.

509 29. Joseph, G.; Singer, P., Eds. *Combustion Fossil Power: A Reference Book on Fuel Burning and Steam Generation*,
510 4th ed.; Combustion Engineering: Windsor, Connecticut, 1991.

511 30. ISO New England. Real-time Maps and Charts, 2016.

512 31. Casella, F.; Leva, A. Modelica open library for power plant simulation: design and experimental validation.
513 Proceeding of the 2003 Modelica Conference, 2003.

514 32. Hsu, C.; Chen, C. Applications of improved grey prediction model for power demand forecasting. *Energy
515 Conversion and Management* **2003**, *44*, 2241–2249. doi:10.1016/S0196-8904(02)00248-0.

516 33. Akay, D.; Atak, M. Grey prediction with rolling mechanism for electricity demand forecasting of Turkey.
517 *Energy* **2007**, *32*, 1670–1675. doi:10.1016/j.energy.2006.11.014.

518 34. Starkloff, R.; Alobaid, F.; Karner, K.; Epple, B.; Schmitz, M.; Boehm, F. Development and validation of a
519 dynamic simulation model for a large coal-fired power plant. *Applied Thermal Engineering* **2015**, *91*, 496–506.
520 doi:10.1016/j.aplthermaleng.2015.08.015.

521 35. ABB and Rocky Mountain Institute. ABB Energy Efficiency Handbook: Power Generation – Energy
522 Efficient Design of Auxiliary Systems in Fossil-Fuel Power Plants. Technical report, 2009.

523 36. Sanpasertparnich, T.; Aroonwilas, A.; Veawab, A. Improved Thermal Efficiency of Coal-Fired Power
524 Station: Monte Carlo Simulation. 2006 IEEE EIC Climate Change Conference. IEEE, 2006, number 306, pp.
525 1–9. doi:10.1109/EICCCC.2006.277183.

526 37. Lizon-A-Lugrin, L.; Teyssedou, A.; Pioro, I. Appropriate thermodynamic cycles to be used in future
527 pressure-channel supercritical water-cooled nuclear power plants. *Nuclear Engineering and Design* **2012**,
528 246, 2–11. doi:10.1016/j.nucengdes.2011.07.024.

529 38. Suresh, M.V.J.J.; Reddy, K.S.; Kolar, A.K. Thermodynamic Optimization of Advanced Steam Power Plants
530 Retrofitted for Oxy-Coal Combustion. *Journal of Engineering for Gas Turbines and Power* **2011**, 133, 063001.
531 doi:10.1115/1.4002251.

532 39. Suresh, M.; Reddy, K.; Kolar, A.K. ANN-GA based optimization of a high ash coal-fired supercritical
533 power plant. *Applied Energy* **2011**, 88, 4867–4873. doi:10.1016/j.apenergy.2011.06.029.

534 40. Wang, L.; Yang, Y.; Dong, C.; Morosuk, T.; Tsatsaronis, G. Multi-objective optimization of coal-fired power
535 plants using differential evolution. *Applied Energy* **2014**, 115, 254–264. doi:10.1016/j.apenergy.2013.11.005.

536 41. Xiong, J.; Zhao, H.; Zhang, C.; Zheng, C.; Luh, P.B. Thermoeconomic operation optimization of a coal-fired
537 power plant. *Energy* **2012**, 42, 486–496. doi:10.1016/j.energy.2012.03.020.

538 42. Koch, C.; Cziesla, F.; Tsatsaronis, G. Optimization of combined cycle power plants using
539 evolutionary algorithms. *Chemical Engineering and Processing: Process Intensification* **2007**, 46, 1151–1159.
540 doi:10.1016/j.cep.2006.06.025.

541 43. Espatolero, S.; Cortés, C.; Romeo, L.M. Optimization of boiler cold-end and integration with the steam
542 cycle in supercritical units. *Applied Energy* **2010**, 87, 1651–1660. doi:10.1016/j.apenergy.2009.10.008.

543 44. Regulagadda, P.; Dincer, I.; Naterer, G.F. Exergy analysis of a thermal power plant with measured boiler and
544 turbine losses. *Applied Thermal Engineering* **2010**, 30, 970–976. doi:10.1016/j.applthermaleng.2010.01.008.

545 45. Kakaras, E.; Ahladas, P.; Syrmopoulos, S. Computer simulation studies for the integration of an external
546 dryer into a Greek lignite-fired power plant. *Fuel* **2002**, 81, 583–593. doi:10.1016/S0016-2361(01)00146-6.

547 46. Tatjewski, P. *Advanced Control of Industrial Processes; Advances in Industrial Control*, Springer London:
548 London, 2007. doi:10.1007/978-1-84628-635-3.

549 47. The Mathworks Inc.. MATLAB, 2013.

550 48. Functional Mock-up Interface for Model Exchange, Version 1.0, 2010.

551 49. Chaibakhsh, A.; Ghaffari, A. Steam turbine model. *Simulation Modelling Practice and Theory* **2008**,
552 16, 1145–1162. doi:10.1016/j.simpat.2008.05.017.