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Abstract: The increasing variability in power plant load, in response to a wildly uncertain electricity 
market and the need to to mitigate CO2 emissions, lead power plant operators to explore advanced 
options for efficiency optimization. Model-based, system-scale dynamic simulation and optimization 
are useful tools in this effort, and the subject of the work presented here. In prior work, a dynamic 
model validated against steady-state data from a 605 MW subcritical power plant was presented. 
This power plant model is used as a test-bed for dynamic simulations, in which the coal load is 
regulated to satisfy a varying power demand. Plant-level control regulates plant load to match an 
anticipated trajectory of the power demand. The efficiency of the power plant operating at varying 
load is optimized through a supervisory control architecture that performs set point optimization 
on the regulatory controllers. Dynamic optimization problems are formulated to search for optimal 
time-varying input trajectories that satisfy operability and safety constraints during the transition 
between plant states. An improvement in time-averaged efficiency of up to 1.8% points is shown 
feasible with corresponding savings in coal consumption of 184.8 tons/day and carbon footprint 
decrease of 0.035 kg/kWh.

Keywords: Power plants, supervisory control, dynamic simulation, dynamic optimization25

1. Introduction26

The excessive emissions of CO2 from fossil-fueled power plants contribute to the greenhouse27

effect and global warming. Increasing the efficiency of power generation cycles and integration with28

CO2 capture units, are nowadays accepted as the most promising short-term approaches to reducing29

CO2 emissions while we transition to renewable and carbon free energy sources [1,2]. Efficiency30

improvements can be achieved through the optimization of power plant operating strategies or31

modification of the plant design. For instance, new fossil-fueled power plants use a combination32

of steam and gas turbines to generate electricity, resulting in thermal efficiencies as high as 61% [3].33

Moreover, modern coal-fired Rankine cycle systems can achieve efficiencies as high as ∼47%, using34

ultra-supercritical boilers [4]. For instance, the commercial power plant of Lünen (Germany) burns35

low-sulfur hard coal [5], at an efficiency up to 46%, in a 750 MW ultra-supercritical once-through36

boiler, operating at steam conditions of 600◦C and 280 bar [6]. Nonetheless, subcritical coal-fired37

steam power plants that operate on the principle of the Rankine Cycle still serve more than 1/3 of38

the electricity demand in the U.S. [7]. Subcritical power plants, operating at pressure lower than 22039

bar, have a nominal efficiency of 37% [8]. Compared to supercritical and ultra-supercritical plants, the40

more common subcritical plants are advantageous in terms of lower installation costs, operating and41

maintenance experience [5,7]. Therefore, optimization of the efficiency of subcritical power plants is42

the first realistic step in our efforts to reduce CO2 emissions from the power sector.43

Due to seasonal and daily fluctuations in power demand, and new deployment programs focused44

on renewable energy, dynamic simulation and optimization are required for power plants in order to45
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respond to the resulting time-varying power demand. The contribution of electricity generation from46

renewable energy sources in the world will expand from the current 21% to 29.8% in 2040 [7]. The47

impact of this increase in penetration of renewable sources has been explored by many researchers.48

For example, Shah et al. [9] showed that the higher penetration of large-scale photovoltaic plants49

in the power grid will lead to significant variations in the power flow across the grid and unstable50

power generation profiles for the balancing conventional plants. The work by Edmunds et al. [10]51

showed that today’s power plants are subject to more intense ramping operations, due to the increasing52

variable renewable penetration. Critz et al. [11] focused on the challenges arising from the inability to53

accurately forecast renewable power generation. Correspondingly, Eser et al. [12] showed that the54

high penetration of renewable energy sources will result in an increase of periodic start-ups of thermal55

power plants. Thus, the simulation of the dynamic behavior of the integrated electricity sector and56

in particular the dynamicity of the fossil-fueled power plants, which will provide the balance power57

(between renewables input and market demand) is increasingly of interest to improve productivity58

and stability, and reduce cost and emissions.59

The efficiency of conventional fossil–fueled power plants that are based on the Rankine Cycle60

mostly depends on the steam temperature and pressure [4], with the majority of previous work on61

efficiency optimization of these plants focusing on steady-state analyses. The work by Fu et al. [13]62

showed an average efficiency increase of 0.1% points for every increment of 8◦C in boiler feedwater63

temperature, every decrement of 4.5◦C in flue gas temperature, and every increment of 10 bar in64

main steam pressure, compared to a reference case with an efficiency of 45.5%. Sanpasertparnich and65

Aroonwilas [14] presented potential efficiency improvements of up to 8.88% points for subcritical66

coal-fired power plants. They identified the preheated air temperature, main steam temperature and67

the pressure of streams extracted from the high-, intermediate-, and low-pressure turbines (HP, IP68

and LP, respectively), as the most critical variables in the optimization of power plant performance.69

In the work by Tzolakis et al.[15], an absolute net efficiency gain of 0.55% was shown to be feasible,70

by reducing the mass flow rate of the steam exiting the HP turbines and increasing the mass flow71

rate of the steam exiting the IP and LP turbines. These significant efforts in the area of steady-state72

optimization of power plants paved future work on dynamic optimization. Moreover, advancements73

in process modeling tools, such as Dymola [16] and gPROMS [17], have made it easier to simulate74

these processes dynamically. For instance, Chen et al.[18] developed a Dymola [16] dynamic model of75

a combined cycle power plant integrated with chemical-looping combustion, with the combustion76

process optimized in gPROMS [17] to maximize the power plant efficiency. Franke et al. [19] presented77

a model-based, dynamic optimization framework exploiting the Modelica language [20] for improving78

power plant performance. Their work illustrated efficiency benefits from applying offline optimization79

results to online power plant operations. Lind and Sallberg [21] used modern acausal simulation and80

optimization tools to optimize the start-up procedure of a combined cycle power plant. Their analysis81

showed that the thermal stress in the heat recovery steam generator is the major constraint limiting the82

rapid start-up of the gas turbines to full load.83

One practical approach to improve the efficiency of existing fossil-fueled power plants is to deploy84

supervisory control schemes targeted to efficiency optimization. Supervisory control architectures are85

often used to perform tasks of process optimization without changing the plant infrastructure and86

design. Skogestad [22] presented a systematic procedure for designing advanced control structures at87

the supervision level for complex chemical plants. The critical first steps in designing a supervisor88

logic are to define the operational and economic objectives and the available degrees of freedom.89

Common degrees of freedom include the set points of the regulatory controllers, system boundaries90

not controlled and system parameters tunned to a particular operating scheme. For instance, Lestage91

et al. [23] presented linear supervisory control designs for constrained real-time optimization of an ore92

grinding plant, in which they optimized the set points of the local controllers, to maximize throughput.93

Baillie and Bollas [24] presented the key steps in the development of a high-fidelity model for a chiller94

plant which was used in supervisory resilient control architectures for plant optimization under fault95
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scenarios by Mittal et al. [25]. Obviously, supervisory control is a promising approach for efficiency96

optimization of power plants, wherein there exists a large number of regulatory controllers, which97

must be maintained for safety and performance reasons. In one such effort, Sáez et al. [26] developed98

a supervisory algorithm based on adaptive predictive control to optimize the operation of the gas99

turbine of a combined cycle power plant in Chile. They showed the potential of 3% fuel consumption100

savings, by manipulating variables such as the fuel flow, air flow and steam flow. Ponce et al. [27]101

presented a dynamic simulator of an integrated solar combined cycle power plant, incorporating a102

supervisory control strategy. Fuel savings of 1.7%∼3.7% were shown feasible, by manipulating the103

set points of the regulatory controllers of the steam pressure, gas turbine power and steam turbine104

power. These efforts focused mostly on the optimization of a few power plant components instead105

of solving a problem that maximizes the power plant efficiency using all or most of the degrees of106

freedom. In this work, the optimization problem serving the supervisory controller deals with the107

integrated coal-fired steam power plant.108

In prior work [28], a power plant model was developed and validated against steady-state109

data from a fossil-fueled subcritical power plant with a reheat, regenerative cycle [29]. The power110

plant modeled exhibits full-load power generation of 605 MW at efficiency of 38.7%. Conventional111

proportional-integral-derivative (PID) controllers were incorporated into the system model. Dynamic112

simulation of the power plant operating with step changes in fuel load, showed that the controllers113

are robust in maintaining the controlled variables at set point. In this work, open-source data of114

time-varying power demand along with its forecast from the New England area are used to study115

this plant at realistic operating conditions [30]. A fuel load controller is implemented to meet the116

time-varying power demand, and controllers are added to adjust the air flow and water flow for117

time-varying load. Supervisor control strategies are applied for static and dynamic optimization of118

the power plant efficiency. This optimization is accomplished by manipulating the set points of the119

regulatory controllers of the temperature of the superheated steam and preheated air, and the mass120

flow rates of steam extracted from the steam turbines. Steady state and dynamic optimization results121

are compared and discussed in an effort to explore the value proposition of each.122

2. Power plant studied and plant model123

The power plant studied and simulated in prior work [28] was the fossil fuel-fired subcritical124

power plant shown in Figure 1, with operating conditions at full load as reported by Singer [29]. The125

plant employs a reheat, regenerative cycle to produce 605 MW electricity by burning fossil-fuel, with126

nominal turbine conditions of 174 bar and 538◦C steam. Combustion of bituminous B coal [5] with127

preheated air produces hot flue gas that evaporates and superheats water. The feedwater is converted128

to high temperature superheated steam, through a series of heat exchange steps in the boiler, including129

the Economizer, Evaporator, Reheater, and Superheater. The superheated steam produced in the130

boiler is expanded in a series of high-pressure (HP), intermediate-pressure (IP) and low-pressure (LP)131

turbines connected to a generator to convert the heat to mechanical torque and produce electricity.132

The steam exiting the last LP turbine is condensed in the Condenser. The condensate is preheated133

in four heat exchange steps, including a deaerator and three water preheaters, which are supplied134

with steam streams extracted from the HP, IP, and LP turbines. Three pumps, namely the condensate135

booster pump, condensate pump and boiler feed pump, are used for re-circulating the water after136

being condensed in the condenser. The preheated condensate re-enters the boiler at high pressure and137

closes the loop.138
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Figure 1. Reheat regenerative cycle, 605 MW subcritical-pressure fossil power plant with control system
design [29].

The plant of Figure 1 was simulated with a dynamic power plant model developed in Dymola139

[16] using the Modelon ThermalPower library [31]. The Modelica language used in Dymola is a140

non-proprietary, object-oriented, equation-based language for the modeling of complex physical141

systems [20], well-suited for the objective of large-scale dynamic simulation of power plants. A142

comprehensive list of the operating data of the power plant was provided in prior work, and the plant143

model was provided as Supporting Information to that work [28]. The model of the plant operating144

at full load was shown to be in excellent agreement with steady state data from the reference power145

plant. Figure 1 also shows the design of the control system of that plant, including controllers for146

safety regulation (marked with black solid lines), plant-level controllers (marked with blue dashed147

lines), and controllers for plant optimization (marked with red dotted lines). The regulatory control148

system, including the controllers of superheated steam temperature, and of the water level in the Drum,149

Condenser and Deaerator, was discussed in detail in prior work [28]. This regulatory control system150

was tunned using bump tests and the dynamic responses of the model were assessed qualitatively in151

terms of robustness and plant stability. The multilayer control scheme designed in this work and the152

controllers required to meet the time-varying power load are discussed in the following.153

3. Power plant under time-varying power demand154

Extensive studies of the power demand and its forecasting have resulted in excellent models155

of the power demand per market sector, such as gray-box prediction models, to forecast real-time156

electricity demand with an error less than 8% [32,33]. The forecasted power demand is typically157

used by utility companies to predict the grid load and maintain service reliability. In this work, the158

data of power demand (along with its forecast) in the New England area were used. In particular,159

the data of the day of April 17, 2016 was used as a realistic sample of power demand fluctuations160

[30]. The duration for the temporal forecasted power demand studied was 24 hours. To meet the full161

power load of the reference power plant (605MW), the ISO New England data (maximum value is162

18000 MW) was uniformly scaled–down, as shown in Figure 2 (a). The underlying assumption in this163

normalization was that the power demand from one power plant is proportional to the total power164

consumed. Therefore, it was considered that a fraction of the total power demand (scaled by a constant165

factor) and its daily fluctuation need to be met by one power plant. The reality with renewable inputs166

in the grid is, as mentioned, a more abruptly fluctuating load for the power plant. It is thus anticipated167
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that the efficiency gains from the analysis presented herein are a lower bound to the potential efficiency168

gains when renewable energy becomes a more dominant contribution to the electric grid.169
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Figure 2. Dynamic performance of the power plant model: (a) power demand and power generated by
the plant model; (b) mass flow rates of coal, preheated air and feedwater; (c) water level in the Drum;
(d) water level in the Condenser; (e) water level in the deaerator.

In prior work [28], the power plant model was validated dynamically, showing fast responses to170

sudden changes in coal load. The regulatory control system incorporated in the power plant model171

was shown to be robust in maintaining controlled variables at set points. Here, plant-level controllers172

were added to the plant model, as shown in Figure 1, to adjust the coal load, preheated air flow and173

feedwater flow so that the plant meets the time-varying power load of Figure 2(a). The mass flow rate174

of feedwater (ṁFW) circulating in the plant and the mass flow rate of prehreated air (ṁAir) mixed with175
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the fuel were assumed to be proportional to the power load [34]. The mass flow rates of feedwater176

and preheated air were set to adjust with plant load, by multiplying the nominal ṁAir and ṁFW by177

the temporal power load change ratio. The mass flow rate of coal was adjusted by a PID fuel load178

controller to match the temporal power demand. Table 1 presents the tunning parameters of the179

feedforward control of water and air feed rates and the PID controller of fuel load. The measurement180

for the fuel load controller is the power generation (P), the manipulated variable is the coal mass flow181

(ṁCoal), and the set point is the temporal profile of the normalized power demand of the New England182

area [30]. These new controllers were tuned following standard methodologies discussed elsewhere183

[28]. Figure 2(a) shows that the power generated by the plant model matches the power demand184

of the normalized New England area data [30]. Figure 2(b) shows the transient responses of ṁCoal ,185

ṁAir and ṁFW to the dynamically varying power demand of Figure 2(a). Figures 2(c–e) show that the186

safety–critical regulated variables (water levels in the drum, condenser and deaerator) are robustly187

controlled, and exhibit negligible oscillations. The dynamic performance of the plant model over the188

entire 24-hour period suggests that the model provides a robust test-bed of the plant physics and its189

controls, and is used in the following for steady state and dynamic optimization.190

Table 1. Controllers for the power plant in response to a time-varying power load.*

Feedforward control: Air and feedwater controllers
Controlled variables ṁAir ṁFW

PID control: Fuel load controller
Controlled variables Manipulated variables Kp Ki Kd
P ṁCoal 1e-8 1e-10 1e-6

* P: Power generation; ṁAir: Mass flow rate of air; ṁFW : Mass flow rate of feedwater; ṁCoal : Mass flow rate of
coal; Kp: Coefficient of the proportional term; Ki: Coefficient of the integral term; Kd: Coefficient of the derivative
term.

4. Optimization for an integrated power plant191

4.1. Objective and Optimization Variables192

The objective of plant-level optimization is to maximize the efficiency of the power plant while193

operating at steady state, or the integral of the efficiency over time if the power plant is operating194

in a transient fashion. This was accomplished by calculating optimal set points for the regulatory195

controllers, without violating operability and safety constraints. The plant efficiency was calculated as196

[29]:197

η =
PST − PPumps

ṁCoal LHVCoal
(1)

where η is the efficiency of the plant, ṁCoal is the mass flow rate of coal, LHVCoal is the lower heating198

value of coal, PST is the power generated by steam turbines, and PPumps is the power consumed199

by pumps. Here, high-volatile bituminous B coal with an average LHV of 28 MJ/kg was used [5].200

Other auxiliary energy losses were not not considered in Eq.(1), as previous work has shown that201

auxiliary efficiency losses are small, often of the order of ∼2 MW for coal-fired steam cycles for a202

plant size similar the one studied here [29,35]. As discussed in the introduction, the power plant203

efficiency of Eq.(1) can be improved by manipulating several plant variables. Table 2 summarizes the204

optimization variables, ranges of variability and the efficiency improvements achieved in relevant205

previous work. In the majority of previous analyses [13–15,36–44], plant efficiency optimization was206

performed by manipulating the temperature of superheated steam (TSH). For example, Xiong et al.207

[41] showed that the higher superheated steam temperature increases the power generated by the208

HP turbine, improving cycle efficiency. Several other variables have been explored in the literature209

for their capability to improve plant efficiency. Sanpasertparnich et al. [14,36] presented the impact210

of preheated air temperature (TAir) on power plant efficiency. Tzolakis et al. [15,42] optimized the211
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plant efficiency at full load, by manipulating the mass flow extracted from steam turbines (ṁST , which212

includes ṁHP, ṁIP and ṁLP). Other optimization variables, such as the moisture content of coal213

[45], mass flow rate of feedwater [42], isentropic efficiency of turbines [41], temperature of flue gas214

exiting the boiler [43], and the pressure of steam extracted from turbines [14,36], require changes in215

the existing infrastructure, and were not considered here. In summary, the common plant efficiency216

optimization variables TSH , TAir, and ṁST were chosen in this work. For the purpose of illustration,217

two optimization cases were considered. Case study I presents plant optimization by manipulating218

TSH and TAir within an operation horizon of 24 hours. Case study II presents plant optimization by219

manipulating ṁST with an operation horizon of 4 hours. The inputs of each optimization problem are220

discussed in detail in the following.221
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Table 2. Review of power plant optimization efforts and respective variables.*

Ref. ∆η Optimization variables
(%) TSH (◦C) ṁIP1/ṁIP2

/ṁLP1/ṁLP2 (kg/s)
TAir (◦C) ṁFW

(kg/s)
pSH (bar) β (%) Others

[14,36] 7.8 [530,600] [3.9,19.6]/
[6.2,43.3]/
[15.1,28.7]/
[11.1,42.1]

[166,190] [250,350] [166,190] [11.1,17.6]

[15] 0.55 [0,30.8]/ [0,51.2]/ [0,
21.1]/ [0,0.94]

[37] 0.41 [600,625] [16,26]/ [14,24]/
[12.6,24]/ [34,57]

[400,475] [20,30]

[38,39] 2.8 [550,700] [35,275] [230,350] Excess air∈[0,25%],
TRH ∈[580,620]

[40] 2 [550,700] [230,350] ηST ∈[0.75,0.87],
pHP/IP/LP(bar)
∈[60/9/0.0356,
80/25.5/2.68]

[13] 5.9 [487,1076] [150,450]
[41] 2.5 [535,545] ηST ∈[0.8,0.95]
[42] 1.3 [485,537] [45,57]
[43] 0.79 [115,278] [21,38.4] TFG(◦C)∈[85,125]
[44] 3.5 [460,530] [64,110] pCON(bar) ∈[0.01,0.05]

* TSH : Temperature of superheated steam; ṁHP: Mass flow rates of steam extracted from high-pressure turbine; ṁIP: Mass flow rates of steam extracted from
intermediate-pressure turbine; ṁLP: Mass flow rates of steam extracted from low-pressure turbine; ; pSH : Pressure of the superheated steam; TAir: Temperature of the
preheated air; ṁFW : Mass flow rate of feedwater; β: Coal moisture content; ηST : Isentropic efficiency of steam turbines; TRH : Temperature of reheat steam; TFG: Temperature of
flue gas; pHP,IP,LP: Pressure of streams extracted from HP, IP and LP steam turbines; pCON : Condenser pressure.
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4.2. Supervisory control222

The control system of a plant is usually divided into several layers, typically separated by different223

time scale requirements and objectives. Control architectures include regulatory control (seconds),224

supervisory control (minutes), local optimization (hours), site-wide optimization (days) and scheduling225

(weeks) [22]. Supervisory control can be designed to manipulate regulatory control set points and the226

remaining degrees of freedom of the plant (if any) to optimize the plant efficiency, within constraints227

imposed by the local controllers [46]. The critical first steps in designing a supervisor logic are to define228

the operational and economic objectives and the available degrees of freedom. Common degrees of229

freedom include the set points of the regulatory controllers, system boundaries not controlled and230

system parameters tunned to a particular operating scheme.231

Figure 3 illustrates a scheme for such a supervisory control strategy for the power plant studied.232

The control system includes the supervisory control, regulatory control and plant level control. The233

regulatory control structure includes optimization controllers (marked as red dotted lines in Figure234

1), which are the regulatory controllers used for plant optimization; and safety controllers (marked235

as black solid lines in Figure 1), which regulate the level of water in the drum, condenser and236

deaerator. The main function of the supervisory control is to update the set points of the optimization237

controllers (ysp
O ), to maximize the plant efficiency of Eq.(1). The plant level controllers (marked with238

blue dashed lines in Figure 1) adjust the mass flow rates of coal, preheated air and feedwater according239

to the market power demand (ysp
P ). The set points of the control system include the set points of240

the safety controllers, plant-level controllers and optimization controllers, i.e. ysp = {ysp
S , ysp

P , ysp
O }.241

These controllers manipulate control inputs (u = {uS, uP, uO}) to maintain the controlled variables242

at their set points. In principle, one should consider disturbance (ωx) and measurement noise (ωy),243

which are responsible for a difference (e) between model (ypred) and power plant outputs (ymeas). An244

estimator could update model parameters (θ̂) and filter plant states (x), to eliminate this model–plant245

mismatch. In this work, disturbance and measurement noise are not considered, mostly for reasons of246

simplifying the analysis, as the efficiency benefits are not affected by them (although the robustness247

of the supervisor will be). Therefore,ωx andωy were considered negligible, and data filtering and248

state estimation (blocks in gray in Figure (3)) are not discussed. The supervisory control updates the249

optimal ysp
O according to an objective function maximizing Eq.(1) in a formulation that includes the250

system model equations as discussed in the following.251
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Figure 3. Multilayer control scheme for reheat regenerative cycle, 605 MW subcritical-pressure
coal-fired power plant. ysp

O : Set points of the optimization controllers; ysp
S : Set points of the safety

controllers; ysp
P : Set points of the plant level controllers; uO: Control inputs of the optimization

controllers; uS: Control inputs of the safety controllers; uP: Control inputs of the plant level controllers;
u: Control inputs; ωx: Disturbance; ωy: Measurement noise; ypred: Predicted outputs; ymeas:
Measured outputs; y: System outputs; e: Error; θ̂: Estimated model parameters; f: System model.

4.3. Optimization formulation252

As described previously, the set points of the optimization controllers are manipulated by253

the supervisory layer as first-level variables to improve plant efficiency (η), Eq.(1). This efficiency254

optimization also translates to coal consumption reduction and decrease of the plant carbon footprint.255

The intent of this work was to compare steady-state and dynamic optimization results of the plant256

of Figure 2 to those of the plant operating at nominal conditions. This comparison also includes an257

exploration of the added benefits of dynamic optimization, compared to those from steady state optimal258

operation. First, steady state optimization of the power plant operating at full load was performed by259

calculating optimal set points (constant with time) for the optimization controllers (ysp
O ), and specifically260

the set points of the superheat steam temperature controller, preheat air temperature controller, and261

mass flow controllers of steam extracted from steam turbines. The steady state optimization problem262

formulation is shown in Eq.(2):263

max
ysp

O

η(y, uP)

subject to:
f(x, u,θ) = 0,

u = F(ysp
O , y)

y = h(x, u,θ),

xmin ≤ x ≤ xmax,

umin ≤ u ≤ umax,

ysp,min ≤ ysp ≤ ysp,max,

ymin ≤ y ≤ ymax,

(2)

where the plant efficiency η is a function of power plant outputs (y) and admissible variable values (uP)264

determined by the updated regulatory controllers level controller set points ysp
O ; f(·) is the vector of265

steady state equations describing the system in terms of states, x, admissible inputs, u, and parameters,266
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θ; and F describes the control functions, with y being the measured system outputs, mapped to x, u,267

and θ through h(·).268

Dynamic optimization was performed for the reference power plant operating under a269

time-varying power demand normalized from the New England area data [30]. The objective was to270

maximize the integral of plant efficiency over a predetermined time horizon, τ. This was accomplished271

by calculating time-varying optimal set points for the optimization controllers. The generic formulation272

of the dynamic optimization problem solved for the power plant of Figure (1) is presented in Eq.(3),273

where f is the system of differential algebraic equations describing the conservation of mass and energy,274

x is the vector of temporal state variables, x0 is the vector of initial state variables, ysp
O is the temporal275

set points of the optimization controllers, y are the temporal system outputs, tn is the vector of control276

action time points, with constant interval, τn, τ is the optimization horizon, and t is the time.277

max
ysp

O (tn)

∫ τ

0
η(ysp

O (t), uP(t))dt

subject to:
f(ẋ, x, u,θ, t) = 0,

u = F(ysp
O (tn), t),

y = h(x, u,θ, t),

x(t = 0) = x0,

xmin ≤ x ≤ xmax,

umin ≤ u ≤ umax,

ysp,min ≤ ysp ≤ ysp,max,

ymin ≤ y ≤ ymax,
t ∈ [0, τ], tn ∈ [0, τ],

(3)

Table 3 shows optimization variables bounds and time interval constraints for the problems of Eqs.278

(2–3) of the two cases studied. The set points of the controllers regulating TSH , TAir, and ṁST (including279

ṁIP1, ṁIP2, ṁLP1 and ṁLP2) were manipulated by the supervisory control layer as degrees of freedom280

seeking for an optimal input. In Case study I, only the set points of TSH and TAir were manipulated.281

Although not shown in Fig. 2, preheating of the air fed to the combustor to TAir was accomplished by282

manipulating the mass flow of the Economizer exhaust gas sent to the air preheater (with the balance283

being waste heat). In Case study II plant optimization was performed by manipulating the set points284

of ṁST , i.e. the set points of the mass flow rates of steam streams extracted from the first IP turbine285

(IP1), the second IP turbine (IP2), the first LP turbine (LP1), and the second LP turbine (LP2) (ṁIP1,286

ṁIP2, ṁLP1, and ṁLP2, respectively). The ranges of the admissible inputs, shown in Table 3, are based287

on common practice and previous work [13–15,27,36,38,41–43,45]. The optimization horizon, τ, was288

set to 24 hours in Case study I and 4 hours in Case study II, and the control action interval, τn, was set289

to 1 hour. Large control actions where not penalized in the optimization problems solved, as the plant290

load profiles matched during the real-time plant optimization were relatively smooth. For instance291

the temperature of the superheated steam feeding the steam turbine was seen to change gradually292

over time in response to load changes, which is adequate for the protection of the steam turbines by293

thermal stress [14,36].294
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Table 3. Inputs for the optimization problems studied.

Case I

Admissible
inputs (ysp

O )
Tsp

SH(◦C) Tsp
Air(

◦C)

Min 520 150
Max 610 250

Case II

Admissible
inputsa (ysp

O )
ṁsp

IP1 (kg/s) ṁsp
IP2 (kg/s) ṁsp

LP1 (kg/s) ṁsp
LP2 (kg/s)

Min 16 10 10 28
Max 28 28 28 47

Temporal inputsb

τn(hr) 1
τ(hr) 24 for Case I (4 for Case II)

a ṁIP1: Mass flow rate of steam stream extracted from IP1 turbine; ṁIP2: Mass flow rate of steam stream extracted
from IP2 turbine; ṁLP1: Mass flow rate of steam stream extracted from LP1 turbine; ṁLP2: Mass flow rate of steam
stream extracted from LP2 turbine; sp: Set point.
b If the plant is operating under time-varying power load.

5. Results295

For each case study in the following, the static optimization of the power plant operating at296

full load with the optimization formulation of Eq.(2) is discussed first, followed by the dynamic297

optimization of the power plant operating under time-varying power load with the optimization298

formulation of Eq.(3). In the results discussed in the floowing, the power plant was formulated299

with the object-oriented language Modelica [20], in the commercial software Dymola [16] and set300

point optimization was performed in Matlab [47] using an interior-point algorithm. Model exchange301

between the software packages of Dymola and Matlab was accomplished with use of the Functional302

Mockup Interface, a tool-independent standard for seamlessly integrating models in various simulation303

environments [48].304

5.1. Case study I: optimization variables TSH and TAir305

Table 4 presents steady state optimization results at full load using the superheated steam306

temperature set point, Tsp
SH , and that of the preheat air temperature, Tsp

Air, as the optimization variables.307

Manipulation of Tsp
SH and Tsp

Air led to a power plant efficiency improvement from 38.3% to 40.23%. This308

efficiency improvement translates to fuel savings of 3.78%, with the fuel flow rate decreasing from309

56.38 kg/s to 54.25 kg/s. The carbon footprint of the plant also decreased from 0.8 kg/kWh to 0.77310

kg/KWh. This efficiency optimization was accomplished by increasing TAir from 200◦C to 248◦C,311

and increasing TSH from 538◦C to 560◦C. This is consistent with earlier reports [13,14,27,38,41–43],312

showing that increasing TSH and TAir translates to efficiency improvements. The higher TSH enables313

the HP turbine to produce the same mechanical torque at lower coal consumption, while increasing314

TAir recovers more waste heat from the boiler exhaust gas. It should be noted that the nominal steady315

state data used as baseline in Table 4, are as reported by Singer [29] for the reference power plant, and316

correspond to the design point of this plant. In principle the set points for TSH and TAir reported by317

Singer refer to an optimal plant configuration. The further improvement presented here could relate to318

better integrated plant-level optimization, model-plant differences and relaxation of plant constraints319

compared to the study reported in [29]. For an off–design operating point the efficiency benefits of320

solving Eq.(2) would, of course, have been much higher.321
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Table 4. Steady state optimization results of Case study I.

System output Nominal Optimal

Tsp
SH (◦C) 538 560

Tsp
Air (◦C) 200 248

η (%) 38.3 40.23
ṁCoal (kg/s) 56.38 54.25
carbon footprint (kg/kWh) 0.8 0.77

The results of dynamic optimization for a horizon of 24 hours of plant operation are presented322

in Figure 4. Data and plant performance results are in response to time-varying power demand323

normalized from the New England area data [30] shown in Figure 4(a). In the absence of disturbances324

and and noise, the solution of Eq.(3) in the period t = 0− τ(= 24hr) is equivalent to an off-line325

optimal control problem and is valid for the entirety of the time horizon considered. The optimization326

variables were Tsp
SH and Tsp

Air, but in this case they were updated in time intervals, τn = 1hr. Figure327

4 presents the dynamic power plant performance at nominal and optimal operation. The nominal328

dynamic operation is the result of constant Tsp
SH at 538◦C and Tsp

SH at 200◦C. Figures 4(d) and 4(e) show329

that the controlled variables, TSH and TAir, are robustly controlled at their optimal set points by the330

regulatory controller. The values of TSH and TAir from the dynamic optimization solution are always331

higher than their respective nominal values. In particular, Figure 4(d) shows that the optimal Tsp
SH332

trajectory is inversely proportional to that of the plant load. The optimal temporal Tsp
SH for a plant333

load higher than maximum, is higher than the 560◦C of the optimal steady state at full load. This334

enhances heat transfer from the flue gas side to the steam side in the Superheater, at low plant load.335

Figure 4(e) shows that the optimal temporal profile of the temperature of air preheated by the flue336

gas exiting the boiler, is varying proportionally to plant load. The temperature of the exhaust gas is337

also proportional to the power load, due to the time-varying mass flow rates of feedwater, air and338

coal load. As Figure 4(c) shows, the improvement in time-averaged efficiency is 1.8% points. This339

efficiency improvement translates to coal savings of 184.8 tons/day (Figure 4(d)) and time-averaged340

carbon footprint decrease of 0.0351 kg/kWh (Figure 4(e)). In summary, the optimized power plant341

operates at higher TAir(t) and TSH(t), and this is consistent with the results of steady state optimization.342

343
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Figure 4. Dynamic optimization results of Case study I: (a) time-varying power load; (b) coal load; (c)
carbon footprint; (d) temperature of preheated air; (e) temperature of superheated steam; (f) Power
plant efficiency.

Figure 5 presents the dynamic performance of the power plant operating with constant nominal344

set points for TSH and TAir, constant optimal Tsp
SH and Tsp

Air (from the steady state optimization solution),345

and with time-varying optimal Tsp
Air and Tsp

SH (set by the dynamic optimization solution). The coal346

consumption and carbon footprint of the power plant operating with set points calculated by the347

static and dynamic optimization problem formulations are both lower than that by the power plant at348

nominal operation. The power plant operating with set points determined by dynamic optimization is349

the most efficient with the lowest coal consumption and the smallest carbon footprint. As shown in350

Table 5, the fuel savings accomplished by the power plant with steady state optimization are 160.9351

tons/day, whereas the fuel savings accomplished with dynamic set point optimization are 184.8352

tons/day. The reduction of coal load and decrease of carbon footprint of the dynamically optimal353

operation are pronounced when the power plant is operating at lower load. At different loads the354

plant has slightly different optimal regulatory control points compared to those of the steady state355

optimization at full load, which is exploited by the formulation of Eq.(3). As shown in Figure 4(d), the356

values of Tsp
SH calculated from Eq.(3) at low loads are higher than the constant Tsp

SH calculated from Eq.(2)357

at full load. Dynamically optimizing Tsp
SH improves the heat transfer in the Superheater at low loads358

and converts more heat from the superheated steam to mechanical torque. This increase in mechanical359

torque leads to improved power generation and efficiency. Moreover, the temperature profile of the360

preheated air in Figure 4(e) shows that the values of Tsp
Air calculated from Eq.(3) at low loads are lower361

than the constant Tsp
Air calculated from Eq.(2) at full load. At low loads, heat transfer between the water362

side and flue gas side in the boiler is enhanced, leading to lower flue gas temperatures, which in turn363

are to preheat the air. Thus, the supervisor drives Tsp
Air down to satisfy system constraints. Depending364

on the dynamic response times of the plant and the selection of the interval between control actions,365

τn, a multi-step steady state optimization problem could have resulted to similar performance benefits366

as those of Eq.(3). Nonetheless, Eq.(3) is more generic and robust for a dynamic system. It should367

be noted that one could execute the same analysis but with an objective function that maximizes368
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profit for varying electricity prices. This would have resulted in different plant load profiles, but the369

optimization procedure (not the objective function) and results would have been similar.370
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Figure 5. Comparison of the dynamic performance of the power plant with nominal operation set
points, steady state optimal set points, and dynamic optimal set points: (a) coal load; (b) carbon
footprint.

Table 5. Comparison of static and dynamic optimization of the power plant for Case study I.*

Output Static optimization Dynamic optimization
∆ṁcoal (tons/day) 160.9 184.8
∆c̄ f (kg/kWh) 0.0303 0.0351
∆ṁCO2 (tons/day) 440.2 511.9

* ∆ṁcoal : Coal savings; ∆c̄ f : Decrease of the time-averaged carbon footprint; ∆ṁCO2 : reduction of CO2 emissions.

5.2. Case study II: Optimization variables ṁIP1, ṁIP2, ṁLP1 and ṁLP2371

As shown in Figure 1, four proportional−integral (PI) controllers were used to regulate the mass372

flow rates of steam extracted from the turbines. The parameters of these controllers are presented in373

Table 6. These controllers manipulate the respective valves to regulate the mass flow rates of streams374

extracted from the IP1, IP2, LP1 and LP2 turbines. In this case study, the supervisory control variables375

are the set points of the mass flow controllers of steam extracted from turbines, namely the set points376

of ṁIP1, ṁIP2, ṁLP1, and ṁLP2.377
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Table 6. PI Controllers regulating the mass flow rates of steam extracted from turbines.

Controllers IP1 IP2 LP1 LP2
Controlled
variables

ṁIP1 ṁIP2 ṁLP1 ṁLP2

Manipulated
variables

Valve opening Valve opening Valve opening Valve opening

Kp 0.1 0.1 0.1 0.1
Ki 0.0001 0.0001 0.0001 0.0001

As before, steady state optimization was first performed for the plant operating at full load.378

The set points of ṁIP1, ṁIP2, ṁLP1 and ṁLP2 were manipulated by the supervisory control layer to379

maximize the plant efficiency of Eq.(2). The bounds of admissible inputs are shown in Table 3, with380

the optimal values presented in Table 7. The power plant efficiency was improved from 38.3% to381

38.78%. The corresponding coal load decreased from 56.38 kg/s to 55.68 kg/s and the carbon footprint382

decreased from 0.8 kg/kWh to 0.79 kg/kWh. Compared with the nominal case, the optimal case383

has lower ṁsp
IP1, and higher ṁsp

IP2, ṁsp
LP1, and ṁsp

LP2, as shown in Table 7. The mass flow rate of steam384

extracted from the IP1 turbine is less than that of other steam turbine extractions. The IP1 turbine385

extraction has the highest pressure and temperature of all steam extractions. Thus, it is better utilized386

for electricity production than water preheating. Meanwhile, the steam extracted from IP2, LP1 and387

LP2 turbines is better utilized for preheating the condensed feedwater to reach higher temperature388

before entering the boiler. These results are consistent with the findings of the study by Chaibakhsh389

and Ghaffari [49] who proposed to reduce (or remove) the high pressure and temperature steam390

extraction stream and increase the steam extracted from the remaining IP and LP turbine stages.391

392

Table 7. Steady state optimization results for Case study II.

System output Nominal Optimal

ṁsp
IP1 (kg/s) 27.4 16.8

ṁsp
IP2 (kg/s) 14 23.1

ṁsp
LP1 (kg/s) 16.5 23.7

ṁsp
LP2 (kg/s) 30 43.8

η (%) 38.3 38.78
ṁCoal (kg/s) 56.38 55.68
carbon footprint (kg/kWh) 0.8 0.79

Dynamic optimization was performed for an optimization horizon of 4 hours. The interval 9–13393

hr of the New England power demand data was used, as shown in Figure 6(a). In this interval the394

power plant is operating in response to a abrupt increase in power demand, with a power load change395

from 79.9% to 98.1%, followed by a decrease from 98.1% to 95.2%. This time interval includes the most396

abrupt change in power demand of the New England ISO data used, as well as a change in the sign of397

change in power demand. To solve this problem, the power plant model was first initialized to steady398

state at the load of 79.9% (t = 0 in Figure 6). As shown in Figure 6(a), the power generated by the399

plant model matches the time-varying power demand, which was accomplished by the plant load400

controllers shown in Figure 1.401

402
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Figure 7 presents the transient operation of the virtual power plant in response to nominal inputs403

and to those calculated with dynamic optimization for the power plant load of Figure 6. The supervisor404

updated the set points of the controllers regulating ṁIP1(t), ṁIP2(t), ṁLP1(t) and ṁLP2(t), to seek for405

the maximum of the integral of efficiency over the time horizon of 4 hours. The nominal operation406

of the power plant corresponds to constant set points for the mass flow rate of turbine extraction407

streams, shown in Table 7. For the optimal dynamic operation, these set points were treated as dynamic408

optimization variables that are updated every hour by the supervisory controller. Figure 7(a) shows409

that the mass flow rate of the steam streams extracted from the turbines is robustly maintained at the410

respective temporal set points (updated in 1 hour intervals), set according to the dynamic optimization411

solution of the supervisor. Dynamic optimization requires the mass flow rate of IP1 steam extraction to412

be lower than that of the other steam extractions, similarly to the results from steady state optimization.413

The optimal mass flow rate of all the steam extraction streams follow the load profile. This is because414

the total mass flow rate of water circulating in the steam cycle is proportional to the power load. The415

improvement in the time-averaged efficiency is 0.43% points, as shown in Figure 7(b). Figures 7(c) and416

7(d) show that the coal savings for four hours and the decrease of time-averaged carbon footprint are417

7.72 tons and 0.00859 kg/kWh, respectively. These benefits become more profound at higher plant418

loads, which is in accordance to the relative contribution of the steam side of the plant to the overall419

power production.420
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Figure 7. Dynamic optimization results of Case study II: (a) dynamic measurements and set points of
mass flow rates of steam extracted from turbines; (b) coal load; (c) efficiency; (d) carbon footprint.
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6. Conclusions421

A dynamic power plant model was used as test-bed for dynamic simulation and optimization422

in response to variable plant load. Plant-level controllers were added to the plant model to meet a423

transient market power demand. Thereafter, optimization problems were formulated and solved424

with the objective to optimize power plant efficiency at steady state and dynamically. A supervisory425

control architecture was designed to manipulate the set points of regulatory controllers according to426

the solution of the optimization problems explored. The optimization variables Tsp
SH and Tsp

Air, and ṁsp
ST ,427

chosen in this work after a comprehensive literature review, enabled an improvement in time-averaged428

efficiency of up to 1.95% points with corresponding savings in coal consumption of 184.7 tons/day429

and carbon footprint decrease of 0.0352 kg/kWh. Comparison of the static and dynamic optimization430

formulations serving the supervisory controller showed that dynamic optimization offers higher431

time-averaged efficiency, fuel savings and CO2 reduction.432
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