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11 Abstract: The increasing variability in power plant load, in response to a wildly uncertain electricity
1= market and the need to to mitigate CO, emissions, lead power plant operators to explore advanced
1z options for efficiency optimization. Model-based, system-scale dynamic simulation and optimization
1« are useful tools in this effort, and the subject of the work presented here. In prior work, a dynamic
1z model validated against steady-state data from a 605 MW subcritical power plant was presented.
1 This power plant model is used as a test-bed for dynamic simulations, in which the coal load is
1z regulated to satisfy a varying power demand. Plant-level control regulates plant load to match an
1s  anticipated trajectory of the power demand. The efficiency of the power plant operating at varying
1o load is optimized through a supervisory control architecture that performs set point optimization
20 on the regulatory controllers. Dynamic optimization problems are formulated to search for optimal
a1 time-varying input trajectories that satisfy operability and safety constraints during the transition
22 between plant states. An improvement in time-averaged efficiency of up to 1.8% points is shown
23 feasible with corresponding savings in coal consumption of 184.8 tons/day and carbon footprint
2 decrease of 0.035 kg/kWh.

s Keywords: Power plants, supervisory control, dynamic simulation, dynamic optimization

26 1. Introduction

27 The excessive emissions of CO, from fossil-fueled power plants contribute to the greenhouse
2 effect and global warming. Increasing the efficiency of power generation cycles and integration with
20 COj capture units, are nowadays accepted as the most promising short-term approaches to reducing
0 CO, emissions while we transition to renewable and carbon free energy sources [1,2]. Efficiency
;1 improvements can be achieved through the optimization of power plant operating strategies or
:2 modification of the plant design. For instance, new fossil-fueled power plants use a combination
s of steam and gas turbines to generate electricity, resulting in thermal efficiencies as high as 61% [3].
s« Moreover, modern coal-fired Rankine cycle systems can achieve efficiencies as high as ~47%, using
35 ultra-supercritical boilers [4]. For instance, the commercial power plant of Liinen (Germany) burns
s low-sulfur hard coal [5], at an efficiency up to 46%, in a 750 MW ultra-supercritical once-through
sz boiler, operating at steam conditions of 600°C and 280 bar [6]. Nonetheless, subcritical coal-fired
s steam power plants that operate on the principle of the Rankine Cycle still serve more than 1/3 of
3o the electricity demand in the U.S. [7]. Subcritical power plants, operating at pressure lower than 220
20 bar, have a nominal efficiency of 37% [8]. Compared to supercritical and ultra-supercritical plants, the
41 more common subcritical plants are advantageous in terms of lower installation costs, operating and
a2 maintenance experience [5,7]. Therefore, optimization of the efficiency of subcritical power plants is
a3 the first realistic step in our efforts to reduce CO, emissions from the power sector.

m Due to seasonal and daily fluctuations in power demand, and new deployment programs focused
«s on renewable energy, dynamic simulation and optimization are required for power plants in order to
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s respond to the resulting time-varying power demand. The contribution of electricity generation from
a7 renewable energy sources in the world will expand from the current 21% to 29.8% in 2040 [7]. The
s impact of this increase in penetration of renewable sources has been explored by many researchers.
« For example, Shah et al. [9] showed that the higher penetration of large-scale photovoltaic plants
so in the power grid will lead to significant variations in the power flow across the grid and unstable
s1 power generation profiles for the balancing conventional plants. The work by Edmunds et al. [10]
s= showed that today’s power plants are subject to more intense ramping operations, due to the increasing
ss variable renewable penetration. Critz et al. [11] focused on the challenges arising from the inability to
sa accurately forecast renewable power generation. Correspondingly, Eser et al. [12] showed that the
ss high penetration of renewable energy sources will result in an increase of periodic start-ups of thermal
ss power plants. Thus, the simulation of the dynamic behavior of the integrated electricity sector and
sz in particular the dynamicity of the fossil-fueled power plants, which will provide the balance power
ss (between renewables input and market demand) is increasingly of interest to improve productivity
s and stability, and reduce cost and emissions.

60 The efficiency of conventional fossil-fueled power plants that are based on the Rankine Cycle
e mostly depends on the steam temperature and pressure [4], with the majority of previous work on
ez efficiency optimization of these plants focusing on steady-state analyses. The work by Fu et al. [13]
es showed an average efficiency increase of 0.1% points for every increment of 8°C in boiler feedwater
es temperature, every decrement of 4.5°C in flue gas temperature, and every increment of 10 bar in
es Main steam pressure, compared to a reference case with an efficiency of 45.5%. Sanpasertparnich and
es Aroonwilas [14] presented potential efficiency improvements of up to 8.88% points for subcritical
ez coal-fired power plants. They identified the preheated air temperature, main steam temperature and
es the pressure of streams extracted from the high-, intermediate-, and low-pressure turbines (HP, IP
e and LP, respectively), as the most critical variables in the optimization of power plant performance.
7 In the work by Tzolakis et al.[15], an absolute net efficiency gain of 0.55% was shown to be feasible,
= by reducing the mass flow rate of the steam exiting the HP turbines and increasing the mass flow
72 rate of the steam exiting the IP and LP turbines. These significant efforts in the area of steady-state
73 optimization of power plants paved future work on dynamic optimization. Moreover, advancements
7a in process modeling tools, such as Dymola [16] and gPROMS [17], have made it easier to simulate
75 these processes dynamically. For instance, Chen et al.[18] developed a Dymola [16] dynamic model of
76 a combined cycle power plant integrated with chemical-looping combustion, with the combustion
7z process optimized in gPROMS [17] to maximize the power plant efficiency. Franke et al. [19] presented
zs a model-based, dynamic optimization framework exploiting the Modelica language [20] for improving
7o power plant performance. Their work illustrated efficiency benefits from applying offline optimization
so results to online power plant operations. Lind and Sallberg [21] used modern acausal simulation and
e1  optimization tools to optimize the start-up procedure of a combined cycle power plant. Their analysis
=2 showed that the thermal stress in the heat recovery steam generator is the major constraint limiting the
es rapid start-up of the gas turbines to full load.

as One practical approach to improve the efficiency of existing fossil-fueled power plants is to deploy
es supervisory control schemes targeted to efficiency optimization. Supervisory control architectures are
s Often used to perform tasks of process optimization without changing the plant infrastructure and
ez design. Skogestad [22] presented a systematic procedure for designing advanced control structures at
ss the supervision level for complex chemical plants. The critical first steps in designing a supervisor
s logic are to define the operational and economic objectives and the available degrees of freedom.
90 Common degrees of freedom include the set points of the regulatory controllers, system boundaries
o1 not controlled and system parameters tunned to a particular operating scheme. For instance, Lestage
o2 etal. [23] presented linear supervisory control designs for constrained real-time optimization of an ore
o3 grinding plant, in which they optimized the set points of the local controllers, to maximize throughput.
o« Baillie and Bollas [24] presented the key steps in the development of a high-fidelity model for a chiller
s plant which was used in supervisory resilient control architectures for plant optimization under fault
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s scenarios by Mittal et al. [25]. Obviously, supervisory control is a promising approach for efficiency
sz optimization of power plants, wherein there exists a large number of regulatory controllers, which
es must be maintained for safety and performance reasons. In one such effort, Sdez et al. [26] developed
9 a supervisory algorithm based on adaptive predictive control to optimize the operation of the gas
10 turbine of a combined cycle power plant in Chile. They showed the potential of 3% fuel consumption
11 savings, by manipulating variables such as the fuel flow, air flow and steam flow. Ponce et al. [27]
102 presented a dynamic simulator of an integrated solar combined cycle power plant, incorporating a
103 supervisory control strategy. Fuel savings of 1.7%~3.7% were shown feasible, by manipulating the
10s  set points of the regulatory controllers of the steam pressure, gas turbine power and steam turbine
15 power. These efforts focused mostly on the optimization of a few power plant components instead
16 Of solving a problem that maximizes the power plant efficiency using all or most of the degrees of
w7 freedom. In this work, the optimization problem serving the supervisory controller deals with the
108 integrated coal-fired steam power plant.

109 In prior work [28], a power plant model was developed and validated against steady-state
1o data from a fossil-fueled subcritical power plant with a reheat, regenerative cycle [29]. The power
1 plant modeled exhibits full-load power generation of 605 MW at efficiency of 38.7%. Conventional
u2 proportional-integral-derivative (PID) controllers were incorporated into the system model. Dynamic
us  simulation of the power plant operating with step changes in fuel load, showed that the controllers
ua  are robust in maintaining the controlled variables at set point. In this work, open-source data of
us time-varying power demand along with its forecast from the New England area are used to study
us this plant at realistic operating conditions [30]. A fuel load controller is implemented to meet the
ur time-varying power demand, and controllers are added to adjust the air flow and water flow for
us time-varying load. Supervisor control strategies are applied for static and dynamic optimization of
e the power plant efficiency. This optimization is accomplished by manipulating the set points of the
120 regulatory controllers of the temperature of the superheated steam and preheated air, and the mass
121 flow rates of steam extracted from the steam turbines. Steady state and dynamic optimization results
122 are compared and discussed in an effort to explore the value proposition of each.

123 2. Power plant studied and plant model

124 The power plant studied and simulated in prior work [28] was the fossil fuel-fired subcritical
125 power plant shown in Figure 1, with operating conditions at full load as reported by Singer [29]. The
126 plant employs a reheat, regenerative cycle to produce 605 MW electricity by burning fossil-fuel, with
12z nominal turbine conditions of 174 bar and 538°C steam. Combustion of bituminous B coal [5] with
12 preheated air produces hot flue gas that evaporates and superheats water. The feedwater is converted
120 to high temperature superheated steam, through a series of heat exchange steps in the boiler, including
130 the Economizer, Evaporator, Reheater, and Superheater. The superheated steam produced in the
131 boiler is expanded in a series of high-pressure (HP), intermediate-pressure (IP) and low-pressure (LP)
132 turbines connected to a generator to convert the heat to mechanical torque and produce electricity.
133 The steam exiting the last LP turbine is condensed in the Condenser. The condensate is preheated
13s in four heat exchange steps, including a deaerator and three water preheaters, which are supplied
135 with steam streams extracted from the HP, IP, and LP turbines. Three pumps, namely the condensate
13s  booster pump, condensate pump and boiler feed pump, are used for re-circulating the water after
137 being condensed in the condenser. The preheated condensate re-enters the boiler at high pressure and
138 closes the loop.
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Figure 1. Reheat regenerative cycle, 605 MW subcritical-pressure fossil power plant with control system
design [29].

130 The plant of Figure 1 was simulated with a dynamic power plant model developed in Dymola
10 [16] using the Modelon ThermalPower library [31]. The Modelica language used in Dymola is a
11 Non-proprietary, object-oriented, equation-based language for the modeling of complex physical
12 systems [20], well-suited for the objective of large-scale dynamic simulation of power plants. A
13 comprehensive list of the operating data of the power plant was provided in prior work, and the plant
14s  model was provided as Supporting Information to that work [28]. The model of the plant operating
s at full load was shown to be in excellent agreement with steady state data from the reference power
16 plant. Figure 1 also shows the design of the control system of that plant, including controllers for
1z safety regulation (marked with black solid lines), plant-level controllers (marked with blue dashed
e lines), and controllers for plant optimization (marked with red dotted lines). The regulatory control
s system, including the controllers of superheated steam temperature, and of the water level in the Drum,
150 Condenser and Deaerator, was discussed in detail in prior work [28]. This regulatory control system
11 was tunned using bump tests and the dynamic responses of the model were assessed qualitatively in
12 terms of robustness and plant stability. The multilayer control scheme designed in this work and the
153 controllers required to meet the time-varying power load are discussed in the following.

15« 3. Power plant under time-varying power demand

155 Extensive studies of the power demand and its forecasting have resulted in excellent models
16 Of the power demand per market sector, such as gray-box prediction models, to forecast real-time
157 electricity demand with an error less than 8% [32,33]. The forecasted power demand is typically
1ss used by utility companies to predict the grid load and maintain service reliability. In this work, the
1ss data of power demand (along with its forecast) in the New England area were used. In particular,
10 the data of the day of April 17, 2016 was used as a realistic sample of power demand fluctuations
161 [30]. The duration for the temporal forecasted power demand studied was 24 hours. To meet the full
162 power load of the reference power plant (605MW), the ISO New England data (maximum value is
163 18000 MW) was uniformly scaled—down, as shown in Figure 2 (a). The underlying assumption in this
e« nNormalization was that the power demand from one power plant is proportional to the total power
1es consumed. Therefore, it was considered that a fraction of the total power demand (scaled by a constant
s factor) and its daily fluctuation need to be met by one power plant. The reality with renewable inputs
167 in the grid is, as mentioned, a more abruptly fluctuating load for the power plant. It is thus anticipated
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that the efficiency gains from the analysis presented herein are a lower bound to the potential efficiency
gains when renewable energy becomes a more dominant contribution to the electric grid.
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Figure 2. Dynamic performance of the power plant model: (a) power demand and power generated by
the plant model; (b) mass flow rates of coal, preheated air and feedwater; (c) water level in the Drum;
(d) water level in the Condenser; (e) water level in the deaerator.

In prior work [28], the power plant model was validated dynamically, showing fast responses to
sudden changes in coal load. The regulatory control system incorporated in the power plant model
was shown to be robust in maintaining controlled variables at set points. Here, plant-level controllers
were added to the plant model, as shown in Figure 1, to adjust the coal load, preheated air flow and
feedwater flow so that the plant meets the time-varying power load of Figure 2(a). The mass flow rate
of feedwater (1t ) circulating in the plant and the mass flow rate of prehreated air (11 4;,) mixed with
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176 the fuel were assumed to be proportional to the power load [34]. The mass flow rates of feedwater
177 and preheated air were set to adjust with plant load, by multiplying the nominal 7 4;, and ritpy by
17e  the temporal power load change ratio. The mass flow rate of coal was adjusted by a PID fuel load
170 controller to match the temporal power demand. Table 1 presents the tunning parameters of the
10 feedforward control of water and air feed rates and the PID controller of fuel load. The measurement
11 for the fuel load controller is the power generation (P), the manipulated variable is the coal mass flow
12 (1ceq), and the set point is the temporal profile of the normalized power demand of the New England
13 area [30]. These new controllers were tuned following standard methodologies discussed elsewhere
1es  [28]. Figure 2(a) shows that the power generated by the plant model matches the power demand
s Of the normalized New England area data [30]. Figure 2(b) shows the transient responses of #icy,,
186 1144 and ritpyy to the dynamically varying power demand of Figure 2(a). Figures 2(c—e) show that the
o7 safety—critical regulated variables (water levels in the drum, condenser and deaerator) are robustly
e controlled, and exhibit negligible oscillations. The dynamic performance of the plant model over the
180 entire 24-hour period suggests that the model provides a robust test-bed of the plant physics and its
1o controls, and is used in the following for steady state and dynamic optimization.

Table 1. Controllers for the power plant in response to a time-varying power load.*

l Feedforward control: Air and feedwater controllers ‘

| Controlled variables [ pir | ey ‘
| PID control: Fuel load controller ‘
Controlled variables Manipulated variables Ky K; Ky
P 1M Coal le-8 le-10 le-6

* P: Power generation; 11 4;,: Mass flow rate of air; #i1ppy: Mass flow rate of feedwater; #ic,,: Mass flow rate of
coal; Ky: Coefficient of the proportional term; K;: Coefficient of the integral term; K;: Coefficient of the derivative
term.

101 4. Optimization for an integrated power plant

12 4.1. Objective and Optimization Variables

103 The objective of plant-level optimization is to maximize the efficiency of the power plant while
1wa Operating at steady state, or the integral of the efficiency over time if the power plant is operating
15 in a transient fashion. This was accomplished by calculating optimal set points for the regulatory
s controllers, without violating operability and safety constraints. The plant efficiency was calculated as
197 [29]

Pst — Pp
g = umps (1)

ol LI_IVCoal

10e  Where 7 is the efficiency of the plant, i1, is the mass flow rate of coal, LHV(,,; is the lower heating
100 value of coal, Ps7 is the power generated by steam turbines, and Ppymps is the power consumed
20 by pumps. Here, high-volatile bituminous B coal with an average LHV of 28 M]/kg was used [5].
201 Other auxiliary energy losses were not not considered in Eq.(1), as previous work has shown that
202 auxiliary efficiency losses are small, often of the order of ~2 MW for coal-fired steam cycles for a
203 plant size similar the one studied here [29,35]. As discussed in the introduction, the power plant
=20a  efficiency of Eq.(1) can be improved by manipulating several plant variables. Table 2 summarizes the
20s Optimization variables, ranges of variability and the efficiency improvements achieved in relevant
206 previous work. In the majority of previous analyses [13-15,36—44], plant efficiency optimization was
20z performed by manipulating the temperature of superheated steam (Tsy). For example, Xiong et al.
208 [41] showed that the higher superheated steam temperature increases the power generated by the
200 HP turbine, improving cycle efficiency. Several other variables have been explored in the literature
210 for their capability to improve plant efficiency. Sanpasertparnich et al. [14,36] presented the impact
2 of preheated air temperature (T4;,) on power plant efficiency. Tzolakis et al. [15,42] optimized the


http://dx.doi.org/10.20944/preprints201806.0052.v1
http://dx.doi.org/10.3390/pr6080114

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 June 2018 d0i:10.20944/preprints201806.0052.v1

7 of 21

212 plant efficiency at full load, by manipulating the mass flow extracted from steam turbines (rigr, which
z3 includes nitgp, rityp and rirp p). Other optimization variables, such as the moisture content of coal
za  [45], mass flow rate of feedwater [42], isentropic efficiency of turbines [41], temperature of flue gas
215 exiting the boiler [43], and the pressure of steam extracted from turbines [14,36], require changes in
26 the existing infrastructure, and were not considered here. In summary, the common plant efficiency
z7  optimization variables Ty, T4y, and gt were chosen in this work. For the purpose of illustration,
zue  two optimization cases were considered. Case study I presents plant optimization by manipulating
20 Tgy and Tyj, within an operation horizon of 24 hours. Case study II presents plant optimization by
220 manipulating g with an operation horizon of 4 hours. The inputs of each optimization problem are
2z discussed in detail in the following.
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Table 2. Review of power plant optimization efforts and respective variables.*

Ref. Ay Optimization variables
(%) Tsy (°C) titgp1/ 1 p2 Tair °C) 1iEw psy (bar) | B (%) Others

/1 p1/rity po (kg/s) (kg/s)

[14,36] 7.8 [530,600] [3.9,19.6]/ [166,190] [250,350] [166,190] [11.1,17.6]
[6.2,43.3]/
[15.1,28.7]/
[11.1,42.1]

[15] 0.55 [0,30.8]/ [0,51.2]/ [0,
21.1]/ [0,0.94]

[37] 0.41 [600,625] [16,26]/ [14,24]/ [400,475] [20,30]
[12.6,24]/ [34,57]

[38,39] 2.8 [550,700] [35,275] [230,350] Excess aire[0,25%],
Try €[580,620]

[40] 2 [550,700] [230,350] nsT €[0.75,0.87],
pup,1p/1p(bar)
€[60/9/0.0356,
80/25.5/2.68]

[13] 59 [487,1076] [150,450]

[41] 2.5 [535,545] nst €[0.8,0.95]

[42] 1.3 [485,537] [45,57]

[43] 0.79 [115,278] [21,38.4] Tre(CC)E[85,125]

[24] 35 [460,530] [64,110] pcon(bar) €[0.01,0.05]

* Tspy: Temperature of superheated steam; ritgp: Mass flow rates of steam extracted from high-pressure turbine; ri1;p: Mass flow rates of steam extracted from

intermediate-pressure turbine; 71 p: Mass flow rates of steam extracted from low-pressure turbine; ; psy: Pressure of the superheated steam; Ty;,: Temperature of the
preheated air; ritpyy: Mass flow rate of feedwater; B: Coal moisture content; 1757: Isentropic efficiency of steam turbines; Try: Temperature of reheat steam; Trg: Temperature of

flue gas; ppp,ip,Lp: Pressure of streams extracted from HP, IP and LP steam turbines; pcon: Condenser pressure.
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222 4.2. Supervisory control

223 The control system of a plant is usually divided into several layers, typically separated by different
224 time scale requirements and objectives. Control architectures include regulatory control (seconds),
225 supervisory control (minutes), local optimization (hours), site-wide optimization (days) and scheduling
226 (weeks) [22]. Supervisory control can be designed to manipulate regulatory control set points and the
22z remaining degrees of freedom of the plant (if any) to optimize the plant efficiency, within constraints
22¢ imposed by the local controllers [46]. The critical first steps in designing a supervisor logic are to define
220 the operational and economic objectives and the available degrees of freedom. Common degrees of
230 freedom include the set points of the regulatory controllers, system boundaries not controlled and
21 system parameters tunned to a particular operating scheme.

232 Figure 3 illustrates a scheme for such a supervisory control strategy for the power plant studied.
233 The control system includes the supervisory control, regulatory control and plant level control. The
23a  regulatory control structure includes optimization controllers (marked as red dotted lines in Figure
235 1), which are the regulatory controllers used for plant optimization; and safety controllers (marked
236 as black solid lines in Figure 1), which regulate the level of water in the drum, condenser and
237 deaerator. The main function of the supervisory control is to update the set points of the optimization
238 controllers (ygp), to maximize the plant efficiency of Eq.(1). The plant level controllers (marked with
239 blue dashed lines in Figure 1) adjust the mass flow rates of coal, preheated air and feedwater according
200 to the market power demand (y,)). The set points of the control system include the set points of
21 the safety controllers, plant-level controllers and optimization controllers, i.e. y*¥ = {yssp Yy ,ysop}.
22 These controllers manipulate control inputs (u = {ug, up, up}) to maintain the controlled variables
23 at their set points. In principle, one should consider disturbance (w*) and measurement noise (w?),
2as which are responsible for a difference (e) between model (y””d ) and power plant outputs (y"***). An
2es  estimator could update model parameters (8) and filter plant states (x), to eliminate this model-plant
2¢s mismatch. In this work, disturbance and measurement noise are not considered, mostly for reasons of
2z simplifying the analysis, as the efficiency benefits are not affected by them (although the robustness
2es  Of the supervisor will be). Therefore, w” and wY were considered negligible, and data filtering and
200 state estimation (blocks in gray in Figure (3)) are not discussed. The supervisory control updates the
20 optimal yg according to an objective function maximizing Eq.(1) in a formulation that includes the
=1 system model equations as discussed in the following.
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Figure 3. Multilayer control scheme for reheat regenerative cycle, 605 MW subcritical-pressure
coal-fired power plant. yEp: Set points of the optimization controllers; yssp : Set points of the safety
controllers; y;p: Set points of the plant level controllers; up: Control inputs of the optimization
controllers; ug: Control inputs of the safety controllers; up: Control inputs of the plant level controllers;
meas.

u: Control inputs; w*: Disturbance; w¥: Measurement noise; y?"®?: Predicted outputs; y
Measured outputs; y: System outputs; e: Error; 8: Estimated model parameters; f: System model.

z2  4.3. Optimization formulation

253 As described previously, the set points of the optimization controllers are manipulated by
zss  the supervisory layer as first-level variables to improve plant efficiency (1), Eq.(1). This efficiency
=5 optimization also translates to coal consumption reduction and decrease of the plant carbon footprint.
=6 The intent of this work was to compare steady-state and dynamic optimization results of the plant
=7 of Figure 2 to those of the plant operating at nominal conditions. This comparison also includes an
2ss  exploration of the added benefits of dynamic optimization, compared to those from steady state optimal
20 Operation. First, steady state optimization of the power plant operating at full load was performed by
260 calculating optimal set points (constant with time) for the optimization controllers (yscf), and specifically
201 the set points of the superheat steam temperature controller, preheat air temperature controller, and
262 mass flow controllers of steam extracted from steam turbines. The steady state optimization problem
263 formulation is shown in Eq.(2):

max 7 (y, up)
Yo

subject to:
f(x,u,0) =0,
u=Fyg,y)
y =h(x,u,0), 2
xmin <x< Xmax,
u"" <u <u"™¥,
yrt <yt <yt
y" sy =y"™,
2ee  Where the plant efficiency # is a function of power plant outputs (y) and admissible variable values (up)

2es determined by the updated regulatory controllers level controller set points ysop ; £(+) is the vector of
206 steady state equations describing the system in terms of states, x, admissible inputs, u, and parameters,
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2z 0; and F describes the control functions, with y being the measured system outputs, mapped to x, u,
2s  and O through h(-).

260 Dynamic optimization was performed for the reference power plant operating under a
270 time-varying power demand normalized from the New England area data [30]. The objective was to
an  maximize the integral of plant efficiency over a predetermined time horizon, 7. This was accomplished
22 by calculating time-varying optimal set points for the optimization controllers. The generic formulation
23 of the dynamic optimization problem solved for the power plant of Figure (1) is presented in Eq.(3),
zra Where f is the system of differential algebraic equations describing the conservation of mass and energy,
zrs X is the vector of temporal state variables, xY is the vector of initial state variables, yg7 is the temporal
276 set points of the optimization controllers, y are the temporal system outputs, t, is the vector of control
277 action time points, with constant interval, 7, T is the optimization horizon, and ¢ is the time.

T
max [y (1), up(t)at
Yo (tn) 0

subject to:

f(x,x,u,0,t) =0,

u = F(y] (t), ),

y=h(x,u,0,f),

x(t = 0) =, ®)
xmin < x < xMax

umin <u < u™x

ysp,min < ysp < ysp,mux

ymin < y < ymax

tel0,7], t, €[0,7],

278 Table 3 shows optimization variables bounds and time interval constraints for the problems of Egs.
270 (2-3) of the two cases studied. The set points of the controllers regulating Tsy, T air, and g (including
200 1l1p1, Mil1py, 11 p1 and ity pp) were manipulated by the supervisory control layer as degrees of freedom
21 seeking for an optimal input. In Case study I, only the set points of Ty and Ty4; were manipulated.
22 Although not shown in Fig. 2, preheating of the air fed to the combustor to T4;, was accomplished by
2es manipulating the mass flow of the Economizer exhaust gas sent to the air preheater (with the balance
2es being waste heat). In Case study II plant optimization was performed by manipulating the set points
2es  Of mgr, i.e. the set points of the mass flow rates of steam streams extracted from the first IP turbine
2ss  (IP1), the second IP turbine (IP2), the first LP turbine (LP1), and the second LP turbine (LP2) (ri1p1,
2e7  M1pp, i1y p1, and 11 pp, respectively). The ranges of the admissible inputs, shown in Table 3, are based
2ee  ON common practice and previous work [13-15,27,36,38,41-43,45]. The optimization horizon, T, was
280 set to 24 hours in Case study I and 4 hours in Case study II, and the control action interval, 7, was set
200 to 1 hour. Large control actions where not penalized in the optimization problems solved, as the plant
201 load profiles matched during the real-time plant optimization were relatively smooth. For instance
202 the temperature of the superheated steam feeding the steam turbine was seen to change gradually
203 Over time in response to load changes, which is adequate for the protection of the steam turbines by
204 thermal stress [14,36].
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| Case I
Admissible Ter (°C) T} (°C)
inputs (yé7 )
Min 520 150
Max 610 250
| Case I ‘
Admissible tity, (kg/s) 1ty (kg /) 1ty (kg/s) 11}y (kg/s)
inputs? (yop )
Min 16 10 10 28
Max 28 28 28 47
Temporal inputsb
T (hr) 1
T(hr) 24 for Case I (4 for Case II)

 1i1yp1: Mass flow rate of steam stream extracted from IP1 turbine; ri1;p,: Mass flow rate of steam stream extracted
from IP2 turbine; ri1; p1: Mass flow rate of steam stream extracted from LP1 turbine; ri1y py: Mass flow rate of steam
stream extracted from LP2 turbine; sp: Set point.

b If the plant is operating under time-varying power load.

20s 5. Results

206 For each case study in the following, the static optimization of the power plant operating at
207 full load with the optimization formulation of Eq.(2) is discussed first, followed by the dynamic
20s Optimization of the power plant operating under time-varying power load with the optimization
200 formulation of Eq.(3). In the results discussed in the floowing, the power plant was formulated
0 With the object-oriented language Modelica [20], in the commercial software Dymola [16] and set
so1  point optimization was performed in Matlab [47] using an interior-point algorithm. Model exchange
02 between the software packages of Dymola and Matlab was accomplished with use of the Functional
s0s  Mockup Interface, a tool-independent standard for seamlessly integrating models in various simulation
304 environments [48].

sos  5.1. Case study I: optimization variables Tsyy and T g;,

306 Table 4 presents steady state optimization results at full load using the superheated steam
;07 temperature set point, Tgr;q, and that of the preheat air temperature, T;’;r, as the optimization variables.
s0s  Manipulation of Tg’?{ and Ti{;r led to a power plant efficiency improvement from 38.3% to 40.23%. This
200 efficiency improvement translates to fuel savings of 3.78%, with the fuel flow rate decreasing from
a0 56.38 kg /s to 54.25 kg/s. The carbon footprint of the plant also decreased from 0.8 kg/kWh to 0.77
su kg/KWh. This efficiency optimization was accomplished by increasing T,;, from 200°C to 248°C,
sz and increasing Tgp from 538°C to 560°C. This is consistent with earlier reports [13,14,27,38,41-43],
a1z showing that increasing Tsy and Ty;, translates to efficiency improvements. The higher Tsy enables
as  the HP turbine to produce the same mechanical torque at lower coal consumption, while increasing
ais T 4j, recovers more waste heat from the boiler exhaust gas. It should be noted that the nominal steady
a6 state data used as baseline in Table 4, are as reported by Singer [29] for the reference power plant, and
a1z correspond to the design point of this plant. In principle the set points for Tsy and T4;, reported by
s1e Singer refer to an optimal plant configuration. The further improvement presented here could relate to
a0 better integrated plant-level optimization, model-plant differences and relaxation of plant constraints
;20 compared to the study reported in [29]. For an off-design operating point the efficiency benefits of
sz solving Eq.(2) would, of course, have been much higher.
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Table 4. Steady state optimization results of Case study I.
l System output \ Nominal \ Optimal
Teh (°C) 538 560
T, (°C) 200 248
7 (%) 383 40.23
1 cont (KE/S) 56.38 5425
carbon footprint (kg/kWh) 0.8 0.77
322 The results of dynamic optimization for a horizon of 24 hours of plant operation are presented

s23  in Figure 4. Data and plant performance results are in response to time-varying power demand
s2«  normalized from the New England area data [30] shown in Figure 4(a). In the absence of disturbances
s2s  and and noise, the solution of Eq.(3) in the period t = 0 — T(= 24hr) is equivalent to an off-line
226 optimal control problem and is valid for the entirety of the time horizon considered. The optimization
;27 variables were T;’;{ and TZ’; ., but in this case they were updated in time intervals, 7, = 1hr. Figure
:2s 4 presents the dynamic power plant performance at nominal and optimal operation. The nominal
320 dynamic operation is the result of constant T;’;I at 538°C and T;f_l at 200°C. Figures 4(d) and 4(e) show
s30  that the controlled variables, Tsy and T4, are robustly controlled at their optimal set points by the
a1 regulatory controller. The values of Tsy and Ty;, from the dynamic optimization solution are always
sz higher than their respective nominal values. In particular, Figure 4(d) shows that the optimal T;’;I
a3 trajectory is inversely proportional to that of the plant load. The optimal temporal T, for a plant
:3s  load higher than maximum, is higher than the 560°C of the optimal steady state at full load. This
:3s  enhances heat transfer from the flue gas side to the steam side in the Superheater, at low plant load.
a6 Figure 4(e) shows that the optimal temporal profile of the temperature of air preheated by the flue
sz gas exiting the boiler, is varying proportionally to plant load. The temperature of the exhaust gas is
:3e  also proportional to the power load, due to the time-varying mass flow rates of feedwater, air and
339 coal load. As Figure 4(c) shows, the improvement in time-averaged efficiency is 1.8% points. This
a0 efficiency improvement translates to coal savings of 184.8 tons/day (Figure 4(d)) and time-averaged
s carbon footprint decrease of 0.0351 kg/kWh (Figure 4(e)). In summary, the optimized power plant
sz Operates at higher Ty;,(t) and Tsy (t), and this is consistent with the results of steady state optimization.
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Figure 4. Dynamic optimization results of Case study I: (a) time-varying power load; (b) coal load; (c)
carbon footprint; (d) temperature of preheated air; (e) temperature of superheated steam; (f) Power
plant efficiency.

348 Figure 5 presents the dynamic performance of the power plant operating with constant nominal
sas  set points for Tgpy and T4y, constant optimal T;f_l and TZV (from the steady state optimization solution),
s and with time-varying optimal Tjﬁr and T;f{ (set by the dynamic optimization solution). The coal
a7 consumption and carbon footprint of the power plant operating with set points calculated by the
se  static and dynamic optimization problem formulations are both lower than that by the power plant at
s nominal operation. The power plant operating with set points determined by dynamic optimization is
0 the most efficient with the lowest coal consumption and the smallest carbon footprint. As shown in
s Table 5, the fuel savings accomplished by the power plant with steady state optimization are 160.9
52 tons/day, whereas the fuel savings accomplished with dynamic set point optimization are 184.8
ss3  tons/day. The reduction of coal load and decrease of carbon footprint of the dynamically optimal
ssa  Operation are pronounced when the power plant is operating at lower load. At different loads the
sss  plant has slightly different optimal regulatory control points compared to those of the steady state
6 optimization at full load, which is exploited by the formulation of Eq.(3). As shown in Figure 4(d), the
a7 values of T;F;I calculated from Eq.(3) at low loads are higher than the constant Tgfi calculated from Eq.(2)
sse  at full load. Dynamically optimizing T;E improves the heat transfer in the Superheater at low loads
30 and converts more heat from the superheated steam to mechanical torque. This increase in mechanical
se0 torque leads to improved power generation and efficiency. Moreover, the temperature profile of the
ser  preheated air in Figure 4(e) shows that the values of T}/; calculated from Eq.(3) at low loads are lower
se2 than the constant Txr calculated from Eq.(2) at full load. At low loads, heat transfer between the water
ez side and flue gas side in the boiler is enhanced, leading to lower flue gas temperatures, which in turn
ses  are to preheat the air. Thus, the supervisor drives TZ’; down to satisfy system constraints. Depending
ses  on the dynamic response times of the plant and the selection of the interval between control actions,
ses Ty, @ multi-step steady state optimization problem could have resulted to similar performance benefits
sez  as those of Eq.(3). Nonetheless, Eq.(3) is more generic and robust for a dynamic system. It should
s be noted that one could execute the same analysis but with an objective function that maximizes
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profit for varying electricity prices. This would have resulted in different plant load profiles, but the
optimization procedure (not the objective function) and results would have been similar.
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Figure 5. Comparison of the dynamic performance of the power plant with nominal operation set
points, steady state optimal set points, and dynamic optimal set points: (a) coal load; (b) carbon
footprint.

Table 5. Comparison of static and dynamic optimization of the power plant for Case study I.*

| Output | Static optimization | Dynamic optimization |
A1y, (tons/day) 160.9 184.8
Aty (kg/kWh) 0.0303 0.0351
Atiico, (tons/day) 440.2 511.9

* Atitge,: Coal savings; Acy: Decrease of the time-averaged carbon footprint; Atitco,: reduction of CO; emissions.

5.2. Case study 1I: Optimization variables tit;py, titypy, titp p1 and 1ty py

As shown in Figure 1, four proportional—integral (PI) controllers were used to regulate the mass
flow rates of steam extracted from the turbines. The parameters of these controllers are presented in
Table 6. These controllers manipulate the respective valves to regulate the mass flow rates of streams
extracted from the IP1, IP2, LP1 and LP2 turbines. In this case study, the supervisory control variables
are the set points of the mass flow controllers of steam extracted from turbines, namely the set points
of ritypy, 1itypy, 1ty p1, and titp py.
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Table 6. PI Controllers regulating the mass flow rates of steam extracted from turbines.

| Controllers | IP1 | P2 | LP1 | LP2 |
Controlled mp| 1po 1y p1 1y pp
variables
Manipulated Valve opening | Valve opening | Valve opening | Valve opening
variables
Ky 0.1 0.1 0.1 0.1
K; 0.0001 0.0001 0.0001 0.0001

As before, steady state optimization was first performed for the plant operating at full load.
The set points of ritpy, titypy, ity p1 and 11 p; were manipulated by the supervisory control layer to
maximize the plant efficiency of Eq.(2). The bounds of admissible inputs are shown in Table 3, with
the optimal values presented in Table 7. The power plant efficiency was improved from 38.3% to
38.78%. The corresponding coal load decreased from 56.38 kg/s to 55.68 kg/s and the carbon footprint
decreased from 0.8 kg/kWh to 0.79 kg/kWh. Compared with the nominal case, the optimal case
has lower mﬁ’,l, and higher miﬁz, msL’;l, and mi’;z, as shown in Table 7. The mass flow rate of steam
extracted from the IP1 turbine is less than that of other steam turbine extractions. The IP1 turbine
extraction has the highest pressure and temperature of all steam extractions. Thus, it is better utilized
for electricity production than water preheating. Meanwhile, the steam extracted from IP2, LP1 and
LP2 turbines is better utilized for preheating the condensed feedwater to reach higher temperature
before entering the boiler. These results are consistent with the findings of the study by Chaibakhsh
and Ghaffari [49] who proposed to reduce (or remove) the high pressure and temperature steam
extraction stream and increase the steam extracted from the remaining IP and LP turbine stages.

Table 7. Steady state optimization results for Case study II.

l System output \ Nominal \ Optimal
1t éf,l (kg/s) 274 16.8
D) 14 23.1
1) (kg/s) 16.5 237
11y (kg/s) 30 4338
17 (%) 38.3 38.78
1icoqr (kg/s) 56.38 55.68
carbon footprint (kg/kWh) 0.8 0.79

Dynamic optimization was performed for an optimization horizon of 4 hours. The interval 9-13

hr of the New England power demand data was used, as shown in Figure 6(a). In this interval the
power plant is operating in response to a abrupt increase in power demand, with a power load change
from 79.9% to 98.1%, followed by a decrease from 98.1% to 95.2%. This time interval includes the most
abrupt change in power demand of the New England ISO data used, as well as a change in the sign of
change in power demand. To solve this problem, the power plant model was first initialized to steady
state at the load of 79.9% (t = 0 in Figure 6). As shown in Figure 6(a), the power generated by the
plant model matches the time-varying power demand, which was accomplished by the plant load
controllers shown in Figure 1.
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Figure 6. Time varying power demand and plant load for Case study II.

403 Figure 7 presents the transient operation of the virtual power plant in response to nominal inputs

a0s and to those calculated with dynamic optimization for the power plant load of Figure 6. The supervisor
«s updated the set points of the controllers regulating r1yp; (t), #i1ypy (), rirpp1(t) and nizp pp (), to seek for
s0s the maximum of the integral of efficiency over the time horizon of 4 hours. The nominal operation
207 of the power plant corresponds to constant set points for the mass flow rate of turbine extraction
a8 streams, shown in Table 7. For the optimal dynamic operation, these set points were treated as dynamic
200 Optimization variables that are updated every hour by the supervisory controller. Figure 7(a) shows
a0 that the mass flow rate of the steam streams extracted from the turbines is robustly maintained at the
an  respective temporal set points (updated in 1 hour intervals), set according to the dynamic optimization
a1z solution of the supervisor. Dynamic optimization requires the mass flow rate of IP1 steam extraction to
a3 be lower than that of the other steam extractions, similarly to the results from steady state optimization.
a1s  The optimal mass flow rate of all the steam extraction streams follow the load profile. This is because
a5 the total mass flow rate of water circulating in the steam cycle is proportional to the power load. The
a6 improvement in the time-averaged efficiency is 0.43% points, as shown in Figure 7(b). Figures 7(c) and
a7 7(d) show that the coal savings for four hours and the decrease of time-averaged carbon footprint are
as  7.72 tons and 0.00859 kg/kWh, respectively. These benefits become more profound at higher plant
a0 loads, which is in accordance to the relative contribution of the steam side of the plant to the overall
420 power production.
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Figure 7. Dynamic optimization results of Case study II: (a) dynamic measurements and set points of

mass flow rates of steam extracted from turbines; (b) coal load; (c) efficiency; (d) carbon footprint.


http://dx.doi.org/10.20944/preprints201806.0052.v1
http://dx.doi.org/10.3390/pr6080114

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 June 2018 d0i:10.20944/preprints201806.0052.v1

19 of 21

s21 6. Conclusions

a2 A dynamic power plant model was used as test-bed for dynamic simulation and optimization
a3 in response to variable plant load. Plant-level controllers were added to the plant model to meet a
«2¢ transient market power demand. Thereafter, optimization problems were formulated and solved
«2s  with the objective to optimize power plant efficiency at steady state and dynamically. A supervisory
a26 control architecture was designed to manipulate the set points of regulatory controllers according to
a2z the solution of the optimization problems explored. The optimization variables Tg% and TZ’;, and rh;pT,
a2s  chosen in this work after a comprehensive literature review, enabled an improvement in time-averaged
a0 efficiency of up to 1.95% points with corresponding savings in coal consumption of 184.7 tons/day
430 and carbon footprint decrease of 0.0352 kg/kWh. Comparison of the static and dynamic optimization
a1 formulations serving the supervisory controller showed that dynamic optimization offers higher
a2 time-averaged efficiency, fuel savings and CO, reduction.
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