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Article
A Proof of the Riemann Hypothesis Based on a New
Expression of the Completed Zeta Function

Weicun Zhang

University of Science and Technology Beijing, Beijing 100083, China

Abstract: The Riemann Hypothesis (RH) is proved based on a new expression of the completed zeta
function ¢(s), which was obtained through paring the conjugate zeros p; and g; in the Hadamard
product, with consideration of the multiplicity of zeros, i.e.
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where ¢(0) = %, pi = a; + jB; and p; = a; — jB; are the complex conjugate zeros of {(s), 0 < a; < 1
and B; # 0 are real numbers, m; > 1 is the multiplicity of p;, finite and unique, 0 < |B1| < [B2] < ---.
Then, according to the functional equation &(s) = (1 —s), we have
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Owing to the divisibility contained in the above equation and the uniqueness of m;, it is equivalent to

<1+ (S_ﬁzai)z)mi — (1_|_ (1—1582—061-)2)’"1‘,1, =1,2,3,...,0
i i

which is further equivalent to
1 .
o = E’O < |ﬁ1| < |ﬁ2| < |ﬁ3| <---,1=1,2,3,...,0
Thus we conclude that the RH is true.

Keywords: Riemann Hypothesis; Hadamard product; New expression of the completed zeta functio

1. Introduction

The RH [l is one of the most important unsolved problems in mathematics. Although there are
many achievements towards proving this celebrated hypothesis, it remains an open problem 2-3l. The
Riemann zeta function is originally defined in the half-plane R(s) > 1 by the absolutely convergent
series (2!

= 1
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The connection between the above-defined Riemann zeta function and prime numbers was
discovered by Euler, i.e., the famous Euler product
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where p runs over the prime numbers.
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Riemann showed in his paper in 1859 how to extend the zeta function to the whole complex plane
C by analytic continuation, i.e.

g(s) — F(l 7’5) /oo (7x)s dj (3a)

27ti o e¥—1 «x

where ” [>°” is the symbol adopted by Riemann to represent the contour integral from +oco to +co
around a domain which includes the value 0 but no other point of discontinuity of the integrand in its
interior.

Or equivalently,

7.[5/2

1 (e}
g(S) = r(s/z){m+/l (x

where 6(x) = Y2 e~"°7% is the Jaccobi theta function, I is the Gamma function in the following

f(x) —1

g mhy

Nlw

)dx} (3b)

Weierstrass expression

1 (e}
—:s~eVSH(1+%)e_S/” 4)
n=1

I'(s)
where 7 is the Euler-Mascheroni constant.
As shown by Riemann, {(s) extends to C as a meromorphic function with only a simple pole at
s = 1, with residue 1, and satisfies the following functional equation
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The Riemann zeta function { (s) has zeros at the negative even integers: —2, —4, —6, —8, - - - and one
refers to them as the trivial zeros. The other zeros of {(s) are the complex numbers, i.e., non-trivial
zeros 2.

In 1896, Hadamard # and Poussin [°/ independently proved that no zeros could lie on the line
R(s) = 1, together with the functional equation §(s) = (1 —s) and the fact that there are no zeros
with real part greater than 1, this showed that all non-trivial zeros must lie in the interior of the critical
strip 0 < R(s) < 1. Later on, Hardy (1914) (], Hardy and Littlewood (1921) [l showed that there are
infinitely many zeros on the critical line R®(s) = 1.

To give a summary of the related research works on the RH, we have the following results on the
properties of the non-trivial zeros of {(s) 49,

Lemma 1: Non-trivial zeroes of {(s), noted as p = a + jB, have the following properties
1) The number of non-trivial zeroes is infinity;
2)p#0;
0<a<;
4)p,p,1—p,1 — p are all non-trivial zeroes.

As further study, a completed zeta function ¢(s) is proposed by equation

(5) = 55(s = ) IN()E(s) ©

It is well-known that {(s) is an entire function of order 1. This implies ¢(s) is analytic, and can
be expressed as infinite product of polynomial factors, in the whole complex plane C. In addition,
replacing s with 1 — s in Eq.(6), and combining Eq.(5), we obtain the following functional equation

¢(s) =¢(1—s) )

According to the definition of ¢(s), and recalling Eq.(4), the trivial zeros of {(s) are canceled by
the poles of I'(5). The zero of s — 1 and the pole of {(s) cancel; the zero s = 0 and the pole of I'(5)
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cancel °~19, Thus, all the zeros of &(s) are exactly the nontrivial zeros of {(s). Then we have the
following Lemma 2.

Lemma 2: The zeros of ¢(s) coincide with the non-trivial zeros of {(s).
Consequently, the following two statements are equivalent.

Statement 1: All the non-trivial zeros of {(s) have real part equal to %

Statement 2: All zeros of {(s) have real part equal to %

To prove the RH, a natural thinking is to estimate the numbers of non-trivial zeros of {(s)
inside or outside some certain areas according to Argument Principle. Along this train of thought,
there are many research works. Let N(T) denote the number of non-trivial zeros of {(s) inside the
rectangle: 0 < &« < 1,0 < B < T, and let Ny(T) denote the number of non-trivial zeros of {(s) on
the line x = 1,0 < B < T. Selberg proved that there exist positive constants ¢ and Ty, such that
No(T) > c¢N(T), (T > Tp) '], later on, Levinson proved that ¢ > i 12}, Lou and Yao proved that
c > 0.3484 [13], Conrey proved that ¢ > % [14], Bui, Conrey and Young proved that ¢ > 0.41 [15}, Feng
proved that ¢ > 0.4128 [/, Wu proved that ¢ > 0.4172 [17],

On the other hand, many non-trivial zeros have been calculated by hand or by computer programs.

(18], Gram found the first 15 zeros

Among others, Riemann found the first three non-trivial zeros
based on Euler-Maclaurin summation 9. Titchmarsh calculated the 138" to 195" zeros using the
Riemann-Siegel formula [20-21] Here are the first three (pairs of) non-trivial zeros: % +714.1347251; % +
j21.0220396; } + j25.0108575

The idea of this paper is originated from Euler’s work on proving the following famous equality

1 1 1 1 72
1 —_— —_— —_— —_— e & —
+?+y+¥+y+ g (8)

This interesting result is deduced by comparing the like terms of two types of infinite expressions, i.e.,
infinite polynomial and infinite product, as shown in the following

2 2 2
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Then the author of this paper conjectured that ¢(s) should be factored into (1 + 72) or something
like that, which was verified by paring p; and p; in the Hadamard product of &(s), i.e. ,(1 —)(1-3) =

.312 (1+ (5*"‘1')2)

ol b B
The Hadamard product of (s) as shown in Eq.(10) was first proposed by Riemann, however, it
was Hadamard who showed the validity of this infinite product expansion 22,
s
§(s) =¢O) I -2) (10)

where ¢(0) = 1, p runs over all zeros of &(s).

Hadamard pointed out that to ensure the absolute convergence of the infinite product expansion,
p and 1 — p are paired. Later in Section 4, we will show that p and p can also be paired to ensure the
absolute convergence of the infinite product expansion.

2. Preliminary Lemmas

This section provides some preliminary knowledge to support the proof of the Key Lemma in
next section. We need the classical results (Lemma 3 and Lemma 4) in polynomial algebra over fields,
with extension to infinite product of polynomial factors (Lemma 5, Lemma 6, and Lemma 7), and
properties of the multiplicity of zeros of the entire function (Lemma 8 and Lemma 9).

In the remainder of this paper, we focus on polynomials with real coefficients and infinite products
of polynomial factors with real coefficients, both of which are types of entire functions.
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To begin with, we introduce the ring of polynomial, denoted as R[x], which is defined as the set
of all polynomials in x over the field of real numbers R, i.e.

Rlx] ={} a;x'|a; € R,a; # 0 for all but a finite number of i}
i=0

The set R[x] equipped with the operations + (addition) and - (multiplication) is the ring of
polynomial in x over the field R.

According to Reference [27], the ring of polynomials is a subset of the ring of entire functions, and
both rings have the same divisibility properties.

Definition: Let f(x) = [T;2; pi(x), pi(x) € R[x], be an infinite product of polynomial factors, and
let h(x) € Rx]. If there exists an infinite product of polynomial factors g(x) = [T~ 4i(x), qi(x) € R[x],
such that: f(x) = h(x) - g(x), then h(x) is said to divide f(x), denoted as h(x) | f(x).

Remark: The above definition implicitly assumes the absolute convergence of the infinite product
of polynomial factors, because f(x) = h(x) - g(x) is obtained through rearrangement of factors of f(x).

Lemma 3: Let m(x), g1(x), ..., gn(x) € R[x],n > 2. If m(x) is irreducible (prime) and divides the
product g1 (x) - - - gn(x), then m(x) divides one of the polynomials g;(x), ..., gn(x).

Lemma 4: Let f(x), m(x) € R[x]. If m(x) is irreducible and f(x) is any polynomial, then either
m(x) divides f(x) or ged(m(x), f(x)) = 1, (gcd: greatest common divisor).

Lemma 5: Let m(x), g1(x), g2(x),... € R[x]. If m(x) is irreducible and divides the infinite product
IT;2; gi(x), then m(x) divides one of the polynomials g (x), g2(x), .. ..

Lemma 6: Let q(x), m(x), p1(x), p2(x),... € Rlx], p(x) = TT72; pi(x). If m(x) is irreducible and
divides the product q(x)p(x), but m(x) and p(x) are relative prime, then m(x) divides g(x).

Lemma 7: Let m(x), p1(x), p2(x),... € R[x], p(x) = TT;2 pi(x). If m(x) is irreducible, then either
m(x) divides p(x), or m(x) and p(x) are relative prime, i.e., gcd(m(x), p(x)) = 1.

Remark: The contents of Lemma 3 and Lemma 4 can be found in many textbooks of linear algebra,
modern algebra, or abstract algebra, see for example references [24-26]. Below we give the proofs of
Lemma 5, Lemma 6, and Lemma 7.

Proof of Lemma 5: The proof is conducted by Transfinite Induction.

Let P(7y) (7y is an ordinal number) be the statement:

"m(x),81(x),....8v(x) € R[x],y > 2. If m(x) is irreducible and divides the product g (x) - - - g, (x),
then m(x) divides one of the polynomials g1(x),...,g,(x)", where v € A, A = NU{w} with the
ordering that n < w for all natural numbers 7, w is the smallest limit ordinal other than 0.

Base Case: P(2) is an obvious fact according to Lemma 3 with n = 2;

Successor Case: To prove P(y) = P(y + 1), we have g1(x) - - - §4(x)gy+1(x) = g(x) - §y41(x),
where g(x) = g1(x)---gy(x). Then according to Lemma 3 with n = 2, we have m(x) | g(x) -
8y+1(x) = m(x) | g(x) or m(x) | g,41(x). Considering P(7): if m(x) divides g(x), then m(x) divides
one of g1(x),- -+, g, (x), thus we know P(y) = P(y +1).
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Limit Case: We need to prove P(y < A) = P(A), A is any limit ordinal other than 0. For the
sake of contradiction, assume that P(y < A) # P(A), i.e.,, m(x) does not divide any polynomial
gi(x),1 <i < A. Then, considering m(x) is irreducible with the property stated in Lemma 4, we have:

m(x)[g1(x) -~ g (%)
= (by tran51t1v1ty of divisibility)

m(x)[g1(x) - gy - ga(x)
= (by the assumpt1on and Lemma 4)
(

ged(m(x),gi(x)) =1,1<i<A
= (for all natural numbers n € N,n < A)
ged(m(x),gi(x) = 1,i € N

which contradicts P(y < A) : m(x)|gi(x)---g,(x) = m(x) divides one of the polynomials
81(x),...,§y(x),v € N. Thus, we know that the assumption P(y < A) # P(A) is false.

Then P(y < A) = P(A) is true, i.e., the Limit Case is true.

That completes the proof of Lemma 5.

Proof of Lemma 6: If m(x) is irreducible and divides the product q(x)p(x), then according to
Lemma 5, m(x) divides one of the polynomials g(x), p1(x), p2(x), .... Further, if m(x) and p(x) are
relative prime, then m(x) does not divides any factor p;(x),i = 1,---,00 of p(x) (otherwise m(x)
divides p(x), which contradicts the condition "m(x) and p(x) are relative prime"). Thus, m(x) must
divides g(x).

That completes the proof of Lemma 6.

Proof of Lemma 7:

Since m(x) is irreducible, then by the definition of irreducible polynomial, either gcd(m(x), p(x)) =
k-m(x),k € R,k #0orgcd(m(x),p(x)) = 1. Itis clear that gcd(m(x), p(x)) = k-m(x) = m(x) | p(x).
Thus, we conclude that either m(x) divides p(x) or gcd(m(x), p(x)) = 1,1i.e., m(x) and p(x) are relative
prime.

That completes the proof of Lemma 7.

Additionally, we also need the following results on properties of a zero of entire function in
complex analysis for understanding the multiplicity of a zero of ¢(s).

Lemma 8: The multiplicity of a zero of any non-zero entire function is a finite positive integer.

Proof: Let f(s) # 0,s € C, be an entire function, which means it is holomorphic on the whole
complex plane. Suppose f(s) has a zero at sy € C of multiplicity m, then f(s) = (s —sp)™g(s), where
¢(s) is also an entire function and g(sp) # 0.

Assume for contradiction that m is infinite, which implies there exists an accumulation point of
zeros in the neighbor of sg. Then, by Identity Theorem for holomorphic functions, and considering
"0" is also an entire function, we have f(s) = 0,s € C, which contradicts the given condition that
f(s) #0,s € C. Thus, the assumption is false, i.e., m must be a finite positive integer.

That completes the proof of Lemma 8.

Lemma 9: The multiplicity of a zero of any non-zero entire function is unique.

Proof: Let f(s) # 0,s € C, be an entire function, which has a multiple zero at sy € C of multiplicity
m. We can write: f(s) = (s —sp)™g(s), where g(s) is also an entire function and g(sg) # 0.

Assume for contradiction that there exists another integer n # m such that 7 is also a multiplicity
of the zero sy. This means we can also write: f(s) = (s — s9)"h(s), where h(s) is an entire function and

h(so) # 0.
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Since both expressions for f(s) must be equal, we then obtain (s — s9)"g(s) = (s — so)"h(s).
Without loss of generality, consider m > n, then we have: (s —sg)" "g(s) = h(s) = h(sy) = 0, which
is a contradiction to h(sp) # 0. Thus, the assumption is false, i.e., the multiplicity of a zero of any
non-zero entire function is unique.

That completes the proof of Lemma 9.

Remark: Similar statements to Lemma 9 can be found in Reference [28] as well as in other related
textbooks.

3. Key Lemma

In this section, we first explain the multiplicity of a quadruplets of zeros of {(s) /¢ (1 — s), which
is used to facilitate the identification of unreasonable subsequent multiple zeros. After that we prove
the Key Lemma based on Lemmas 3-9. The Key Lemma is substantial for the proof of the RH.

Multiple zeros of ¢(s) /(1 —s): As shown in Figure 1, the multiple zeros of {(s) /{(1 — s) always
come in quadruplets, ie., p,p,1 —p,1 —p.

%(s) x first quadruplets of zeros
(s
O second quadruplets of zeros

Figure 1. lllustration of the multiple zeros of (s)

If without any restriction, there are two different expressions of factors of ¢(s) /¢ (1 — s) for the
. R . (s—a1)2\ 2 (1-s—a1)2 2 (s—ay)? (s—ay)?
multiple zeros in Figure 1, i.e., (1 + - ) / (1 + 7> , or (1 + ) (1 + )/ (1 +

; ; 7 S
ek )(1+ =5 ) with oy + a2 = 1, 83 = 6

The latter expression with a3 +a, = 1, 82 = p3 can be excluded with the use of multiplicity of
zeros in quadruplets, which is uniquely determined and then unchangeable, since {(s)/&(1 — s) is
given. In Figure 1, the multiplicity of (p1,01,1—p1,1 — p1) is 2, i.e.,, my = 2.

Remark: For such a special entire function &(s), defining zero multiplicity using quadruplets
(pi, pi, 1 — pi, 1 — p;) is consistent with the conventional definition of multiplicity for single zeros.
This definition is just to facilitate the identification of two groups of multiple zeros that satisfy
wj+wa; = 1,2 = B?,i # I, because the quadruplets of groups i and I, (p;,p;,1 — p;, 1 — p;) and
(p1,01,1 —p1, 1 — py), are indeed overlapping in the complex plane as shown in Figure 1.

Remark: Although the multiplicity m; of a quadruplets of zeros (p;, p;, 1 — p;, 1 — p;) of &(s)/&(1 —
s) is unknown, it is an objective existence, finite, unique, and then unchangeable, for more details see

Lemma 8 and Lemma 9

Lemma 3: Given two absolutely convergent infinite products

f(s) = 10‘0[ (1+ %)m’ (11)
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and

f1—s) H( 1—;—0‘)2)’" (12)

1=
where s is a complex variable, p; = «; + jB; and p; = a; — jB; are the complex conjugate zeros of ¢(s),
0 < a; < 1and B; # 0 are real numbers, m; > 1 is the multiplicity of quadruplets (p;, 0;, 1 — p;, 1 — p;),

0<[B1] < B2l < B3| <.

Then we have

_1
Dél—i

fe)=f(1—=s)e ¢ 0<|B1] <|Ba| <|Bsl <--- (13)
i=1,2,3--,00

where ” < 7 is the equivalent sign.
Proof: First of all, we have the following fact:
(s — )2 (1—s—a)? m

7 72 ) @(s—a)zz(l—s—zx)z(:)a:% (14)

where m > 1 is positive integer, 0 < &« < 1 and  # 0 are real numbers.

(1+ =1+

Next, the proof is based on the divisibility of infinite products of polynomial factors. It is obvious

that
_ 5 (s —a)®\m (1—5—a;)*\m
< (by rearrangement of absolutely convergent infinite products of both sides) (15)
m 1 — o 2 m
(1 By = (o By )
1
where ( 2
S — oj)e\Mi
= 14+ 16
it = 11 ( 7 ) (16)
(1—s—a;)2\m
1—s) = 14— 17
fo-a= 11 ( 7 ) (17)

withl ={1,2,3,--- ,00}, and "I" is an arbitrary element of set I. In brief, i € I\ {/} means that i runs
over the elements of I excluding "I".

Then we have
(1 —s

o 2
(1+( ﬁz))mlf() (1+ ﬁ%“’))’"’fl(ls)

= (by the definition of divisibility of infinite products of polynomial factors)
(5—ap)* 1x]) (I—s—ay)*\m .
{ (1+ )" \(1+—ﬁl )" L =s)

(1 =20 ™ (1 ) fis)

(18)

where "|" is the divisible sign.
m

fi(l—s)and (1+ 4 (=som)” 'X’ )m’
with the help of the uniqueness of the multiplicity of zeros of &(s).

We first exclude the possibility of (1 + (s /3“1 i ) fi(s) in Eq.(18)
1
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Considering the factor (1 + M),0 < a; <1,B; # 0, with discriminant A = (%)2 —4. é(l +
1 1

BT
2
;—’2) =—4. é < 0, is irreducible over the field R of real numbers, we know from Eq.(18) that
i ]
s —w)? (s —m)?
(1+ (72)% fil=s)= (1+ 72)) ‘fz(l — )
B Pi
= (by Lemma 5)
(s —a;)? (1—s—a)?, .
1+ = )|+ )it
! i

= (the dividend polynomial and the divisor polynomial are of the same degree)

(H(l—;;"‘i)z):k(lJr(s_ﬁ;‘l)z),i#l,keR,k#o

= (by comparing the like terms in the above polynomial equation)

L —k.

B 51
2(1/3204 ) — k- 2;;;

(1-w)? af
1+ /32 =k(1+ 52)

=
wi+ou=1,p=pLk=1,i#1

Similarly, we also have

1—s—a)? 1-5—ua

(1+ (ﬁzl))ml fils) = (1+ (71 )|fis)
1

= (by Lemma 5)

(s = |, (s—a)
1+———) 1+ i#1
1+ =)0+ =),
= (the dividend polynomial and the divisor polynomial are of the same degree)

— )2 Ca— )2
(148 ﬁ;‘) ) _k(1+(1782‘”)),i7é1,ke112<,k7é0
1

= (by comparing the like terms in the above polynomial equation)

wi+u=1p=pLk=1,i#1

As explained in the situation of Figure 1, a; + a; = 1,82 = B2,i # | means that (o;, 0;, 1 — p;, 1 — p;)
and (o7, 01,1 — p1, 1 — p;) are the same zeros in terms of quadruplets, which contradicts the uniqueness
of the multiplicity of zeros of ¢(s).

Thus, in order to keep the multiplicities of zeros of &(s) unchanged, (1 %#)m’ can not divide

1
fill=s), (1+ %)m’ can not divides f;(s). In addition, (1 + (s l;" i ) is irreducible over the
I
field R, then by Lemma 7 we know that (1 + (s ﬂ“’ i )ml and f;(1 — s) are relative prime, similarly,
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1+ (l_ﬁs_ﬁ "'and f;(s) are relative prime. Consequently, by Lemma 6, we obtain from Eq.(18) the
7 p q Yy, by q

following result.

(s_‘Bl;xl)2 - 2_0‘1)2)”‘1]:1(1_3)

) is) = (14 & 5

(1+

=

4 Egly g Loty
(1—5—a)? (s — a;)?

g 2

)" )"

1+

- (19)
(s — ) (1-s—w)’
Bt B
= (k = 1,by comparing the highest-order terms in the above polynomial equation)
2 2
(s ‘B;‘l) )ml = (14 (1 L;lz @) )mz
= (by Eq.(14))

(1+ )" =k(1+ )"k e Rk #0
(1+

IXZZE

Let ] run over from 1 to oo, and repeat the above process, we get
s (s —a;)>\mi 2 (1 —s—a;)=\m
[T+ =) =TI+ )

(1+M)mi - (1+M)mi (20)

(21)
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Further, limiting the imaginary parts f; of zeros to 0 < |B1| < |B2| < |B3| < - - - in order to keep the
multiplicities of zeros unchanged while a; = 3, we finally get

(1 Coy (0 (o aFy

&
0<|ﬁ1|<|ﬁ2|<|53\<
i=1,2,3,-

ie.,
1
=3

fO)=fA=s) e 0<|p| < b2 <IBs| <---
i=1,23--,00

That completes the proof of the Key Lemma.

4. A Proof Of the RH

This section presents a proof of the Riemann Hypothesis. We first prove that Statement 2 of the
RH is true, and then by Lemma 2, Statement 1 of the RH is also true. To be brief, to prove the Riemann
Hypothesis, it suffices to show that a; = %,i =1,2,3, -+, 00 in the new expression of {(s) as shown in
Eq.(22).

Proof of the RH: The details are delivered in three steps as follows.

Step 1:
It is well-known that zeros of ¢(s) always come in complex conjugate pairs. Then by pairing
pi = «; + jB; and p; = a; — jB; in the Hadamard product as shown in Eq.(10), we have

(22)

s s = B (s — a;)?
O ) SO Gm  aee

)

where (0) = 2,O<0¢1 <1,B; #0.
The absolute convergence of the infinite product in Eq.(22) in the form

ﬁlfﬂ ﬁ( B (23)

i=1 p 1= |p1|2

depends on the convergence of infinite series ) °; |P il (since [s|] < 00 = |s(2a; —s)| < o0), which is an
obvious fact according to Theorem 2 in Section 2, Chapter IV of Ref.[23]. Thus, the infinite products as
shown in Eq.(23) and Eq.(22) are absolutely convergent for |s| < oo.

Further, considering the absolute convergence of

H( |D;T)— H z[iﬁz (ngﬁ)g) (24)
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we have the following new expression of {(s) by putting all the p; related multiple factors (zeros)
together:

)" (25)

00 2 )2
e = £ T (s + )

Step 2: Replacing s with 1 — s in Eq.(25), we obtain the infinite product expression of {(1 —s), i.e.,

_ > B (1—s5—a;)?
5(1*5)—5(0)E(N%+ﬁi 21

N
+

)™ (26)

where m; > 1is the multiplicity of 1 — p;/1 —p;,i=1,2,3,- -+,
The absolute convergence of the infinite product as shown in Eq.(26) can be reduced to that of {(1 —s) =

¢(0) T2 ( 1;5)(1 — %) =¢(0) T2, (1 - (175)(;%”5)), whose absolute convergence depends

also on the convergence of infinite series ) ;° ; ﬁ (since |s| < 00 = [(1 —5)(2a; — 1+ )| < o0). Then

from the analysis in Step 1, the infinite product as shown in Eq.(26) is absolutely convergent for |s| < oco.

Step 3: According to the functional equation &(s) = ¢(1 —s), and considering Eq.(25) and Eq.(26),

we have e ( )2 g ( »
= 5 —a - 1—s—a)%
lljac +/32 oc$+ﬁ2 a Ea +/32 a2 + B2 ) @7)
which is equivalent to
0 _ 2 0 _
T+ B ym a4 A=)y, (28)
i=1 lBi i=1 :Bz

where m; > 1is the multiplicity of quadruplets (0;,0;,1 — p;,1 —p;),i =1,2,3,- - - ,00. B; are in order
of increasing |B;| ,i.e., 0 < |B1] < [B2| < |B3| < -+

To check the absolute convergence of both sides of Eq.(28), it suffices to prove the con-

vergence of infinite series )~ which is an obvious fact because 0 < w; < 1,|p;|?

i=1 )52’
2
co(since ) 2 4 ﬁ is convergent, thenw — 0) = |Bi|*> — oo, then we have hmi%oo"f%‘z =

2
lim; o ucziilﬁz =1, that means } ;7 ; é and Y77 ﬁ have the same convergence.
Then, according to the Key Lemma, Eq.(28) is equivalent to
1 .
=5 0<|prl <lpol < |pa| <---;i=123 - 00 (29)

Thus, we conclude that all zeros of the completed zeta function ¢(s) have real part equal to 3, i.e.,
Statement 2 of the RH is true. According to Lemma 2, Statement 1 of the RH is also true, i.e., all the
non-trivial zeros of the Riemann zeta function {(s) have real part equal to %

That completes the proof of the RH.

5. Conclusion

This paper presents a proof of the RH based on a new expression of {(s), i.e., §(s) =

2 —;)2\ i . _ .
Z0) T2, (u&}ilﬁ? + (;24?79)2 ) , where &(0) = 1,0, = a; + jB; and p; = a; — jB; are the complex
conjugate zeros of ¢(s), 0 < a; < 1 and B; # 0 are real numbers, 0 < |B1]| < |B2| < |B3] < -+, m; >1

is the multiplicity of p;.
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The proof is conducted with the help of the divisibility contained in the functional equation
&(s) = ¢(1 —s) expressed as infinite products of polynomial factors. The first key-point is the paring
of conjugate zeros p and p to get the new expression of ¢(s). The second key-point is the use of
multiplicity of zeros. Obviously, the multiplicity of zeros of {(s) is an objective existence, uniquely
determined, and then unchangeable, although its specific values remain unknown. As a result, the func-
tional equation &(s) = &(1 —s) finally leadstoa; = 3; 0 < |B1| < |Ba| < |B3| <-++;i=1,23,-- 0.
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