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Abstract: To address the need for high performance and low power in edge AI scenarios, this paper 
proposes a domestically developed smart chip acceleration architecture. It features heterogeneous 
computing units, a configurable on-chip interconnect, and multi-level energy optimization, enabling 
balanced computational density and power control with broad algorithm compatibility. The design 
integrates core modeling, dynamic scheduling, clock gating, DVFS, and data flow reconfiguration to 
enhance energy efficiency. Experimental results demonstrate superior throughput and power control 
over comparable chips in typical AI tasks, highlighting strong application potential. 

Keywords: smart chips; heterogeneous computing; on-chip networks; dynamic scheduling; low-
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1. Introduction 

Given diverse model structures and dynamic workloads, building high-performance, low-
power intelligent chips is essential for advancing domestic AI hardware[1]. While some international 
chips excel in reasoning tasks, their specialization, high power usage, and ecosystem constraints limit 
broader application. To overcome these challenges, this paper proposes a domestic AI chip 
acceleration architecture, emphasizing heterogeneous computing design, optimized on-chip 
interconnects, and energy-aware scheduling to achieve near-optimal energy efficiency with high 
throughput. 

2. Heterogeneous Computing Acceleration Unit Design for AI Loads 

2.1. Heterogeneous Computing Unit Architecture 

As AI integrates into edge computing and industrial control, traditional processors can no longer 
meet the demands of AI tasks for performance, energy efficiency, and real-time response[2]. 
Addressing diverse models and dynamic workloads requires high-performance, low-power 
intelligent chips. Existing international solutions face limitations in power and adaptability. This 
paper proposes a domestic AI chip architecture with heterogeneous computing, optimized 
interconnects, and energy-aware scheduling to balance efficiency and throughput. 
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Figure 1. Heterogeneous computing unit architecture. 

On-chip network interconnection technology 

A configurable mesh-based interconnect is proposed, combining virtual channels and adaptive 
routing to ensure bandwidth isolation and low communication delay under heavy loads[3]. QoS-
aware packet scheduling prioritizes critical operations, while Dynamic Link Width (DLW) and data 
compression at the physical layer reduce power and congestion [4]. The performance model is 

constructed based on the node traffic density function ij  and channel bandwidth ijB  , and the 
network delay D can be expressed as: 
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where ijL  is the link length, ijH  is the average hop count, and ij  is the link utilization.  

2.2. Dynamic Scheduling of Computing Resources 

In order to adapt to the load fluctuation and resource usage imbalance problem during the 
operation of diverse AI models, this paper constructs a scheduling framework based on task graph 
topology analysis, combined with Reinforcement Learning Scheduling (RLS) to dynamically match 
different operators to the optimal computing units. The scheduler monitors the computational 

density, data dependency depth  and resource utilization in real time, and optimizes based on the 
scheduling performance objective function F. The scheduling framework is based on the topology 
analysis of the task graph: 
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where  is the computation amount of the kth task  is the computation power of its assigned 

unit,  indicates its unit energy consumption;  and  are the regulation coefficients, which 
optimize the performance and energy consumption.  

 

Figure 2. Schematic diagram of dynamic scheduling mechanism of computing resources. 
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3. Low-Power Smart Chip Performance Optimization Methods 

3.1. Dynamic Voltage Regulation 

This mechanism monitors key parameters such as instruction-level parallelism (ILP), cache hit 
rate (CHR) and logic unit switching rate (TAR) to predict the current load characteristics, and then 
adaptively adjusts the operating voltage V of each computational unit and the main frequency f [5]. 
Under the premise of meeting the performance requirements, the mechanism achieves the optimal 
global energy efficiency by optimizing the energy-delay product (EDP): 

𝑚𝑖𝑛
௏,௙
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where  is the capacitive load of the ith cell,  and  are its current voltage and frequency,  is the 
task execution time,  indicates the offset from the standard power consumption, and  is the 
stability penalty factor.  

3.2. Reduction of Computing Unit Power Consumption 

This paper proposes a multi-level power reduction strategy combining logic-level low-power 
design (e.g., MTCMOS), micro-architecture-level power gating, and algorithm-level sparse-aware 
scheduling[6]. Static power is reduced by using high-threshold transistors to power down idle units 
and enter sleep mode during low-load phases. For dynamic power, a data-aware gating mechanism 
selectively disables low-activity signal paths. The total power consumption 𝑃௧௢௧௔௟  is modeled by 
integrating contributions from multiple power sources.: 
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where  is the activity factor of the ith computational unit,  is the capacitance,  denotes its 
leakage current under the condition of temperature Tand voltage  ,  is the idle indicator 

function, and  is the turn-off cost factor.  

 
Figure 3. Schematic diagram of the multi-level power reduction mechanism. 

3.3. Local Clock Gating and Data Flow Optimization 

Large-scale clock trees in smart chips generate significant dynamic power, especially under 
partial or low-load conditions. To enhance energy efficiency, this paper employs Fine-Grained Clock 
Gating (FGCG) and Data Flow Reallocation (DFR) [7]. FGCG selectively activates clocks in MAC 
units, control logic, and caches only during active compute cycles, guided by instruction scheduling 
and workload awareness. DFR dynamically reallocates data paths based on flow intensity, 
optimizing bandwidth use and cache performance. Simulation results on Transformer inference tasks 
confirm the effectiveness of these techniques: 
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Table 1. Impact of Clock Gating and Data Flow Optimization on Performance and Power Consumption Table. 

optimization strategy Chip Power 
Consumption 

Reduction 
(%) 

Average 
delay 

reduction 
(%) 

On-chip cache 
hit rate 

improvement 
(%) 

Decrease in 
the number of 
clock switches 

(%) 

no optimization 0.0 0.0 0.0 0.0 
FGCG alone 17.3 3.5 1.2 36.8 
DFR alone 8.9 9.4 12.6 4.1 

FGCG + DFR Joint 
Optimization 

24.7 11.2 13.9 39.3 

4. Validation and Experimental Analysis 

4.1. Experimental Platform and Test Program 

To evaluate the low-power performance of the proposed domestic smart chip, an experimental 
platform integrating hardware simulation, system verification, and algorithm testing is built. Based 
on a 28nm CMOS prototype with heterogeneous units, configurable interconnects, clock gating, and 
multi-domain DVFS, the system runs on a Xilinx VCU128 board with precision power 
monitoring.Tests include CNN inference (ResNet-50, MobileNetV2), NLP (BERT-base), and 
unstructured tasks (e.g., sparse matrix ops), measuring throughput (TOPS), energy efficiency 
(TOPS/W), latency, and power. Cold-start averaging and calibration ensure accuracy. 

4.2. Performance Test Results 

As described in Section 4.1, the chip's core performance is evaluated using three typical AI tasks: 
image recognition (ResNet-50), semantic understanding (BERT-base), and sparse computation 
(Sparse GEMM) [10]. Metrics include throughput (TOPS), energy efficiency (TOPS/W), latency, and 
on-chip power at peak load and 1.0 GHz, benchmarked against mainstream AI chips.Results show 
that the proposed heterogeneous architecture, with dynamic voltage control, optimized 
interconnects, and resource scheduling, outperforms peers in both speed and efficiency. In particular, 
for BERT, the programmable accelerator’s optimization of Transformer operations enables 
performance exceeding 21 TOPS, surpassing comparable domestic chips. 

Table 2. Performance test results of the chip under different AI tasks. 

Model Type test task Chip 
Throughput 
Rate (TOPS) 

Energy 
Efficiency 

Ratio 
(TOPS/W) 

Average 
delay (ms) 

Chip Power 
Consumption 

(W) 

image recognition ResNet-50 18.4 9.7 3.21 1.89 
language 

understanding 
BERT-base 21.3 10.2 4.85 2.09 

sparse computing Sparse 
GEMM 

16.2 11.5 2.74 1.41 

4.3. Comparative Analysis with International Similar Chips 

To assess the international competitiveness of the proposed chip, this paper compares it with 
three mainstream AI accelerators: NVIDIA Jetson Xavier NX (GPU), Google Edge TPU (ASIC), and 
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Huawei Rise 310 (domestic AI chip). Under a unified test setup with identical batch sizes and FP16 
precision, ResNet-50 and BERT-base models are used to evaluate peak throughput, energy efficiency 
(TOPS/W), and average latency.Results show that the chip matches Jetson Xavier NX in throughput 
and exceeds it in energy efficiency, particularly in Transformer tasks due to optimized operator 
scheduling.. 

Table 3. Comparison of the performance of the national chips with their international counterparts. 

chip platform test 
model 

Throughp
ut Rate 
(TOPS) 

Energy 
Efficiency 

Ratio 
(TOPS/W) 

Average 
delay 
(ms) 

Remarks 

This design 
chip 

BERT-
base 

21.3 10.2 4.85 Supports heterogeneous 
scheduling with DVFS 

Jetson Xavier 
NX 

BERT-
base 

22.5 6.9 5.37 GPU architecture with high 
power consumption 

Google Edge 
TPU 

ResNet-
50 

14.8 8.2 3.95 Fixed structure with limited 
sparse support 

Huawei Rise 
310 

BERT-
base 

19.6 9.1 5.02 Universal NPU Platform 

5. Conclusion 

This paper presents a low-power acceleration architecture for domestic AI chips, featuring 
heterogeneous computing, optimized on-chip networks, and dynamic resource scheduling. 
Structurally, the integration of scalar processors, tensor units, and programmable AI modules enables 
efficient task-specific computation. Energy efficiency is enhanced through multi-domain DVFS, 
voltage gating, and local clock shutdown, reducing both static and dynamic power. An adaptive 
scheduling model based on task topology and real-time feedback improves efficiency under complex 
loads. 

Experiments show strong throughput and energy efficiency on models like ResNet and BERT, 
with superior power control and scheduling flexibility compared to international counterparts, and 
excellent edge deployment adaptability. Future work will explore multi-core collaboration, inter-chip 
communication, and domain-specific acceleration to support large-scale deployment of high-
efficiency domestic AI chips. 
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