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Abstract: The third-order optical nonlinearity of hexagonal boron nitride (hBN) nanosheet was char-
acterized by z-scan, I-scan, and spatial self-phase modulation (SSPM). The hBN nanosheets exhibited
a positive nonlinear absorption or reverse saturable absorption (RSA) and its coefficient was esti-
mated to be ~ 7.1 x 10 m/W via the open z-scan. The I-scan technique further verified the polarity
of nonlinear absorption and the prospective application for laser safety (optical limiting) of the optical
sensors from high-power lasers. It is found that the given hBN atomic layers could absorb up to ~22
% of incoming laser beam. In addition, the absence of a nonlinear refraction effect was observed using
the closed z-scan and SSPM for a given excitation peak intensity. It implies that the free carrier-in-
duced nonlinear absorption that diminishes the NLR signal via free-carrier dispersion. Acknowledg-
ment: This work at HU is supported by ARO W911NF-15-1-0535 and NASA NNX15AQ03A.

Keywords: nonlinear polarization; two-photon and one-photon absorption; free carrier absorption
and dispersion

1. Introduction

The hexagonal boron nitride nanosheets (h-BNNS) have garnered significant attention for a wide
range of applications such as, optical power limiting, optical modulators, deep ultraviolet light emit-
ters, laser, dielectrics layers, and solid-state thermal neutron detector, etc [1-8]. The h-BN has recently
been subject to increased research interest due to the stable and softer structure that can resist oxida-
tion at high-temperature applications [9]. It has strong bound excitons in the absorption spectrum in
the UV region of both the monolayer and the bulk [10]. Therefore, the characterization of third-order
nonlinearity using 532 nm (visible) and 800 nm(near-infrared) laser excitation is essentially important
as the source of the single-photon at room temperature via the two-photon nonlinear process [11].

The third-order nonlinearity of hBN nanosheets are studied by z-scan, I-scan, and spatial self-
phase modulation (SSPM) [12-16]. The z-scan techniques characterize the polarity and magnitude of
nonlinear absorption (NLA) and nonlinear refraction (NLR) [17,18]. In NLA, one or more photons get
absorbed in a single event depending on the material’s bandgap energy compared to the excitation
energy. These phenomena would change the beam transmittance through the medium due to the
intensity-dependent absorption. On the other hand, NLR occurs in a medium when there is a change
in either the net refractive index or the spatial distribution of the refractive index in the presence of
external fields [13,14,19-23]. Also, the NLR can be characterized by spatial self-phase modulation
(SSPM) which attracted extensive interest when Callen et al. observed the annular intensity distribu-
tion of a Gaussian laser beam passing through carbon disulfide in 1967 for the first time [24]. It is due
to the intensity-dependent nonlinear refraction which differs along with the spatial intensity distri-
bution of the laser beam. The coherent superposition of an optical wave of spatially varied phases
causes the concentric diffraction rings of interference with constructive and destructive interferences
[15,16,25]. In SSPM, the ring number is a function of laser input intensity, revealing a nonlinear re-
fractive coefficient.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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The previous studies divulged the application of hBN on the optical power limiting using bare
[3] and functional hBN nanosheets using z-scan and I-scan [4,5] with a 1064 nm excitation source. The
single/few-layer in h-BN has recently opened new vistas for studying multiphoton absorption (MPA)
in 2D materials [26]. Because of the wider bandgap materials, the excitation energy in the visible
region could be non-resonant, resulting in reverse saturable absorption (RSA) through the two-pho-
ton and/or two-step excitation via the intermediate state. Also, the RSA phenomena occur if the ex-
cited state absorption cross-section (ESA) is larger than that of the ground-state absorption cross-
section (GSA) [14]. Kumbhakar et al. [3] reported a strong two-photon absorption in few-layer h-BN
sheets when exposed to nanosecond pulses of 1064 nm. It is due to the large transition dipole moment
from the electronegativity difference between B and N atoms. Also, the huge range of magnitude of
nonlinear absorption or/and two-photon absorption coefficient have been reported. For example,
Ouyang et al. reported the nonlinear absorption coefficient of BN thin film in the order of ~ 107 m/W
using a femtosecond laser of 400 nm wavelength [1]. However, Biswas et al. demonstrated the two-
photon absorption with its coefficient in the order of 10'* m/W using a nanosecond laser of 532 nm
wavelength [5]. It infers that further study of NLA remains essential to enhance our understanding
of the mechanisms of the nonlinear absorption process which may include two-photon absorption
(TPA), free-carrier absorption (FCA), and free-carrier dispersion (FDA). Because of these free carriers
mediated nonlinear absorption, the magnitude of the nonlinear refraction coefficient may be influ-
enced. The measurement and analysis of these coefficients are crucial for evaluating the potential of
BN in photonic applications. Therefore, this study focuses on the magnitude and polarity of NLA via
open z-scan and its impact on nonlinear refraction through both closed z-scan and SSPM. Also, the
coefficient of nonlinear absorption of hBN nanosheets in dispersion solution through the open z-scan
was utilized to demonstrate the optical power limiting phenomena via the I-scan.

2. Materials and Methods

The hexagonal Boron Nitride nanosheets in ethanol/water solution were purchased from the
Graphene Supermarket which was prepared by the liquid exfoliation method [27]. The concentration
of nanosheet was ~5.4 mg/L which includes 1-5 monolayers with lateral sizes of 50-200 nm. The non-
linear absorption property of hBN was characterized by the open-aperture (OA) z-scan technique
using a Gaussian beam. The Gaussian beam was prepared by two pin-hole method [28]. The excita-
tion source for open z-scan was a pulsed laser at 532 nm, 10 Hz repetition rate, and ~6 ns temporal
pulse width. The diameter of the Gaussian beam at the focusing lens was ~2.6 mm at FWHM. The
effective focal length of the focusing lens for the z-scan was ~125 mm. The radius of the beam waist
(wo) at the focal point was ~16.2 um. The Rayleigh length (zo = kwo?/2) was ~2.58 mm [17]. For the
closed z-scan, the distance between the focal plane and the detector was 2.02 m. The finite aperture
radius (rs) in front of the detector was ~0.75 mm and the linear transmittance of the finite aperture
was ~0.0049 which meets the closed z-scan condition [14,17]. The SSPM experiment was carried out
using 800 nm wavelength of excitation source with 1.5-ps pulse width and 82 MHz repetition rate.
The beam waist at the focal point was 40 um and the Rayleigh length was ~ 1.1 cm. The measurement
screen was placed at ~1 m away from the 1-cm quartz cuvette which contained the liquid suspension
of atomic layers. The diffraction rings on the screen were captured by a CCD USB 2.0 camera
(DCU223C, 1024 x 768 Resolution, Color, USB 2.0, Thorlabs, Inc.).

3. Results and Discussion

The linear absorption of hBN nanosheets (Figure 1) was measured by Agilent 8453 spectrometer.
It shows the significant absorption is in the ultraviolet (UV) energy range. It implies that the hBN is
transparent for visible to infrared (IR) wavelengths. To analyze the optical spectra of hBN nanoflakes,
the plot of (ahv)? vs hv is presented in the inset of Figure 1. It satisfies the condition of (ahv)? « (hv-
Eg) that estimates the optical band gap to be ~5.45eV [5,29]. Here « is an absorption coefficient calcu-
lated from the absorbance (A), hv is the photon energy, and Eg is the bandgap of the materials. In the
inset of Figure 1, the black dotted points are the experimental data abstracted from absorption, and a
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red dash line was drawn to find the point of intersection of it to the energy axis which estimates the
bandgap of BN nanoflakes. Based on the estimated optical bandgap, the excitation source of 532 nm
(~2.33 eV) and 800 nm (~1.55 eV) could be used as non-resonant excitation for the nonlinear optical
excitations.
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Figure 1. Absorption spectrum of hBN and inset figure estimates the optical bandgap.

The nonlinear absorption coefficient was estimated using the open z-scan technique. A Gaussian
beam was prepared for this process with the help of the two-irises method [14]. The open z-scan
technique displays the normalized transmittance as a function of z-position as shown in Figure 2. The
experimental measurement revealed the reverse saturable absorption of positive nonlinearity for the
different input peak intensities of 5.3 GW.cm?, 3.0 GW/cm?, 1.4 GW/cm?, and 0.6 GW/cm?. This implies
that two-photon absorption or two-photon excitation may dominate the nonlinearity process. Fitting
with the model [17], the nonlinear absorption coefficient of h-BN was estimated to be ~ 7.1 x 1010

m/W.
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Figure 2. Nonlinear transmittance as a function of sample position along the z-axis for the different applied peak

intensities with an open Z-scan.

The nonlinear effect requires an intense laser source which can significantly produce the heat
effect. Thermal lensing initiated by high repetition rate lasers in z-scan experiments has been reported
by various authors [30,31]. The light passing through the sample is partially absorbed by the sample
and converted into heat. It is believed the time required to see a change in the material density as a
consequence of acoustic waves is referred to as the acoustic transit time. It is the rise time of a thermal
lens in an aqueous liquid which is denoted as T = wo/vs [17] where wo is the radius of the beam waist
and vs = 1437 m/s [32], is the velocity of sound in the water at room temperature. Consequently, we
calculate T to be approximately 11.27 ns, nearly double the pulse width of laser used, suggesting that
the thermal diffusion time in water exceeds the pulse width [33]. This implies that non-uniform heat-
ing is induced by the 6 nm pulsed laser. Gnoli et al. [34] claimed thermal lensing accumulating over
many laser pulses leads to flawed analysis and understanding of the nonlinear response, as well as a
shifted origin. Another study showed that pulse duration, not the repetition rate, could also produce
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variations in the measurement as a result of acoustic thermal effects [35]. The same temperature gra-
dient responsible for acoustic waves also generates a thermal lens which is often referred to as cumu-
lative thermal effects. Thermal heating induced by a single laser pulse persists over some character-
istic time t.. Thus, the thermal effect increases whenever the time interval between consecutive laser
pulses is shorter than t.. In this case, a stationary lens is formed when a steady state is reached be-
tween the rate of heat generation and heat diffusion. If the laser repetition rate is much greater than
1/t., the time scale of this cumulative process is given by t. = w.?/4D, where D is the thermal diffusion
coefficient (or diffusivity) of the material and w. is the beam waist. At high repetition rates, the time
between pulses is shorter than time f., and the sample does not have enough time to dissipate the
heat from the previous pulse out of the beam diameter. This heat continues to build producing a
thermal lens, eventually overtaking the electronic and molecular effects, and continuing to very high
nonlinear absorption. Acoustic waves are more prevalent in the nanosecond and picosecond pulse
width regimes [36]. Specifically, if the acoustic wave has enough time to completely traverse the beam
profile, the thermal contribution can be attributed to accumulation of heat within the system.

In addition, the closed z-scan technique was used to characterize the nonlinear refraction. The
normalized transmittance as a function of sample position doesn’t display any significantly recog-
nized peak and valley for the different peak intensities of 5.3 GW/cm? and 3.0 GW/cm? as shown in
Figure 3. However, the normalized transmittance for 5.3 GW/cm? peak intensity seems to be a trace-
able nonlinear refraction signal compared with the intensity at 3.0 GW/cm?2. This work further char-
acterizes the NLR coefficient through the spatial self-phase modulation technique.

o 3.0 GW/em?

105t o 53 GW/em?

1.00 &

095+

Normalized transmittance

0.0l 000 001
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Figure 3. Nonlinear transmittance as a function of sample position along the z-axis for the different applied peak

intensities with a closed Z-scan.

Moreover, the NLA of an optical sample could further be investigated by the I-scan technique
where the intensity-dependent nonlinear transmittance was measured as a function of input peak
intensity for a given stationary position in the z-axis as shown in Figure 4. It diminishes the laser
target variation on the sample position along the z-axis which is beneficial for the inhomogeneous
sample distribution in an aqueous solution [37]. Also, the sample is in a stationary position on the z-
axis which prohibits passing through the focusing point that lowers the probability of sample damage
due to the laser heat. I-scan demonstrated the normalized transmittance as a function of applied peak
intensity, the total absorption being intensity-dependent and expressed mathematically as
a(l)=a, + fI where ao and f are the intrinsic linear and nonlinear absorption coefficients respectively.
Figure 4 further verified the polarity of nonlinear absorption as nonlinear transmittance decreases
with increased laser intensity. It implies that the total absorption of h-BN is decreased as the intensity
increases for the intrinsic linear and nonlinear absorption coefficients. It shows that the nonlinear
transmittance through the BN nanoflakes could decrease to ~78% of the incoming laser beam, which
is suitable for the applications of optical power limiters.
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Figure 4: Nonlinear transmittance of h-BN nanosheets at the focal point of open Z-scan as a function of input

peak intensity.

To investigate the nonlinear refraction further, the SSPM technique was deployed as described
in the method and materials section. Figure 5a,b displayed the laser-induced diffraction rings of hBN
in the liquid solution for the different peak intensities and different time durations of laser excitations
respectively. The diffraction rings reveal that the nonlinear refraction phenomena don’t change with
the applied laser intensity. However, the nominal number (one- or two) of diffraction rings is seen as
shown in Figure 5.

(a) at 0.48 seconds GW/em? |(b) atIl,= 0.70 GW/cm?
0.26 0.32 043 Os 0.08 s

Figure 5. Diffraction patterns of SSPM at (a) different peak intensities and (b) at different time duration of laser

excitations with the applied input intensity of ~0.7 GW/cm?.

The optical kerr effect arises from the third-order nonlinear polarization through the oscillatory
electric field, and the refractive index change depends linearly on the field intensity asn(/) = n, + n,I
. Nonlinear refraction occurs in a medium when there is a change in either the net refractive index or
the spatial distribution of the refractive index in the presence of external fields. The closed z-scan
characterizes the net refractive index change and a change of spatial distribution of the refractive
index, associated with the SSPM. It is demonstrated that the strong presence of nonlinear absorption
in h-BN may impact the nonlinear refraction through the free-carrier absorption (FCA) and free-car-
rier dispersion (FCD) during the excitation process [38-41]. Yan et al., [38] described the free carrier
induced nonlinear absorption through the TPA, FCA, and FCD. The FCD-induced phase shift has a
sign opposite to that of the Kerr effect, which results in the reduction of the total magnitude of the
nonlinear refraction signal during the nonlinear process. The nonlinear effect is supposed to be en-
hanced if only TPA is considered. However, the nonlinear refraction properties remain almost con-
stant because of the presence of possible free carrier absorption. Therefore, even after increasing the
input laser intensity, the number of rings may not increase which contradicts the general SSPM phe-
nomenon.
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4. Conclusions

The third-order nonlinearity of hexagonal Boron Nitride nanosheets was characterized by open
z-scan, I-scan, and SSPM. The open Z-scan and I-scan techniques were conducted with the laser ex-
citation at 532 nm, 10 Hz repetition rate, and ~6 ns pulse width. The open Z-scan revealed the positive
nonlinear absorption or reverse saturable absorption, and its coefficient was estimated to be ~ 7.1 x
1010 m/W. Because of the wide bandgap, the absorption process may include two-photon or two-step
through the virtual intermediate state. It could be inferred that the hBN has a larger excited state
absorption cross-session (ESA) than the ground state absorption cross-section (GSA). However, the
nonlinear refraction effect was not significantly observed using the closed z-scan and SSPM for a
given excitation peak intensity. It might be the effect of free carrier-induced nonlinear absorption.
The free carrier-induced NLA including FCD reduces the magnitude of the NLR signal. Furthermore,
the polarity of NLA and its impact on the total absorption was reexamined by the I-scan technique.
Finally, the hBN atomic layers could absorb up to ~22 % of the incoming laser beam which might be
applicable for the protection of optical sensors from high-power lasers.
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