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Abstract: Because of the rapid advancement in the use of photovoltaic (PV) energy systems, it has
become critical to look for ways to improve the energy generated by them. The extracted power
from the PV modules is proportional to the output voltage. The relationship between output power
and array voltage has only one peak under uniform irradiance, whereas it has multiple peaks under
partial shade circumstances (PSC). There is only one global peak (GP) and many local peaks (LPs),
where the typical maximum power point trackers (MPPT) may become locked in one of the LPs,
significantly reducing the PV system's generated power and efficiency. The metaheuristic
optimization algorithms (MOAs) solved this problem, albeit at the expense of the convergence time,
which is one of these algorithms' key shortcomings. Most MOAs attempt to lower the convergence
time at the cost of the failure rate and the accuracy of the findings because these two factors are
interdependent. To address these issues, this work introduces the dandelion optimization algorithm
(DOA), anovel optimization algorithm. The DOA's convergence time and failure rate are compared
to other modern MOAs in critical scenarios of partial shade PV systems to demonstrate the DOA's
superiority. The results obtained from this study showed substantial performance improvement
compared to other MOAs, where the convergence time is reduced to 0.4 s with zero failure rate
compared to 0.9 s, 1.25 s, and 0.43 s for other MOAs under study. The optimal number of search
agents in the swarm, optimal initialization of search agents, and optimal design of the dc-dc
converter is introduced for optimal MPPT performance.

Keywords: Photovoltaic;c MPPT; partial shading conditions; convergence time; failure rate;
metaheuristic; dandelion optimization algorithm (DOA)

1. Introduction

With the continuous increase in the need for electrical energy and the continuous shortage of
fossil fuels and the impact of geopolitical problems on energy supplies and the environmental impact
of excessive use, the need for renewable energies, especially the energy generated from PV cells, has
increased. Most of the world’s nations realize this problem and started ambitus programs to
completely rely on renewable energy sources by 2050 [1]. Statistics indicate a significant rise in the
use of PV in the production of electric energy, as the worldwide capacity of PV cells increased to 1300
megawatts, exceeding the capacity generated from wind energy by 400 megawatts [2]. With the rapid
progress in modern energy storage systems (ESS) and smart grid systems [3,4], the problem of
intermittency in the generated power as a result of climate change has been overcome. The ESS can
save the extra energy greater than the load needs and serve this stored energy when there is a
deficiency in the extracted power from renewable energy sources (RES) compared to the power of
the load. Moreover, the smart grid system can control the loads by different smart grid concepts to a
level near the available generation from RES.

The PV systems are used to directly generate electricity from sunlight. The extracted power from
the PV array is directly proportional to the light intensity, operating temperature, and the output
voltage of the PV array. Connecting many modules in series and parallel are required to increase the
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voltage and current of the PV array. The relation between the generated power and the terminal
voltage is nonlinear and it has only one peak at about 0.8 of the open circuit voltage (Vi) of the PV
array in case of uniform irradiance. In case of non-uniform irradiance falling on the PV modules,
different generated power will be generated from these PV modules. For extracting the maximum
power from these modules, each module should work with its optimal voltage and current which is
not the case in real PV systems because modules are connected in series and parallel. This means that
the current in each series branch is the same in all series modules, meanwhile, the terminal voltage
of each module is different. A negative voltage may be generated at the terminal of some modules in
some severe partial shading conditions (PSC). The negative voltage of shaded modules occurs when
these modules act as a load on other modules due to PSC. The occurrence of the negative voltage on
some of the shaded modules generates heat inside the module which may destroy it. This
phenomenon is called the hot-spot phenomenon [5]. For this reason, a bypass diode should be added
in parallel with each module for hotspot protection. When the shunt diode is activated, the generated
power from these modules is wasted, and the PV system loses this quantity of energy. Because of the
PSC and shunt diodes, the P-V characteristics of the PV array will have fewer than or equal to the
number of series modules in the PV array that have varying irradiances. The global peak (GP) is
having the highest power among these peaks, whereas the other local peaks (LPs) have lower power
than the GP. Several ways have been developed to track the maximum power point (MPP) during
real-time operation with various PSCs. Several strategies have been introduced to track the MPP
during their real-time operation with different PSCs. As a result, a dc-dc converter was utilized to
track the MPP of PV systems by manipulating the power electronics switches with logic created by
maximum power point tracker (MPPT) approaches. As illustrated in Figure 1, MPPT techniques are
utilized to extract the maximum power provided by a PV system by managing the on/off times of
power electronic switch/switches. Some typical procedures employed the incremental change in
voltage to track the MPP, such as hill climbing (HC), perturb and observe (P&O), and incremental
conductance (In.Con.) [6]. Other smart techniques, such as using fuzzy logic controllers [7] and
artificial neural networks [8], have been used as an MPPT of PV systems, but all of these strategies
fall into the conventional strategies category because they cannot track the GP and they may stick at
one of the LPs in the event of PSC. As a result, typical MPPT techniques are not suggested for usage
with PSC-equipped PV systems. The metaheuristic optimization algorithms (MOAs) can follow the
GP and prevent the PV system from becoming caught in one of the LPs. Several MOA techniques,
including particle swarm optimization (PSO) [9], bat algorithm (BA) [10], grey wolf optimization
(GWO) [11], and musical chairs algorithm (MCA) [12], among others, have been employed as MPPT
of PV systems. All of these MOAs have several problems, including extended convergence times,
premature convergence, and particle stagnation at one of the LPs. The majority of recent studies on
this subject have been proposed to overcome these challenges [13-18]. Still, additional efforts are
needed in this sector to lower convergence time while maintaining GP tracking accuracy.
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Figure 1. Grid-connected PV energy system with MPPT.
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Various strategies have been used in the literature to overcome the long convergence time
problem. The majority of these studies are centered on making changes to current MOAs to capture
the GP quicker [13-18]. To overcome the random aspect of the PSO in tracking the MPP of PV
systems, a deterministic approach was used to modify it [13,14]. The fundamental concept behind
this approach is to replace the random values that should be multiplied by the acceleration factors to
estimate particle velocity. The accelerated parameters are replaced by 1.0 in this investigation, and
the random numbers are deleted. As a result, just the inertia weight parameter has to be adjusted.
This strategy has been compared with conventional PSO and shows better performance [13]. The
main shortcoming of this optimization algorithm is the random initialization which may cause
premature convergence to one of the LPs and a long convergence time that can be avoided with better
initialization algorithms [19,20]. The strategy used in [14] improved the random initialization of
particles by initializing these particles at the predicted position of peaks. Moreover, it reduced the
swarm size to reduce the convergence time. This strategy is reduced the convergence time but it
should be trained for different operating voltages due to the particles using the terminal voltage, not
the duty ratio [14]. The predicted positions of peaks used in this strategy are based on the anticipated
peaks placed at 0.8 Vo which is not accurate as has been discussed in [20]. Another technique
employed a linear drop in inertia weight value from 0.9 to 0.4 to increase global search at the start of
optimization and improve local search at the end [21]. This method lowered the convergence time
and steady-state oscillations, but it still has to be improved. Another strategy suggested the variation
of the inertia weight from 0.8 to 0.1 [15] for the same purpose. Some other studies introduced a
dynamic inertia weight in which the value of inertial weight will change based on the convergence
performance [16-18]. Another approach for linearly adjusting the acceleration parameters and inertia
weight is provided [22,23]. All these modifications are implemented based on try-and-error bases
without an optimal determination of the MOAs’ control parameters. To circumvent the use of trial
and error procedures in obtaining the control parameters of MOAs, an intriguing strategy for
calculating these optimal control parameters for PSO [9] and BA [24] is presented. In this technique,
two nested optimization loops are used: the inner one to track the MPP of the PV system, and the
outer one to optimize the control parameters for the internal one for the shortest time of convergence
and zero failure rate. These MOAs have been used with photovoltaic systems with varying number
of peaks to identify the ideal swarm size, inertia weight, and acceleration parameters. These strategies
significantly enhance performance while maintaining a quick time of convergence and great
accuracy.

The success of catching the GP and the convergence time will rise as the number of particles
increases, and vice versa. This suggests that the time of convergence and failure rate are related to
the swarm size. As a result, it is critical to choose the number of particles that provides the quickest
time of convergence and zero failure rate. Some solutions employed three search agents [25,26], five
search agents [27], and six search agents [28], among others. Other algorithms calculated the
appropriate number of particles based on the number of peaks for the shortest time of convergence
and zero failure rate [28].

Another strategy is used to reduce the time of convergence while maintaining a zero failure rate
using hybrid MPPT techniques (HMTs) [29-35]. The idea behind the use of HMTs is the use of an
effective GP searching strategy to determine its position at the beginning of the optimization, then
use the fast local search and low ripple technique to accurately capture the GP. Some hybrid strategies
used MOA at the beginning of optimization and conventional MPPT after that [29-33]. There are
other HMTs used two MOAs such as [34,35]. A detailed discussion of the HMT techniques is
introduced in [36].

In terms of the time of convergence and failure rate, the MPPT's success depends on the initial
placements of search agents in all MOAs. For the search agents, the majority of the MOAs employed
random position initialization [13]. Random initialization raises the failure rate and increases the time
of convergence and should be avoided in MPPT applications. Several strategies are used to replace
the random initialization by dividing the search area (voltage or duty ratio) to equal distances and
initializing the search agents at these distances [19]. This strategy is better than random initialization
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but still, the convergence time can be further reduced using initialization at predicated positions of
peaks [20]. This strategy has the fastest time of convergence and the lowest rate of failure than random
initialization, but the swarm size should be equal to the number of peaks which may limit the
flexibility of the MPPT algorithms. This point can be avoided by selecting a swarm size equal to the
peaks and the rest of the particles can be randomly distributed.

Another strategy using the skipping model algorithm to reduce the time of convergence while
maintaining a zero failure rate is introduced [37-41]. The idea of this strategy is to avoid the search
within certain values and concentrate on other areas that probably contain the GP. This strategy
reduced the convergence time but it increased the calculation time which may limit the operating
frequency and sampling time which consequently increases the convergence time. A detailed
discussion of these algorithms is shown in [42].

Another issue that all MOAs have when utilized as an MPPT of a PV system is termed search
agent stagnation in one of the local peaks. This issue was resolved by initializing the search agents
whenever the change in extracted power exceeded the present tolerance, as stated in Eqn. (1). The
high value of the predefined tolerance may cause the system to be insensitive to critical changes in
shading patterns and leave the search agents at one of the LPs and lose the GP, especially in gradual
changes in shading patterns. Meanwhile, a low value of the specified tolerance may lead the system
to reinitialize without necessity, increasing the oscillations of the PV system waveforms. The
predefined tolerance is used between 5% [43] to 10% [44]. Some strategies avoid the dependency of
re-initialization based on Eqn. (1) by re-initialization of the search agents every certain time [45] or
by using scanning search agents re-initialization at certain periods [46—48].

e M

where, Pi and Pi1 are the extracted power from the photovoltaic system at iteration i and i-1,
respectively, £is a predetermined tolerance.

1.1. Motivation

Because of the long convergence time associated with the usage of MOAs in MPPT of
photovoltaic energy systems applications, researchers sought to employ novel MOAs or improve
current ones. Nonetheless, the long time of convergence and high rate of failure necessitates greater
work due to their relevance in PV system functioning. As a result, it is critical to assess and compare
some of the most current MOAs in MPPT PV system applications with previous ones. Due to this,
the dandelion optimization algorithm (DOA), a recently developed and promising optimization
algorithm [49] is introduced in this paper to evaluate its performance compared to superior MOAs
used before for this purpose such as PSO [9], GWO [11], and MCA [12]. Moreover, optimum
initialization, optimal design of the dc-dc converter, optimal swarm size, and avoidance of search
agent stagnation in LPs are tactics used to optimize the performance of MOAs when employed as an
MPPT of PV systems.

1.2. Innovation and Contribution

Several MOAs have been employed in PV system MPPT applications. Several of these MOAs
have shown greater performance, but additional efforts should be made to test novel MOAs to further
reduce the time of convergence and rate of failure, which may be translated into an improvement in
extracted power and efficiency of photovoltaic systems. As a result, the recently developed dandelion
optimization algorithm (DOA) [49] has been employed for the first time in the MPPT of PV systems.
This research also provides a unique strategy for significantly reducing convergence time and
avoiding search agent stagnation in LPs. The innovation and contribution involved in this paper are
listed below:

e  Evaluation of the application of the DOA in a photovoltaic MPPT as a function of conversion
time and failure rate.
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e  Calculate the best swarm size to achieve the shortest time of convergence maintaining zero
failure rate.

e  Evaluating the performance of the MPPT with different initialization strategies.

e  Using a novel strategy for avoiding the stagnation of search agents in LPs.

1.3. Paper Outlines

The remainder of this study provides a full discussion of the PV array modeling in Section 2.
Section 3 has a full overview of the DOA and how it may be employed in the MPPT of photovoltaic
energy applications. Section 4 introduces the simulation experiments that were performed to
compare the proposed DOA MPPT algorithm to alternative MOAs techniques. Section 5 introduces
the experimental work performed to validate the simulated results. Section 6 introduces the findings
of this investigation.

2. PV Array Modelling

The photovoltaic cell, which is composed of two semiconductor layers (P-N layers), is the
smallest component of the PV array. The sunlight falls on the N-layer which has free electrons in its
atom’s outer layer that can be easily moved from its atom if it has enough energy to move. The photon
energy has adequate energy that can give this free electron the energy to move from the N-layer to
the P-layer which has a free hole. The N-layer atoms turn into positive ions as the electron goes from
the N-layer to the P-layer, while the P-layer atoms turn into negative ions, which might result in a
voltage difference. The produced energy from the PV cell may be transmitted from the PV cell to the
load after the load is linked between the P and N-layers. The PV cells should be arranged in parallel
and series to get the required current and voltage of the PV modules. For the same objective, the
modules should also be linked in parallel and in series. The simplest photovoltaic cell model is called
the single diode model (SDM), which is the simplest way to represent the PV cell performance, is
depicted in Figure 2 [50] which is used to represent the PV cell used in this study. Another model
with higher accuracy when more than one diode shunt to the first diode to well represent the charge
diffusion and recombination components charge of the PV cell [51]. Some other studies recommend
using three diodes in the PV cell model to get more accurate results [52]. The main problem of
increasing the number of diodes will increase the calculation burden of the model without a
substantial improvement in the accuracy compared to the SDM [53]. The SDM is providing adequate
accuracy with a reasonable calculation burden and for this reason it is used in the modeling of this
study.

1

ph 1y IR

®

Figure 2. The schematic of the single diode model of the photovoltaic cell.

From the above discussion, the PV cell can be modeled as a current generator in a shunt with a
diode. The PV cell output current can be obtained from Eqn. (2) [53].

q(V+R,I)
=1, —I{e KT —1}— V+RI

)

sh

Where, I; is the current source value, K is the Boltzmann constant, a is the diode ideality constant
(a=0.95194), T is the temperature of PV cells (°K). I and V are the terminal current and voltage of the
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PV modules, respectively, Rs and Rs are the shunt and series resistances of the photovoltaic cell
model, respectively.

The current is used to represent one PV cell shown in Eqn. (2) should be modified to model the
current in the PV array as expressed in Eqn. (3).

frafe) ) o 2o
| N

I=N,I,—N,I|e ™™ —N L ©)
{NS ]Rsh

p

Where, N, and Ns are the number of PV cells in each branch and the number of series PV cells in each
branch, respectively.

The current of the source current is directly proportional to the solar irradiation and also
functions in the operating temperature of the PV cell, as shown in Eqn. (4).

1g=(1gn+K1(T—Tn))Gi @)

n

Where, Ig is the light-generated current, T» and G are the standard test temperature (25°C) and
standard solar irradiance (1000 W/m?), respectively, and Ki is the current temperature coefficient
(0.12499 %/°C).

The diode saturation current Io can be obtained from Eqn. (5).

1, =1(%j e(%[ﬁ]] )

Where, Eg is the semiconductor’s band-gap energy, and Io: is the rated saturation current at standard
test condition which can be obtained from Eqn. (6)

qV,

ocn _y

_ /e(W ) (6)

n — “scn

1,

From Eqn. (5) and (6), the diode saturation current can be obtained from Eqn. (7).

037,

1=, + K,.AT)/e[ aKT @)

Where, Kv is the voltage temperature coefficient (-0.349 %/°C).

3. Dandelion Optimization Algorithm

Modern optimization methods must be utilized in conjunction with PV system MPPT to
precisely predict the GP in a short time. The dandelion optimization algorithm (DOA) has been used
in several applications, including Extreme Learning Machine (ELM) for biomedical classification
problems [49,54], traffic flow prediction [55], parameter estimation of PEMFCs' models [56], the speed
reducer problem of a mechanical device [57], AVR-LFC architecture for a multi-area power system
employing hybrid fractional-order PI and PIDD controllers [58], and reactive power dispatch
optimization with DG unit uncertainty [59], and credit card fraud detection [60]. Because the DOA
performs well in these applications, it has been employed in the MPPT of photovoltaic energy
systems in this research. The DOA, which was launched in 2017, was inspired by the life cycles of
dandelion plants [49]. The dandelion seeds can be spread for a long distance by wind. The structure
of the seed enables it to travel with the wind that can carry the seeds due to the vortexes above it
which can lift the dandelion seeds (DSs) in the rising stage. Once the rain occurs or the humidity
increases, the DSs gain more weight and land in different locations. The landed seeds may be able to
plant again and some others cannot plant again. The plants can plant again and will be used to
generate a new generation. The same concept may be used to track the best solution to many
optimization challenges. The DOA is divided into three stages: ascending, mutation, and selection.
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The objective is to model these three steps and apply them to find optimum solutions to optimization
issues, as detailed in the following subsections. As indicated in Eqn. (8), the optimization technique
is utilized to maximize the power supplied by the photovoltaic system by regulating the dc-dc
converter’s duty ratio.

d,,, =max(P(d)) (8)

Where dop is the duty ratio corresponding to maximum power, d is the duty ratio, P is the extracted
power from the photovoltaic energy system.

Dandelions are classified into two categories: core (CDs) and assistant dandelions (ADs). The
CD has the greatest amount of power (Pum«), meanwhile, the ADs are the rest of the dandelions.

The mathematical modeling for the breeding cycle of the DSs is shown in the following
subsections:

3.1. Rising Stage

Due to the vortices above the DSs, the lift force is created and it can carry the seeds for a distance
depending on the wind speed and the humidity. The radius of sowing of the CD is representing the
radius of the dandelions and it can be obtained from Eqn. (9).

U-1)/2 =1
RCD] = RC e a=1 9)
RC.g a#l

Where U and L are the upper and lower duty ratio values, respectively, and e and g are the fade and
growth factors, respectively, and a is a factor termed the cross trend that may be calculated from Eqn.

(10) [60].
P+
B Plye (10)

max

Where, P-' and P

max max

are the maximum power at previous and current iterations, respectively.
Meanwhile, €is a specified tolerance to prevent a denominator value of zero.
The sowing radius of the DAs is given in Eqn. (11).

U-L)/2 t=1

r_
RAD; _{(o.RADf-l +||d’CD||—||d;D" Elsewher (11)
Where, d([,‘D and d', are the position of CD and AD of search agent i at iteration t, respectively. @

is the weight factor used to enhance the stability of the search agents and it can be obtained from Eqn.
(12) [60].

PE

w=1-
PEmaX

(12)

Where, PE is the ratio of the number of calls to the goal function to the total number of calls. The total
number of calling the objective function is not known since the optimization continuously works in
real time. For this reason, similar values are used in [49]. The value of the inertia factor is shown in
Eqn. (12) starts with 1.0 and gradually reduced to zero when PE=PEmax and stays at zero till the end
of the simulation. The re-initialization of search agents of the optimization algorithm is setting the
inertia factor with 1.0 again and reducing it again with the progress of the optimization. The inertia
factor enhances the effect of the previous radius of the ADs on the current radius and gradually
reduces this effect and makes it depending on the difference between the positions of the CD and AD
as shown in Eqn. (11).
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3.2. Mutation Sowing

The ADs search particles will move toward the CD search agent and it will search for GP during
their journey. A mutation approach should be employed with the CD to prevent early convergence
or the ability of the search agents to become caught in one of the local peaks. This mutation strategy
is done based on the Levy flight as shown in Eqn. (13).

dty, =dg,(1+ Levy()) (13)

Where, Where Levy() is a random duty ratio value derived from the Levy flight distribution with g
=1.5[60].

3.3. Selection Stage

The search agents should be evaluated in terms of their fitness value in comparison to the other
search agent's fitness values. Based on this assessment, a selection strategy is used to select the seeds
(search agents) that will be used in the next iteration and the seeds will be removed from the search
agents' swarm size. The probability of the fitness value of a certain search agent compared to the
other search agents is shown in Eqn. (14), or it can be calculated from the difference between the
fitness value and the average value as shown in Eqn. (15).

(14)

(15)

Reference [49] proposes selecting search agents with low and high probabilities and removing
search agents with medium probabilities to improve the DOA's exploration performance and avoid
becoming caught in one of the local peaks. This technique is extremely effective at the beginning of
the optimization to improve exploration, but after capturing the position of the GP, it should
eliminate the search agent with a low probability to improve the exploitation of the DOA utilized in
this study.

3.4. Improved DOA for MPPT of PV Systems

The suggested approach in this study is designed to improve DOA exploration and exploitation.
Several solutions have been proposed in the literature to increase the exploitation performance of the
MOAs, including:

1- Reducing the swarm size gradually [61-63], where the MOA is started with a high number of
search agents to increase the exploration and gradually reduces the search agents to enhance
exploitation.

2- Enhancing local search pressure in which an adaptive scale factor for local search is introduced
to enhance the differential evaluation’s local search [64,65].

3- Hybrid optimization methods utilize MOA with high exploration at the start of the
optimization and MOA with strong exploitation at the end to improve exploitation performance. This
method has been used with differential evolution [55,66,67].

4- Dynamic variation of the control parameter, where the control parameters change during the
optimization iterations [9,21,24,68-70].

The above improvement strategies have been used with the modified strategy called a guided
probability-based DOA (GDOA) [55]. In this strategy, a learning factor is introduced to learn from
the CD based on the fitness value in which the highest fitness value will get a higher enhanced
learning factor to enhance the exploitation performance of the DOA. Moreover, the middle search
agents will be removed at the start of the optimization to improve exploration; however, after each
iteration, the worst AD search agent (the one with the lowest generated power) will be removed from
the swarm size in each iteration to improve the proposed algorithm's exploitation performance. The
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swarm size that started the simulation is called S5 and the minimum value of swarm size is called
SSwmin. The logic used in the proposed algorism is shown in Figure 3. The position of each search agent
should be selected and the fitness values of these search agents will be determined. Moreover, the
best power generated from the PV system should be compared with the previous one based on Eqn.
(1). In case the condition is shown in Eqn. (1) is validated, the DOA should be reinitialized and the
optimization started again due to the substantial change (£>0.1) in the shading patterns. Meanwhile,
in case the condition is shown in Eqn. (1) is not verified, the search agents' positions should be
adjusted depending on the fitness values given by the previous iteration.
The swarm size changes throughout optimization, and it can be calculated using Eqn. (16).

t _ t.
. SSmax_M SS’ > SSmin
SS = Pmax _Pmin +& (16)
SS. . SS' <SS,

| Initialize the positions(duty Ratio) of n dandelinons |

I
v

| Produce the seeds of each dandelions |

| Obtain the locations of the seeds |

| Access the seeds position and values|

Update the seeds position and
values for each dandelions

Is the change in PV
is power >10%

Figure 3. The framework of the use of the DOA as an MPPT of PV systems.

4. Simulation Work

The simulation of this study is done using Matlab/Simulink software with an array having 4
modules in series and three branches. The module used in the simulation and experimental study is
SOLTON Power SPI-185M with performance parameters shown in Figure 4. The available modules
in the lab have been selected to be similar to the one in the simulation to ease the comparison between
the simulation and experimental results.

Module data Model parameters

Module: SOLTON Power SPI-185M v
Light-generated current IL (A) 7.9281

Maximum Power (W) 185.22

Cells per module (Ncell) 54 Diode saturation current 10 (A) 1.9997e-10
Open circuit voltage Voc (V) 32.2

Short-circuit current Isc (A) 7.89 Diode ideality factor 0.95194

Voltage at maximum power point Vmp (V) 25.2
Current at maximum power point Imp (A) 7.35 Shunt resistance Rsh (ohms) 185.0028 185
Temperature coefficient of Voc (%/deg.C) -0.349

Series resistance Rs (ohms) 0.43433
Temperature coefficient of Isc (%/deg.C) 0.12499

Figure 4. Specification of photovoltaic module used in this study.
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4.1. Optimal Design of the Boost Converter

The design of the dc-dc converter is critical to the MPPT's performance. This converter should
handle the MPPT instructions (duty ratios) quickly and accurately. The time it takes the dc-dc
converter to achieve the steady-state condition should be used to calculate the sampling time. So, the
steady-state time should be shortened as much as we can. The boost converter's steady-state time is
determined by its inductance, capacitance, switching frequency, and processed current. The boost
converter is the ideal solution since it increases the dc-link voltage rather than the PV array's terminal
voltage. Many studies introduced to design the boost converter for shorter steady state time and
consequently short sampling time [62]. In this work, the optimum design technique utilized to
develop the boost converter shown in [62] is applied. Eqn. (17) and Eqn. (18) may be used to calculate
the capacitance and inductance of a boost converter with a switching frequency of 20 kHz. The
average duty ratio is chosen to be 0.5, the Vu=220V. With a 1% ripple factor, Vi, then based on Eqn.
(17), the capacitor of the boost converter is calculated (C=5.5 mF). The maximum dc-current (lu«) is
obtained by dividing the rated power of the PV array (185*12=2220W) by the dc-link voltage
(220V)=10.1 A. The inductance of the boost converter conductor can be obtained from Eqn. (18) which

is equal to 68.1 uH.

d Vv,
C :7. ; 17)
L:M.Vdc (18)
zf; Idc

The three-phase inverter is linked to the grid using a space vector control approach [47] to keep
the dc-link voltage constant at 220V and to decouple active and reactive power regulation. In the
computational and experimental investigations indicated in Table 1, three distinct shading patterns
were employed, where G1 to G4 are the solar irradiance levels that fall on various modules in W/m?2.
The simulation technique employs three distinct shading patterns: Sp-1, SP-2, and SP-3. The PV
array's P-V and P-d characteristics for the aforementioned SPs are depicted in Figures 5 (a) and (b),

respectively.
Table 1. The specifications of the shading patterns under study.
Name Solar Irradiances (W/m?2) GP Parameters
Gl G2 G3 G4 d V (V) P (W)
SP-1 1000 900 400 200 0.6613 74.51140 1001.4
SP-2 1000 700 500 300 0.4740 115.7296 897.32
SP-3 900 700 600 500 0.2912 155.9261 1205.8
1200 - 1200 f ——
0. ----8p2
1000 1000 A SP-3
g 800 FARNE v Gp
£ 600 & g0l i N AN
= r:>.< ,’ \,\ \
£ 400 400 ." )
200 200 ‘
0 : : 0 ‘ ‘ ;
0 50 100 150 02 0.4 0.6 0.8
PV Voltage (V) Duty Ratio

(a) P-V Characteristic

(b) P-d Characteristics

Figure 5. The operating performance of the photovoltaic system under study.
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Three different simulation studies are performed in this article. The first simulation study is to
select the best initial position (duty ratio) of search agents among three different strategies. The
second simulation study is to estimate the optimal swarm size for DOA. The third simulation study
is to compare the simulation performances of the DOA with MCA, PSO, and GWO. These studies are
discussed in the following subsections:

4.2. Optimal Initialization

In this study, three distinct initialization procedures are explored to determine which one will
be used in the final simulation study. The time of convergence and rate of failure are used to assess
each initialization approach. To prevent the random character of the MOAs, each approach runs 100
times with random amounts of sun irradiances to estimate the rate of failure and average time of
convergence. The swarm size used in this study is 6 search agents. The first study is done using
random positions (duty ratios) of the search agents limited between 0.2 to 0.9 as indicated in Figure
5 (b). Table 2 displays the average time of convergence and rate of failure. The data in Table 2 clearly
reveal that this approach is linked with the longest convergence time and the only method with a
failure rate larger than zero. For these reasons, it is not recommended to use this strategy in the
initialization of any MOA. The second strategy is done by using equal distance for the initial position
of search agents between 0.2 to 0.9 where these values are 0.20, 0.34, 0.48, 0.62, 0.76, and 0.90 which
can be obtained from Eqn. (19). The results obtained from this strategy showed that the convergence
time is 0.41 s with zero failure rate which is substantially better than the random initialization
strategy. The third technique involves starting the search agents at the expected peak location, which
may be calculated using Eqn. (20). This technique produced somewhat shorter convergence times
with a 0% failure rate than the initialization with equal distance. This technique is the best based on
the convergence time and failure rate, but it has no flexibility to adjust the swarm size since it must
equal the number of peaks; so, the second study will be employed in further simulation and
experimental research.

dy} =d iy + k(A =, ) [(SS 1) (19)

max

(SS—k+1)k, V,,
SS Ve

d'=1- (20)

Where, k is the search agent order inside the swarm, kv is a constant equal to 0.79 [20].

Table 2. The comparison between each initialization strategy used with the DOA.

Initialization Strategy Convergence Time (s)  Failure Rate (%)
Random Duty Ratio 0.49 2
Equal Distance 0.41 0
Anticipated Position of Peaks 0.40 0

4.3. Optimal Swarm Size

The swarm size has a substantial influence on the MPPT performance of the photovoltaic energy
system regarding the time of convergence and the rate of failure. The larger the swarm size, the longer
the time of convergence and the lower the rate of failure; conversely, the smaller the swarm size, the
faster the time of convergence and the higher the rate of failure. As a result, it is advised to choose
the ideal swarm size by setting their values to zero failure rate and shortest time of convergence. This
study is performed by selecting several search agents varying between 10 to 3 with initialization at
equal distance strategy as explained above in section 4.2. To prevent the random character of the
outcomes of these optimization methods, this initialization technique is done 1000 times for the DOA,
MCA, PSO, and GWO. Table 3 depicts the relationship between swarm size, time of convergence,
and failure of rate for several optimization techniques. This table clearly shows that the time of
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convergence increases with the swarm size in all MOAs under consideration. Meanwhile, as the
swarm size in the swarm grows, the rate of failure decreases. The most interesting result from this
table is that all the MOAs under study are getting a zero failure rate when the swarm size is above or
equal to 6. Moreover, the best time of convergence is associated with the DOA and MCA with 0.41 s
and 0.43 s convergence times, respectively. So, it is recommended to use the DOA with 6 search agents
in the swarm for the shortest conversion time at zero failure rate.

Table 3. The performance of each MOA under study for different swarm size.

Swarm size Convergence Time (s) Failure Rate (%)
DOA MCA PSO GWO DOA MCA PSO GWO
3 0.35 0.38 0.68 0.49 6.5 8.1 11.7 8.8
4 0.39 0.40 0.82 0.61 33 4.5 5.8 4.5
5 0.40 041 1.07 0.78 1.1 2.1 35 2.2
6 041 0.43 1.25 0.92 0 0 0 0
7 0.48 0.51 1.36 1.06 0 0 0 0
8 0.57 0.57 1.44 1.15 0 0 0 0
9 0.62 0.61 1.52 1.21 0 0 0 0
10 0.65 0.62 1.58 1.29 0 0 0 0

4.4. Real-Time Simulation Results

This study's simulation is carried out using Matlab/Simulink for the three distinct shading
patterns presented in Table 1 and Figure 5 for 6 s, where each shading pattern is used for 2 s. Based
on the recommended value from the study shown above in subsection 4.3, the swarm size used in
this study is 6 for the shortest time of convergence and zero failure rate. The initial position of search
agents for DOA used in this study is based on an equal distance between each search agent from 0.2
to 0.9 duty ratio with duty ratios equal to 0.20, 0.34, 0.48, 0.62, 0.76, and 0.90 using Eqn. (19). The
simulation is performed with the use of re-initialization based on Eqn. (1) as shown in Figure 6 to
Figure 9 for DOA, MCA, PSO, and GWO, respectively. This image clearly shows that the DOA
recorded the GP of the first shading pattern (SP-1) in a short amount of time (0.4 s). Meanwhile, the
MCA, PSO, and GWO won the GP in 0.43 seconds, 1.2 seconds, and 0.9 seconds, respectively. This
demonstrates the DOA and MCA's advantages over the other MOAs employed in this study.

In case of shading pattern changes, the search agents will be stagnated around the previous GP
and will not have the ability to escape from this position in all the optimization algorithms unless the
reinitialization occurs based on the condition shown in Eqn. (1). This critical condition aids in
avoiding the stalling of search agents at one of the LPs, which can result in a significant increase in
extracted power and system efficiency of the photovoltaic energy systems.
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5. Experimental Work

To validate the simulation results, the identical configuration as described in the simulation
study is used in the lab. The system is divided into three branches, each with four series modules. As
illustrated in Figure 10, the radiation is regulated by an automatic controllable light source. The PV
system includes a boost converter with the same specifications as presented in the simulation study,
as well as a three-phase inverter controlled by sliding mode control to keep the dc-link voltage
constant at 220V under various operating situations. The dc-dc converter (boost converter) is
controlled using different MPPT algorithms with 20 kHz switching frequency and 0.01 s sampling
time. The switching signal generated from the Matlab/Simulink is interfaced with the boost converter
through dSPACE MicroLabBox. The waveforms are collected through Control Desk Graphical


https://doi.org/10.20944/preprints202306.0158.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2023 doi:10.20944/preprints202306.0158.v1

15

Interface (CDGI) software as shown in Figure 10. Six search agents are used in all MOAs. The
experimental work PV power and duty ratio results are displayed in Figures 11 to 14 for the DOA,
MCA, PSO, and GWO algorithms, respectively. These results show that all of the MOAs employed
in this investigation caught the GP for all shading patterns at varying time of convergence.
Meanwhile, the time of convergence for DOA, MCA, PSO, and GWO are 0.4, 0.43, 1.2, and 0.9 s,
respectively. The practical findings are quite close to the same values obtained from simulation,
validating the improved performance of the DOA when utilized as an MPPT of PV systems compared
to alternative optimization techniques used in this study.
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Figure 10. The experimental prototype.

1200 1200

1000 1000

800

PV Power (W)
= D >*®
(=3 =3 =3
(=3 =] =3
PV Power (W)
=)
S

[}
=3
S

=

&
»

Duty ratio
<
™
Duty ratio
=1
>

'S

Time (s) Time (s)
Figure 11. The experimental results of DOA Figure 12. The experimental results of MCA
MPPT for various PSCs. MPPT for various PSCs.


https://doi.org/10.20944/preprints202306.0158.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2023 doi:10.20944/preprints202306.0158.v1

16
100 1200
1000 1000
2 800 g 800
E 600 £ o
Z a0 Z 400
200 200
9 9
0.8 0.8
B °
S 06 £ 06
Z z
a a
04 0.4
02
0 1 2 3 4 5 6 0.2
Time (s) .
Time (s)
Figure 13. The experimental results of PSO Figure 14. The experimental results of GWO
MPPT for various PSCs. MPPT for various PSCs.

6. Conclusions

The P-V properties of the PV array exhibit nonlinear relationships. In the event of uniform
irradiance, this connection has just one peak, making traditional maximum power point tracker
(MPPT) approaches suitable for tracking their maximum power. In the meanwhile, in the situation
of non-uniform irradiance (partial shade), this relation has extra peaks, which may lead traditional
MPPT approaches to become stuck at one of the local peaks. To address this issue, metaheuristic
optimization algorithms (MOAs) are a better choice. The primary disadvantages of these algorithms
are their long time of convergence time and sometimes high failure rate. As a result, a recently
developed dandelion optimization algorithm (DOA) is employed to lower the time of convergence
and failure rate of PV system MPPT. When compared to other MOAs such as MCA, PSO, and GWO,
the DOA has the quickest time of convergence of 0.4 s compared to 1.2 s for PSO. Furthermore, using
an identical distance between the search agents' beginning positions significantly lowered the
convergence time. Due to the cross-relationship between swarm size and time of convergence and
failure rate, an optimal swarm size determination for all MOAs under consideration is provided, in
which 6 search agents in the swarm are chosen. These superior findings demonstrated the DOA's
supremacy in MPPT of PV systems when compared to other optimization techniques.
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