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Abstract: Because of the rapid advancement in the use of photovoltaic (PV) energy systems, it has 

become critical to look for ways to improve the energy generated by them. The extracted power 

from the PV modules is proportional to the output voltage. The relationship between output power 

and array voltage has only one peak under uniform irradiance, whereas it has multiple peaks under 

partial shade circumstances (PSC). There is only one global peak (GP) and many local peaks (LPs), 

where the typical maximum power point trackers (MPPT) may become locked in one of the LPs, 

significantly reducing the PV system's generated power and efficiency. The metaheuristic 

optimization algorithms (MOAs) solved this problem, albeit at the expense of the convergence time, 

which is one of these algorithms' key shortcomings. Most MOAs attempt to lower the convergence 

time at the cost of the failure rate and the accuracy of the findings because these two factors are 

interdependent. To address these issues, this work introduces the dandelion optimization algorithm 

(DOA), a novel optimization algorithm. The DOA's convergence time and failure rate are compared 

to other modern MOAs in critical scenarios of partial shade PV systems to demonstrate the DOA's 

superiority. The results obtained from this study showed substantial performance improvement 

compared to other MOAs, where the convergence time is reduced to 0.4 s with zero failure rate 

compared to 0.9 s, 1.25 s, and 0.43 s for other MOAs under study. The optimal number of search 

agents in the swarm, optimal initialization of search agents, and optimal design of the dc-dc 

converter is introduced for optimal MPPT performance. 

Keywords: Photovoltaic; MPPT; partial shading conditions; convergence time; failure rate; 

metaheuristic; dandelion optimization algorithm (DOA) 

 

1. Introduction 

With the continuous increase in the need for electrical energy and the continuous shortage of 

fossil fuels and the impact of geopolitical problems on energy supplies and the environmental impact 

of excessive use, the need for renewable energies, especially the energy generated from PV cells, has 

increased. Most of the world’s nations realize this problem and started ambitus programs to 

completely rely on renewable energy sources by 2050 [1]. Statistics indicate a significant rise in the 

use of PV in the production of electric energy, as the worldwide capacity of PV cells increased to 1300 

megawatts, exceeding the capacity generated from wind energy by 400 megawatts [2]. With the rapid 

progress in modern energy storage systems (ESS) and smart grid systems [3,4], the problem of 

intermittency in the generated power as a result of climate change has been overcome. The ESS can 

save the extra energy greater than the load needs and serve this stored energy when there is a 

deficiency in the extracted power from renewable energy sources (RES) compared to the power of 

the load. Moreover, the smart grid system can control the loads by different smart grid concepts to a 

level near the available generation from RES. 

The PV systems are used to directly generate electricity from sunlight. The extracted power from 

the PV array is directly proportional to the light intensity, operating temperature, and the output 

voltage of the PV array. Connecting many modules in series and parallel are required to increase the 
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voltage and current of the PV array. The relation between the generated power and the terminal 

voltage is nonlinear and it has only one peak at about 0.8 of the open circuit voltage (Voc) of the PV 

array in case of uniform irradiance. In case of non-uniform irradiance falling on the PV modules, 

different generated power will be generated from these PV modules. For extracting the maximum 

power from these modules, each module should work with its optimal voltage and current which is 

not the case in real PV systems because modules are connected in series and parallel. This means that 

the current in each series branch is the same in all series modules, meanwhile, the terminal voltage 

of each module is different. A negative voltage may be generated at the terminal of some modules in 

some severe partial shading conditions (PSC). The negative voltage of shaded modules occurs when 

these modules act as a load on other modules due to PSC. The occurrence of the negative voltage on 

some of the shaded modules generates heat inside the module which may destroy it. This 

phenomenon is called the hot-spot phenomenon [5]. For this reason, a bypass diode should be added 

in parallel with each module for hotspot protection. When the shunt diode is activated, the generated 

power from these modules is wasted, and the PV system loses this quantity of energy. Because of the 

PSC and shunt diodes, the P-V characteristics of the PV array will have fewer than or equal to the 

number of series modules in the PV array that have varying irradiances. The global peak (GP) is 

having the highest power among these peaks, whereas the other local peaks (LPs) have lower power 

than the GP. Several ways have been developed to track the maximum power point (MPP) during 

real-time operation with various PSCs. Several strategies have been introduced to track the MPP 

during their real-time operation with different PSCs. As a result, a dc-dc converter was utilized to 

track the MPP of PV systems by manipulating the power electronics switches with logic created by 

maximum power point tracker (MPPT) approaches. As illustrated in Figure 1, MPPT techniques are 

utilized to extract the maximum power provided by a PV system by managing the on/off times of 

power electronic switch/switches. Some typical procedures employed the incremental change in 

voltage to track the MPP, such as hill climbing (HC), perturb and observe (P&O), and incremental 

conductance (In.Con.) [6]. Other smart techniques, such as using fuzzy logic controllers [7] and 

artificial neural networks [8], have been used as an MPPT of PV systems, but all of these strategies 

fall into the conventional strategies category because they cannot track the GP and they may stick at 

one of the LPs in the event of PSC. As a result, typical MPPT techniques are not suggested for usage 

with PSC-equipped PV systems. The metaheuristic optimization algorithms (MOAs) can follow the 

GP and prevent the PV system from becoming caught in one of the LPs. Several MOA techniques, 

including particle swarm optimization (PSO) [9], bat algorithm (BA) [10], grey wolf optimization 

(GWO) [11], and musical chairs algorithm (MCA) [12], among others, have been employed as MPPT 

of PV systems. All of these MOAs have several problems, including extended convergence times, 

premature convergence, and particle stagnation at one of the LPs. The majority of recent studies on 

this subject have been proposed to overcome these challenges [13–18]. Still, additional efforts are 

needed in this sector to lower convergence time while maintaining GP tracking accuracy. 

aSbScS aSbScS

 

Figure 1. Grid-connected PV energy system with MPPT. 
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Various strategies have been used in the literature to overcome the long convergence time 

problem. The majority of these studies are centered on making changes to current MOAs to capture 

the GP quicker [13–18]. To overcome the random aspect of the PSO in tracking the MPP of PV 

systems, a deterministic approach was used to modify it [13,14]. The fundamental concept behind 

this approach is to replace the random values that should be multiplied by the acceleration factors to 

estimate particle velocity. The accelerated parameters are replaced by 1.0 in this investigation, and 

the random numbers are deleted. As a result, just the inertia weight parameter has to be adjusted. 

This strategy has been compared with conventional PSO and shows better performance [13]. The 

main shortcoming of this optimization algorithm is the random initialization which may cause 

premature convergence to one of the LPs and a long convergence time that can be avoided with better 

initialization algorithms [19,20]. The strategy used in [14] improved the random initialization of 

particles by initializing these particles at the predicted position of peaks. Moreover, it reduced the 

swarm size to reduce the convergence time. This strategy is reduced the convergence time but it 

should be trained for different operating voltages due to the particles using the terminal voltage, not 

the duty ratio [14]. The predicted positions of peaks used in this strategy are based on the anticipated 

peaks placed at 0.8 Voc which is not accurate as has been discussed in [20]. Another technique 

employed a linear drop in inertia weight value from 0.9 to 0.4 to increase global search at the start of 

optimization and improve local search at the end [21]. This method lowered the convergence time 

and steady-state oscillations, but it still has to be improved. Another strategy suggested the variation 

of the inertia weight from 0.8 to 0.1 [15] for the same purpose. Some other studies introduced a 

dynamic inertia weight in which the value of inertial weight will change based on the convergence 

performance [16–18]. Another approach for linearly adjusting the acceleration parameters and inertia 

weight is provided [22,23]. All these modifications are implemented based on try-and-error bases 

without an optimal determination of the MOAs’ control parameters. To circumvent the use of trial 

and error procedures in obtaining the control parameters of MOAs, an intriguing strategy for 

calculating these optimal control parameters for PSO [9] and BA [24] is presented. In this technique, 

two nested optimization loops are used: the inner one to track the MPP of the PV system, and the 

outer one to optimize the control parameters for the internal one for the shortest time of convergence 

and zero failure rate. These MOAs have been used with photovoltaic systems with varying number 

of peaks to identify the ideal swarm size, inertia weight, and acceleration parameters. These strategies 

significantly enhance performance while maintaining a quick time of convergence and great 

accuracy. 

The success of catching the GP and the convergence time will rise as the number of particles 

increases, and vice versa. This suggests that the time of convergence and failure rate are related to 

the swarm size. As a result, it is critical to choose the number of particles that provides the quickest 

time of convergence and zero failure rate. Some solutions employed three search agents [25,26], five 

search agents [27], and six search agents [28], among others. Other algorithms calculated the 

appropriate number of particles based on the number of peaks for the shortest time of convergence 

and zero failure rate [28]. 

Another strategy is used to reduce the time of convergence while maintaining a zero failure rate 

using hybrid MPPT techniques (HMTs) [29–35]. The idea behind the use of HMTs is the use of an 

effective GP searching strategy to determine its position at the beginning of the optimization, then 

use the fast local search and low ripple technique to accurately capture the GP. Some hybrid strategies 

used MOA at the beginning of optimization and conventional MPPT after that [29–33]. There are 

other HMTs used two MOAs such as [34,35]. A detailed discussion of the HMT techniques is 

introduced in [36]. 

In terms of the time of convergence and failure rate, the MPPT's success depends on the initial 

placements of search agents in all MOAs. For the search agents, the majority of the MOAs employed 

random position initialization [13]. Random initialization raises the failure rate and increases the time 

of convergence and should be avoided in MPPT applications. Several strategies are used to replace 

the random initialization by dividing the search area (voltage or duty ratio) to equal distances and 

initializing the search agents at these distances [19]. This strategy is better than random initialization 
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but still, the convergence time can be further reduced using initialization at predicated positions of 

peaks [20]. This strategy has the fastest time of convergence and the lowest rate of failure than random 

initialization, but the swarm size should be equal to the number of peaks which may limit the 

flexibility of the MPPT algorithms. This point can be avoided by selecting a swarm size equal to the 

peaks and the rest of the particles can be randomly distributed. 

Another strategy using the skipping model algorithm to reduce the time of convergence while 

maintaining a zero failure rate is introduced [37–41]. The idea of this strategy is to avoid the search 

within certain values and concentrate on other areas that probably contain the GP. This strategy 

reduced the convergence time but it increased the calculation time which may limit the operating 

frequency and sampling time which consequently increases the convergence time. A detailed 

discussion of these algorithms is shown in [42]. 

Another issue that all MOAs have when utilized as an MPPT of a PV system is termed search 

agent stagnation in one of the local peaks. This issue was resolved by initializing the search agents 

whenever the change in extracted power exceeded the present tolerance, as stated in Eqn. (1). The 

high value of the predefined tolerance may cause the system to be insensitive to critical changes in 

shading patterns and leave the search agents at one of the LPs and lose the GP, especially in gradual 

changes in shading patterns. Meanwhile, a low value of the specified tolerance may lead the system 

to reinitialize without necessity, increasing the oscillations of the PV system waveforms. The 

predefined tolerance is used between 5% [43] to 10% [44]. Some strategies avoid the dependency of 

re-initialization based on Eqn. (1) by re-initialization of the search agents every certain time [45] or 

by using scanning search agents re-initialization at certain periods [46–48]. 

ε>
−

−

−

1

1

i

ii

P

PP
 (1)

where, Pi and Pi-1 are the extracted power from the photovoltaic system at iteration i and i-1, 

respectively, ε is a predetermined tolerance. 

1.1. Motivation 

Because of the long convergence time associated with the usage of MOAs in MPPT of 

photovoltaic energy systems applications, researchers sought to employ novel MOAs or improve 

current ones. Nonetheless, the long time of convergence and high rate of failure necessitates greater 

work due to their relevance in PV system functioning. As a result, it is critical to assess and compare 

some of the most current MOAs in MPPT PV system applications with previous ones. Due to this, 

the dandelion optimization algorithm (DOA), a recently developed and promising optimization 

algorithm [49] is introduced in this paper to evaluate its performance compared to superior MOAs 

used before for this purpose such as PSO [9], GWO [11], and MCA [12]. Moreover, optimum 

initialization, optimal design of the dc-dc converter, optimal swarm size, and avoidance of search 

agent stagnation in LPs are tactics used to optimize the performance of MOAs when employed as an 

MPPT of PV systems. 

1.2. Innovation and Contribution 

Several MOAs have been employed in PV system MPPT applications. Several of these MOAs 

have shown greater performance, but additional efforts should be made to test novel MOAs to further 

reduce the time of convergence and rate of failure, which may be translated into an improvement in 

extracted power and efficiency of photovoltaic systems. As a result, the recently developed dandelion 

optimization algorithm (DOA) [49] has been employed for the first time in the MPPT of PV systems. 

This research also provides a unique strategy for significantly reducing convergence time and 

avoiding search agent stagnation in LPs. The innovation and contribution involved in this paper are 

listed below: 

• Evaluation of the application of the DOA in a photovoltaic MPPT as a function of conversion 

time and failure rate. 
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• Calculate the best swarm size to achieve the shortest time of convergence maintaining zero 

failure rate. 

• Evaluating the performance of the MPPT with different initialization strategies. 

• Using a novel strategy for avoiding the stagnation of search agents in LPs. 

1.3. Paper Outlines 

The remainder of this study provides a full discussion of the PV array modeling in Section 2. 

Section 3 has a full overview of the DOA and how it may be employed in the MPPT of photovoltaic 

energy applications. Section 4 introduces the simulation experiments that were performed to 

compare the proposed DOA MPPT algorithm to alternative MOAs techniques. Section 5 introduces 

the experimental work performed to validate the simulated results. Section 6 introduces the findings 

of this investigation. 

2. PV Array Modelling 

The photovoltaic cell, which is composed of two semiconductor layers (P-N layers), is the 

smallest component of the PV array. The sunlight falls on the N-layer which has free electrons in its 

atom’s outer layer that can be easily moved from its atom if it has enough energy to move. The photon 

energy has adequate energy that can give this free electron the energy to move from the N-layer to 

the P-layer which has a free hole. The N-layer atoms turn into positive ions as the electron goes from 

the N-layer to the P-layer, while the P-layer atoms turn into negative ions, which might result in a 

voltage difference. The produced energy from the PV cell may be transmitted from the PV cell to the 

load after the load is linked between the P and N-layers. The PV cells should be arranged in parallel 

and series to get the required current and voltage of the PV modules. For the same objective, the 

modules should also be linked in parallel and in series. The simplest photovoltaic cell model is called 

the single diode model (SDM), which is the simplest way to represent the PV cell performance, is 

depicted in Figure 2 [50] which is used to represent the PV cell used in this study. Another model 

with higher accuracy when more than one diode shunt to the first diode to well represent the charge 

diffusion and recombination components charge of the PV cell [51]. Some other studies recommend 

using three diodes in the PV cell model to get more accurate results [52]. The main problem of 

increasing the number of diodes will increase the calculation burden of the model without a 

substantial improvement in the accuracy compared to the SDM [53]. The SDM is providing adequate 

accuracy with a reasonable calculation burden and for this reason it is used in the modeling of this 

study. 

V
I

phI SR

shR

shR
I

1dI

 

Figure 2. The schematic of the single diode model of the photovoltaic cell. 

From the above discussion, the PV cell can be modeled as a current generator in a shunt with a 

diode. The PV cell output current can be obtained from Eqn. (2) [53]. 

( )

sh
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IRV
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
−−=

+

10
 (2)

Where, Ig is the current source value, K is the Boltzmann constant, a is the diode ideality constant 

(a=0.95194), T is the temperature of PV cells (oK). I and V are the terminal current and voltage of the 
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PV modules, respectively, Rsh and Rs are the shunt and series resistances of the photovoltaic cell 

model, respectively. 

The current is used to represent one PV cell shown in Eqn. (2) should be modified to model the 

current in the PV array as expressed in Eqn. (3). 
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Where, Np and Ns are the number of PV cells in each branch and the number of series PV cells in each 

branch, respectively. 

The current of the source current is directly proportional to the solar irradiation and also 

functions in the operating temperature of the PV cell, as shown in Eqn. (4). 

( )( )
n

nIgng
G

G
TTKII −+=  (4)

Where, Ign is the light-generated current, Tn and Gn are the standard test temperature (25oC) and 

standard solar irradiance (1000 W/m2), respectively, and KI is the current temperature coefficient 

(0.12499 %/oC). 

The diode saturation current Io can be obtained from Eqn. (5). 



















−









=
TTaK

qEg

n
n

ne
T

T
II

113

00  (5)

Where, Eg is the semiconductor’s band-gap energy, and I0n is the rated saturation current at standard 

test condition which can be obtained from Eqn. (6) 
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From Eqn. (5) and (6), the diode saturation current can be obtained from Eqn. (7). 
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Where, KV is the voltage temperature coefficient (-0.349 %/oC). 

3. Dandelion Optimization Algorithm 

Modern optimization methods must be utilized in conjunction with PV system MPPT to 

precisely predict the GP in a short time. The dandelion optimization algorithm (DOA) has been used 

in several applications, including Extreme Learning Machine (ELM) for biomedical classification 

problems [49,54], traffic flow prediction [55], parameter estimation of PEMFCs' models [56], the speed 

reducer problem of a mechanical device [57], AVR-LFC architecture for a multi-area power system 

employing hybrid fractional-order PI and PIDD controllers [58], and reactive power dispatch 

optimization with DG unit uncertainty [59], and credit card fraud detection [60]. Because the DOA 

performs well in these applications, it has been employed in the MPPT of photovoltaic energy 

systems in this research. The DOA, which was launched in 2017, was inspired by the life cycles of 

dandelion plants [49]. The dandelion seeds can be spread for a long distance by wind. The structure 

of the seed enables it to travel with the wind that can carry the seeds due to the vortexes above it 

which can lift the dandelion seeds (DSs) in the rising stage. Once the rain occurs or the humidity 

increases, the DSs gain more weight and land in different locations. The landed seeds may be able to 

plant again and some others cannot plant again. The plants can plant again and will be used to 

generate a new generation. The same concept may be used to track the best solution to many 

optimization challenges. The DOA is divided into three stages: ascending, mutation, and selection. 
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The objective is to model these three steps and apply them to find optimum solutions to optimization 

issues, as detailed in the following subsections. As indicated in Eqn. (8), the optimization technique 

is utilized to maximize the power supplied by the photovoltaic system by regulating the dc-dc 

converter’s duty ratio. 

))(max( dPdopt =   (8)

Where dopt is the duty ratio corresponding to maximum power, d is the duty ratio, P is the extracted 

power from the photovoltaic energy system. 

Dandelions are classified into two categories: core (CDs) and assistant dandelions (ADs). The 

CD has the greatest amount of power (Pmax), meanwhile, the ADs are the rest of the dandelions. 

The mathematical modeling for the breeding cycle of the DSs is shown in the following 

subsections: 

3.1. Rising Stage 

Due to the vortices above the DSs, the lift force is created and it can carry the seeds for a distance 

depending on the wind speed and the humidity. The radius of sowing of the CD is representing the 

radius of the dandelions and it can be obtained from Eqn. (9). 
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Where U and L are the upper and lower duty ratio values, respectively, and e and g are the fade and 

growth factors, respectively, and a is a factor termed the cross trend that may be calculated from Eqn. 

(10) [60]. 
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Where, 1

max

−tP  and tPmax  are the maximum power at previous and current iterations, respectively. 

Meanwhile, ε is a specified tolerance to prevent a denominator value of zero. 

The sowing radius of the DAs is given in Eqn. (11). 
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Where, t

CDd  and t

ADd  are the position of CD and AD of search agent i at iteration t, respectively. ω 

is the weight factor used to enhance the stability of the search agents and it can be obtained from Eqn. 

(12) [60]. 

 
max

1
PE

PE
−=ω  (12)

Where, PE is the ratio of the number of calls to the goal function to the total number of calls. The total 

number of calling the objective function is not known since the optimization continuously works in 

real time. For this reason, similar values are used in [49]. The value of the inertia factor is shown in 

Eqn. (12) starts with 1.0 and gradually reduced to zero when PE=PEmax and stays at zero till the end 

of the simulation. The re-initialization of search agents of the optimization algorithm is setting the 

inertia factor with 1.0 again and reducing it again with the progress of the optimization. The inertia 

factor enhances the effect of the previous radius of the ADs on the current radius and gradually 

reduces this effect and makes it depending on the difference between the positions of the CD and AD 

as shown in Eqn. (11). 
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3.2. Mutation Sowing 

The ADs search particles will move toward the CD search agent and it will search for GP during 

their journey. A mutation approach should be employed with the CD to prevent early convergence 

or the ability of the search agents to become caught in one of the local peaks. This mutation strategy 

is done based on the Levy flight as shown in Eqn. (13). 

( )()1 Levydd t

CD

t

CD +=   (13)

Where, Where Levy() is a random duty ratio value derived from the Levy flight distribution with 𝛽 

= 1.5 [60] . 

3.3. Selection Stage 

The search agents should be evaluated in terms of their fitness value in comparison to the other 

search agent's fitness values. Based on this assessment, a selection strategy is used to select the seeds 

(search agents) that will be used in the next iteration and the seeds will be removed from the search 

agents' swarm size. The probability of the fitness value of a certain search agent compared to the 

other search agents is shown in Eqn. (14), or it can be calculated from the difference between the 

fitness value and the average value as shown in Eqn. (15). 


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t

i

t
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Reference [49] proposes selecting search agents with low and high probabilities and removing 

search agents with medium probabilities to improve the DOA's exploration performance and avoid 

becoming caught in one of the local peaks. This technique is extremely effective at the beginning of 

the optimization to improve exploration, but after capturing the position of the GP, it should 

eliminate the search agent with a low probability to improve the exploitation of the DOA utilized in 

this study. 

3.4. Improved DOA for MPPT of PV Systems 

The suggested approach in this study is designed to improve DOA exploration and exploitation. 

Several solutions have been proposed in the literature to increase the exploitation performance of the 

MOAs, including: 

1- Reducing the swarm size gradually [61–63], where the MOA is started with a high number of 

search agents to increase the exploration and gradually reduces the search agents to enhance 

exploitation. 

2- Enhancing local search pressure in which an adaptive scale factor for local search is introduced 

to enhance the differential evaluation’s local search [64,65]. 

3- Hybrid optimization methods utilize MOA with high exploration at the start of the 

optimization and MOA with strong exploitation at the end to improve exploitation performance. This 

method has been used with differential evolution [55,66,67]. 

4- Dynamic variation of the control parameter, where the control parameters change during the 

optimization iterations [9,21,24,68–70]. 

The above improvement strategies have been used with the modified strategy called a guided 

probability-based DOA (GDOA)  [55]. In this strategy, a learning factor is introduced to learn from 

the CD based on the fitness value in which the highest fitness value will get a higher enhanced 

learning factor to enhance the exploitation performance of the DOA. Moreover, the middle search 

agents will be removed at the start of the optimization to improve exploration; however, after each 

iteration, the worst AD search agent (the one with the lowest generated power) will be removed from 

the swarm size in each iteration to improve the proposed algorithm's exploitation performance. The 
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swarm size that started the simulation is called SSmax and the minimum value of swarm size is called 

SSmin. The logic used in the proposed algorism is shown in Figure 3. The position of each search agent 

should be selected and the fitness values of these search agents will be determined. Moreover, the 

best power generated from the PV system should be compared with the previous one based on Eqn. 

(1). In case the condition is shown in Eqn. (1) is validated, the DOA should be reinitialized and the 

optimization started again due to the substantial change (ε >0.1) in the shading patterns. Meanwhile, 

in case the condition is shown in Eqn. (1) is not verified, the search agents' positions should be 

adjusted depending on the fitness values given by the previous iteration. 

The swarm size changes throughout optimization, and it can be calculated using Eqn. (16). 
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Initialize the positions (duty Ratio) of n dandelinons

Produce the seeds of each dandelions

Obtain the locations of the seeds

Access the seeds position and values

Is the change in PV 

is power >10%

Update the seeds position and 

values for each dandelions

No Yes

 

Figure 3. The framework of the use of the DOA as an MPPT of PV systems. 

4. Simulation Work 

The simulation of this study is done using Matlab/Simulink software with an array having 4 

modules in series and three branches. The module used in the simulation and experimental study is 

SOLTON Power SPI-185M with performance parameters shown in Figure 4. The available modules 

in the lab have been selected to be similar to the one in the simulation to ease the comparison between 

the simulation and experimental results. 

 

Figure 4. Specification of photovoltaic module used in this study. 
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4.1. Optimal Design of the Boost Converter 

The design of the dc-dc converter is critical to the MPPT's performance. This converter should 

handle the MPPT instructions (duty ratios) quickly and accurately. The time it takes the dc-dc 

converter to achieve the steady-state condition should be used to calculate the sampling time. So, the 

steady-state time should be shortened as much as we can. The boost converter's steady-state time is 

determined by its inductance, capacitance, switching frequency, and processed current. The boost 

converter is the ideal solution since it increases the dc-link voltage rather than the PV array's terminal 

voltage. Many studies introduced to design the boost converter for shorter steady state time and 

consequently short sampling time [62]. In this work, the optimum design technique utilized to 

develop the boost converter shown in [62] is applied. Eqn. (17) and Eqn. (18) may be used to calculate 

the capacitance and inductance of a boost converter with a switching frequency of 20 kHz. The 

average duty ratio is chosen to be 0.5, the Vdc=220V. With a 1% ripple factor, Vr, then based on Eqn. 

(17), the capacitor of the boost converter is calculated (C=5.5 mF). The maximum dc-current (Idc) is 

obtained by dividing the rated power of the PV array (185*12=2220W) by the dc-link voltage 

(220V)=10.1 A. The inductance of the boost converter conductor can be obtained from Eqn. (18) which 

is equal to 68.1 µH. 

r

dc

s V

V

f

d
C .=   (17)

( )

dc

dc

s I

V

f

dd
L .

2

1
2

−
=   (18)

The three-phase inverter is linked to the grid using a space vector control approach [47] to keep 

the dc-link voltage constant at 220V and to decouple active and reactive power regulation. In the 

computational and experimental investigations indicated in Table 1, three distinct shading patterns 

were employed, where G1 to G4 are the solar irradiance levels that fall on various modules in W/m2. 

The simulation technique employs three distinct shading patterns: Sp-1, SP-2, and SP-3. The PV 

array's P-V and P-d characteristics for the aforementioned SPs are depicted in Figures 5 (a) and (b), 

respectively. 

Table 1. The specifications of the shading patterns under study. 

Name Solar Irradiances (W/m2) GP Parameters 

G1 G2 G3 G4 d V (V) P (W) 

SP-1 1000 900 400 200 0.6613 74.51140 1001.4 

SP-2 1000 700 500 300 0.4740 115.7296 897.32 

SP-3 900 700 600 500 0.2912 155.9261 1205.8 

 

  
(a) P-V Characteristic (b) P-d Characteristics 

Figure 5. The operating performance of the photovoltaic system under study. 
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Three different simulation studies are performed in this article. The first simulation study is to 

select the best initial position (duty ratio) of search agents among three different strategies. The 

second simulation study is to estimate the optimal swarm size for DOA. The third simulation study 

is to compare the simulation performances of the DOA with MCA, PSO, and GWO. These studies are 

discussed in the following subsections: 

4.2. Optimal Initialization 

In this study, three distinct initialization procedures are explored to determine which one will 

be used in the final simulation study. The time of convergence and rate of failure are used to assess 

each initialization approach. To prevent the random character of the MOAs, each approach runs 100 

times with random amounts of sun irradiances to estimate the rate of failure and average time of 

convergence. The swarm size used in this study is 6 search agents. The first study is done using 

random positions (duty ratios) of the search agents limited between 0.2 to 0.9 as indicated in Figure 

5 (b). Table 2 displays the average time of convergence and rate of failure. The data in Table 2 clearly 

reveal that this approach is linked with the longest convergence time and the only method with a 

failure rate larger than zero. For these reasons, it is not recommended to use this strategy in the 

initialization of any MOA. The second strategy is done by using equal distance for the initial position 

of search agents between 0.2 to 0.9 where these values are 0.20, 0.34, 0.48, 0.62, 0.76, and 0.90 which 

can be obtained from Eqn. (19). The results obtained from this strategy showed that the convergence 

time is 0.41 s with zero failure rate which is substantially better than the random initialization 

strategy. The third technique involves starting the search agents at the expected peak location, which 

may be calculated using Eqn. (20). This technique produced somewhat shorter convergence times 

with a 0% failure rate than the initialization with equal distance. This technique is the best based on 

the convergence time and failure rate, but it has no flexibility to adjust the swarm size since it must 

equal the number of peaks; so, the second study will be employed in further simulation and 

experimental research. 

)1/().( minmaxmin

0 −−+= SSddkddk   (19)

( )
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ocvk

V

V

SS

kkSS
d

1
1

+−
−=   (20)

Where, k is the search agent order inside the swarm, kV is a constant equal to 0.79 [20]. 

Table 2. The comparison between each initialization strategy used with the DOA. 

Initialization Strategy Convergence Time (s) Failure Rate (%) 

Random Duty Ratio 0.49 2 

Equal Distance 0.41 0 

Anticipated Position of Peaks 0.40 0 

4.3. Optimal Swarm Size 

The swarm size has a substantial influence on the MPPT performance of the photovoltaic energy 

system regarding the time of convergence and the rate of failure. The larger the swarm size, the longer 

the time of convergence and the lower the rate of failure; conversely, the smaller the swarm size, the 

faster the time of convergence and the higher the rate of failure. As a result, it is advised to choose 

the ideal swarm size by setting their values to zero failure rate and shortest time of convergence. This 

study is performed by selecting several search agents varying between 10 to 3 with initialization at 

equal distance strategy as explained above in section 4.2. To prevent the random character of the 

outcomes of these optimization methods, this initialization technique is done 1000 times for the DOA, 

MCA, PSO, and GWO. Table 3 depicts the relationship between swarm size, time of convergence, 

and failure of rate for several optimization techniques. This table clearly shows that the time of 
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convergence increases with the swarm size in all MOAs under consideration. Meanwhile, as the 

swarm size in the swarm grows, the rate of failure decreases. The most interesting result from this 

table is that all the MOAs under study are getting a zero failure rate when the swarm size is above or 

equal to 6. Moreover, the best time of convergence is associated with the DOA and MCA with 0.41 s 

and 0.43 s convergence times, respectively. So, it is recommended to use the DOA with 6 search agents 

in the swarm for the shortest conversion time at zero failure rate. 

Table 3. The performance of each MOA under study for different swarm size. 

Swarm size 
Convergence Time (s) Failure Rate (%) 

DOA MCA PSO GWO   DOA MCA PSO GWO 

3 0.35 0.38 0.68 0.49 6.5 8.1 11.7 8.8 

4 0.39 0.40 0.82 0.61 3.3 4.5 5.8 4.5 

5 0.40 0.41 1.07 0.78 1.1 2.1 3.5 2.2 

6 0.41 0.43 1.25 0.92 0 0 0 0 

7 0.48 0.51 1.36 1.06 0 0 0 0 

8 0.57 0.57 1.44 1.15 0 0 0 0 

9 0.62 0.61 1.52 1.21 0 0 0 0 

10 0.65 0.62 1.58 1.29 0 0 0 0 

4.4. Real-Time Simulation Results 

This study's simulation is carried out using Matlab/Simulink for the three distinct shading 

patterns presented in Table 1 and Figure 5 for 6 s, where each shading pattern is used for 2 s. Based 

on the recommended value from the study shown above in subsection 4.3, the swarm size used in 

this study is 6 for the shortest time of convergence and zero failure rate. The initial position of search 

agents for DOA used in this study is based on an equal distance between each search agent from 0.2 

to 0.9 duty ratio with duty ratios equal to 0.20, 0.34, 0.48, 0.62, 0.76, and 0.90 using Eqn. (19). The 

simulation is performed with the use of re-initialization based on Eqn. (1) as shown in Figure 6 to 

Figure 9 for DOA, MCA, PSO, and GWO, respectively. This image clearly shows that the DOA 

recorded the GP of the first shading pattern (SP-1) in a short amount of time (0.4 s). Meanwhile, the 

MCA, PSO, and GWO won the GP in 0.43 seconds, 1.2 seconds, and 0.9 seconds, respectively. This 

demonstrates the DOA and MCA's advantages over the other MOAs employed in this study.  

In case of shading pattern changes, the search agents will be stagnated around the previous GP 

and will not have the ability to escape from this position in all the optimization algorithms unless the 

reinitialization occurs based on the condition shown in Eqn. (1). This critical condition aids in 

avoiding the stalling of search agents at one of the LPs, which can result in a significant increase in 

extracted power and system efficiency of the photovoltaic energy systems. 
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Figure 6. The simulation results of DOA MPPT for different PSC. 

GP
LP

 

Figure 7. The simulation results of MCA MPPT for different PSC. 
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Figure 8. The simulation results of PSO MPPT for different PSC. 

 

Figure 9. The simulation results of GWO MPPT for different PSC. 

5. Experimental Work 

To validate the simulation results, the identical configuration as described in the simulation 

study is used in the lab. The system is divided into three branches, each with four series modules. As 

illustrated in Figure 10, the radiation is regulated by an automatic controllable light source. The PV 

system includes a boost converter with the same specifications as presented in the simulation study, 

as well as a three-phase inverter controlled by sliding mode control to keep the dc-link voltage 

constant at 220V under various operating situations. The dc-dc converter (boost converter) is 

controlled using different MPPT algorithms with 20 kHz switching frequency and 0.01 s sampling 

time. The switching signal generated from the Matlab/Simulink is interfaced with the boost converter 

through dSPACE MicroLabBox. The waveforms are collected through Control Desk Graphical 
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Interface (CDGI) software as shown in Figure 10. Six search agents are used in all MOAs. The 

experimental work PV power and duty ratio results are displayed in Figures 11 to 14 for the DOA, 

MCA, PSO, and GWO algorithms, respectively. These results show that all of the MOAs employed 

in this investigation caught the GP for all shading patterns at varying time of convergence. 

Meanwhile, the time of convergence for DOA, MCA, PSO, and GWO are 0.4, 0.43, 1.2, and 0.9 s, 

respectively. The practical findings are quite close to the same values obtained from simulation, 

validating the improved performance of the DOA when utilized as an MPPT of PV systems compared 

to alternative optimization techniques used in this study. 

 

 

Figure 10. The experimental prototype. 

  

Figure 11. The experimental results of DOA 

MPPT for various PSCs. 

 

Figure 12. The experimental results of MCA 

MPPT for various PSCs. 
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Figure 13. The experimental results of PSO 

MPPT for various PSCs. 

Figure 14. The experimental results of GWO 

MPPT for various PSCs. 

6. Conclusions 

The P-V properties of the PV array exhibit nonlinear relationships. In the event of uniform 

irradiance, this connection has just one peak, making traditional maximum power point tracker 

(MPPT) approaches suitable for tracking their maximum power. In the meanwhile, in the situation 

of non-uniform irradiance (partial shade), this relation has extra peaks, which may lead traditional 

MPPT approaches to become stuck at one of the local peaks. To address this issue, metaheuristic 

optimization algorithms (MOAs) are a better choice. The primary disadvantages of these algorithms 

are their long time of convergence time and sometimes high failure rate. As a result, a recently 

developed dandelion optimization algorithm (DOA) is employed to lower the time of convergence 

and failure rate of PV system MPPT. When compared to other MOAs such as MCA, PSO, and GWO, 

the DOA has the quickest time of convergence of 0.4 s compared to 1.2 s for PSO. Furthermore, using 

an identical distance between the search agents' beginning positions significantly lowered the 

convergence time. Due to the cross-relationship between swarm size and time of convergence and 

failure rate, an optimal swarm size determination for all MOAs under consideration is provided, in 

which 6 search agents in the swarm are chosen. These superior findings demonstrated the DOA's 

supremacy in MPPT of PV systems when compared to other optimization techniques. 
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