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Article

Bell’s Theorem Begs the Question

Joy Christian

Einstein Centre for Local-Realistic Physics, Oxford OX2 6LB, United Kingdom; jjc@bu.edu

Abstract: I demonstrate that Bell’s theorem is based on circular reasoning and thus a fundamentally flawed

argument. It unjustifiably assumes the additivity of expectation values for dispersion-free states of contextual

hidden variable theories for non-commuting observables involved in Bell-test experiments, which is tautologous

to assuming the bounds of ±2 on the Bell-CHSH sum of expectation values. Its premisses thus assume in a

different guise the bounds of ±2 it sets out to prove. Once this oversight is ameliorated from Bell’s argument

by identifying the impediment that leads to it and local realism is implemented correctly, the bounds on the

Bell-CHSH sum of expectation values work out to be ±2
√

2 instead of ±2, thereby mitigating the conclusion

of Bell’s theorem. Consequently, what is ruled out by any of the Bell-test experiments is not local realism but

the linear additivity of expectation values, which does not hold for non-commuting observables in any hidden

variable theories to begin with. I also identify similar oversight in the GHZ variant of Bell’s theorem, invalidating

its claim of having found an inconsistency in the premisses of the argument by EPR for completing quantum

mechanics. Conceptually, the oversight in both Bell’s theorem and its GHZ variant traces back to the oversight in

von Neumann’s theorem against hidden variable theories identified by Grete Hermann in the 1930s.

Keywords: Bell’s theorem; local realism; Bell-CHSH inequalities; quantum correlations; Bell-test experiments

1. Introduction

Bell’s theorem [1] is an impossibility argument (or “proof”) that claims that no locally causal and
realistic hidden variable theory envisaged by Einstein [2] that could “complete” quantum theory can
reproduce all of the predictions of quantum theory. But some such claims of impossibility in physics
are known to harbor unjustified assumptions. In this paper, I show that Bell’s theorem against locally
causal hidden variable theories is no exception. It is no different, in this respect, from von Neumann’s
theorem against all hidden variable theories [3], or the Coleman-Mandula theorem overlooking the
possibilities of supersymmetry [4]. The implicit and unjustified assumptions underlying the latter
two theorems seemed so innocuous to many that they escaped notice for decades. By contrast, Bell’s
theorem has faced skepticism and challenges by many from its very inception (cf. footnote 1 in [5]),
including by me [5–16], because it depends on a number of questionable implicit and explicit physical
assumptions that are not difficult to recognize [10,16]. In what follows, I bring out one such assumption
and demonstrate that Bell’s theorem is based on a circular argument [9]. It unjustifiably assumes
the additivity of expectation values for dispersion-free states of hidden variable theories for non-
commuting observables involved in the Bell-test experiments [17], which is tautologous to assuming
the bounds of ±2 on the Bell-CHSH sum of expectation values [18]. Its premisses thus assume in a
different guise what it sets out to prove. Once this oversight is ameliorated from Bell’s argument, the
local-realistic bounds on the Bell-CHSH sum of expectation values work out to be ±2

√
2 instead of

±2, thereby mitigating the conclusion of Bell’s theorem. As a result, what is ruled out by the Bell-test
experiments is not local realism but the additivity of expectation values, which does not hold for
non-commuting observables in dispersion-free states of hidden variable theories to begin with.

This flaw, and its multiplicative analog, invalidates not only Bell’s theorem [1] but also its
variants [19–21]. Among its variants that rely on inequalities similar to the Bell-CHSH inequalities [1,
18], such as that by Clauser and Horne (CH) [19], the demonstration of the flaw presented below
for Bell’s original theorem goes through with little or no amendments. On the other hand, in the
variant of Bell’s theorem by Greenberger, Horne, and Zeilinger (GHZ) [20], which does not involve
inequalities but alleges an inconsistency in the premisses of the program set out by Einstein, Podolsky,
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and Rosen (EPR) [22] for local-realistically completing quantum mechanics, the flaw takes a somewhat
different form, as I explain below in Section 1.7. I demonstrate that the GHZ claim of inconsistency in
the premisses of the EPR argument implicitly depends on multiplicative expectation functions and
eigenvalues for non-commuting observables involved in their thought experiment, and is therefore
just as invalid as Bell’s original theorem that implicitly depends on linear additivity of expectation
functions and eigenvalues. There is also a variant of Bell’s theorem by Hardy that does not involve
inequalities and falls halfway between Bell’s original theorem and its variant by GHZ [21]. But in
Section 1.8 below I demonstrate that, contrary to its claim, Hardy’s variant is not “a proof of non-
locality” but an instance of the Kochen-Specker theorem [23]. It is also worth noting that, in [15], I have
not only local-realistically reproduced, within a quaternionic 3-sphere model, the singlet correlations
on which Bell’s theorem is based, but, in [10,24], within the same model, I have also reproduced
the correlations predicted by the GHZ states. Moreover, in [24] I have also reproduced all sixteen
predictions of the quantum mechanical state considered by Hardy.

1.1. Heuristics for Completing Quantum Mechanics

The goal of any hidden variable theory [3,25,26] is to reproduce the statistical predictions encoded
in the quantum states |Ψ〉 ∈H of physical systems using hypothetical dispersion-free states |Ψ, λ) :=
{|Ψ〉, λ} ∈ H ⊗L that have no inherent statistical character, where the Hilbert space H is extended
by the space L of hidden variables λ, which are hypothesized to “complete” the states of the physical
systems as envisaged by Einstein [2]. If the values of λ ∈ L can be specified in advance, then the
results of any measurements on a given physical system are uniquely determined.

To appreciate this, recall that expectation value of the square of any self-adjoint operator Ω ∈H

in a normalized quantum mechanical state |Ψ〉 and the square of the expectation value of Ω will not be
equal to each other in general:

〈Ψ|Ω2 |Ψ〉 6= 〈Ψ|Ω |Ψ〉2. (1)

This gives rise to inherent statistical uncertainty in the value of Ω, indicating that the state |Ψ〉 is not
dispersion-free:

∆Ω =
√
〈Ψ|{Ω− 〈Ψ|Ω |Ψ〉1}2 |Ψ〉 6= 0. (2)

By contrast, in a normalized dispersion-free state |Ψ, λ) of hidden variable theories formalized by
von Neumann [3], the expectation value of Ω, by hypothesis, is equal to one of its eigenvalues ω(λ),
determined by the hidden variables λ,

(Ψ, λ |Ω |Ψ, λ ) = ω(λ) ⇐⇒ Ω |Ψ, λ) = ω(λ) |Ψ, λ), (3)

so that a measurement of Ω in the state |Ψ, λ ) would yield the result ω(λ) with certainty. How this
can be accomplished in a dynamical theory of measurement process remains an open question [25].
But accepting the hypothesis (3) implies

(Ψ, λ |Ω2 |Ψ, λ) = (Ψ, λ |Ω |Ψ, λ)2. (4)

Consequently, unlike in a quantum sate |Ψ〉, in a dispersion-free state |Ψ, λ) observables Ω have no
inherent uncertainty:

∆Ω =
√
(Ψ, λ | {Ω− (Ψ, λ |Ω |Ψ, λ )1}2 |Ψ, λ) = 0. (5)

The expectation value of Ω in the quantum state |Ψ〉 can then be recovered by integrating over the
hidden variables λ:

〈Ψ |Ω |Ψ 〉 =
∫

L
(Ψ, λ |Ω |Ψ, λ ) p(λ) dλ =

∫

L
ω(λ) p(λ) dλ , (6)
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where p(λ) denotes the normalized probability distribution over the space L of thus hypothesized
hidden variables. The quantum mechanical dispersion (2) in the measured value of the observer
Ω can thus be interpreted as due to the distribution p(λ) in the values of the hidden variables λ

over the statistical ensemble of the physical systems measured. Moreover, the Born rule can also
be recovered using this prescription. If the system is in a quantum state |Ψ〉 and the observable Ω
satisfies the eigenvalue equation Ω |ω〉 = ω |ω〉, then, using (6) and the eigenvalues π = 1 and 0 of
the corresponding projection operator |ω〉〈ω |, the probability of observing the eigenvalue ω of Ω can
be recovered as

P(Ω→ ω | |Ψ〉) = |〈ω |Ψ 〉|2 = 〈Ψ |ω〉〈ω |Ψ 〉 =
∫

L
(Ψ, λ |(|ω〉〈ω |)|Ψ, λ ) p(λ) dλ =

∫

L
π(λ) p(λ) dλ . (7)

The probabilities predicted by the Born rule can thus be interpreted as arising from the statistical
distribution of λ.

As it stands, prescription (6) amounts to assignment of unique eigenvalues ω(λ) to all observables
Ω simultaneously, regardless of whether they are actually measured. In other words, according to (6)
every physical quantity of a given system represented by Ω would possess a unique preexisting value,
irrespective of any measurements being performed. The prescription (6) thus mathematically encodes
Einstein’s conception of realism. In [2], Einstein explained his point of view in terms of the position and
momentum of a free particle as follows: “The (free) particle really has a definite position and a definite
momentum, even if they cannot both be ascertained by measurement in the same individual case [as
in quantum mechanics]. According to this point of view, the Ψ-function represents an incomplete
description of the real state of affairs.” The acceptance of this point of view — Einstein continues —
“would lead to an attempt to obtain a complete description of the real state of affairs as well as the
incomplete one [my emphasis], and to discover physical laws for such a description.” Accordingly, the
left-hand side of the first equality in (6) provides the incomplete description of the system and its
right-hand side provides the complete one, with all possible statements one can make about the system
encoded in the expectation values of the observables being measured in the state of the system [3]. If
Ω1 and Ω2 are two non-commuting observables, then the uncertainty relation between them can also
be interpreted as

∆Ω1 ∆Ω2 >
1
2
|〈Ψ | [Ω1, Ω2] |Ψ 〉| =

1
2

∣∣∣∣
∫

L
(Ψ, λ | [Ω1, Ω2] |Ψ, λ ) p(λ) dλ

∣∣∣∣ =
1
2

∣∣∣∣
∫

L
ω1,2(λ) p(λ) dλ

∣∣∣∣ (8)

in terms of the probability distribution p(λ) in the values of the hidden variables λ, where the first
inequality is the one established by Robertson [27], and i ω1,2(λ) is a purely imaginary eigenvalue
of the skew-Hermitian operator [Ω1, Ω2]. Similarly, using the kinematical equivalence seen in (6),
the dynamical equivalence between the quantum mechanical description and Einstein’s “complete”
description can also be established, as demonstrated in the Appendix A below:

[
d
dt
〈Ψ |Ω |Ψ 〉 = 1

ih̄
〈Ψ | [Ω, H ] |Ψ 〉+ 〈Ψ | ∂Ω

∂t
|Ψ 〉

]
=
∫

L

[
d
dt

ω(λ) = {ω(λ), H(λ)}+ ∂ ω(λ)

∂t

]
p(λ) dλ , (9)

where H is a Hamiltonian operator in H andH is a classical Hamiltonian function in the corresponding
phase space. If particular values of λ are precisely known with p(λ) = 1, then the right-hand
side of (9) would reduce to the classical Hamiltonian equations of motion. Otherwise, Ehrenfest’s
equation in quantum mechanics on the left-hand side of (9) can be understood as an ensemble
average of classical dynamics over the probability distribution p(λ) of λ. Thus, once the hypothesis (3)
regarding the dispersion-free states |Ψ, λ) is accepted, each probabilistic statement about the quantum
system, (6), (7), (8), and (9), can be traced back to the incompleteness of our knowledge about the
system.

In Section 2 of [25], Bell works out an instructive example to illustrate how the prescription (6)
works for a system of two-dimensional Hilbert space. It fails, however, for Hilbert spaces of dimensions
greater than two, because in higher dimensions degeneracies prevent simultaneous assignments of
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unique eigenvalues to all observables in dispersion-free states |Ψ, λ ) dictated by the ansatz (3), giving
contradictory values for the same physical quantities. This was proved independently by Bell [25],
Kochen and Specker [23], and Belinfante [28], as a corollary to Gleason’s theorem [29,30].

These proofs – known as the Kochen-Specker theorem – do not exclude contextual hidden variable
theories in which the complete state |Ψ, λ) of a system assigns unique values to physical quantities
only relative to experimental contexts [26,30]. If we denote the observables as Ω(c) with c being the
environmental contexts of their measurements, then the non-contextual prescription (6) can be easily
modified to accommodate contextual hidden variable theories as follows:

〈Ψ |Ω(c) |Ψ 〉 =
∫

L
(Ψ, λ |Ω(c) |Ψ, λ ) p(λ) dλ =

∫

L
ω(c, λ) p(λ) dλ . (10)

Each observable Ω(c) is still assigned a unique eigenvalue ω(c, λ), but now determined cooperatively
by the complete state |Ψ, λ) of the system and the state c of its environmental contexts. Consequently,
even though some of its features are no longer intrinsic to the system, contextual hidden variable
theories do not have the inherent statistical character of quantum mechanics, because outcome of an
experiment is a cooperative effect just as it is in classical physics [30]. Therefore, such theories interpret
quantum entanglement at the level of the complete state |Ψ, λ) only epistemically.

1.1.1. Expectation Function (Ψ, λ |Ω(c) |Ψ, λ ) for Non-Commuting Observables Cannot Be Linear

For our purposes here, it is also important to recall that in the Hilbert space formulation of quan-
tum mechanics [3] the correspondence between observables and Hermitian operators is one-to-one.
Moreover, a sum Ω̃(c̃) = ∑n

i=1 Ωi(ci) of several observables such as Ω1(c1), Ω2(c2), Ω3(c3), . . . , Ωn(cn)

is also an observable representing a physical quantity, and consequently the sum of the expectation
values of Ωi(ci) is the expectation value of the summed operator Ω̃(c̃),

n

∑
i=1
〈Ψ |Ωi(ci) |Ψ 〉 = 〈Ψ |

[
n

∑
i=1

Ωi(ci)

]
|Ψ 〉, (11)

regardless of whether the observables are simultaneously measurable or mutually commutative [25].
The question then is, since within any contextual hidden variable theory characterized by (10) all
of the observables Ωi(ci) and their sum Ω̃(c̃) are assigned unique eigenvalues ωi(ci, λ) and ω̃(c̃, λ),
respectively, would these eigenvalues satisfy the equality

n

∑
i=1

[∫

L
ωi(ci, λ) p(λ) dλ

]
?
=
∫

L

[
n

∑
i=1

ωi(ci, λ)

]
p(λ) dλ (12)

in dispersion-free states |Ψ, λ) of physical systems in analogy with the linear quantum mechanical
relation (11) above? The answer is: Not in general, because the eigenvalue ω̃(c̃, λ) of the summed
operator Ω̃(c̃) is not equal to the sum ∑n

i=1 ωi(ci, λ) of eigenvalues ωi(ci, λ) for given λ, unless the
constituent observables Ωi(ci) are mutually commutative. In other words, ω̃(c̃, λ) 6= ∑n

i=1 ωi(ci, λ) in
general, and therefore the correct counterpart of relation (11) is not (12) but

n

∑
i=1

[∫

L
ωi(ci, λ) p(λ) dλ

]
=
∫

L
ω̃(c̃, λ) p(λ) dλ . (13)

As Bell points out in Section 3 of [25], the linear relation (11) is an unusual property of quantum
mechanical states |Ψ〉. There is no reason to demand it individually of the dispersion-free states |Ψ, λ),
whose function is to reproduce the measurable features of quantum systems only when averaged
over, as in (10). There is no reason why the value of Ω(c) should not be determined by some nonlinear
function (Ψ, λ |Ω(c) |Ψ, λ ). I will come back to this issue in Section 1.4.
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In [25], Bell explains this non-linearity using spin components of a spin- 1
2 particle. If we measure

the σx component of the spin with a Stern-Gerlach magnet suitably oriented in IR3, then it would yield
an eigenvalue sx of σx as a result. However, if we measure the σy component of the spin, then that would
require a different orientation of the magnet in IR3, and would give a different eigenvalue, sy of σy, as a
result. Moreover, since [σx, σy] 6= 0, a measurement of the sum of the x- and y-components of the spin,
σx + σy, would again require a very different orientation of the magnet in IR3. Therefore, the result
obtained as an eigenvalue of the summed operators σx + σy will not be the sum sx + sy of an eigenvalue
of the operator σx added linearly to an eigenvalue of the operator σy. Indeed, the eigenvalues of σx

and σy are both ±1, while the eigenvalues of σx + σy are ±
√

2, so a linear relation cannot hold. As Bell
points out in [25], the additivity of expectation values, 〈Ψ | σx |Ψ 〉+ 〈Ψ | σy |Ψ 〉 = 〈Ψ | σx + σy |Ψ 〉,
is a rather unusual property of the quantum states |Ψ〉. The linearity of it is effectuated in quantum
mechanics by promoting observable quantities to self-adjoint operators [31]. It does not hold for
the dispersion-free states |Ψ, λ) of hidden variable theories in general because the eigenvalues of
non-commuting observables such as σx and σy do not add linearly, as we noted above. Consequently,
the additivity relation (11) that holds for quantum states would not hold for the dispersion-free states.

1.2. Special Case of the Singlet State and EPR-Bohm Observables
4

s2s1

1 2

a

a′

b

b′

source
π0 −→ e− + e+

total spin = 0

FIG. 1: In an EPR-Bohm-type experiment, a spin-less fermion – such as a neutral pion – is assumed to decay from a source into
an electron-positron pair, as depicted. Then, measurements of the spin components of each separated fermion are performed at
space-like separated observation stations 1 and 2, obtaining binary results A = ±1 and B = ±1 along directions a and b. The
conservation of spin momentum dictates that the total spin of the system remains zero during its free evolution. After Ref. [5].

regardless of whether the observables are simultaneously measurable or mutually commutative [25]. The question then
is, since within any contextual hidden variable theory characterized by (10) all of the observables Ωi(ci) and their sum
Ω̃(c̃) are assigned unique eigenvalues ωi(ci, λ) and ω̃(c̃, λ), respectively, would these eigenvalues satisfy the equality

n∑

i=1

[∫

L

ωi(ci, λ) p(λ) dλ

]
?
=

∫

L

[
n∑

i=1

ωi(ci, λ)

]
p(λ) dλ (12)

in dispersion-free states |ψ, λ) of physical systems in analogy with the linear quantum mechanical relation (11) above?
The answer is: Not in general, because the eigenvalue ω̃(c̃, λ) of the summed operator Ω̃(c̃) is not equal to the sum∑n

i=1 ωi(ci, λ) of eigenvalues ωi(ci, λ) for given λ, unless the constituent observables Ωi(ci) are mutually commutative.
In other words, ω̃(c̃, λ) ̸= ∑n

i=1 ωi(ci, λ) in general, and therefore the correct counterpart of relation (11) is not (12) but
n∑

i=1

[∫

L

ωi(ci, λ) p(λ) dλ

]
=

∫

L

ω̃(c̃, λ) p(λ) dλ . (13)

As Bell points out in Section 3 of [25], the linear relation (11) is an unusual property of quantum mechanical states
|ψ⟩. There is no reason to demand it individually of the dispersion-free states |ψ, λ), whose function is to reproduce the
measurable features of quantum systems only when averaged over, as in (10). There is no reason why the value of Ω(c)
should not be determined by some nonlinear function (ψ, λ |Ω(c) |ψ, λ ). I will come back to this issue in Section V.

In [25], Bell explains this non-linearity using spin components of a spin- 12 particle. If we measure the σx component
of the spin with a Stern-Gerlach magnet suitably oriented in IR3, then it would yield an eigenvalue sx of σx as a result.
However, if we measure the σy component of the spin, then that would require a different orientation of the magnet
in IR3, and would give a different eigenvalue, sy of σy, as a result. Moreover, since [σx, σy] ̸= 0, a measurement of the
sum of the x- and y-components of the spin, σx + σy, would again require a very different orientation of the magnet
in IR3. Therefore, the result obtained as an eigenvalue of the summed operators σx + σy will not be the sum sx + sy
of an eigenvalue of the operator σx added linearly to an eigenvalue of the operator σy. Indeed, the eigenvalues of σx
and σy are both ±1, while the eigenvalues of σx + σy are ±

√
2, so a linear relation cannot hold. As Bell points out

in [25], the additivity of expectation values, ⟨ψ |σx |ψ ⟩+ ⟨ψ |σy |ψ ⟩ = ⟨ψ |σx+ σy |ψ ⟩, is a rather unusual property
of the quantum states |ψ⟩. The linearity of it is effectuated in quantum mechanics by promoting observable quantities
to self-adjoint operators [31]. It does not hold for the dispersion-free states |ψ, λ) of hidden variable theories in general
because the eigenvalues of non-commuting observables such as σx and σy do not add linearly, as we noted above.
Consequently, the additivity relation (11) that holds for quantum states would not hold for the dispersion-free states.

III. Special case of the singlet state and EPR-Bohm observables

Now, the proof of Bell’s famous theorem [1] is based on Bohm’s spin version of the EPR’s thought experiment [32],
which involves an entangled pair of spin- 12 particles emerging from a source and moving freely in opposite directions,

Figure 1. In an EPR-Bohm-type experiment, a spin-less fermion – such as a neutral pion – is assumed
to decay from a source into an electron-positron pair, as depicted. Then, measurements of the spin
components of each separated fermion are performed at space-like separated observation stations 1
and 2, obtaining binary results A = ±1 and B = ±1 along directions a and b. The conservation of
spin momentum dictates that the total spin of the system remains zero during its free evolution. After
Ref. [5].

Now, the proof of Bell’s famous theorem [1] is based on Bohm’s spin version of the EPR’s thought
experiment [32], which involves an entangled pair of spin- 1

2 particles emerging from a source and
moving freely in opposite directions, with particles 1 and 2 subject, respectively, to spin measurements
along independently chosen unit directions a and b by Alice and Bob, who are stationed at a spacelike
separated distance from each other (see Fig. 1). If initially the pair has vanishing total spin, then the
quantum mechanical state of the system is described by the entangled singlet state

|Ψ〉 = 1√
2

{
|k, +〉1 ⊗ |k, −〉2 − |k, −〉1 ⊗ |k, +〉2

}
, (14)

where k is a unit vector in arbitrary direction in IR3 and the eigenvalue equation

σ · k |k, ±〉 = ± |k, ±〉 (15)

defines quantum mechanical eigenstates in which the two fermions have spins “up” or “down” in the
units of h̄ = 2, with σ being the Pauli spin “vector” (σx, σy, σz). Once the state (14) is prepared, the
observable Ω(c) of interest is

Ω(c) = σ1 · a ⊗ σ2 · b , (16)
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whose possible eigenvalues, written in terms of the dispersion-free state |Ψ, λ) instead of the quantum
state (14), are

ω(c, λ) = A B(a, b, λ) = ±1, (17)

where A = ±1 and B = ±1 are the results of spin measurements made jointly by Alice and Bob along
their randomly chosen detector directions a and b. In the singlet state (14), the joint observable (16)
predicts sinusoidal correlations 〈Ψ|σ1 · a ⊗ σ2 ·b|Ψ〉 = −a ·b between the values of the spins observed
about the freely chosen contexts a and b [6].

For locally contextual hidden variable theories there is a further requirement that the results of
local measurements must be describable by functions that respect local causality, as first envisaged by
Einstein [2] and later formulated mathematically by Bell [1]. It can be satisfied by requiring that the
eigenvalue ω(c, λ) of the observable Ω(c) in (16) representing the joint result A B(a, b, λ) = ±1 is
factorizable as ω(c, λ) = ω1(c1, λ)ω2(c2, λ), or in Bell’s notation as

A B(a, b, λ) = A (a, λ)B(b, λ), (18)

with the factorized functions A (a, λ) = ±1 and B(b, λ) = ±1 satisfying the following condition of
local causality:

Apart from the hidden variables λ, the result A = ±1 of Alice depends only on the measure-
ment context a, chosen freely by Alice, regardless of Bob’s actions [1]. And, likewise, apart
from the hidden variables λ, the result B = ±1 of Bob depends only on the measurement
context b, chosen freely by Bob, regardless of Alice’s actions. In particular, the function
A (a, λ) does not depend on b or B and the function B(b, λ) does not depend on a or A .
Moreover, the hidden variables λ do not depend on either a, b, A , or B [11].

The expectation value E(a, b) of the joint results in the dispersion-free state |Ψ, λ) should then satisfy
the condition

〈Ψ| σ1 · a ⊗ σ2 · b |Ψ〉 = E(a, b) :=
∫

L
A (a, λ)B(b, λ) p(λ) dλ , (19)

where the hidden variables λ originate from a source located in the overlap of the backward light cones
of Alice and Bob, and the normalized probability distribution p(λ) is assumed to remain statistically
independent of the contexts a and b so that p(λ | a, b) = p(λ), which is a reasonable assumption. In
fact, relaxing this assumption to allow p(λ) to depend on a and b introduces a form of non-locality, as
explained by Clauser and Horne in footnote 13 of [19]. Then, since A (a, λ) = ±1 and B(b, λ) = ±1,
their product A (a, λ)B(b, λ) = ±1, setting the following bounds on E(a, b):

−1 6 E(a, b) 6 +1. (20)

These bounds are respected not only by local hidden variable theories but also by quantum mechanics
and experiments.

1.3. Mathematical Core of Bell’s Theorem

By contrast, at the heart of Bell’s theorem is a derivation of the bounds of±2 on an ad hoc sum of the
expectation values E(a, b) of local results A (a, λ) and B(b, λ), recorded at remote observation stations
by Alice and Bob, from four different sub-experiments involving measurements of non-commuting
observables such as σ1 · a and σ1 · a′ [1,17,18]:

E(a, b) + E(a, b′) + E(a′, b)− E(a′, b′) . (21)

Alice can freely choose a detector direction a or a′, and likewise Bob can freely choose a detector
direction b or b′, to detect, at a space-like distance from each other, the spins of fermions they receive
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from the common source. Then, from (20), we can immediately read off the upper and lower bounds
on the combination (21) of expectation values:

−4 6 E(a, b) + E(a, b′) + E(a′, b) − E(a′, b′) 6 +4 . (22)

1.3.1. Standard Derivation of the Bell-CHSH Inequalities (26)

The next step in Bell’s derivation of the bounds ±2 instead of ±4 is the assumption of the
additivity of expectation values, which amounts to assuming that any sum of expectation values is
equal to the expectation value of the sum:

E(a, b) + E(a, b′) + E(a′ , b) − E(a′ , b′)

=
∫

L
A (a, λ)B(b, λ) p(λ) dλ +

∫

L
A (a, λ)B(b′ , λ) p(λ) dλ +

∫

L
A (a′ , λ)B(b, λ) p(λ) dλ−

∫

L
A (a′ , λ)B(b′ , λ) p(λ) dλ

=
∫

L

{
A (a, λ)B(b, λ) +A (a, λ)B(b′ , λ) +A (a′ , λ)B(b, λ)−A (a′ , λ)B(b′ , λ)

}
p(λ) dλ . (23)

We will have much to discuss about this seemingly harmless mathematical step employing the built-in
linear additivity of integrals. I will demonstrate in Section 1.4 that, far from being harmless, it is, in
fact, an unjustified assumption that harbors a profound mistake of assuming the very thesis of the theorem to
be proven, just as von Neumann’s theorem did [9,25,31,33,34]. It assumes, without proof, that linear
additivity of integrals leading to (23) can be meaningfully applied, not only to the eigenvalues of
commuting observables but also to the eigenvalues of non-commuting observables that cannot be
measured simultaneously. But, as we saw in the paragraph following equation (13), this assumption is
quite mistaken. However, if we overlook this mistake and accept equality (23), then the bounds of ±2
on the Bell-CHSH combination (21) of expectation values are not difficult to work out by rewriting the
integrand on its right-hand side as

A(a, λ)
{

B(b, λ) +B(b′, λ)
}
+ A(a′, λ)

{
B(b, λ)−B(b′, λ)

}
. (24)

Since B(b, λ) = ±1, if |B(b, λ) +B(b′, λ)| = 2, then |B(b, λ)−B(b′, λ)| = 0, and vice versa. Con-
sequently, since A(a, λ) = ±1, the integrand (24) is bounded by ±2 and the absolute value of the last
integral in (23) does not exceed 2:

−2 6
∫

L

{
A (a, λ)B(b, λ) +A (a, λ)B(b′, λ) +A (a′, λ)B(b, λ)−A (a′, λ)B(b′, λ)

}
p(λ) dλ 6 +2 . (25)

Therefore, the equality (23) implies that the absolute value of the combination of expectation values is
bounded by 2:

−2 6 E(a, b) + E(a, b′) + E(a′, b) − E(a′, b′) 6 +2 . (26)

But since the bounds on (21) predicted by quantum mechanics and observed in experiments are ±2
√

2,
Bell concludes that no local and realistic theory envisaged by Einstein can reproduce the statistical
predictions of quantum mechanics. In particular, contextual hidden variable theories specified by (10)
that respect the factorizability (18) are not viable.

In many derivations of (26) in the literature, factorized probabilities of observing binary mea-
surement results are employed rather than measurement results themselves I have used in (18) in my
derivation following Bell [1,17]. But employing probabilities would only manage to obfuscate the
logical flaw in Bell’s argument I intend to bring out here.
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1.3.2. Converse Derivation of the Additivity (23) by Assuming (26)

Now, it is not difficult to demonstrate the converse of the above derivation in which the addi-
tivity of expectation values (23) is derived by assuming the stringent bounds of ±2 on the sum (21).
Employing (19), (21) can be written as
∫

L
A (a, λ)B(b, λ) p(λ) dλ +

∫

L
A (a, λ)B(b′, λ) p(λ) dλ +

∫

L
A (a′, λ)B(b, λ) p(λ) dλ−

∫

L
A (a′, λ)B(b′, λ) p(λ) dλ . (27)

Since each product A (a, λ)B(b, λ) in the above integrals is equal to ±1, each of the four integrals
is bounded by ±1:

−1 6
∫

L
A (a, λ)B(b, λ) p(λ) dλ 6 +1. (28)

Thus the sum of four integrals in (27) is bounded by ±4, not ±2. However, we started with (26), which
contends that the sum of integrals in (27) is bounded by ±2. But the only way to reduce the bounds
on (27) from ±4 to ±2 without compromising the independence of the results A (a, λ)B(b, λ), etc., or
of their averages appearing in the sum (27), or violating the rules of anti-derivatives, is by equating the
sum of integrals in (27) to the following integral of the sum:
∫

L

{
A (a, λ)B(b, λ) +A (a, λ)B(b′, λ) +A (a′, λ)B(b, λ)−A (a′, λ)B(b′, λ)

}
p(λ) dλ . (29)

To be sure, we can easily reduce the bounds on the sum in (27) from ±4 to ±2, for example, by
setting the last two integrals in it equal to each other, with the minus sign between them. That would
reduce (27) to a sum of only the first two integrals, which is then easily seen to be bounded by ±2
using (28). But to achieve this, we have compromised the independence of at least the last two sub-
ensemble averages, which is not permitted by the conditions adhered to in Bell’s argument. Similarly,
again as an example, we can set the results themselves in the last two integrals in (27) equal to each
other: A (a′, λ)B(b, λ) = A (a′, λ)B(b′, λ). That would again reduce (27) to the sum of only the
first two integrals, which is then easily seen to be bounded by ±2 using (28). But we have again
compromised the independence of the last two results to achieve this, which is not permitted. One can
also easily reduce the bounds on (27) from ±4 to ±2 by violating some of the rules of anti-derivatives,
or of statistical averages, etc., as an extreme measure, but that again amounts to forfeiting the game
from the start. Thus, the only admissible means of reducing the bounds on (27) from ±4 to ±2 is by
using the standard rules of anti-derivatives that allow us to equate the sum of integrals appearing
in (27) to the integral (29) of the sum of eigenvalues, which, as we saw in (25), is bounded by ±2.

We have thus derived the additivity of expectation values (23) by imposing the bounds of ±2 on
the Bell-CHSH sum (21) as our starting assumption. Therefore, given the previous derivation that led
us to (26) by assuming (23) and the current derivation that led us to (23) by assuming (26), we have
proved that the assumption (23) of the additivity of expectation values is tautologous to assuming the
bounds of ±2 on the Bell-CHSH sum (21) of expectation values.

1.4. Additivity of Expectation Values (23) is an Unjustified Assumption, Equivalent to the Thesis to be Proven

The key step that led us to the bounds of ±2 on (21) that are more restrictive than ±2
√

2 is the
step (23) of the linear additivity of expectation values. In what follows, I will demonstrate that this
step is, in fact, an unjustified assumption, equivalent to the main thesis of the theorem to be proven,
just as it is in von Neumann’s now discredited theorem [9,25,31,33,34]. But this fact is obscured by the
seemingly innocuous built-in linear additivity of integrals used in step (23). However, as we noted
around (13) and will be further demonstrated in Section 1.6, the built-in linear additivity of integrals
is physically meaningful only for simultaneously measurable or commuting observables [31,33]. It
is, therefore, not legitimate to invoke it at step (23) without proof. Step (23) would be valid also in
classical physics in which the value of a sum of observable quantities would be the same as the sum of
the values each quantity would take separately, because, unlike in quantum mechanics, they would

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 August 2024                   doi:10.20944/preprints202301.0023.v20

https://doi.org/10.20944/preprints202301.0023.v20


9 of 32

all be simultaneously measurable, yielding only sharp values. Perhaps for this reason it is usually
not viewed as an assumption but mistaken for a benign mathematical step. It is also sometimes
claimed to be necessitated by Einstein’s requirement of realism [2]. But I will soon explain why it
is a much overlooked unjustified assumption, and demonstrate in Section 1.6 that, far from being
required by realism, the right-hand side of step (23), in fact, contradicts realism, which requires that
every observable of a physical system, including any sums of observables, must be assigned a correct
eigenvalue, quantifying one of its preexisting properties.

Moreover, realism has already been adequately accommodated by the very definition of the local
functions A (a, λ) and B(b, λ) and their counterfactual juxtaposition on the left-hand side of (23),
as contextually existing properties of the system. Evidently, while a result in only one of the four
expectation values corresponding to a sub-experiment that appears on the left-hand side of (23) can be
realized in a given run of a Bell-test experiment, the remaining three results appearing on that side
are realizable at least counterfactually, thus fulfilling the requirement of realism [9]. Therefore, the
requirement of realism does not necessitate the left-hand side of (23) to be equated with its right-hand
side in the derivation of (26). Realism requires definite results A (a, λ)B(b, λ) to exist as eigenvalues
only counterfactually, not all four at once, as they are written on the right-hand side of (23). What is
more, as we will soon see, realism implicit in the prescription (10) requires the quantity (24) to be a
correct eigenvalue of the summed operator (37), but it is not.

On the other hand, given the assumption p(λ | a, b) = p(λ) of statistical independence and the
additivity property of anti-derivatives, mathematically the equality (23) follows at once because of the
linearity built into the integrals, provided we adopt a double standard for additivity: we reject (23)
for von Neumann’s theorem as Bell did in [25], but accept it unreservedly for Bell’s theorem [9,31].
The binary properties of the functions A (a, λ) and B(b, λ) then immediately lead us to the bounds
of ±2 on (21). But, as we saw above, assuming the bounds of ±2 on (21) leads, conversely, to the
assumption (23) of additivity of expectation values. Thus, assuming the additivity of expectation
values (23) is mathematically equivalent to assuming the bounds of ±2 on the Bell-CHSH sum (21).
In other words, Bell’s argument presented in Section 1.3 assumes its conclusion (26) in the guise of
assumption (23), by implicitly assuming that the expectation functions (Ψ, λ |Ω(c) |Ψ, λ) determining
the eigenvalues ω(c, λ) of Ω(c) are linear [34]:

ω̃(c̃, λ) = (Ψ, λ |
[

4

∑
i=1

Ωi(ci)

]
|Ψ, λ ) =

4

∑
i=1

(Ψ, λ |Ωi(ci) |Ψ, λ ) =
4

∑
i=1

ωi(ci, λ). (30)

But, as explained by Bohm and Bub in [34] (see Appendix B below), this assumed linearity of
(Ψ, λ |Ω(c) |Ψ, λ) is unreasonably restrictive for dispersion-free states |Ψ, λ), because the observables
defined in (16) are not simultaneously measurable. However, it allows us to reduce the following
correct relation within quantum mechanics as well as hidden variable theories,

4

∑
i=1

[∫

L
(Ψ, λ |Ωi(ci) |Ψ, λ ) p(λ) dλ

]
=
∫

L
(Ψ, λ |

[
4

∑
i=1

Ωi(ci)

]
|Ψ, λ ) p(λ) dλ , (31)

to the relation

4

∑
i=1

[∫

L
(Ψ, λ |Ωi(ci) |Ψ, λ ) p(λ) dλ

]
=
∫

L

[
4

∑
i=1

(Ψ, λ |Ωi(ci) |Ψ, λ )

]
p(λ) dλ , (32)

which is the same as assumption (23), albeit written in a more general notation. The equality (31),
on the other hand, is equivalent to the quantum mechanical relation (33) discussed below, which
can be verified using the prescription (10). The same equality (31) is also valid for hidden variable
theories, because it does not make the mistake of relying on the linearity assumption (30). This can be
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verified also using (10) and the ansatz (3). Thus, the innocuous-looking linear additivity of integrals in
assumption (23), while mathematically correct, is neither innocent nor physically reasonable.

It is not difficult to understand why appealing to the built-in linear additivity of anti-derivatives
is not as innocent or physically reasonable as it may seem. In fact, for non-commuting observables
that are not simultaneously measurable, justification of (23) or (32) by appealing to the built-in linear
additivity of integrals leads to incorrect equality between unequal physical quantities. The reasons for
this were recognized by Grete Hermann [31] some three decades before the formulation of Bell’s
theorem [1], as part of her insightful criticism of von Neumann’s alleged theorem [3,33]. As she
explained in [31], we are not concerned here with classical physics in which all observable quantities are
simultaneously measurable yielding only sharp values, and therefore the value of a sum of observable
quantities is nothing other than the sum of the values each of those quantities would separately take.
Consequently, in classical physics, the averages of such values over individual initial states λ of the
system can also be meaningfully added linearly, just as assumed in step (23) or (32), because there is
no scope for any contradiction between the averages obtained by evaluating the left-hand side and
the right-hand side of these equations. Therefore, in classical physics linear additivity of expectation
values remains consistent with the built-in linear additivity of anti-derivatives. However, the same
cannot be assumed without proof for the dispersion-free states |Ψ, λ) of hidden variable theories,
because, in that case, the values of the observable quantities are eigenvalues of the corresponding
quantum mechanical operators dictated by the ansatz (3), and, as we noted above and toward the
end of Section 1.1, the eigenvalue ω̃(c̃, λ) of the summed observable Ω̃(c̃) is not equal to the sum
∑n

i=1 ωi(ci, λ) of the eigenvalues ωi(ci, λ) of Ωi(ci), unless the observables Ωi(ci) constituting the
sum Ω̃(c̃) are simultaneously measurable. Thus, an important step in the proof of (26) is missing. A
necessary step that would prove the consistency of the built-in linear additivity of anti-derivatives
with the non-additivity of expectation values for the non-commuting observables. In equation (40)
of Section 1.6 below we will see the difference between the eigenvalue of the summed operator and
the sum of individual eigenvalues explicitly. It will demonstrate how, in hidden variable theories
equation (23) or (32) involving averages of eigenvalues ends up equating unequal averages of physical
quantities in general. It will thereby prove that, while valid in classical physics and for simultaneously
measurable observables, equation (23) or (32) is not valid for hidden variable theories in general.
Insisting otherwise thus amounts to assuming the validity of this equation without proof, despite the
contrary evidence just presented [31]. That, in turn, amounts to assuming the very thesis to be proven
— namely, the bounds of ±2 on the Bell-CHSH sum (21). Consequently, the only correct meaning
assignable to (23) or (26) is that it is valid only in classical physics and/or for commuting observables.

Sometimes assumption (23) is justified on statistical grounds. It is argued that the four sub-
experiments appearing on the left-hand side of (23) with different experimental settings {a, b},
{a, b′}, etc. can be performed independently of each other, on possibly different occasions, and then
the resulting averages are added together at a later time for statistical analysis. If the number of
experimental runs for each pair of settings is sufficiently large, then, theoretically, the sum of the
four averages appearing on the left-hand side of (23) are found not to exceed the bounds of ±2, thus
justifying the equality (23). This can be easily verified in numerical simulations (see Ref. [27] cited
in [13]). However, this heuristic argument is not an analytical proof of the bounds. What it implicitly
neglects to take into account by explicitly assuming that the four sub-experiments can be performed
independently, is that the sub-experiments involve mutually exclusive pairs of settings such as {a, b}
and {a, b′} in physical space, and thus involve non-commuting observables that cannot be measured
simultaneously [9]. Unless the statistical analysis takes this physical fact into account, it cannot be
claimed to have any relevance for the Bell-test experiments [16]. For ignoring this physical fact amounts
to incorrectly assuming that the spin observables σ1 · a ⊗ σ2 · b, etc. are mutually commuting, and
thus simultaneously measurable, for which assumption (23) is indeed valid, as demonstrated below
in Section 1.6 (see the discussion around (43)). On the other hand, when the non-commutativity of
the observables involved in the sub-experiments is taken into account in numerical simulations, the
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bounds on (21) turn out to be ±2
√

2, as shown in [10,11] and Ref. [27] cited in [13]. In other words,
such a statistical argument is simply assumption (23) in disguise.

Another important point to recognize here is that the above derivation of the stringent bounds of
±2 on (21) for a locally causal dispersion-free counterpart |Ψ, λ) of the quantum mechanical singlet
state (14) must comply with the heuristics of the contextual hidden variable theories we discussed
in Section 1.1. If it does not, then the bounds of ±2 cannot be claimed to have any relevance for the
viability of local hidden variable theories [30]. Therefore, as discussed in Section 1.1, in a contextual
hidden variable theory all of the observables Ωi(ci) of any physical system, including their sum
Ω̃(c̃) = ∑n

i=1 Ωi(ci), which also represents a physical quantity in the Hilbert space formulation of
quantum mechanics [3] whether or not it is observed, must be assigned unique eigenvalues ωi(ci, λ)

and ω̃(c̃, λ), respectively, in the dispersion-free states |Ψ, λ) of the system, regardless of whether
these observables are simultaneously measurable. In particular, while the summed observable (37)
discussed below is never observed in the Bell-test experiments, realism nevertheless requires it to be
assigned a unique eigenvalue in accordance with the ansatz (3) and the prescription (10).

1.5. Additivity of Expectation Values Is Respected by Quantum States

Now, within quantum mechanics, expectation values do add in analogy with the equality (23)
assumed by Bell for local hidden variable theories [3,25]. In quantum mechanics, the statistical predic-
tions of which any hidden variable theory is obliged to reproduce, the joint results A (a, λ)B(b, λ)

observed by Alice and Bob would be eigenvalues of the operators σ1 · a ⊗ σ2 · b, and the linearity in
the rules of Hilbert space quantum mechanics ensures that these operators satisfy the additivity of
expectation values. Thus, for any quantum state |Ψ〉, the following equality holds:

〈Ψ| σ1 · a ⊗ σ2 · b |Ψ〉+ 〈Ψ| σ1 · a ⊗ σ2 · b′ |Ψ〉+ 〈Ψ| σ1 · a′ ⊗ σ2 · b |Ψ〉 − 〈Ψ| σ1 · a′ ⊗ σ2 · b′ |Ψ〉
= 〈Ψ| σ1 · a ⊗ σ2 · b + σ1 · a ⊗ σ2 · b′ + σ1 · a′ ⊗ σ2 · b− σ1 · a′ ⊗ σ2 · b′ |Ψ〉. (33)

The linearity of this equation has been achieved by promoting observable quantities to Hermitian
operators [3,31]. Any local hidden variable theory is then obliged to reproduce the predictions of
both sides of this equation. Comparing equations (23) and (33), the equality between the two sides
of (23) seems reasonable, even physically. Furthermore, since the condition (19) for any hidden variable
theory obliges us to set the four terms on the left-hand side of (33) as

〈Ψ| σ1 · a ⊗ σ2 · b |Ψ〉 =
∫

L
A (a, λ)B(b, λ) p(λ) dλ , (34a)

〈Ψ| σ1 · a ⊗ σ2 · b′ |Ψ〉 =
∫

L
A (a, λ)B(b′, λ) p(λ) dλ , (34b)

〈Ψ| σ1 · a′ ⊗ σ2 · b |Ψ〉 =
∫

L
A (a′, λ)B(b, λ) p(λ) dλ , (34c)

and 〈Ψ| σ1 · a′ ⊗ σ2 · b′ |Ψ〉 =
∫

L
A (a′, λ)B(b′, λ) p(λ) dλ , (34d)

it may seem reasonable that, given the quantum mechanical equality (33), any hidden variable theory
should satisfy

〈Ψ| Ω̃(c̃) |Ψ〉 = 〈Ψ| σ1 · a ⊗ σ2 · b + σ1 · a ⊗ σ2 · b′ + σ1 · a′ ⊗ σ2 · b− σ1 · a′ ⊗ σ2 · b′ |Ψ〉

=
∫

L

{
A (a, λ)B(b, λ) +A (a, λ)B(b′, λ) +A (a′, λ)B(b, λ)−A (a′, λ)B(b′, λ)

}
p(λ) dλ , (35)

adhering to the prescription (10), which would then justify equality (23). Since hidden variable theories
are required to satisfy the prescription (10), should not they also reproduce equation (35)? The answer
to this is not straightforward.
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1.6. Additivity of Expectation Values Does Not Hold for Dispersion-Free States

The problem with equation (35) is that, while the joint results A (a, λ)B(b, λ), etc. appearing
on the left-hand side of equation (23) are possible eigenvalues of the products of spin operators
σ1 · a ⊗ σ2 · b, etc., their summation

A (a, λ)B(b, λ) +A (a, λ)B(b′, λ) +A (a′, λ)B(b, λ)−A (a′, λ)B(b′, λ) (36)

appearing as the integrand on the right-hand side of equation (35) or (23) is not an eigenvalue of the
summed operator

Ω̃(c̃) = σ1 · a ⊗ σ2 · b + σ1 · a ⊗ σ2 · b′ + σ1 · a′ ⊗ σ2 · b− σ1 · a′ ⊗ σ2 · b′, (37)

because the spin operators σ1 · a and σ1 · a′, etc., and therefore σ1 · a ⊗ σ2 · b, etc., do not commute
with each other:

[
σ1 · a ⊗ σ2 · b, σ1 · a ⊗ σ2 · b′

]
= 2 σ ·

{(
a× b′

)
× (a× b)

}

6= 0 if b′ 6= b 6= a. (38)

Consequently, equation (35) would hold within any hidden variable theory only if the operators
σ1 · a ⊗ σ2 · b, etc., were commuting operators. As we discussed, this is well known from the
famous criticisms of von Neumann’s theorem against hidden variable theories [9,25,31,33]. While
the equality (23) of the sum of expectation values with the expectation value of the sum is respected
in quantum mechanics, it does not hold for hidden variable theories [25]. Nor does local realism
necessitate the linear additivity (30) of eigenvalues for individual dispersion-free states |Ψ, λ).

This problem, however, suggests its own resolution. We can work out the correct eigenvalue
ω̃(c̃, λ) of the summed operator (37), at least formally, as I have worked out in Appendix C below. The
correct version of equation (35) is then

〈Ψ| σ1 · a ⊗ σ2 · b + σ1 · a ⊗ σ2 · b′ + σ1 · a′ ⊗ σ2 · b− σ1 · a′ ⊗ σ2 · b′ |Ψ〉 =
∫

L
ω̃(a, a′, b, b′, λ) p(λ) dλ , (39)

where

ω̃= ±
√{

A (a, λ)B(b, λ) +A (a, λ)B(b′, λ) +A (a′, λ)B(b, λ)−A (a′, λ)B(b′, λ)
}2

+ (Ψ, λ | Θ̃ |Ψ, λ) (40)

is the correct eigenvalue of the summed operator (37), with its non-commuting part separated out as
the operator

Θ̃(a, a′, b, b′) = 2 σ · n(a, a′, b, b′) . (41)

Here (Ψ, λ | Θ̃ |Ψ, λ) 6= 0 in general, because the vector n(a, a′, b, b′) does not vanish in general. It
works out to be

n(a, a′, b, b′) =
{(

a× b′
)
× (a× b) +

(
a′ × b

)
× (a× b) +

(
a′ × b

)
×
(
a× b′

)

−
(
a′ × b′

)
× (a× b)−

(
a′ × b′

)
×
(
a′ × b

)
−
(
a′ × b′

)
×
(
a× b′

)}
. (42)

The details of how this separation is accomplished using (38) can be found in Appendix C be-
low. From (40), it is now easy to appreciate that the additivity of expectation values (23) assumed
by Bell can hold only if the expectation value (Ψ, λ | Θ̃ |Ψ, λ) = ±2 ||n|| of the non-commuting part
within the eigenvalue ω̃(a, a′, b, b′, λ) of the summed operator (37) is zero. But that is possible only if
the operators σ1 · a ⊗ σ2 · b, etc. constituting the sum (37) commute with each other. In general, if the
operators σ1 · a ⊗ σ2 · b, etc. in (37) do not commute with each other, then we would have

ω̃(a, a′, b, b′, λ) 6= A (a, λ)B(b, λ) +A (a, λ)B(b′, λ) +A (a′, λ)B(b, λ)−A (a′, λ)B(b′, λ). (43)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 August 2024                   doi:10.20944/preprints202301.0023.v20

https://doi.org/10.20944/preprints202301.0023.v20


13 of 32

But the operators σ1 · a ⊗ σ2 · b, etc. indeed do not commute with each other, because the pairs
of directions {a, a′}, etc. in (37) are mutually exclusive directions in IR3. Therefore, the additivity
of expectation values assumed at step (23) in the derivation of (26) is unjustifiable. Far from being
necessitated by realism, it actually contradicts realism.

Since three of the four results appearing in the expression (36) can be realized only counterfactually,
their summation in (36) cannot be realized even counterfactually [9]. Thus, in addition to not being a
correct eigenvalue of the summed operator (37) as required by the prescription (10) for hidden variable
theories, the quantity appearing in (36) is, in fact, an entirely fictitious quantity, with no counterpart in
any possible world, apart from in the trivial case when all observables are commutative. By contrast,
the correct eigenvalue (40) of the summed operator (37) can be realized at least counterfactually because
it is a genuine eigenvalue of that operator, thereby satisfying the requirement of realism correctly, in
accordance with the prescription (10) for hidden variable theories. Using (40), all five of the observables
appearing on both sides of the quantum mechanical equation (33) can be assigned unique and correct
eigenvalues [9].

Once this oversight is ameliorated, it is not difficult to show that the conclusion of Bell’s theorem
no longer follows. For then, using the correct eigenvalue (40) of (37) instead of (36) on the right-hand
side of (23), we have the equation

E(a, b) + E(a, b′) + E(a′, b)− E(a′, b′) =
∫

L
ω̃(a, a′, b, b′, λ) p(λ) dλ (44)

instead of (23), which implements local realism correctly on both of its sides, as required by the
prescription (10) we discussed in Section 1.1. This equation (44) is thus the correct dispersion-free
counterpart of the equivalence (33) for the quantum mechanical expectation values [9]. It can reduce to
Bell’s assumption (23) only when the expectation value (Ψ, λ | Θ̃ |Ψ, λ) of the non-commuting part
within the eigenvalue ω̃(a, a′, b, b′, λ) of the summed operator (37) happens to be vanishing. It thus
expresses the correct relationship (31) among the expectation values for the singlet state (14) in the local
hidden variable framework considered by Bell [1]. Recall again from the end of Section 1.1 that the
quantum mechanical relation (33) is an unusual property of the quantum states |Ψ〉. As Bell stressed
in [25], “[t]here is no reason to demand it individually of the hypothetical dispersion free states,
whose function it is to reproduce the measurable peculiarities of quantum mechanics when averaged
over.” Moreover, in Section V of [9] I have demonstrated that the bounds on the right-hand side of (44)
are ±2

√
2 instead of ±2. An alternative derivation of these bounds follows from the magnitude ||n|| of

the vector defined in (42), which, as proved in Appendix D below, is bounded by 2, and therefore the
eigenvalue ±2 ||n|| of the operator (41) obtained as its expectation value (Ψ, λ | Θ̃ |Ψ, λ) is bounded
by ±4, giving

−4 6 (Ψ, λ | Θ̃(a, a′, b, b′) |Ψ, λ) 6 +4 . (45)

Substituting these into (40), together with the bounds of ±2 we worked out before on the commuting
part (36), gives

−2
√

2 6 ω̃(a, a′, b, b′, λ) 6 +2
√

2 , (46)

which is constrained to be real despite the square root in the expression (40) because the operator (37)
is Hermitian. Consequently, we obtain the following Tsirel’son’s bounds in the dispersion-free state,
on the right-hand side of (44):

−2
√

2 6
∫

L
ω̃(a, a′, b, b′, λ) p(λ) dλ 6 +2

√
2 . (47)

Given the correct relation (44) between expectation values instead of the flawed assumption (23), we
thus arrive at

−2
√

2 6 E(a, b) + E(a, b′) + E(a′, b)− E(a′, b′) 6 +2
√

2 . (48)
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Since the bounds of ±2
√

2 we have derived on the Bell-CHSH sum of expectation values are the same
as those predicted by quantum mechanics and observed in the Bell-test experiments, the conclusion
of Bell’s theorem is mitigated. What is ruled out by these experiments is not local realism but
the assumption of the additivity of expectation values, which does not hold for non-commuting
observables in dispersion-free states of any hidden variable theories to begin with.

It is also instructive to note that the intermediate bounds ±2
√

2 on the Bell-CHSH sum (21),
instead of the extreme bounds ±2 or ±4, follow in the above derivation of (48) as a consequence
of the geometry of physical space [5,6]. Thus, what is brought out in it is the oversight of the non-
commutative or Clifford-algebraic attributes of the physical space in Bell’s derivation of the bounds
±2 in (26). Indeed, it is evident from Appendix D below that the geometry of physical space imposes
the bounds 0 6 ||n|| 6 2 on the magnitude of the vector (42), which, in turn, lead us to the bounds
±2
√

2 in (48). This is in sharp contrast with the traditional view of these bounds as due to non-
local influences, stemming from a failure of the locality condition (18). But in the derivation of (48)
above, the condition (18) is strictly respected. Therefore, the strength of the bounds ±2

√
2 in (48)

is a consequence — not of non-locality or non-reality, but of the geometry of physical space [5,6].
Non-locality or non-reality is necessitated only if one erroneously insists on linear additivity (23) of
eigenvalues of non-commuting observables for each individual dispersion-free state |Ψ, λ).

1.7. Oversight and Circular Reasoning in the GHZ Variant of Bell’s Theorem

As is well known, Bell’s theorem [1] has inspired several variant arguments against hidden
variable theories. Some of these arguments, such as that by Clauser and Horne [19], involve inequalities
similar to the Bell-CHSH inequalities, resulting from additions of expectation values. They are therefore
as flawed as Bell’s original argument, and for the same reasons we discussed previously. However,
the variant argument by Greenberger, Horne, and Zeilinger (GHZ) [20] is significantly different. It
neither involves inequalities nor relies on additions of expectation values. It purports to demonstrate a
purely algebraic incompatibility between the quantum mechanical predictions and the premisses of
the argument by Einstein, Podolsky, and Rosen (EPR) [22] for their program of completing quantum
mechanics. Namely, their premisses of locality, reality, completeness, and perfect correlation. However,
in this section I demonstrate that, despite appearances, the GHZ argument is just as flawed as Bell’s
original argument, and for nearly the same reasons.

1.7.1. Expectation Functions (Ψ, λ |Ω |Ψ, λ ) for Non-Commuting Observables Cannot Be
Multiplicative

To this end, let us begin with the observation that the oversight that invalidates both von Neu-
mann’s theorem [3] and Bell’s theorem involves incorrect use of the Functional Composition Principle,
formalized by Kochen and Specker to mirror the algebraic structure of the self-adjoint operators Ω
into the algebraic structure of their eigenvalues ω [23]:

If f : IR→ IR is a real-valued function such that Ω1 = f (Ω2), then 〈Ψ |Ω1 |Ψ 〉 = f (〈Ψ |Ω2 |Ψ 〉),

for any two self-adjoint operators Ω1 and Ω2 measured in a state |Ψ 〉, which may or may not be a
dispersion-free state. If it is a dispersion-free state |Ψ, λ ), then ansatz (3) simplifies the Functional
Composition Principle to the following:

If f : IR→ IR is a real-valued function such that Ω1 = f (Ω2), then ω1(λ) = f (ω2(λ)),

where ω1(λ) and ω2(λ) are possible eigenvalues of Ω1 and Ω2, respectively. The rationale behind this
principle is that a hidden variable theory should preserve, not only the statistical attributes of quantum
mechanics captured by (6) but also the algebraic structure of the quantum mechanical observables.
Since this principle is satisfied for the statistical mechanics underlying thermodynamics, it is expected
to hold in any ensemble interpretation of quantum mechanics. Moreover, the proof of Kochen-Specker
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theorem [23] that rules out non-contextual hidden variable theories depends on this principle and
respects the following two important consequences that follow from it for commuting operators:

Sum Rule : (Ψ, λ |Ω1 + Ω2 |Ψ, λ ) = (Ψ, λ |Ω1 |Ψ, λ ) + (Ψ, λ |Ω2 |Ψ, λ ), provided [Ω1, Ω2] = 0, (49)

and
Product Rule : (Ψ, λ |Ω1 Ω2 |Ψ, λ ) = (Ψ, λ |Ω1 |Ψ, λ )(Ψ, λ |Ω2 |Ψ, λ ), provided [Ω1, Ω2] = 0. (50)

It is also worth recalling that a function f : IR→ IR is said to be multiplicative if f (x y) = f (x) f (y) for
any x, y ∈ IR.

In previous sections, we have extensively discussed the linearity implicit in the Sum Rule (49). In
a dispersion-free state |Ψ, λ ), using the ansatz (3), this can be expressed in terms of eigenvalues, as
proved in the Appendix B below:

ω̃(λ) = ω1(λ) + ω2(λ), provided [Ω1, Ω2] = 0, (51)

where ω̃(λ) is one of the eigenvalues of the summed operator Ω1 + Ω2 , and ω1(λ) and ω2(λ) are
possible eigenvalues of the operators Ω1 and Ω2, respectively. As we noted above in passing, von Neu-
mann mistakenly assumed the linearity of this rule to hold even for non-commuting operators [3], and,
for this reason, his theorem was criticized by Bell [25] and many other authors [9]. However, von Neu-
mann did not make the mistake of assuming the Product Rule (50) for non-commuting operators in
his theorem, as acknowledged by Kochen and Specker [23]. Unfortunately, Greenberger, Horne, and
Zeilinger make that mistake in their variant of Bell’s theorem [20]. They implicitly assume multiplicative
expectation function (50) for non-commuting observables in their analysis to incorrectly claim that they
have found a contradiction in the premisses of the argument by Einstein, Podolsky, and Rosen [22], as
I now proceed to demonstrate.

Although the Product Rule (50) goes back to the pioneering investigations by von Neumann [3]
and is universally accepted, since it plays a crucial role in the proof of GHZ’s argument, let me
demonstrate that it does not hold for non-commuting operators. To this end, using ansatz (3) it is easy
to see that for dispersion-free states (50) simplifies to

ω̃(λ) = ω1(λ) ω2(λ), provided [Ω1, Ω2] = 0, (52)

where ω̃(λ) is one of the eigenvalues of the product operator Ω1 Ω2 , and ω1(λ) and ω2(λ) are,
respectively, possible eigenvalues of the individual operators Ω1 and Ω2. Now, we borrow from
Bell [25] the example of a spin- 1

2 particle, which he used to explain the invalidity of the Sum Rule (51)
for the eigenvalues of non-commuting operators (recall the discussion above from the last paragraph
of Section 1.1). We can similarly demonstrate the invalidity of the Product Rule (52) for the eigenvalues
of non-commuting operators [23]. Thus, since the operators σx and σy do not commute,

[
σx, σy

]
6= 0,

according to (52) the eigenvalues of the product σxσy cannot be equal to the product of the eigenvalues
of σx and σy. And, indeed, we see that the eigenvalues of σx and σy are both ±1, whereas the
eigenvalues of σxσy = iσz are ± i, and thus not even real. Therefore, as expected, the Product Rule
does not hold, since (±1)(±1) = ±1 6= ± i. Note that what is asserted by (52) is not that ω1(λ), ω2(λ),
and ω̃(λ) cannot exist simultaneously as required by realism, but rather that the relationship among
the three cannot be multiplicative if the operators Ω1 and Ω2 do not commute.

In summary, as we discussed in the previous sections, just as the eigenvalue of a sum of observ-
ables is not equal to the sum of eigenvalues of observables constituting the sum when the latter do
not commute, the eigenvalue of a product of observables is not equal to the product of eigenvalues of
observables constituting the product when the latter do not commute. The conceptual and physical
reasons for this are the same as those recognized by Grete Hermann [31] (and later by Bell [25] and
others [9]) in the context of a similar mistake in von Neumann’s pioneering theorem against hidden
variable theories, as we discussed above in Sections 1.1 and 1.4. Namely, in hidden variable theories we
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are not concerned with classical physics — we are concerned with relationships among the eigenvalues
of quantum mechanical operators.

1.7.2. Four-Particle Greenberger–Horne–Zeilinger State and the Associated Observables

Now, together with Shimony, in [20] Greenberger, Horne, and Zeilinger consider the following
four-particle state:

|Ψz〉 =
1√
2

{
|z, +〉1 ⊗ |z, +〉2 ⊗ |z, −〉3 ⊗ |z, −〉4 − |z, −〉1 ⊗ |z, −〉2 ⊗ |z, +〉3 ⊗ |z, +〉4

}
. (53)

Unlike the singlet state (14), this entangled state, composed of four fermionic particles, is not rotation-
ally invariant. There is a privileged direction, and it is taken to be the z-direction of their experimental
setup. The z-direction thus represents the axis of anisotropy in the system. The GHZ observables are
then a direct product of four Pauli matrices:

Ω(c) = σ · n1 ⊗ σ · n2 ⊗ σ · n3 ⊗ σ · n4 , (54)

where the vectors n1 6= n2 6= n3 6= n4 in general. Consequently, with alternative directions such as
n′1 6= n′2 6= n′3 6= n′4 the corresponding operator will not commute with the one expressed in (54), just
as in the two-particle case (38) we discussed in Section 1.6. The quantum mechanical expectation value
of the product of the four outcomes of the spin measurements, i.e., the product of finding a spin value
of particle 1 along n1, of particle 2 along n2, etc., is given by

EΨz
QM

(n1, n2, n3, n4) = 〈Ψz| σ · n1 ⊗ σ · n2 ⊗ σ · n3 ⊗ σ · n4 |Ψz〉. (55)

This expectation function has been worked out in Appendix F of [20]. In the spherical coordinates, with
angles such as θ1 and φ1 representing, respectively, the polar and azimuthal angles of the directions n1,
etc., it works out to be

EΨz
QM

(n1, n2, n3, n4) = cos θ1 cos θ2 cos θ3 cos θ4 − sin θ1 sin θ2 sin θ3 sin θ4 cos ( φ1 + φ2 − φ3 − φ4). (56)

For simplicity, the authors then restrict the directions to the x-y plane, which simplifies the expectation
function to

EΨz
QM

(n1, n2, n3, n4)
∣∣∣
x-y

= − cos( φ1 + φ2 − φ3 − φ4 ). (57)

Next, the authors consider two special cases of perfect correlation, since that is one of the premisses
of the argument by EPR. Accordingly, they set the sum of angles φ1 + φ2 − φ3 − φ4 = 0, to obtain
from (57) the expectation value

EΨz
QM

(n1, n2, n3, n4)
∣∣∣
x-y

= −1 . (58)

Similarly, they set the sum of angles φ1 + φ2 − φ3 − φ4 = π to obtain

EΨz
QM

(n1, n2, n3, n4)
∣∣∣
x-y

= +1 . (59)

Thus, for these cases the expectation values remain constant for all runs of their thought experiment.
Here, by perfect correlation the authors mean that, with four Stern-Gerlach analyzers set at angles
satisfying the conditions (58) and (59) in their experimental setup shown in Figure 2 of [20], knowledge
of the outcomes for any three particles enables a prediction with certainty of the outcome for the fourth,
in analogy with the two-particle case considered by Bell [1].
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Now, in analogy with the singlet state of Section 1.2, let us analyze the local-realistic counterpart
of the predictions of the state (53) for the observables (54). The eigenvalues of (54), expressed in the
dispersion-free state |Ψz, λ ), are

ω(c, λ) = A BC D(n1, n2, n3, n4, λ) = ±1, (60)

where A = ±1, B = ±1, C = ±1, and D = ±1 are the possible individual outcomes of spin
measurements along the respective directions when the dispersion-free state of the four-particle system
is |Ψz, λ ). In analogy with the locality condition (18), in the present case local causality demands that
the above eigenvalues must be factorized as follows:

ω(c, λ) = A BC D(n1, n2, n3, n4, λ) = A (n1 , λ) B(n2 , λ) C (n3 , λ) D(n4 , λ) = ±1 . (61)

Consequently, in the x-y plane a local-realistic counterpart of the quantum mechanical expectation
value (57) should be

EGHZ
LR

(n1, n2, n3, n4)
∣∣∣
x-y

=
∫

L
A (n1, λ)B(n2, λ)C (n3, λ)D(n4, λ) p(λ) dλ = − cos( φ1 + φ2 − φ3 − φ4 ). (62)

In other words, in analogy with (19), it should be an ensemble average of (61) over the probability
distribution p(λ). However, for the case of perfect correlation the authors set p(λ) = 1, which reduces
the above expectation values to

EGHZ
LR

(n1, n2, n3, n4)
∣∣∣
x-y

= A (n1, λ)B(n2, λ)C (n3, λ)D(n4, λ) = ±1, (63)

with the local-realistic counterparts of the two quantum mechanical alternatives (58) and (59) reducing
to the following:

If φ1 + φ2 − φ3 − φ4 = 0, then ω(c, λ) = A (n1, λ)B(n2, λ)C (n3, λ)D(n4, λ) = −1 (64a)

and

If φ1 + φ2 − φ3 − φ4 = π, then ω(c, λ) = A (n1, λ)B(n2, λ)C (n3, λ)D(n4, λ) = +1. (64b)

Next, they consider implications of (64a) for a set of four possible results specified by an azimuthal
angle φ as follows:

ω(c′, λ) = A (0, λ)B(0, λ)C (0, λ)D(0, λ) = −1, (65a)

ω(c′′, λ) = A (φ, λ)B(0, λ)C (φ, λ)D(0, λ) = −1, (65b)

ω(c′′′, λ) = A (φ, λ)B(0, λ)C (0, λ)D(φ, λ) = −1, (65c)

and ω(c′′′′, λ) = A (2φ, λ)B(0, λ)C (φ, λ)D(φ, λ) = −1. (65d)

Thus, if we define vectors p and q in terms of the angle φ and unit vectors x and y along axes x and y,
respectively, as

p := cos(φ) x + sin(φ) y (66)

and q := cos(2φ) x + sin(2φ) y, (67)
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then, in the experimental setup shown in Figure 2 of [20], the results (65a) to (65d) of spin measurements
supposed by the authors to occur would be along the following set of four alternative directions or
contexts in physical space:

c′ = { n′1 = x, n′2 = x, n′3 = x, n′4 = x }, (68a)

c′′ = { n′′1 = p, n′′2 = x, n′′3 = p, n′′4 = x }, (68b)

c′′′ = { n′′′1 = p, n′′′2 = x, n′′′3 = x, n′′′4 = p }, (68c)

and c′′′′ = { n′′′′1 = q, n′′′′2 = x, n′′′′3 = p, n′′′′4 = p }. (68d)

Using (54), the four quantum mechanical observables along the above set of alternatively possible
directions are then

Ω(c′) = (σ · x)1 ⊗ (σ · x)2 ⊗ (σ · x)3 ⊗ (σ · x)4 , (69a)

Ω(c′′) = (σ · p)1 ⊗ (σ · x)2 ⊗ (σ · p)3 ⊗ (σ · x)4 , (69b)

Ω(c′′′) = (σ · p)1 ⊗ (σ · x)2 ⊗ (σ · x)3 ⊗ (σ · p)4 , (69c)

Ω(c′′′′) = (σ · q)1 ⊗ (σ · x)2 ⊗ (σ · p)3 ⊗ (σ · p)4 , (69d)

with their eigenvalues constrained to be (65a) to (65d), respectively, for the case (64a) of perfect
correlation. Note that [σ · x, σ · p] = 0 if the operators σ · x and σ ·p pertain to different particles within
the same alternative or context. Consequently, the product rule (52) holds within each alternative,
and therefore equations (65a) to (65d) reproduced above from [20] are correct. On the other hand,
[σ · x, σ · p] = 2 i sin(φ)σ · z 6= 0 for φ 6= 0 (or 6= multiple of 2π) if σ · x and σ · p pertain to the same
particle across different contexts or alternatives, and therefore [Ω(c′), Ω(c′′) ] 6= 0, [Ω(c′), Ω(c′′′) ] 6=
0, and [Ω(c′′), Ω(c′′′) ] 6= 0. As a result, for those cases, the product rule (50) or (52) does not hold:

(
Ψz, λ |Ω(c′)Ω(c′′)Ω(c′′′) |Ψz, λ

)
6=
(

Ψz, λ |Ω(c′) |Ψz, λ
) (

Ψz, λ |Ω(c′′) |Ψz, λ
) (

Ψz, λ |Ω(c′′′) |Ψz, λ
)
. (70)

If we denote the eigenvalue of {Ω(c′)Ω(c′′)Ω(c′′′)} by ω̃(c̃, λ), then, using the ansatz (3), (70) can
also be expressed as

ω̃(c̃, λ) 6= ω(c′, λ) ω(c′′, λ) ω(c′′′, λ). (71)

Thus, if the eigenvalues of non-commuting operators Ω(c′), Ω(c′′), and Ω(c′′′) are ω(c′, λ), ω(c′′, λ),
and ω(c′′′, λ), respectively, then one cannot conclude that the eigenvalue of {Ω(c′)Ω(c′′)Ω(c′′′)}
must be ω(c′, λ)ω(c′′, λ)ω(c′′′, λ). As we will soon see, however, that even for such non-commuting
observables pertaining to different alternatives or contexts, the authors of [20] illegitimately assumed a
multiplicative expectation function for the dispersion-free states.

1.7.3. Illegitimate Use of Multiplicative Expectation Functions and Eigenvalues in [20]

Returning to their derivation, in (64b) the authors use angles φ1 = θ + π, φ2 = 0, φ3 = θ, and
φ4 = 0 to write it as

ω(c′′′′′, λ) = A (θ + π, λ)B(0, λ)C (θ, λ)D(0, λ) = +1. (72)

The authors then compare this equality obtained from (64b) with the equality (65b) obtained from (64a)
to infer that

ω(c′′′′′, λ) = A (θ + π, λ)B(0, λ)C (θ, λ)D(0, λ) = +1 = −A (θ, λ)B(0, λ)C (θ, λ)D(0, λ) = −ω(c′′, λ), (73)

which immediately simplifies to

A (θ + π, λ) = −A (θ, λ). (74)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 August 2024                   doi:10.20944/preprints202301.0023.v20

https://doi.org/10.20944/preprints202301.0023.v20


19 of 32

This equation expresses perfect correlation and is consistent with the premisses of EPR. Thus, so far
no mistake has occurred in the authors’ reasoning or calculations, but neither has a contradiction
with the premisses of EPR. But a serious and unrectifiable mistake occurs in the subsequent steps of
their reasoning. To derive the alleged contradiction, the authors consider the products of the left- and
right-hand sides of the equations (65a), (65b), and (65c) to derive

(
Ψz, λ |Ω(c′)Ω(c′′)Ω(c′′′) |Ψz, λ

)
=
(

Ψz, λ |Ω(c′) |Ψz, λ
) (

Ψz, λ |Ω(c′′) |Ψz, λ
) (

Ψz, λ |Ω(c′′′) |Ψz, λ
)

(75)

ω̃(c̃, λ) = ω(c′, λ) ω(c′′, λ) ω(c′′′, λ) (76)

= {A (0, λ)B(0, λ)C (0, λ)D(0, λ)} × {A (φ, λ)B(0, λ)C (φ, λ)D(0, λ)}

× {A (φ, λ)B(0, λ)C (0, λ)D(φ, λ)} (77)

= {−1} × {−1} × {−1} (78)

= −1 (79)

(see the endnote 15 in [20], and also the sentence below Eq. (24c) in [20]). Now, since each individual
outcome such as A (φ, λ) squares to +1 so that products A (φ, λ)A (φ, λ) = +1, C (0, λ)C (0, λ) =

+1, etc., this equality simplifies to

ω̃(c̃, λ) = A (0, λ)B(0, λ)C (φ, λ)D(φ, λ) = −1. (80)

The authors then compare the above equality with the equality (65d) inferred earlier, to obtain the
following relation:

ω(c′′′′, λ) = A (2φ, λ)B(0, λ)C (φ, λ)D(φ, λ) = −1 = A (0, λ)B(0, λ)C (φ, λ)D(φ, λ) = ω̃(c̃, λ),
(81)

which immediately simplifies to

A (2φ, λ) = +A (0, λ) = constant for all φ. (82)

The authors then compare this equality with the equality derived in (74) by setting θ = 0 in (74) and
φ = π/2 in (82), leading to their alleged contradiction. The authors then claim: “We have thus brought
to the surface an inconsistency hidden in premisses (i)–(iv) [of EPR].” However, this claim by the
authors is not correct, because equation (82) (which appears as equation (16) in [20]) is derived using
the product rule (52) illegitimately in steps (75) to (79), even though the observables (69a) to (69c) do
not commute with each other [35]. This mistake can be easily corrected as follows:

1.7.4. Correction of the Sign Mistake in the Derivation of Equation (16) in [20]

The incorrect step in the authors’ derivation that leads them to the alleged inconsistency in
the premisses of EPR is the inference (80) above. That step is incorrect because — as Bell stressed
in his related criticism of von Neumann’s theorem [25] — the result (80) has been derived using
products of eigenvalues of mutually non-commuting operators (69a) to (69c) that relate “in a nontrivial
way the results of experiments which cannot be performed simultaneously” [25] (see also [31]).
Now, evidently, the quantity A (0, λ)B(0, λ)C (φ, λ)D(φ, λ) in (80) pertains to the combination of
azimuthal angles adding up to φ1 + φ2 − φ3 − φ4 = −2φ. However, this combination cannot satisfy
the constraints (64a) of perfect correlation unless we set φ = 0, and in that case (80), (65b), (65c),
and (65d) all reduce to (65a). As a result, the equality (81) reduces to a trivial identity and thus can no
longer serve to derive the incorrect relation (82).

Alternatively, one may set φ = −π/2 so that φ1 + φ2 − φ3 − φ4 = −2φ satisfies the con-
straint (64b) instead of (64a). But, in that case, (80) must be changed to ω̃(c̃, λ) = A (0, λ)B(0, λ)C (φ, λ)

D(φ, λ) = +1, reducing (81) to

ω(c′′′′, λ) = A (2φ, λ)B(0, λ)C (φ, λ)D(φ, λ) = −1 = −A (0, λ)B(0, λ)C (φ, λ)D(φ, λ) = ω̃(c̃, λ). (83)
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However, for φ = −π/2 this equality simplifies to

A (−π, λ) = −A (0, λ), (84)

which is just an expression of perfect correlation assumed by EPR, thereby neutralizing the claim of
contradiction.

Thus, as long as the quantity A (0, λ)B(0, λ)C (φ, λ)D(φ, λ) is required to respect a perfect
correlation constraint (64a) or (64b), no contradiction with the premisses of EPR can be derived.
However, one may insist that this quantity in question serves as an intermediate step in the derivation
of (82) and therefore need not satisfy either of the two constraints (64a) or (64b). But it is evident that
the quantity A (0, λ)B(0, λ)C (φ, λ)D(φ, λ) is a genuine eigenvalue of a possible observable in the
GHZ system of four particles, albeit for a context (i.e., a set of directions) different from the ones the
authors have considered to derive contradiction. It is a bona fide eigenvalue of the following observable

Ω̃(c̃) = (σ · x)1 ⊗ (σ · x)2 ⊗ (σ · p)3 ⊗ (σ · p)4 . (85)

The same is true of the quantity appearing in the authors’ equation (15), namely A (2φ, λ)B(0, λ)

C (0, λ)D(0, λ), which the authors have derived indirectly via rather convoluted steps. It too is a bona
fide eigenvalue of the observable

Ω(c ) = (σ · q)1 ⊗ (σ · x)2 ⊗ (σ · x)3 ⊗ (σ · x)4 . (86)

Now, by construction, all observables such as (54) of the GHZ system can only take two eigenvalues:
+1 or −1. On the other hand, the eigenvalue ω̃(c̃, λ) = A (0, λ)B(0, λ)C (φ, λ)D(φ, λ) of the
observable (85) cannot be −1 because that value has been derived by employing the incorrect steps (75)
to (79) involving illegitimate use of the product rule (52). Those steps can only give an incorrect value
for ω̃(c̃, λ) for non-commuting observables constituting the product. Therefore, since the only other
possible eigenvalue of the observable (85) within the scenario under consideration is +1, the correct
eigenvalue of (85) is necessarily equal to +1. Consequently, the correct version of (80) is necessarily

ω̃(c̃, λ) = A (0, λ)B(0, λ)C (φ, λ)D(φ, λ) = +1. (87)

This equality can now be compared with the equality (65d) as we did before for (80), to obtain the
following relation:

ω(c′′′′, λ) = A (2φ, λ)B(0, λ)C (φ, λ)D(φ, λ) = −1 = −A (0, λ)B(0, λ)C (φ, λ)D(φ, λ) = ω̃(c̃, λ), (88)

which immediately simplifies to
A (2φ, λ) = −A (0, λ). (89)

As before, we now compare this equality with that in (74) by setting θ = 0 in (74) and φ = π/2 in (89),
which yields

A (π, λ) = −A (0, λ). (90)

This equation expresses a perfect correlation consistent with the premisses of EPR, thus refuting the
claim by GHZ.
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1.7.5. Proof of the Consistency of the Premisses of the EPR Program by Direct Computation

To remove any doubt about the correctness of (90), we can also directly verify (87) that leads to it,
by computing the product Ω̃(c̃) = Ω(c′)Ω(c′′)Ω(c′′′) of the three operators involved in (87), using
the definitions (69a), (69b), and (69c):

Ω̃(c̃) = Ω(c′)Ω(c′′)Ω(c′′′) = {(σ · x)1 ⊗ (σ · x)2 ⊗ (σ · x)3 ⊗ (σ · x)4}
× {(σ · p)1 ⊗ (σ · x)2 ⊗ (σ · p)3 ⊗ (σ · x)4}

× {(σ · p)1 ⊗ (σ · x)2 ⊗ (σ · x)3 ⊗ (σ · p)4}. (91)

Now, for the same particles, the identities (σ · x)2 = 1l and (σ · p)2 = 1 hold. Consequently, this
product reduces to

Ω̃(c̃) = Ω(c′)Ω(c′′)Ω(c′′′) = (σ · x)1 ⊗ (σ · x)2 ⊗ [(σ · x)(σ · p)(σ · x)]3 ⊗ (σ · p)4 . (92)

Next, using the definition (66) of the direction p in Fig. 2 of [20], we work out the operator
[(σ · x)(σ · p)(σ · x)]3 as

[(σ · x)(σ · p)(σ · x)]3 = [(σ · x) (σ · {cos(φ) x + sin(φ) y}) (σ · x)]3 (93)

=
[
cos(φ) (σ · x)2(σ · x) + sin(φ) (σ · x)(σ · y)(σ · x)

]
3

(94)

= [cos(φ) 1l (σ · x)− sin(φ) (σ · y)]3 (95)

= [σ · {cos(− φ) x + sin(− φ) y}]3 (96)

= [σ · p(− φ)]3, (97)

where I have used (σ · x)2 = 1l and the standard properties of Pauli matrices to derive (σ · x)(σ ·
y)(σ · x) = − (σ · y). Using (97), we can now express the product Ω̃(c̃) = Ω(c′)Ω(c′′)Ω(c′′′) of three
non-commuting operators in (91) as

Ω̃(c̃) = Ω(c′)Ω(c′′)Ω(c′′′) = (σ · x)1 ⊗ (σ · x)2 ⊗ [σ · p(− φ)]3 ⊗ [σ · p(+ φ)]4. (98)

Since the first perfect correlation condition φ1 + φ2 − φ3 − φ4 = 0 from (64a) is now satisfied for this
operator for any value of φ [because it is evident from (98) that we now have φ1 = 0, φ2 = 0, φ3 = − φ,
and φ4 = + φ], its eigenvalue is

A (0, λ)B(0, λ)C (− φ, λ)D(+ φ, λ) = −1. (99)

But in the left-handed spherical coordinates with azimuthal angle − φ, all signs of spin eigenvalues are
reversed, giving

C (− φ, λ) = −C (+ φ, λ). (100)

Consequently, for any azimuthal angle φ in the right-handed spherical coordinates used in [20], (99)
can be written as

ω̃(c̃, λ) = A (0, λ)B(0, λ)C (+ φ, λ)D(+ φ, λ) = +1. (101)

We have thus verified the correctness of (87) that leads to (90) by direct computation, independently of
all previous arguments involving the product rule. This proves that the GHZ’s result (80) and their
central claim (82) are incorrect.

One may still object that, although the authors mention in their endnote 15, giving credit to
Mermin, that the steps (76) to (82) I have used above lead more directly to (82) [i.e., to their equation
(16)], and they also use similar steps in their equations (24a) to (24d) for the case without spin,
their equations (13a) to (16) involve different manipulations that do not seem to rely on using the
product rule (52). In their equations (13a) to (16) the authors use convoluted steps involving ad
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hoc comparisons of eigenvalues of non-commuting observables with different contexts exploiting
numerical coincidences, division of their equation (13a) by their equation (13b) to arrive at their
equation (14a), and inversion of measurement results D(φ, λ) = ±1 and D(0, λ)± 1. These strange
manipulations not only do serious violence to the underlying physics of their thought experiment but
also mathematically obfuscate what they are doing by obscuring the fact that what they are actually
doing is using the product rule (52) illegitimately for non-commuting observables to arrive at their
key equation (16). By contrast, the suggestion by Mermin to the authors I noted above, which I
have followed in steps (76) to (82) verbatim, makes their illegitimate use of the product rule quite
transparent.

It is also worth noting that no separate analysis for the scenario without spin presented by
the authors in their Section IV is needed as it uses the same set of equations to derive an alleged
contradiction, as the authors acknowledge.

1.8. Hardy’s Variant of Bell’s Theorem in Not “A Proof of Non-Locality”

Contrary to its stated claim, Hardy’s variant of Bell’s theorem is not “a proof of non-locality” but
an elementary demonstration of the Kochen-Specker theorem [23,25]. As we noted in Section 1.1, the
Kochen-Specker theorem does not rule out contextual hidden variable theories; and in the previous
sections I demonstrated that contextuality does not necessitate “non-locality.” In this section, I
demonstrate that Hardy’s variant merely rules out non-contextuality. To that end, in place of the
notations used so far, I will mostly use Hardy’s notations in [21] to avoid any confusion.

Hardy considers a specific two-particle entangled state formed in an experimental setup consisting
of two overlapping Mach-Zehnder interferometers, one for positrons and another for electrons. The
two interferometers are arranged so that electrons and positrons take particular separate paths, and
subsequently meet and annihilate one another with probability equal to 1. The quantum state of the
two particles can be written in the following four equivalent forms:

|ΨH〉 = N
(

AB|u1〉|v2〉+ AB|v1〉|u2〉+ B2|v1〉|v2〉
)

(102a)

|ΨH〉 = N
(
|c1〉(A|u2〉+ B|v2〉)− A2(A∗|c1〉 − B|d1〉)|u2〉

)
(102b)

|ΨH〉 = N
(
(A|u1〉+ B|v1〉)|c2〉 − A2|u1〉(A∗|c2〉 − B|d2〉)

)
(102c)

|ΨH〉 = N
(
|c1〉|c2〉 − A2(A∗|c1〉 − B|d1〉)(A∗|c2〉 − B|d2〉)

)
, (102d)

where |ui〉, |vi〉, |ci〉, and |di〉 are basis vectors in the two-particle Hilbert space; the indices i = 1 and
2 specify the particles 1 and 2, respectively; and N, A, and B are complex numbers. Next, Hardy
considers the projection operators

Ûi = |ui〉〈ui| and D̂j =
∣∣dj
〉〈

dj
∣∣, (103)

whose eigenvalues are Ui = 0 or 1 and Dj = 0 or 1, where i and j specify the particles 1 or 2. Note that
Ûi and D̂j do not commute in general (which, as we will see, is the Achilles’ heel of Hardy’s argument).
It is, therefore, not possible in general to measure Ûi and D̂j simultaneously on the same particle. Now,
from (102a) we see that if we measure Û1 and Û2 on the particles 1 and 2 simultaneously (which is
possible because Û1 and Û2 commute), then we would obtain

U1U2 = 0, (104a)

because there is no |u1〉|u2〉 term in (102a). On the other hand, from (102b) we see that if we measure
D̂1 on particle 1 and Û2 on particle 2, then we would obtain

U2 = 1 if D1 = 1, (104b)
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because only the |d1〉|u2〉 term in (102b) contains |d1〉. Similarly, from (102c) we see that if we measure
Û1 on particle 1 and D̂2 on particle 2, then we would obtain

U1 = 1 if D2 = 1. (104c)

Finally, from (102d) we see that if we measure D̂1 and D̂2 simultaneously (which is possible because
D̂1 and D̂2 also commute), then we would obtain

D1 = 1 and D2 = 1 with probability
∣∣∣NA2B2

∣∣∣
2
. (104d)

Using the quantum mechanical predictions (104a) to (104d), Hardy derives a seeming contradic-
tion between the prediction (104a) and its local-realistic counterpart dictated by any hidden variables λ.
Note, however, that Hardy’s derivation neglects to take into account the contexts of the measurement
processes. By contrast, I reproduce Hardy’s derivation below by explicitly including the contexts of
all measurements involved. To that end, let us recall that, algebraically, the notion of contextuality
is understood as follows [23]: If Û1 and Û2 are two commuting operators, then there always exists
a non-degenerate operator ĈU and functions f1 and f2 such that Û1 = f1(ĈU) and Û2 = f2(ĈU).
Evidently, in this case, it is possible to measure Û1 and Û2 simultaneously because it is only neces-
sary to measure ĈU and apply the functions f1 and f2 to the measured value CU of ĈU to obtain the
values of Û1 and Û2. It is therefore reasonable to use CU to denote the context of simultaneously
possible measurements of Û1 and Û2. This mathematical definition of context algebraically encodes
and environmentally identifies with the context of a chosen experimental setup in which all physical
observables are mutually compatible. On the other hand, if D̂1 and D̂2 are another two commuting
operators, then again there would exist a non-degenerate operator ĈD and functions g1 and g2 such
that D̂1 = g1(ĈD) and D̂2 = g2(ĈD); but if Ûi and D̂j do not commute, then the contexts CU and CD
cannot be the same:

CU 6= CD if
[
Ûi, D̂j

]
6= 0. (105)

Consequently, comparisons of results are meaningful only within the same context, not across different
contexts. The conceptual reasons behind this are the same as those recognized by Grete Hermann [31],
as we discussed in Section 1.4.

Now, let us parallel Hardy’s derivation in [21] within a hidden variable theory. From (102a) we
see that if we measure Û1 and Û2 on particles 1 and 2 simultaneously (which is possible because Û1

and Û2 commute), then we should obtain

U1(CU , λ)U2(CU , λ) = 0, (106)

because that is the quantum mechanical prediction (104a) that we must reproduce in any hidden
variable theory, where CU is the context of measurements. Now suppose that instead of Û1 and Û2 in
the context CU , the operators D̂1 and D̂2 in the context CD are measured and the results D1(CD, λ) = 1
and D2(CD, λ) = 1 are obtained for a specific λ in a specific run of the experiment. That these results
will be realized sometimes, follows from (104d). Then, from the fact that we have D1(CD, λ) = 1, it
follows from (104b) that if Û2 had been measured we would have obtained the result U2(CD, λ) = 1.
And, if we assume local causality, then we can say that, for this particular λ, we would have obtained
U2(CD, λ) = 1 even if Û1 had been measured on particle 1 instead of D̂1, because according to the
principle of local causality the choice of measurement on particle 1 cannot influence the outcome of
any measurement on particle 2, and hence, for this run, U2(CD, λ) must be determined by λ to be
equal to 1 — i.e., U2(CD, λ) = 1. Similarly, we can deduce from the measurement result D2(CD, λ) = 1
and (104c) that U1(CD, λ) = 1. Thus, for this run we would have

U1(CD, λ)U2(CD, λ) = 1. (107)
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Note, however, that, unlike Hardy’s contradictory predictions U1(λ)U2(λ) = 0 versus U1(λ)U2(λ) =

1 that leads him to claim “a proof of non-locality”, both left- and right-hand sides of our predictions (106)
and (107) are different. Thus, we are not led to any contradiction. This is because we have not neglected
to take into account the different contexts of measurements in the two cases. We have reasoned,
following Hardy’s reasoning, that if we had measured Û1 and Û2 in the context CD instead of D̂1

and D̂2 in the context CD, then we would have obtained the result (107) instead of the result (106).
However, in contrast to what Hardy concludes in [21], our results (106) and (107) no longer contradict
each other, because we have duly taken into account the correct contexts of measurements while
counterfactually inferring the results U1(CD, λ) = 1 and U2(CD, λ) = 1 from the measurements of D̂1

and D̂2, because the latter measurements can only be performed within the context CD. Consequently,
unlike Hardy, we are not led to anything surprising about the fact that the values on the right-hand
sides of (106) and (107) are different, because the contexts of measurements in those two cases are
different, analogous to what Bell recognized in Section 5 of [25]. In other words, Hardy’s claim of
“a proof of non-locality” by demonstrating a contradiction between (106) and (107) is not correct.
His argument in [21] is at best an example of the Kochen-Specker theorem [23,25] that rules out
non-contextual hidden variable theories.

1.9. Conclusion: Bell’s Theorem Assumes Its Conclusion (Petitio Principii)

Let me reiterate the main points discussed above. Together, they demonstrate that Bell’s theorem
begs the question.

(1) The first point is that the derivation in Section 1.3 of the bounds of±2 on (21) for the dispersion-
free counterpart |Ψ, λ) of the singlet state (14) must comply with the heuristics of the contextual
hidden variable theories discussed in Section 1.1. Otherwise, the stringent bounds of ±2 cannot
be claimed to have any relevance for hidden variable theories. This requires compliance with the
prescription (10) that equates the quantum mechanical expectation values with their hidden variable
counterparts for all observables, including any sums of observables, pertaining to the singlet system.

(2) The most charitable view of the equality (23) is that it is an assumption, over and above those of
locality, realism, and all other auxiliary assumptions required for deriving the inequalities (26), because
it is valid only for commuting observables. Far from being required by realism, it contradicts realism,
because it fails to assign the correct eigenvalue (40) to the summed observable (37) as its realistic
counterpart, as required by the prescription (10). Realism requires that all observables, including their
sums, must be assigned unique eigenvalues, regardless of whether they are observed.

(3) Expectation values in dispersion-free states of hidden variable theories do not add linearly
for observables that are not simultaneously measurable. And yet, Bell assumed linear additivity (23)
within a local hidden variable model. Conversely, in the light of the heuristics of contextual hidden
variable theories we discussed in Section 1.1, assuming (23) is equivalent to assuming that the spin
observables σ1 · a ⊗ σ2 · b, etc. commute with each other, but they do not.

(4) When the correct eigenvalue (40) is assigned to the summed operator (37) replacing the
incorrect step (23), the bounds on Bell-CHSH sum (21) work out to be ±2

√
2 instead of ±2, thus

mitigating the conclusion of Bell’s theorem.
(5) As we proved in Section 1.3, the assumption (23) of the additivity of expectation values is

equivalent to assuming the strong bounds of ±2 on Bell-CHSH sum (21) of expectation values. In
other words, (23) and (26) are tautologous.

(6) For observables that are not simultaneously measurable or commuting, the built-in linear
additivity of integrals in step (23) or (32) leads to incorrect equality between averages of unequal
physical quantities. Therefore, the view that this step is a harmless mathematical step is mistaken. It is,
in fact, an unjustified assumption that is equivalent to the very thesis of the theorem to be proven, and
is valid only in classical physics and/or for commuting observables.
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The first four points above invalidate assumption (23), and thus inequalities (26) on physical
grounds, and the last two demonstrate that Bell’s theorem assumes its conclusion in a different guise,
and is thus invalid on logical grounds.

Similar circularity in reasoning invalidates all variants of Bell’s theorem. For example, as I
explained in Section 1.7, the incorrect claim of the GHZ variant of Bell’s theorem stems from a sign
mistake in the equation (16) of [20]. But one may also view this mistake as stemming from circular
reasoning. The authors implicitly assume a multiplicative expectation function as specified by the
Product Rule (50), even for the non-commuting observables (54) involved in their thought experiment.
They thereby assume their conclusion in a different guise in the premisses of their argument.

Bell’s theorem is useful, however, for ruling out classical local theories. By relying on the
assumption (23), which is valid for classical theories [31], it proves that no classical local theory can
reproduce all of the predictions of quantum mechanics. But no serious hidden variable theories I am
aware of have ever advocated returning to classical physics [26].

In this paper, I have focused on a formal or logical critique of Bell’s theorem. Elsewhere [10,14,16],
I have developed a comprehensive local-realistic framework for understanding quantum correlations
in terms of the geometry of the spatial part of one of the well-known solutions of Einstein’s field
equations of general relativity — namely, that of a quaternionic 3-sphere — taken as a physical
space within which we are confined to perform Bell-test experiments. This framework is based on
Clifford algebra and thus explicitly takes the non-commutativity of observables into account. It thus
shows, constructively, that contextually local hidden variable theories are not ruled out by Bell-test
experiments. Since, as we discussed in Section 1.2, the formal proof of Bell’s theorem is based on the
entangled singlet state (14), in [5,6,8,11–13,15] I have reproduced the correlations predicted by (14) as a
special case within the local-realistic framework proposed in [10,14,16]. I especially recommend the
calculations presented in [8] and [15], which also discuss a macroscopic experiment that would be
able to falsify the 3-sphere hypothesis I have proposed in these publications. Moreover, in [10,24] I
have reproduced exactly, not only the sinusoidal correlations predicted by quantum mechanics for
the two-particle singlet state (14), but also the prediction (56) of the four-particle GHZ state (53) and
its three-particle analog, as well as all sixteen predictions of the Hardy state, as special cases in this
local-realistic framework.

Appendix A. Dynamical Equivalence of Quantum Mechanical Description and
Einstein’s Description

To establish the equivalence between two dynamics exhibited in Eq. (9), let us begin with the
Ehrenfest equation,

d
dt
〈Ψ |Ω |Ψ 〉 = 1

ih̄
〈Ψ | [Ω, H ] |Ψ 〉 + 〈Ψ | ∂Ω

∂t
|Ψ 〉, (A1)

where H is a Hamiltonian operator. Using prescription (6) for the complete description, this equation
can be written as

d
dt

∫

L
(Ψ, λ |Ω |Ψ, λ ) p(λ) dλ =

1
ih̄

∫

L
(Ψ, λ | [Ω, H ] |Ψ, λ ) p(λ) dλ +

∫

L
(Ψ, λ | ∂Ω

∂t
|Ψ, λ ) p(λ) dλ . (A2)

Since in the ansatz (3) we have implicitly assumed that the hidden variables λ do not depend on time
explicitly, the Leibniz integral rule for differentiation allows us to reduce the first term on the left-hand
side of the above equation to

d
dt

∫

L
(Ψ, λ |Ω |Ψ, λ ) p(λ) dλ =

d
dt

∫

L
ω(λ) p(λ) dλ =

∫

L

[
d
dt

ω(λ)

]
p(λ) dλ . (A3)
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Next, we recall the Dirac rule for canonical quantization, which promotes the Poisson brackets to
operators and sets

[Ω, H ] = ih̄ ̂{ω, H}, (A4)

where ω is an eigenvalue of the observable Ω and the Hamiltonian functionH is an eigenvalue of the

corresponding operator H. Then, the Poisson bracket {ω, H} is an eigenvalue of the operator ̂{ω, H}.
Now it is well known that the Dirac rule is not unique in general when promoting classical variables to
quantum operators. It is unique, however, for the reverse process of reducing the quantum operators to
classical variables. Given any two operators Ω1 and Ω2 with eigenvalues ω1 and ω2, their commutator
[Ω1, Ω2] uniquely reduces to the Poisson bracket {ω1, ω2} in correspondence limit. Consequently,
using (A4) and the ansatz (3), we can transform the first term on the right-hand side of (A2) to

1
ih̄

∫

L
(Ψ, λ | [Ω, H ] |Ψ, λ ) p(λ) dλ =

∫

L
(Ψ, λ | ̂{ω, H} |Ψ, λ ) p(λ) dλ =

∫

L
{ω(λ), H(λ)} p(λ) dλ , (A5)

where a consistent application of ansatz (3) to all observables of the system requires that {ω, H}(λ) =
{ω(λ), H(λ)}. Finally, using the ansatz (3) for evaluating the second term on the right-hand side
of (A2), it is easy to prove that

∫

L
(Ψ, λ | ∂Ω

∂t
|Ψ, λ ) p(λ) dλ =

∫

L

∂ω(λ)

∂t
p(λ) dλ . (A6)

Collecting all of the results obtained in (A2), (A3),(A5), and (A6) together, we can finally conclude
using (A1) that

[
d
dt
〈Ψ |Ω |Ψ 〉 = 1

ih̄
〈Ψ | [Ω, H ] |Ψ 〉+ 〈Ψ | ∂Ω

∂t
|Ψ 〉

]
=
∫

L

[
d
dt

ω(λ) = {ω(λ), H(λ)}+ ∂ ω(λ)

∂t

]
p(λ) dλ . (A7)

For specific values of λ with p(λ) = 1, the right-hand side of (A7) reduces to classical equations of
motion. If, however, only a probability distribution p(λ) of λ is known, then Ehrenfest’s equation in
quantum mechanics can be understood as an average of an ensemble of classical dynamics, with each
of its members specifying a trajectory in phase space. All probabilistic statements about the system
would then reduce to the incompleteness of our knowledge about the system.

Appendix B. Demonstration of Linearity of the Expectation Function (Ψ, λ |Ω(c) |Ψ, λ )
Assumed in (23)

For the demonstration of linearity of expectation function (Ψ, λ |Ω(c) |Ψ, λ ) assumed in (23),
let us follow similar demonstration by Bohm and Bub in [34] within the context of von Neumann’s
theorem. To that end, recall that in the Hilbert space model of quantum mechanics [3], every ensemble
can be characterized by a statistical operator, say W(	), of unit trace, representing the quantum
state |Ψ 〉 of the system. In other words, there exists a linear Hermitian matrixWpq(Ψ) such that the
expectation value in the state |Ψ 〉 of observable Ω can be expressed in the linear form

〈Ψ |Ω |Ψ 〉 = Tr{W(Ψ)Ω} = ∑
pq
Wqp(Ψ)Ωpq . (A8)

However, if dispersion in the measured values of Ω is assumed to be due to a distribution p(λ) in the
values of hidden variables λ over the ensemble of the system as in (6), then the expectation value of Ω
should be the average over λ,

〈Ψ |Ω |Ψ 〉 =
∫

L
(Ψ, λ |Ω |Ψ, λ ) p(λ) dλ = ∑

pq

∫

L
Wqp(Ψ, λ)Ωpq p(λ) dλ , (A9)
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which amounts to replacing the matrix Wqp(Ψ) with its average W qp(Ψ) over the distribution of
hidden variables λ:

Wqp(Ψ) −→ W qp(Ψ) =
∫

L
Wqp(Ψ, λ) p(λ) dλ . (A10)

For each particular value of λ, (A9) thus assumes expectation function to be of a linear form, similar to
that in (A8):

(Ψ, λ |Ω |Ψ, λ ) = Tr{W(Ψ, λ)Ω} = ∑
pq
Wqp(Ψ, λ)Ωpq . (A11)

By now it is well-recognized that demanding this linear form of expectation function (Ψ, λ |Ω |Ψ, λ )

is not justifiable for hidden variable theories [25,31,33,34]. Ironically, however, after criticizing von
Neumann for retaining the linear form (A11), Bell also ended up making the same mistake for
contextual hidden variable theories, by implicitly assuming

∫

L
(Ψ, λ |Ω(c) |Ψ, λ ) p(λ) dλ = ∑

pq

∫

L
Wqp(Ψ, λ)Ωpq(c) p(λ) dλ (A12)

in the equality (23). It is not difficult to see that (23) follows from the linearity (A11) of the function
(Ψ, λ |Ω(c) |Ψ, λ ):

∫

L
(Ψ, λ |Ω1(c1) + Ω2(c2) |Ψ, λ ) p(λ) dλ = ∑

pq

∫

L
Wqp(Ψ, λ) {Ω1(c1) + Ω2(c2)}pq p(λ) dλ (A13)

∫

L
ω̃(c̃, λ) p(λ) dλ = ∑

pq

∫

L
Wqp(Ψ, λ)

{
(Ω1)pq(c1) + (Ω2)pq(c2)

}
p(λ) dλ (A14)

∫

L
ω̃(c̃, λ) p(λ) dλ = ∑

pq

∫

L
Wqp(Ψ, λ) (Ω1)pq(c1) p(λ) dλ

+ ∑
pq

∫

L
Wqp(Ψ, λ) (Ω2)pq(c2) p(λ) dλ (A15)

∫

L
ω̃(c̃, λ) p(λ) dλ =

∫

L
(Ψ, λ |Ω1(c1) |Ψ, λ ) p(λ) dλ +

∫

L
(Ψ, λ |Ω2(c2) |Ψ, λ ) p(λ) dλ

(A16)
∫

L
ω̃(c̃, λ) p(λ) dλ =

∫

L
ω1(c1, λ) p(λ) dλ +

∫

L
ω2(c2, λ) p(λ) dλ , (A17)

where only two terms of (23) is used for simplicity, and the ansatz (3) is used to give (Ψ, λ |Ω1(c1) |
Ψ, λ ) = ω1(c1, λ), (Ψ, λ |Ω2(c2) |Ψ, λ ) = ω2(c2, λ), and (Ψ, λ |Ω1(c1) + Ω2(c2) |Ψ, λ ) = ω̃(c̃, λ).
Then linearity of anti-derivatives gives

∫

L
ω̃(c̃, λ) p(λ) dλ =

∫

L
{ω1(c1, λ) + ω2(c2, λ)} p(λ) dλ , (A18)

implying that the eigenvalue ω̃(c̃, λ) of the sum Ω1(c1) + Ω2(c2) of operators is equal to the sum of
their eigenvalues:

ω̃(c̃, λ) = ω1(c1, λ) + ω2(c2, λ) , (A19)

for each particular value of the hidden variables λ. But, as we noted in the last paragraph of Section 1.1,
this equality among the eigenvalues is mistaken in general (recall the example

√
2 6= 1 + 1). It is valid

only in classical physics, and for commuting observables. We have arrived at it by assuming the linear
form of the expectation function (Ψ, λ |Ω |Ψ, λ ) defined in (A11). Recognizing this difficulty, Bohm
and Bub considered a more general, non-linear expectation function:

(Ψ, λ |Ω(c) |Ψ, λ ) = F(Ψ, λ, Ωpq(c)) 6= ∑
pq
Wqp(Ψ, λ)Ωpq(c) , (A20)
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where (at least for non-commuting observables) F(Ψ, λ, Ωpq(c)) is a non-linear function of Ψ, λ, and
Ωpq(c) such that

ω̃(c̃, λ) 6= ω1(c1, λ) + ω2(c2, λ) . (A21)

Indeed, there is no reason why these eigenvalues should not be determined by some non-linear
F(Ψ, λ, Ωpq(c)), giving

∫

L
ω1(c1, λ) p(λ) dλ +

∫

L
ω2(c2, λ) p(λ) dλ =

∫

L
ω̃(c̃, λ) p(λ) dλ 6=

∫

L
{ω1(c1, λ) + ω2(c2, λ)} p(λ) dλ . (A22)

As Bell stressed in [25], there is no reason for demanding (A19) of the dispersion-free state |Ψ, λ ) for
each value of λ.

Appendix C. Separating the Commuting and Non-Commuting Parts of the Summed Operator (37)

Before considering the specific operator (37), in this appendix let us prove that, in general, the
eigenvalue of a sum rR+ s S + t T + u U of operators is not equal to the sum r R + s S + t T + u U

of the individual eigenvalues of the operatorsR, S , T , and U , unless these operators commute with
each other. Here r, s, t, and u are real numbers. It is not difficult to prove this known fact by evaluating
the square of the operator {rR+ s S + t T + uU} as follows:

{rR+ s S + t T + uU}{rR+ s S + t T + uU} = r2R2 + rsRS + rtRT + ruRU
+ sr SR+ s2S2 + st ST + su SU
+ tr T R+ ts T S + t2T 2 + tu T U
+ ur UR+ usUS + utUT + u2U 2. (A23)

Now, assuming that the operators R, S , T , and U do not commute in general, let us define the
following operators:

L := SR−RS ⇐⇒ SR = RS + L, (A24)

M := T R−RT ⇐⇒ T R = RT +M, (A25)

N := T S − ST ⇐⇒ T S = ST +N , (A26)

O := UR−RU ⇐⇒ UR = RU +O, (A27)

P := UT − T U ⇐⇒ UT = T U + P , (A28)

and Q := US − SU ⇐⇒ US = SU +Q. (A29)

These operators would be null operators with vanishing eigenvalues if the operatorsR, S , T , and U
did commute with each other. Using these relations for the operators SR, T R, T S , UR, UT and US ,
equation (A23) can be simplified to

{rR+ s S + t T + uU}{rR+ s S + t T + uU} = r2R2 + 2rsRS + 2rtRT + 2ruRU
+ rsL+ s2S2 + 2st ST + 2su SU
+ rtM+ stN + t2T 2 + 2tu T U
+ ruO + suQ+ tuP + u2U 2 (A30)

= {rR+ s S + t T + uU}2
c + Y , (A31)

where
Y := rsL+ rtM+ stN + ruO + tuP + suQ . (A32)
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We have thus separated out the commuting part {rR+ s S + t T + uU}c and the non-commuting
part Y of the summed operator X := {rR+ s S + t T + uU}. Note that the operators L,M,N , O, P ,
and Q defined in (A24) to (A29) will not commute with each other in general unless their constituents
R, S , T , and U themselves are commuting. Next, we work out the eigenvalue X of the operator X in
a normalized eigenstate | ξ 〉 using the eigenvalue equations

X | ξ 〉 = X | ξ 〉 (A33)

and
X X | ξ 〉 = X

{
X | ξ 〉

}
= X

{
X | ξ 〉

}
= X

{
X | ξ 〉

}
= X 2 | ξ 〉, (A34)

in terms of the eigenvalues R, S , T , and U of the operators R, S , T , and U and the expectation
value 〈 ξ | Y | ξ 〉:

X = ±
√
〈 ξ | X X | ξ 〉 = ±

√
〈 ξ |

{
rR+ s S + t T + uU

}2
c | ξ 〉+ 〈 ξ | Y | ξ 〉 , (A35)

where we have used (A31). But the eigenvalue of the commuting part {rR+ s S + t T + uU}c

of X is simply the linear sum r R + s S + t T + u U of the eigenvalues of the operators R, S ,
T , and U . Consequently, using the equation analogous to (A34) for the square of the operator{

rR+ s S + t T + uU
}

c we can express the eigenvalue X of X as

X = ±
√{

r R + s S + t T + u U
}2

+ 〈 ξ | Y | ξ 〉 . (A36)

Now, because the operators L,M, N , O, P , and Q defined in (A24) to (A29) will not commute
with each other in general if their constituent operatorsR, S , T , and U are non-commuting, the state
| ξ 〉 will not be an eigenstate of the operator Y defined in (A32). Moreover, while a dispersion-free
state |Ψ, λ) would pick out one of the eigenvalues Y of Y , it will not be equal to the linear sum of the
corresponding eigenvalues L , M , N , O , P , and Q in general,

Y 6= rs L + rt M + st N + ru O + tu P + su Q , (A37)

even if we assume that the operators X and Y commute with each other so that (Ψ, λ | Y |Ψ, λ ) =

Y is an eigenvalue of Y . That is to say, just like the eigenvalue X of X , the eigenvalue Y of
Y is also a nonlinear function in general. On the other hand, because we wish to prove that the
eigenvalue of the sum rR+ s S + t T + uU of the operatorsR, S , T , and U is not equal to the sum
r R + s S + t T + u U of the individual eigenvalues of the operators R, S , T , and U unless they
commute with each other, we must make sure that the eigenvalue Y does not vanish for the unlikely
case in which the operators L,M,N , O, P , andQ commute with each other. But even in that unlikely
case, we would have

Y = rs L + rt M + st N + ru O + tu P + su Q (A38)

as eigenvalue of the operator Y defined in (A32), and consequently the eigenvalue X in (A36) will at
best reduce to

X = ±
√{

r R + s S + t T + u U
}2

+ rs L + rt M + st N + ru O + tu P + su Q . (A39)

In other words, even in such an unlikely case Y will not vanish, and consequently the eigenvalue X

will not reduce to
X = r R + s S + t T + u U . (A40)
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Consequently, unless (Ψ, λ | Y(c) |Ψ, λ ) ≡ 0, the expectation value of X (c) equating the average of
X (c, λ) will be

〈Ψ | X (c) |Ψ 〉 =
∫

L
X (c, λ) p(λ) dλ (A41)

=
∫

L

[
±
√{

r R(c, λ) + s S (c, λ) + t T (c, λ) + u U (c, λ)
}2

+ (Ψ, λ | Y(c) |Ψ, λ )

]
p(λ) dλ (A42)

6=
∫

L

[
±
√{

r R(c, λ) + s S (c, λ) + t T (c, λ) + u U (c, λ)
}2

+ Y (c, λ)

]
p(λ) dλ if [X , Y ] 6= 0 (A43)

6=
∫

L
±
{

r R(c, λ) + s S (c, λ) + t T (c, λ) + u U (c, λ)
}

p(λ) dλ if L , M , N , O , P , Q 6= 0, (A44)

where c indicates the contexts of experiments as discussed in Section 1.1. The above result confirms
the inequality (43) we discussed in Section 1.6. Note that, because X (c, λ) and Y (c, λ) are highly
nonlinear functions in general (recall, e.g., that

√
x2 ± y2 6=

√
x2 ±

√
y2 ), the inequality in (A44) can

reduce to equality if and only if the operators R, S , T , and U commute with each other. In that case,
the operators L,M, N , O, P , and Q defined in (A24) to (A29) will also commute with each other, as
well as being null operators, with each of the eigenvalues L , M , N , O , P , and Q reducing to zero.
Consequently, in that case (Ψ, λ | Y(c) |Ψ, λ ) will vanish identically and (A36) will reduce to (A40).

It is now straightforward to deduce the operator Θ̃(a, a′, b, b′) specified in (41) using (38). For this
purpose, we first note that for the Bell-CHSH sum (21) the real numbers r = s = t = +1 and u = −1,
and therefore (A40) simplifies to

X (c, λ) = R(c, λ) +S (c, λ) +T (c, λ)−U (c, λ). (A45)

This quantity is tacitly assumed in the derivation of Bell’s theorem to be the eigenvalue of the summed
operator (37), implying the following identifications:

A (a, λ)B(b, λ) ≡ R(a, b, λ)

= ±1 is an eigenvalue of the observable R(a, b) ≡ σ1 · a ⊗ σ2 · b , (A46)

A (a, λ)B(b′, λ) ≡ S (a, b′, λ)

= ±1 is an eigenvalue of the observable S(a, b′) ≡ σ1 · a ⊗ σ2 · b′ , (A47)

A (a′, λ)B(b, λ) ≡ T (a′, b, λ)

= ±1 is an eigenvalue of the observable T (a′, b) ≡ σ1 · a′ ⊗ σ2 · b , (A48)

and A (a′, λ)B(b′, λ) ≡ U (a′, b′, λ)

= ±1 is an eigenvalue of the observable U (a′, b′) ≡ σ1 · a′ ⊗ σ2 · b′. (A49)

The non-commuting part of the operator (37) can therefore be identified using (A32) and the above
identifications as

Θ̃(a, a′, b, b′) =
{
L+M+N −O −P −Q

}
(a, a′, b, b′) , (A50)

where the operators L,M, N , O, P , and Q are defined in (A24) to (A29). The result is the operator
specified in (41).

Appendix D. Establishing Bounds on the Magnitude of the Vector n Defined in (42)

The vector n defined in (42) is a function of four unit vectors, a, a′, b, and b′, in IR3, and involves
various cross products among these vectors. Consequently, as the vectors a, a′, b, and b′ vary in
their directions within IR3 due to various choices made by Alice and Bob, the extremum values of the
magnitude ||n|| are obtained by setting the vectors orthogonal to each other, with angles between
them set to 90 or 270 degrees. However, in three dimensions that is possible only for three of the four
vectors, so one of the four would have to be set either parallel or anti-parallel to one of the remaining
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three. Therefore, let us first choose to set b′ = −b. Substituting this into (42) then gives n = 0, and
thus ||n|| = 0. We have thus found the lower bound on the magnitude ||n||. To determine the upper
bound on ||n||, we set a′ = −a instead. Substituting this into (42) reduces the vector n to the following
function of a, a′, b and b′:

n = 2
{(

a× b′
)
× (a× b)

}
. (A51)

Consequently, in this case, the magnitude of the vector n works out to be

||n|| = 2 ||(a× b′)|| ||(a× b)|| sin β(a×b′),(a×b) (A52)

= 2
{
||a|| ||b′|| sin βa,b′

} {
||a|| ||b|| sin βa,b

} {
sin β(a×b′),(a×b)

}
, (A53)

where βa,b is the angle between a and b, etc. But since the vectors a, a′, b, and b′ are all unit vectors
and we have set them orthogonal to each other (apart from a′ = −a), we obtain ||n|| = 2 as the
maximum possible value for the magnitude of n. We have thus established the following bounds on
the magnitude of the vector n as specified in (42):

0 6 ||n|| 6 2. (A54)
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