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Abstract: Background/Objectives: The management of early breast cancer (BC) includes surgery, followed by 

adjuvant radiotherapy, chemotherapy, hormone therapy, or immunotherapy. However, the influence of these 

interventions in metabolic reprogramming remains unknown. This study explored alterations in the plasma 

metabolome of BC patients following distinct treatments to deepen our understanding of BC pathophysiology, 

outcomes, and the identification of potential biomarkers. Methods: We included 52 women diagnosed with BC 

and candidates for surgery as primary oncological treatment. Blood samples were collected at diagnosis, two 

weeks post‐surgery, and one month post‐radiotherapy. Plasma  samples  from 49 healthy women served as 

controls.  Targeted  metabolomics  assessed  74  metabolites  spanning  carbohydrates,  amino  acids,  lipids, 

nucleotide  pathways,  energy  metabolism,  and  xenobiotic  biodegradation.  Results:  Before  treatment,  BC 

patients exhibited notable changes in carbohydrate, nucleotide, lipid, and amino acid metabolism. We noticed 

a gradual restoration of specific metabolite  levels  (hypoxanthine, 3‐phosphoglyceric acid, xylonic acid, and 

maltose)  throughout  different  treatments,  suggesting  a  normalization  of  nucleotide  and  carbohydrate 

metabolic pathways. Moreover, we observed increased dodecanoic acid concentrations, a metabolite associated 

with  cancer  protection.  These  variations  distinguished  patients  from  controls  with  high  specificity  and 

sensitivity.  Conclusion: Oncological  treatments modified  the metabolism  of  patients  towards  a  favorable 

profile with a decrease in the pathways that favor cell proliferation and an increase in the levels of anticancer 

molecules. These findings emphasize the pivotal role of metabolomics in recognizing the biological pathways 

influenced  by  each  cancer  treatment  and  the  resulting metabolic  consequences.  Furthermore,  it  aids  in 

identifying potential biomarkers for disease onset and progression. 
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1. Introduction 

Breast cancer (BC) is the most prevalent solid neoplasm and the primary cause of cancer‐related 

death among females. In 2022, BC accounted for the second highest incidence of all cancers globally, 

with approximately 2.3 million new cases, constituting 11.6% of all cancer types, leading to nearly 

666,000 deaths [1]. 

BC  is  a  complex  and  heterogeneous  disease  requiring  personalized  treatment  tailored  to 

individual  patients’  characteristics  and  cancer  stage,  molecular  subtype  and  other  factors  of 

aggressiveness  [2]. Common  therapeutic modalities  for BC encompass surgery radiotherapy (RT), 

chemotherapy,  targeted  therapy, and hormone  therapy. Typically, BC  treatment commences with 
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primary surgery or systemic treatment and may be employed independently or in conjunction with 

other therapies [3,4]. BC treatments aim to remove or destroy the cancerous cells, prevent the spread 

of the disease, and improve overall survival and quality of life [5]. 

Recent  studies  have  revealed  the  relationship  between  metabolism  and  oncogenesis  [6,7], 

making it plausible to hypothesize that various metabolic alterations may be the cause or effect of the 

different efficacy in response to oncological treatments. Improved knowledge in this area would aid 

treatment planning and monitoring, enhancing our understanding of its effects on tumor cells.   

Cancer cells display a unique and accelerated energy metabolism, allowing them to extract vital 

nutrients  from an often nutrient‐deprived environment. This metabolic adaptation supports  their 

growth, proliferation, and viability  [8]. The  resulting metabolic changes give  rise  to characteristic 

phenotypes  that  can  be  leveraged  to  identify  potential  biomarkers  crucial  for  diagnosing  and 

evaluating treatment responses. Moreover, these insights can inform strategies for patient selection 

in clinical settings, contributing to more effective and personalized approaches to cancer treatment 

[9]. 

Metabolomics  offers  distinctive  insights  into  disease  pathogenicity  by  identifying  disease‐

related determinants and treatment responses [9–11]. Analyzing the downstream molecular effects 

of  treatment  is  crucial  in discovering new  therapeutic  alternatives  and  candidate biomarkers  for 

diagnosis, prognosis, and monitoring of  treatment responses. Furthermore,  it allows  for mapping 

biochemical pathways drugs target in cancer cells [12].   

In this study, we focused on investigating changes in the plasma metabolome of BC patients and 

how  surgery,  chemotherapy,  and RT  influence  these  changes. We  employed  advanced  statistical 

methods such as multivariate analysis and pathway enrichment analysis to analyze the complex data. 

These methods allowed us  to  integrate  the  results and explore potential metabolic pathways and 

molecular targets with high precision and reliability. 

2. Materials and Methods 

The study involved 52 women diagnosed with BC between September 2020 and October 2021. 

The inclusion criteria were to be a woman ≥ 18 years old and to have an invasive cancer. We excluded 

patients with a history of previous oncological disease, BC metastatic stage, Paget’s nipple disease, 

vascular  collagen disease,  systemic  lupus  erythematosus,  scleroderma, pregnancy,  lactation,  and 

metabolic or psychiatric diseases. We also  excluded patients with a COVID‐19 positive  result by 

polymerase chain reaction or antigen test during the study period.   

All  patients  underwent  treatment with  surgery  and RT,  often  supplemented with  adjuvant 

chemotherapy and hormonal therapy tailored to their molecular subtype, as well as other risk factors, 

overall patient health and age. Of  these, 40 patients underwent  lumpectomy, while 12 opted  for 

mastectomy. RT was administered to the breast or mastectomy site, with or without nodal irradiation. 

The radiation schedule was hypofractionated RT (40 Gy at 2.67 Gy/day, five days/week) to the breast 

or mastectomy site. Following whole‐breast irradiation, 34 patients received an additional boost at 

the tumor bed (16 Gy at 2 Gy/day or 13.34 Gy at 2.67 Gy/day, five days/week) [13,14]. Blood samples 

were obtained at the BC diagnosis, two weeks after surgery and one month after RT. Regrettably, the 

timing of post‐RT sample collection in our hospital coincided with a surge in COVID‐19 admissions, 

limiting our ability to obtain samples to only 26 patients. Aliquots of whole blood from each patient 

were immediately processed for hematological analysis, and other aliquots were collected in tubes 

without added anticoagulant or in tubes with EDTA and centrifuged at 2,500 x g to obtain serum and 

plasma. They were  then stored at  ‐80ºC until batched analyses. As a control group, we employed 

plasma samples from 49 women participating in a population‐based study conducted in our area. 

They had no  clinical or  analytical  evidence of  cancer,  renal  failure,  liver disease, or neurological 

disorders [15]. 

All participants signed a written informed consent according to the Helsinki Declaration. The 

study was approved by the Ethics Committee of our Institution. 

Semi‐quantitative metabolomics was  employed  to determine  the plasma  concentration of 74 

metabolites involved in carbohydrates, amino acids, lipids, cofactors, vitamins, nucleotide pathways, 
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energy  metabolism,  and  xenobiotic  biodegradation  [16].  The  determination  was  done  using  a 

combination of gas chromatography (GC), electron impact ionization (EII), mass spectrometry (MS), 

and  a  high‐resolution  time‐of‐flight  (QTOF)  analyzer  (GC‐EI‐QTOF‐MS)  to  provide  an  accurate 

identification of the components present in the sample even among those with similar masses [17].   

A 50 μL aliquot of plasma was deposited into a 1.5 ml Eppendorf tube and amalgamated with 

200 μL of an 8:2 (v/v) methanol: water solution, which included the internal standards. Following the 

mixture,  the  samples  were  vortexed  and  centrifuged  at  15000  rpm  and  4ºC  for  5  minutes. 

Subsequently, supernatants (200 μL) were decanted into a fresh tube and subjected to evaporation in 

a SpeedVac vacuum concentrator (Thermo Fisher Scientific, Waltham, MA) at 45 ºC. Samples were 

then reconstituted using 30 μL of methoxyamine and placed in an incubator at 37ºC for 90 minutes. 

The  final  step  involved  silylating  the  samples  with  45  μL  of  N‐Methyl‐N‐trimethylsilyl‐

trifluoroacetamide supplemented with 1% trimethylchlorosilane at room temperature for 60 minutes. 

The chromatographic separation was performed in a 7890A gas chromatograph paired with a 7200‐

quadruple  time‐of‐flight  mass  spectrometer  equipped  with  an  electron  impact  source  (Agilent 

Technologies, Santa Clara, CA). Moreover, the system was fitted with a 7693 autosampler module 

and  a  J&W  Scientific HP‐5MS  column  (30ms  0.25 mm,  0.25μm)  from Agilent Technologies. The 

analytesʹ identification and semi‐quantification were achieved using relative units (RU), determined 

by the ratio of the compound area to the internal standard area. More specifically, ions were selected 

and used for quantitation based on their impact electron spectra (70 eV) and the primary specific ions 

recorded in the Fiehn‐pct‐2013 spectral library. 

The serum concentration of the antioxidant enzyme paraoxonase‐1 (PON1) was analyzed with 

the Human PON1 ELISA kit  from Elabscience®  (Houston, TX, USA). Serum PON1  activity was 

analyzed by the rate of hydrolysis of phenylacetate at 280 nm, in a 9 mM Tris‐HCl buffer, pH 8.0, and 

supplemented with  0.9 mM  CaCl2,  as  previously  described  [18].  The  plasma  concentrations  of 

chemokine (C‐C motif) ligand 2 (CCL2) and interleukin‐10 (IL‐10) were quantified with ABTS ELISA 

Development  kits  (Peprotech,  London,  UK).  Serum  glucose,  creatinine,  and  C‐reactive  protein 

concentrations, lipid profile, and hepatic enzymes were determined via standard methods using a 

COBAS® 8000 automated analyzer  (Roche Diagnostics, Basel, Switzerland). The  total blood count 

was determined in a Sysmex XN‐1000 automated hematology analyzer (Sysmex, Kobe, Japan).   

We performed group comparisons using  the Mann‐Whitney U  test  for quantitative variables 

and the χ² square test for categorical variables. Statistical significance was set at p < 0.05. Quantitative 

variables are  reported as median  (interquartile  range), and qualitative variables are presented as 

frequency (percentage).   

Partial  least  squares‐discriminant  analysis  (PLS‐DA),  Variable  Importance  Projection  (VIP) 

score, Volcano plots, Receiver operating characteristics (ROC) curves, and enrichment analysis were 

made  with  MetaboAnalyst  5.0  (www.metaboanalyst.ca).  Data  visualizations,  such  as  boxplots, 

network correlation analysis, and bubble plots, were crafted using RStudio 4.4.1. All R packages were 

the  latest versions available on CRAN  (cran.r‐project.org) as of  June 14, 2024. The boxplots were 

designed to illustrate variations in metabolite concentrations across different groups. This involved 

the strategic use of R packages such as ggplot2 for generating the plots, ggsignif for adding statistical 

significance annotations, gridExtra for arranging multiple plots, ggpubr for enhancing publication 

quality, and patchwork for combining plots into a cohesive layout. Network correlation analysis was 

conducted to explore relationships between metabolites, biochemical variables, and cytokines. This 

analysis employed  igraph for constructing and visualizing network graphs, Hmisc  for calculating 

correlation  matrices,  qgraph  for  creating  clear  network  visualizations,  and  dplyr  for  data 

manipulation and preparation. Additionally, bubble plots were generated to visualize concentration 

changes  among metabolites based on  their  species. The packages used were ggplot2, dplyr,  and 

ggrepel. The TableOne package was employed to compare the clinical characteristics between breast 

cancer patients and controls. To analyze and present the metabolite concentrations,  the dplyr and 

tidyr packages were used  to calculate medians and  ranges. To assess whether  the significant age 

difference between the control group and cancer patients influenced metabolite concentrations, we 

employed  linear  regression models  using  the  glm  function  from  the  ordinal  package  in  R. We 
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analyzed each metaboliteʹs concentration about age and group membership. For each metabolite, we 

first included age as a variable in the model and the metabolite concentration (e.g., dodecanoic acid, 

xylonic acid, d‐sucrose). We then fitted a model excluding age to evaluate if age had any significant 

effect. The results indicated that age did not significantly influence metabolite concentrations; thus, 

no age adjustments were necessary. 

A sample size calculation using standard statistical methods [19] determined that 45 subjects in 

the  control group and 25  subjects  in  the post‐treatment BC group would be  required  to detect a 

minimum difference of 0.7 RU in the mean concentrations of dodecanoic acid, with an alpha risk of 

0.05 and a beta risk of 0.2. 

3. Results 

3.1. Clinical and Analytical Characteristics of BC Patients and the Control Group 

We observed significant differences  in age, dyslipidemia, arterial hypertension, and smoking 

habits between  the  two  cohorts. The majority of patients were postmenopausal, had a history of 

motherhood,  and  reported  a  family history  of  cancer. Additionally, BC patients  showed  a more 

atherogenic biochemical profile than healthy individuals. Specifically, they had significantly elevated 

serum glucose, total cholesterol, very low‐density lipoprotein cholesterol, triglycerides, γ‐glutamyl 

transferase, and  IL‐10  levels, alongside decreased  serum PON1 activity,  compared  to  the  control 

group (Table 1). 

Table 1. Clinical and biochemical characteristics of breast cancer patients and the control group. 

  Control group  BC patients  p‐Value 
  (n = 49)  (n = 52)   

Clinical characteristics 

Age at diagnosis (years)  44.1 (14.9)  59.7 (12.4)  3.4x10‐07 

BMI  26.0 (4.7)  27.7 (5.5)  0.124 

Smoking habit  18 (43.9)  10 (19.2)  0.019 

Diabetes mellitus  3 (6.1)  7 (13.5)  0.368 

Hypertension  5 (10.2)  17 (32.7)  0.013 

Dyslipidemia  1 (2.0)  12 (23.1)  0.004 

Premenopausal  ‐  14 (26.9)   

Peri‐menopausal  ‐  2 (3.8)   

Postmenopausal  ‐  36 (69.2)   

Use of oral contraceptives  ‐  15 (28.8)  ‐ 

Motherhood  ‐  42 (80.8)  ‐ 

Family cancer history  ‐  30 (57.7)  ‐ 

Biochemical characteristics 

Glucose (mmol/L)  4.7 (4.2‐5.1)  5.4 (4.8‐5.7)  4.1x10‐05 

Hemoglobin (g/dL)  13.7 (13.2‐14.2)  13.5 (12.9‐14.1)  0.301 

Leukocytes (x109/L)  6.6 (5.3‐7.7)  6.6 (5.4‐7.7)  0.846 

Platelets (x109/L)  245.7 (214.0‐278.0)  254.2 (215.5‐291.0)  0.341 

Creatinine (mg/dL)  0.7 (0.6‐0.8)  0.7 (0.7‐0.7)  0.424 

Total cholesterol (mmol/L)  5.1 (4.1‐5.6)  5.4 (4.8‐6.0)  0.026 

HDL‐cholesterol (mmol/L)  1.7 (1.4‐2.0)  1.6 (1.3‐1.7)  0.241 

LDL‐cholesterol (mmol/L)  2.9 (2.3‐3.1)  3.2 (2.5‐3.7)  0.085 

VLDL‐cholesterol (mmol/L)  0.4 (0.3‐0.5)  0.7 (0.5‐0.7)  5.2x10‐06 

Triglycerides (mmol/L)  1.0 (0.7‐1.1)  1.5 (1.0‐1.4)  1.4x10‐05 

AST (μKat/L)  0.3 (0.3‐0.4)  0.3 (0.3‐0.4)  0.185 
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ALT (μKat/L)  0.3 (0.2‐0.3)  0.3 (0.2‐0.4)  0.064 

GGT (μKat/L)  0.3 (0.1‐0.3)  0.4 (0.2‐0.4)  1.1x10‐06 

CCL2 (pg/mL)  77.7 (73.2‐83.1)  78.8 (50.4‐92.1)  0.063 

IL‐10 (ng/mL)  3.7 (2.2‐4.1)  7.0 (3.1‐6.3)  4.6x10‐04 

PON 1 concentration (pg/mL)  1.2 (0.2‐1.5)  2.3 (0.2‐2.8)  0.229 

PON1 activity (U/L)  173.2 (147.9‐204.6)  116.4 (37.9‐177.1)  1.6x10‐04 

Results are shown as either n  (percentage) or median  (interquartile range). We conducted statistical analysis 

using the Mann‐Whitney U test for quantitative variables, and the X‐square test for qualitative variables. ALT: 

alanine  aminotransferase,  AST:  aspartate  aminotransferase,  CCL2:  chemokine  (C‐C  motif)  ligand  2,  IL: 

interleukin, GGT: γ‐glutamyl transferase; HDL: High‐density lipoprotein; LDL: Low‐density lipoprotein; PON1: 

paroxonase‐1; VLDL: Very low‐density lipoprotein). 

Tumor classification based on the TNM staging system revealed predominant categories of T1, 

N0, and M0. Additionally, a prevailing histological grade II was noted. Histopathological analyses 

revealed that carcinoma ductal and luminal B was the most prevalent tumor phenotype. Most tumors 

tested positive for estrogen and progesterone receptors and displayed a Ki67 antigen proliferation 

frequency ranging from 12% to 30% (Table 2). 

Table 2. Cancer characteristics. 

  BC patients 
  (n = 52) 

Tumor size (TNM system) 

T0  ‐ 

T1  33 (63.5) 

T2  17 (32.7) 

T3  2 (3.8) 

T4  ‐ 

Nodes (TNM system) 

N0  35 (67.3) 

N1  12 (23.1) 

N2  4 (7.7)   

N3  1 (1.9) 

Metastases (TNM system) 

M0  52 (100) 

M1  ‐ 

Tumor histopathology 

Ductal carcinoma  38 (42.2) 

Lobular carcinoma  10 (11.1) 

Other  4 (4.4) 

Histological grade   

I  14 (26.9) 

II  33 (63.5) 

III  5 (9.6) 

Positive estrogen receptors  97 (90‐100) 

Positive progesterone receptors  70 (11.7‐95.0) 

Positive HER2 in tumor biopsy  49 (94.2) 

Ki67 antigen in tumor biopsy  22.5 (12.0‐30.0) 

Tumor molecular classification 
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Luminal A  18 (34.6) 

Luminal B  27 (51.9) 

HER2 positive  2 (3.8) 

Triple negative  5 (9.6) 

Type of surgery   

Lumpectomy  40 (76.9) 

Mastectomy  12 (23.1) 

Follow up 

Alive  52 (100) 

Results are shown as either n (percentage) or median (interquartile range). HER2: Human epidermal growth 

factor receptor 2. 

3.2. Metabolite Baseline Levels Discriminate between BC Patients and the Control Group 

Table S1 shows the numerical values of the examined metabolite concentrations. BC patients had 

25 higher and 8 lower metabolite concentrations than the control group. As depicted in Figure 1A, 

PLS‐DA effectively segregated the metabolic profiles of both subject groups. The volcano plot shows 

that most metabolites were elevated at baseline, with notable increases in hypoxanthine, maltose, and 

3‐phosphoglyceric acid. In contrast, xylonic acid was decreased. (Figure 1B). 

Through a random forest analysis, hypoxanthine, maltose, 3‐phosphoglyceric acid, and xylonic 

acid emerged as the metabolites with the highest discriminatory potential between BC patients and 

healthy subjects. Specifically, the first three metabolites displayed heightened levels in BC patients. 

At the same time, xylonic acid exhibited a lower concentration, as portrayed in Figure 1C and D. The 

ROC curve constructed using the combination of these four parameters yielded an area under the 

curve  (AUC) value of  0.999  (Figure  1E). The  correlation network  analysis  shows how  these  four 

metabolites correlated with biochemical variables and cytokines. Hypoxanthine correlated negatively 

with hemoglobin  and positively with  creatinine, GGT, glucose,  and PON1  activity. Notably,  the 

nodes for glucose and PON1 activity were distant. 3‐phosphoglyceric acid correlated negatively with 

xylonic acid and positively with GPT, PON1, and maltose. Maltose correlated negatively with xylonic 

acid and positively with IL‐10, 3‐phosphoglyceric acid, and very low‐density lipoprotein cholesterol 

(VLDL). Xylonic acid correlated negatively with maltose, 3‐phosphoglyceric acid, age, and VLDL but 

positively with PON1 activity (Figure 1F). 

The analysis of the four key metabolites (hypoxanthine, maltose, 3‐phosphoglyceric acid, and 

xylonic acid) about tumor‐related variables did not reveal any significant differences. No substantial 

variations were observed in metabolite concentrations based on the clinical and tumor characteristics 

assessed. 
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Figure  1. Discrimination of breast  cancer  (BC) patients  from  the  control group based on baseline 

plasma metabolite  levels.  (A): BC patients displayed a distinct metabolic profile  compared  to  the 

control group. (B): The majority of metabolites were elevated in BC patients. (C): Variable Importance 

in Projection (VIP) underscores the critical roles of hypoxanthine, maltose, 3‐phosphoglyceric acid, 

and  xylonic  acid  in distinguishing  between  the  two  groups.  (D): Hypoxanthine, maltose,  and  3‐

phosphoglyceric acid levels were higher in BC patients, while xylonic acid levels were lower than in 

the  control  group.  (E):  The  receiver  operating  characteristic  (ROC)  curve  and  confusion matrix 
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illustrate  the  effectiveness of hypoxanthine, maltose,  3‐phosphoglyceric  acid,  and  xylonic  acid  as 

discriminative markers between BC patients and the control group. (F): Network correlation analysis 

identified positive (blue lines) and negative (red lines) correlations between the selected metabolites 

and various variables, with line thickness representing the interaction strength. Statistical significance 

was assessed using the Mann‐Whitney U test. AUC: Area Under the Curve; RU: Relative Units. 

3.3. Changes in the Metabolic Signature of BC Patients Post‐Surgery and Post‐RT 

Table S2 and Figure 2A show quantitative data on metabolite concentrations in BC patients post‐

surgery, compared to the control group. BC patients exhibited 45 higher and eight lower metabolite 

concentrations post‐surgery. PLS‐DA analysis revealed a distinct metabolic profile between the two 

groups. Random  forest analysis  identified sucrose, maltose, hypoxanthine  (elevated), and xylonic 

acid  (reduced)  as  the metabolites with  the  highest  discriminatory  power  for  distinguishing  BC 

patients from healthy subjects. The bubble plot demonstrated that most metabolites increased post‐

surgery (Figure 2B and C). The combined ROC curve of these four parameters yielded an AUC value 

of 1  (Figure 2D). Network  correlation analysis  showed  that D‐sucrose negatively  correlated with 

PON1  activity  and  xylonic  acid  while  positively  correlating  with  glucose.  Maltose  negatively 

correlated with xylonic acid but positively with GGT, VLDL, triglycerides (TG), and IL‐10. Xylonic 

acid negatively  correlated with D‐sucrose, maltose, 3‐phosphoglyceric acid, age, and glucose but 

positively with hemoglobin and PON1 activity. Hypoxanthine positively correlated with PON1, IL‐

10, and platelets  (Figure 2D). Enrichment analysis highlighted significant alterations  in metabolic 

pathways, notably purine metabolism and galactose metabolism, providing critical insights into the 

metabolic shifts associated with breast cancer (Figure 2E). 
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Figure 2. Changes in plasma metabolite levels in breast cancer (BC) patients post‐surgery compared 

to the control group. (A): The comparison of metabolic profiles between post‐surgery patients and 

controls revealed distinct differences in metabolite concentrations, underscoring significant variations 

in  their metabolic states.  (B and C): Random  forest analysis  identified D‐sucrose, maltose, xylonic 

acid, and hypoxanthine as the most influential metabolites. (D): Network correlation analysis showed 

both positive (blue lines) and negative (red lines) correlations between the selected metabolites and 

various variables, with  line thickness representing the strength of the interactions. (E): Enrichment 
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analysis identified significantly altered pathways, notably purine and galactose metabolism, which 

exhibited marked  changes  in  response  to  the  condition  under  study.  Statistical  significance was 

assessed using the Mann‐Whitney U test. AUC: Area Under the Curve; RU: Relative Units. 

Table S3 and Figure 3A present quantitative data on metabolite concentrations in BC patients 

post‐radiotherapy (post‐RT) compared to the control group. We observed 41 higher and five lower 

metabolite  concentrations  in  patients.  PLS‐DA  analysis  revealed  significant  differences  in  the 

metabolic  profiles  between  the  control  and  post‐RT  groups,  underscoring  distinct  metabolic 

alterations  associated with  RT  (Figure  3A).  Random  forest  analysis  identified  dodecanoic  acid, 

sucrose  (elevated), and xylonic acid  (reduced) as  the metabolites with  the highest discriminatory 

potential for distinguishing BC patients from healthy subjects (Figure 3B and C). Network correlation 

analysis showed dodecanoic acid negatively correlated with xylonic acid but positively correlated 

with D‐sucrose  and  PON1. Xylonic  acid  negatively  correlated with  dodecanoic  acid, D‐sucrose, 

PON1, glucose, age, LDL, triglycerides (TG), and IL‐10 while positively correlated with leukocytes. 

D‐sucrose  negatively  correlated with  xylonic  acid  and  positively with  dodecanoic  acid,  PON1, 

glucose,  and  IL‐10  (Figure  3D).  Enrichment  analysis  highlighted  the most  significantly  altered 

pathways,  including  glyoxylate  and  dicarboxylate  metabolism,  as  well  as  glycine,  serine,  and 

threonine  metabolism  (Figure  3E).  Additionally,  we  investigated  whether  there  were  post‐RT 

differences in metabolite concentrations between patients who received adjuvant chemotherapy and 

those who did not. The differences were slight, but we observed higher levels in 5 metabolites and 

lower levels in 3 metabolites (Table S4). 
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Figure 3. Alterations in plasma metabolite levels in breast cancer (BC) patients post‐radiotherapy (RT) 

compared to the control group. (A): PLS‐DA analysis demonstrated a clear separation between the 

two groups,  indicating distinct metabolic differences. (B and C): Random forest analysis  identified 

dodecanoic  acid,  xylonic  acid,  and D‐sucrose  as  the most  prominent metabolites.  (D): Network 

correlation analysis revealed positive (blue  lines) and negative (red lines) correlations between the 

selected metabolites  and  various  variables,  with  line  thickness  indicating  the  strength  of  these 

interactions.  (E):  Enrichment  analysis  uncovered  significant  alterations  in  several  metabolic 

pathways, including glycolate metabolism, dicarboxylate metabolism, and the metabolism of glycine, 

serine,  and  threonine. These pathways  exhibited notable  changes  in  the post‐radiotherapy group 

compared to controls. Statistical significance was assessed using the Mann‐Whitney U test. AUC: Area 

Under the Curve; RU: Relative Units. 
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3.4. Main Metabolic Changes after Treatments 

Before any treatment, patients with BC presented significantly higher serum concentrations of 

hypoxanthine, 3‐phosphoglyceric acid, maltose, and d‐sucrose, along with lower concentrations of 

xylonic acid than the control group. Following surgical intervention, sucrose and dodecanoic acid 

levels  increased.  After  RT,  BC  patients  experienced  a  significant  decrease  in  the  levels  of 

hypoxanthine, 3‐phosphoglyceric acid, maltose, and sucrose, with a tendency towards normalization. 

Conversely, dodecanoic acid concentrations remained significantly elevated compared  to baseline 

and post‐surgical levels (Figure 4). 

 

Figure  4. Dynamics  of metabolic  profile  changes  in  breast  cancer  (BC)  patients  during  different 

treatment courses. As treatment progressed, the metabolic profiles of BC patients exhibited a trend 
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towards normalization in the levels of 3‐phosphoglyceric acid, hypoxanthine, maltose, and d‐sucrose. 

Concurrently, concentrations of dodecanoic acid increased while xylonic acid levels remained low. 

Statistical  significance  for  comparisons  was  determined  using  the  Mann‐Whitney  U  test.  RT: 

Radiotherapy. RU: Relative Units. 

4. Discussion 

Our  investigation  has  discerned  a  substantial  number  of  metabolites  showing  altered 

concentrations  in  BC  and  undergoing modifications  following  surgery  and RT. Using  statistical 

models, we  identified metabolites with  the most  relevant alterations,  including hypoxanthine,  3‐

phosphoglyceric acid, maltose, sucrose, xylonic acid, and dodecanoic acid. Elevated serum levels of 

hypoxanthine, 3‐phosphoglyceric, and maltose in BC patients may signify the presence of metabolic 

disruptions  linked  to  tumor growth and  the  tumorʹs adaptation  to  its  local environment. Despite 

these three molecules participating in distinct metabolic pathways, a unified interpretation can be 

achieved by considering their interconnections and shared metabolic shifts in cancer. 

Hypoxanthine  can  originate  through  various  deamination  mechanisms  during  chronic 

inflammation [20,21] and potentially contribute to oncogenesis, given its essential role in synthesizing 

purine nucleotides, which are pivotal for metabolic regulation and cellular replication. The regulation 

of purine nucleotide  synthesis pathways,  encompassing both de novo  synthesis  and  the  salvage 

pathway,  is  imperative  to  fulfill  the demand  for nucleic acid precursors during cell proliferation. 

Indeed,  disruptions  in  purine  pools  can  impede  cell  proliferation  and  encourage  apoptosis, 

particularly pertinent in tumor cells with flawed apoptosis‐inducing pathways [22]. Hypoxanthine 

salvage  significantly  contributes  to  purine  synthesis,  with  observations  of  its  depletion  from 

extracellular media and its accumulation at intracellular levels under specific conditions implying its 

contribution to the ATP pool in these cells [23]. 

Emerging  evidence  has  linked  the  dysregulation  of  purine  metabolism  to  cancer,  with 

heightened purine biosynthesis associated with the progression of various cancer types, including 

hepatocellular carcinoma, cholangiocarcinoma, glioblastoma, and lung cancer [24–27]. Metabolomic 

profiling  of  tumor  tissues  from  lung  cancer patients  has uncovered  increased  levels  of  ribose‐5‐

phosphate,  indicative of accelerated purine synthesis required by highly proliferative cancer cells, 

along  with  significant  accumulations  of  hypoxanthine  and  xanthine  [28,29].  Elevated  serum 

hypoxanthine concentrations have also been documented in breast cancer [30], ovarian cancer [31], 

and gastric cancer [32]. 

3‐phosphoglyceric acid, an intermediate metabolite within the glycolytic pathway, is a critical 

component  in  ATP  generation.  In  typical  circumstances,  3‐phosphoglyceric  acid  undergoes 

conversion  into pyruvate,  subsequently  entering  the mitochondria  for  complete oxidation  in  the 

Krebs cycle. Nevertheless, even with ample oxygen, heightened glycolytic activity persists in cancer, 

a phenomenon known as the Warburg effect [33]. This metabolic shift towards glycolysis may lead 

to increased production of 3‐phosphoglyceric acid, as tumor metabolism prioritizes the generation of 

intermediates suitable for macromolecular biosynthesis, thereby conferring a growth advantage. For 

instance,  serine  biosynthesis  initiates  with  the  oxidation  of  3‐phosphoglyceric  acid  into  3‐

phosphohydroxypyruvate and nicotinamide adenine dinucleotide  catalyzed by phosphoglycerate 

dehydrogenase.  Subsequent  reductive  amination  of  this  ketone  by  phosphoserine  yields  3‐

phosphoserine  subsequently  hydrolyzed  into  serine  through  the  action  of  phosphoserine 

phosphatase  [34].  Serine  is  a pivotal  amino  acid, playing  a  crucial  role  in  supporting numerous 

anabolic  processes,  including  synthesizing  proteins,  lipids,  and  nucleic  acids  [35–37].  Under 

conditions of serine deficiency, tumor cells can use hypoxanthine as a precursor for the synthesis of 

purines, so high serum concentrations of 3‐phosphoglycerate and hypoxanthine can greatly enhance 

the process of tumorigenesis [23]. 

Maltose is a disaccharide composed of two glucose molecules and is involved in the degradation 

of  complex  carbohydrates.  The  increased maltose  levels  in  BC  patients may  indicate  increased 

enzymatic  activity  of maltase, which  breaks  down  complex  carbohydrates  into  simpler  sugars. 

Cancer cells often have a higher requirement  for glucose as an energy source due  to  their altered 
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metabolism. This increased degradation of complex carbohydrates may be an adaptation of the tumor 

to meet its energy and biosynthesis needs [38]. 

In summary, alterations in the serum concentrations of hypoxanthine, 3‐phosphoglycerate, and 

maltose  in  BC  individuals  indicate  significant  metabolic  reprogramming  within  the  tumor 

microenvironment.  An  augmented  emphasis  on  nucleotide  biosynthesis  characterizes  this 

reprogramming, heightened  reliance on carbohydrates as an energy substrate, and a pronounced 

preference for glycolytic pathways. These metabolic adaptations have been closely linked to pivotal 

processes  in  cancer  pathogenesis,  including  cell  proliferation,  enhanced  survival,  resistance  to 

apoptosis, and heightened invasive potential.   

One  primary  objective  of  the  current  investigation  was  to  scrutinize  alterations  in  the 

metabolomic  profile  of  BC  patients  following  surgical  intervention  and  RT.  The  circulating 

metabolites with pro‐oncogenic properties mentioned earlier tended to return to baseline following 

these therapeutic modalities. Moreover, a marked increase in dodecanoic acid levels was observed. 

This compound (also termed lauric acid) is a medium‐chain saturated fatty acid (12:0) present in the 

diet  in  vegetables  and  dairy  products  and  not  synthesized  by  the  human  body.  The  precise 

mechanisms  responsible  for  the post‐surgical and post‐RT surge  in serum dodecanoic acid  levels 

remain indiscernible from our findings. However, it is plausible that these changes may be attributed 

to  alterations  in  dietary  habits,  lifestyle  modifications,  or  perturbations  in  the  gut  microbiota. 

Regardless  of  the  underlying  cause,  these  shifts  hold  favorable  implications  from  a  metabolic 

standpoint,  as  dodecanoic  acid  has  demonstrated  anti‐oncogenic  properties.  Prior  research  has 

indicated that dodecanoic acid can induce apoptosis by diminishing reduced glutathione availability 

and  provoking  oxidative  stress  in  cancer  cell  lines  such  as  Caco‐2  and  IEC‐6  [39].  Subsequent 

investigations in colon cancer cells have suggested that the anticancer effects of dodecanoic acid may 

be partially mediated through the downregulation of the epidermal growth factor receptor, a pivotal 

player in apoptosis regulation and cancer cell survival [40]. Furthermore, dodecanoic acid has been 

observed  to  suppress  the  expression  of  oncogenic  microRNAs  in  HepG2  and  KB  cells  [41]. 

Significantly, studies have also  found  lower dodecanoic acid  levels  in breast adipose  tissue of BC 

patients when  compared  to  healthy  counterparts  [42].  In  addition,  pharmacological  and  dietary 

administration  of  this  compound  has  yielded  promising  outcomes  in  cancer  treatment  [43–45]. 

Interestingly, our study showed higher post‐RT dodecanoic acid concentrations in patients who had 

received  adjuvant  chemotherapy  than  in  those who had not. Therefore,  our  results  suggest  that 

administering  chemotherapy  before  radiation  enhances  therapeutic  benefits  by  increasing 

dodecanoic acid  levels  in  the bloodstream. These  findings underscore  the potential of dodecanoic 

acid in cancer treatment, offering optimism and encouragement in the fight against cancer.  

We have also found elevated sucrose levels after surgery. Surgical patients commonly develop 

hyperglycemia  related  to  the hypermetabolic stress response, which  increases glucose production 

and causes insulin resistance [46]. However, we find it difficult to believe these alterations persist a 

month after the procedure. As in the case of dodecanoic acid, this increase could be due to dietary 

changes  or  changes  in  the  intestinal microbiota  of  these  patients.  In  any  case,  this  alteration  is 

temporary and is corrected after RT. 

Finally, our  results show  that patients with BC had a  lower concentration of xylonic acid  in 

serum  than  healthy  volunteers,  and  this  alteration  persists  throughout  the  treatments.  To  our 

knowledge, there is no prior information on circulating levels of this compound in cancer. Xylonic 

acid  is  a  sugar derived  from  xylose  and  synthesized  by plants  and microorganisms,  but  not  by 

humans, and is used as an additive in the food industry. Some studies have reported that it has anti‐

inflammatory properties, inhibiting the synthesis of adhesins and the adhesion of macrophages, and 

can reduce inflammation‐associated immune responses in some infectious diseases [47–49]. Its role 

in cancer is, at present, unknown. 

While  providing  valuable  insights,  this  study  is  subject  to  certain  limitations  that warrant 

consideration.  Firstly,  as  a  single‐center  study,  the  broader  applicability  of  our  findings may  be 

influenced by factors such as ethnicity, environmental variations, and dietary habits. Consequently, 

caution  should be  exercised when  attempting  to generalize our  results  to  the global population. 
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Secondly, the sample size is limited, primarily due to the operational challenges posed by the COVID‐

19 pandemic. Logistical constraints during this unprecedented period hindered our ability to include 

a larger cohort of patients and collect a more extensive set of plasma samples. As a result, the findings 

should be interpreted with awareness of the studyʹs limitations in sample diversity and size. 

5. Conclusions 

Our study highlights the ability of oncological treatments to modify the metabolism of patients 

towards  a  favorable profile with  a decrease  in  the pathways  that  favor  cell proliferation  and  an 

increase in the plasma concentration of anticancer molecules. Specifically, the reduction in pathways 

that favor cell proliferation, and the increase in protective metabolites, such as dodecanoic acid, could 

be linked to reduced resistance to cell death. Cancer cells that rely heavily on altered metabolism for 

survival might become more vulnerable to cell death mechanisms when these metabolic pathways 

are targeted or normalized. The knowledge acquired from our study and future research not only 

has the potential to enhance our comprehension of tumor cell behavior but also holds promise for the 

development  of  new  avenues  of  research  and  discovery,  such  as  therapy  monitoring,  the 

identification  of  novel  therapeutic  targets,  and  the  integration  of  new  blood‐based  biomarkers. 

Consequently, these discoveries may facilitate early and straightforward BC detection and advance 

the development of personalized treatment strategies. 
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