

Article

Barriers and Assistance for Female Leaders in Academic STEM in the US

Laura McCullough

University of Wisconsin-Stout; lauramccphd@gmail.com

Received: date; Accepted: date; Published: date

Abstract: Women in science, technology, engineering, and mathematics (STEM) fields are underrepresented, and women are also less likely than men to be in leadership positions generally. Little is known about the intersection of these areas: women in leadership in STEM. To determine what sort of barriers and assistance female STEM leaders have encountered, a survey was developed asking women who are in academic leadership positions in STEM about their experiences. The main barriers were similar in the STEM area and in leadership: balancing work/home life, devaluing of achievements, and imposter syndrome. The main two types of assistance in both STEM and leadership were support from spouse/partner, and encouragement from peers. The main barriers women encounter are cultural and will take time to overcome. The main assistance women have had comes from people, not training or institutional structures.

Keywords: gender, academic, STEM, leadership, barriers, assistance

1. Introduction

In the United States, women make up 50.8% of the general population, 57% of college graduates, and 39% of science, technology, engineering, and mathematics (STEM) bachelor's degree recipients [1]. In certain fields, the percentage of women is particularly low: physics grants only 20% of bachelors degrees to women, engineering 21%, and computer science 19%.

While there are many issues involving women's participation in STEM, this study focuses on one piece: the presence and participation of women in leadership in STEM fields in academia in the US. [Author] reported recently on the proportions of women serving in academic leadership positions in the US [2]. The rate of participation in leadership tends to be lower than the proportion of women in the STEM fields. Why are women not rising to these positions at the same rate as they participate in STEM? What are the barriers women encounter on their path to a STEM leadership position?

1.1. Literature Review

There is very little research on women's leadership in STEM [3,4]. What little is known matches with the typical barriers encountered by women in leadership and in STEM. In a survey of its membership, the US-based Association for Women in Science found that cultural issues were the largest part of what female STEM leaders encountered: ideas or work being credited to men, imposter syndrome, being assumed to be less competent, and general gender bias [5]. Gender bias also was at the heart of problems for women in Singapore [6].

The literature on the barriers to women's leadership is extensive. A good overview is provided by the American Association of University Women [7], listing broad categories of barriers as pipeline problems, gender discrimination, caregiving, lack of mentors, stereotyping, and bias. At a more specific level, female leaders have faced harassment [8,9], implicit gender bias [10], imposter syndrome [11], and issues with caregiving [12] and other home/work problems [13,14]. The book

“Through the Labyrinth” by Eagly & Carli provides a useful overview of women’s leadership research [15].

In the STEM fields, research on barriers to women’s participation has been conducted for decades. There is no one easy answer to encouraging women and other under-represented groups to go into and stay in STEM. The latest research suggests that many of the problems women face are similar to what women in leadership positions face: implicit gender bias [16], harassment [17,18], dual-career couple issues [19], imposter syndrome [20,21], home/work balance [22], and lack of sense of belonging [23]. Many of these issues are discussed in references [24,25].

The factors that support women’s advancement in leadership are quite varied. Support comes in many forms: from one’s spouse [26,27] and family [28], from peers and superiors [29]. Advocacy from mentors and sponsors can help women progress [29,30], and formal leadership training programs can provide useful skills [29,31]. Many of these supports can be part of the networking [32,33] that is useful for women looking to lead.

For women in the STEM fields, similar drivers support career progression. Encouragement from teachers [34], family [35], and peers [36] can help set a young woman on the STEM path. Networking and mentorship help women stay the course [37]. Sponsorship and advocacy help progression in the field [38]. A useful meta-analysis of literature is provided by Blackburn [39].

Given that the most common problems women encounter in STEM and in leadership are similar, do these experiences interact with one another? Having dealt with a particular issue once, is dealing with it again easier? This study focused on determining what barriers women faced as leaders in STEM.

1.2. Research Questions

What barriers do women encounter as they move through STEM, and as they move into leadership? What forms of assistance do they encounter in these two areas?

Do female STEM leaders feel that having encountered bias in one area has helped them deal with bias in the other?

2. Materials and Methods

Based on the literature, a survey was developed to gather information about what has helped women attain leadership positions in STEM, and what has hindered their path. The survey was designed for women in active STEM leadership positions. The focus was on academic leadership, so the chosen position titles included department chair, dean, and program director.

The survey included both multiple-choice and short answer questions, and also gathered demographic and leadership position data from respondents. Questions were designed to separate out barriers and assistance in the STEM area from those experienced in the leadership arena.

The survey was pilot tested with 13 women, contacted through social media. After the pilot-testing, the survey was revised. Then the formal survey was activated, and survey participants were invited through word of mouth, social media, and via flyers at appropriate conferences.

A total of 134 responses were received at the time of analysis. To control variables, only US and Canadian participants were analyzed. Similarly, those whose leadership position did not match the criteria above were removed from analysis. This left 68 responses.

3. Results

3.1. Barriers to women's participation in leadership and in STEM

How do the barriers women encounter compare in their path through STEM and their path to leadership? Table 1 lists the number and percentage of women who had encountered certain barriers in their path to *leadership*. Respondents could choose more than one, so totals do not add up to 100%.

Table 1. Number and percentage of women encountering barriers to leadership.

Barrier	% of respondents	Number of respondents
Balancing work and home life	79	54
Devaluing of your achievements	66	45
Feeling of inadequacy/impostor phenomenon	66	45
Microaggressions	63	43
Discouragement from peers or supervisors	57	39
Blatant gender bias	56	38
Disparaging comments about your gender	49	33
Dual-career couple issues	41	28
Blatant sexual harassment	16	11

The data for barriers in STEM are similar. Table 2 lists the barriers encountered in *STEM*, separate from leadership.

Table 2. Number and percentage of women encountering barriers to STEM.

Barrier	% of respondents	Number of respondents
Balancing work and home life	81	55
Feeling of inadequacy/impostor phenomenon	71	48
Devaluing of your achievements	65	44
Blatant gender bias	54	37
Dual-career couple issues	54	37
Microaggressions	53	36
Discouragement from peers or supervisors	50	34
Disparaging comments about your gender	50	34
Blatant sexual harassment	7	5

Respondents could also list other problems they dealt with in either STEM or leadership. For leadership, 16 respondents listed additional barriers, paraphrased here:

- Goalpost moving/lack of clarity in metrics for promotion
- Targeted negative pushback to leadership
- Told I'm "too young" or "not ready"
- Salary discrimination
- Discouragement from superiors
- Age
- Academic sabotage, toxic work culture
- Ideas ignored then offered by male peer

Perhaps the most disheartening response was the woman who said she had encountered "normal gender and minority challenges, nothing unexpected".

Only four women wrote of other barriers in STEM: not being considered when openings arise, a “sink or swim environment on campus”, the same barriers as leadership, and being a first generation academic.

When asked what the biggest challenge was for women in the leadership track, 20 of 67 said gender bias: examples include “Men dominating conversations, meetings, arguments” and “Male colleagues pushing back against my authority and decisions”. Recognition or being taken seriously was cited by 17 women: “Being taken seriously by senior men who dismiss most things said or done by women as ‘taking advantage of affirmative action’” or “Not being recognised by others as having a leadership and decision making role for the institute I am now the director of”.

In STEM, the biggest challenge for 20 of the women was gender bias of some form or another: “Systematic devaluing of women faculty in department” or “Not being seen as possessing hard skills because of my gender and attractiveness” or “Having to be twice as competent to be viewed as good enough”. One woman wrote that “I’ve been flat out told by people ‘I wouldn’t have consulted you on this project if I knew you were a woman. But you seem okay, so we can work together.’”.

3.12. Interaction of gender bias in STEM and gender bias in leadership

One of the key questions on the survey was about the interaction of gender bias in leadership with gender bias in STEM. The survey asked: “Research suggests that the barriers for women in leadership and the barriers for women in STEM are very similar. Considering your experiences in STEM and in leadership, which best describes your experience?” Answers to this question are in Table 3.

Table 3. Responses to survey question on interaction of bias in STEM and in leadership.

Experience	% of respondents	Number of respondents
Dealing with gender bias in STEM has helped me deal with gender bias as a leader.	59	40
I have not experienced gender bias in STEM, but I have as a leader.	1.5	1
I have not experienced gender bias as a leader, but I have as a woman in STEM.	7	5
Dealing with gender bias in STEM did not prepare me for gender bias as a leader.	12	8
I have not experienced gender bias either as a leader or as a woman in STEM.	1.5	1

3.3. Assistance to women’s participation in leadership and in STEM

Similarly to the questions about barriers, questions on the survey asked about what help respondents had encountered in their path through STEM and their path to leadership. Table 4 lists the number and percentage of women encountering certain types of assistance in their path to leadership.

Table 4. Number and percentage of women encountering assistance to leadership.

Type of Assistance	% of respondents	Number of respondents
Encouragement from peers	79	54
Support from spouse/partner	75	51
Mentorship	66	45
Encouragement from superiors	66	45
Informal peer networking	65	44
Leadership training	54	37
Encouragement from family	48	33
Sponsorship/advocacy	40	27
Formal networking	22	15

A similar question was asked about help received along the path to STEM; results are shown in Table 5.

Table 5. Number and percentage of women encountering assistance to STEM.

Type of Assistance	% of respondents	Number of respondents
Support from spouse/partner	78	53
Encouragement from peers	74	50
Informal peer networking	74	50
Encouragement from family	71	48
Encouragement from teachers	63	43
Mentorship	62	42
Encouragement from superiors	60	41
Sponsorship/advocacy	43	29
Formal networking	22	15

Additional assistance in leadership was listed by four women, and includes experience on committees, self-awareness, and training in project management/people management. For assistance in STEM, again only four women added something: proactive learning, taking opportunities, positive interactions in graduate school, and therapy.

When asked what helped the most for leadership, 43 of 65 women mentioned something related to people: support, mentorship, encouragement, or advocacy: "support from my peers in the department - male faculty in my department...have _always_ treated me with respect and shown confidence in my leadership." Only seven women mentioned training or opportunities. One woman said she had received no help on her path to leadership.

The data are similar for what is the most helpful for women in STEM: 47 of 62 women said people: mentoring and support. There were 5 women who said they had received no help in their path through STEM: "Honestly, I don't feel I've had much "help"; it's been a struggle in every sense. The best help I have had is from graduate students and postdocs who value my work and my mentoring; and me as a scientist... I can't change my generation, but I can influence the next generation of scientists."

4. Discussion

Based on the results, women in STEM leadership positions have faced similar barriers in STEM and as a leader. The top three barriers in both areas were balancing work/family life, devaluing of achievements, and imposter syndrome. Over half of the respondents had also encountered blatant

gender bias, discouragement, and microaggressions in both STEM and leadership. These are all cultural factors that will take time to mitigate, despite the cost (and illegality) of such behaviors.

The majority of female leaders agreed that having dealt with gender bias in STEM had helped them deal with gender bias in leadership. This is encouraging, and suggests that women looking toward leadership positions in STEM may not have twice the difficulty of being a woman in solely STEM or solely leadership.

The types of assistance women received in STEM and in leadership were comparable. The most common types of help for both were support from spouse/partner, and encouragement from peers. More than half the women had gotten the same types of assistance in both STEM and in leadership: informal peer networking, mentorship, and encouragement from superiors. These data suggest that supportive *people* are at the heart of what women need to stay in STEM and to advance to leadership positions. This is consistent with work by Brue [40].

Another study of this issue is in progress, listening to female STEM leaders' experiences through personal interviews. A more focused view of barriers and assistance will be acquired, which will help in furthering the goal of encouraging women to participate in STEM leadership.

The results of this study point to cultural factors as the main barriers and personal support as the main help for women in STEM leadership. If we are to reach an equitable rate of participation for women in leadership roles in STEM, we need to be working to change the culture of STEM and the culture in leadership. From devaluing women's achievements and disrespecting their authority, we need to move towards an environment where every leader is treated with respect.

Funding: This research received no external funding.

Acknowledgments: The author acknowledges the support of the [university].

Conflicts of Interest: The author declares no conflict of interest.

Protection of Human Subjects in Research: This research was reviewed and approved by the [university] Institutional Review Board for the Protection of Human Subjects.

References

1. National Science Foundation Women, Minorities, and Persons with Disabilities in Science and Engineering. Available online: <https://ncses.nsf.gov/pubs/nsf19304/> (Accessed 17 July 2020)
2. Author. 2020.
3. Amon, M. Looking Through the Glass Ceiling: A Qualitative Study of STEM Women's Career Narratives. *Front Psychol* **2017**, *8*, 236.
4. Howe-Walsh, L.; Turnbull, S. Barriers to women leaders in academia: tales from science and technology. *Stud High Ed* **2016**, *41*:3, 415-428.
5. Association for Women in Science: Transforming STEM Leadership Culture. Available online: <https://www.awis.org/leadership-report/> Accessed 30 June 2020.
6. Dutta, D. Women's Discourses of Leadership in STEM Organizations in Singapore: Negotiating Sociocultural and Organizational Norms. *Man Comm Quart* **2018**, *32*:2, 233-249.
7. American Association of University Women. 2016. Barriers and Bias. <https://www.aauw.org/resources/research/barrier-bias/> Accessed 6 Sept 2017.
8. Folke, O.; Rickne, J.; Tanaka, S.; Tateishi, Y. Harassment of Women Leaders. *Daedalus* **2020**, *149*:1 180-197.
9. McLaughlin H, Uggen C, Blackstone A. Sexual Harassment, Workplace Authority, and the Paradox of Power. *Amer Soc Rev* **2012**, *77*, 625-647.
9. Anderson A.J.; Ahmad A.S.; King E.B. et al. The effectiveness of three strategies to reduce the influence of bias in evaluations of female leaders. *J App Soc Psych* **2015**, *45* 522-539.

10. Sanford A.A.; Ross E.M.; Blake S.J.; Cambiano R.L. Finding Courage and Confirmation: Resisting Impostor Feelings through Relationships with Mentors, Romantic Partners, and Other Women in Leadership. *Adv Women Lead* **2015**, *35*, 31-41.
11. American Council on Education. American College President Study. 2017.
12. Wolverton, M.; Bower, B.; Maldonado, C. Leading Ladies: Women University and College Presidents: What They Say about Effective Leadership *J Wom Ed Lead* **2006** *186*.
13. Corcoran, C. F. Women college presidents : leading with authenticity. PhD thesis, University of San Francisco, California USA 2008.
14. Eagly, A. & Carli, L.L. *Through the Labyrinth: The Truth About How Women Become Leaders*. Harvard Business Review Press: Boston MA USA, 2007.
15. Farrell L, McHugh L. Exploring the relationship between implicit and explicit gender-STEM bias and behavior among STEM students using the Implicit Relational Assessment Procedure. *J Cont Beh Sci* **2020**, *15*, 142-152.
16. National Academies of Sciences, Engineering, and Medicine. 2018. *Sexual Harassment of Women: Climate, Culture, and Consequences in Academic Sciences, Engineering, and Medicine*. Washington, DC: The National Academies Press. doi: <https://doi.org/10.17226/24994>.
17. Lindquist C, McKay T, RTI International. *Sexual Harassment Experiences and Consequences for Women Faculty in Science, Engineering, and Medicine. Policy Brief*. RTI Press Publication No. PB-0018-1806. RTI International; 2018.
18. Tan-Wilson A, Stamp N. College Students' Views of Work-Life Balance in STEM Research Careers: Addressing Negative Preconceptions. *CBE Life Sci Ed* **2015**, *14*(3).
19. Trefts S. The Imposter Phenomenon in Female, First-Generation STEM Majors. EdD Thesis Californian Lutheran University, California, USA. 2019.
20. Chakraverty D. The Impostor Phenomenon among Postdoctoral Trainees in Stem: A Us-Based Mixed-Methods Study. *Intl J Doct Stud* **2020**, *15*, 329-352.
21. Minnotte KL, Pedersen DE. Department Environment and Work-to-Life Conflict Among Faculty in the STEM Fields. *J Fam Iss* **2019**, *40*, 1299-1320.
22. Rainey K, Dancy M, Mickelson R, Stearns E, Moller S. Race and Gender Differences in How Sense of Belonging Influences Decisions to Major in STEM. *Intl J STEM Ed* **2018**, *5*:10 .
23. Carr, P., Helitzer, D., Freund, K. Westring, A., McGee, R., Campbell, P., Wood, C., Villalblanca, A. A Summary Report from the Research Partnership on Women in Science Careers. *J. Gen. Intern. Med.* **2019**, *3*, 356-362.
24. Seymour, E., Hunter, A-B. *Talking About Leaving Revisited*. Springer. 2019
25. Klotz, A. M. The Journey to the Top: Women's Paths to the University Presidency. EdD thesis DePaul University, Chicago, USA, 2014.
26. Porter, A. R. In Line for the Presidency: The AACC Leadership Competencies and the Career Development of Women Leaders in Community College Administration. EdD Thesis. Lindenwood University. Missouri, USA, 2017.
27. Lam, T. L. Negotiating the labyrinth: Female executives in higher education leadership in Vietnam and Australia. PhD thesis. University of Newcastle, New South Wales, Australia, 2018.
28. Mahady, C. Voices of Women College Presidents: Women's Perceptions of Career Navigation into the College Presidency. EdD Thesis. University of Pennsylvania, Pennsylvania, USA, 2018.

29. Terry, E. J. In Search of Leadership: A Look at Women Presidents in Georgia's Two-Year Colleges and Technical Colleges. PhD thesis. Capella University Minnesota USA, 2008.
30. Hannum, K., Muhly, S., Shockley-Zalabak, P., & White, J. S. (2014). Stories from the summit trail: Leadership journeys of senior women in higher education. Denver, CO: Higher Education Resource Services (HERS). Retrieved from:
2. <http://hersnet.org/wp-content/uploads/2014/07/StoriesfromtheSummitTrail.pdf>
31. Sagebiel, F. Gender and Network Awareness in/for Successful Leadership in Academic Science and Engineering. *Intl J Gen Sci Tech* **2018**, 10,1.
32. Porter, 2017
33. NSERC: Women in Science and Engineering in Canada. Available online: https://www.nserc-crsng.gc.ca/_doc/Reports-Rapports/Women_Science_Engineering_e.pdf Accessed 21 Oct 2010
34. Aschbacher, P., Li, E., Roth, E. Is Science Me? High Schools Students' Identities, Participation and Aspirations in Science, Engineering, and Medicine. *J. Res. Sci. Teach.* **2010**, 47, 564-582.
35. Thomas, N. Bystydzienski, J., Desai, A. Changing Institutional Culture through Peer Mentoring of Women STEM Faculty. *Innov. High. Ed.* **2014**, 40, 143-157.
36. Gorman, S., Durmowicz, M., Roskes, E., Slattery, S. Women in the Academy: Female Leadership in STEM Education and the Evolution of a Mentoring Web. For. Pub. Pol. 2010 Available online: <https://eric.ed.gov/?id=EJ903573> Accessed 28 Sept 2019.
37. Huston W., Cranfield, C., Forbes, S., Leigh, A. A sponsorship action plan for increasing diversity in STEMM. *Acad. Prac. Ecol Evol* **2019**, 9, 2340-2345.
38. Blackburn, H. The Status of Women in STEM in Higher Education: A Review of the Literature 2007-2017. *Sci Tech Lib* **2017**, 36, 235-273.
39. Brue, K. Work-life Balance for Women in STEM Leadership. *J Lead Ed* **2019**, 18:2.