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Abstract: Kac-Moody Lie algebra is a Lie algebra associated with Cartan matrix generalized over real
or complex field. This research aims to define Kac-Moody Lie algebra in quaternion by using the
concept of Quaternification of Lie algebra. From some previous research, the definition of Kac-Moody
Lie algebra over real or complex field is divided into two, namely the definition of standard and
reduced Kac-Moody Lie algebra. To obtain both definitions, one additional definition is needed,
namely the universal Kac-Moody Lie algebra. So, to define Kac-Moody quaternion Lie algebra, three
constructions are needed, namely the construction of universal Kac-Moody quaternion Lie algebra,
standard Kac-Moody quaternion Lie algebra, and reduced Kac-Moody quaternion Lie algebra. The
results of this paper obtained the definition of universal Kac-Moody quaternion Lie algebra, standard
Kac-Moody quaternion Lie algebra, and reduced Kac-Moody quaternion Lie algebra.

Keywords: Universal Kac-Moody Quaternion Lie algebra; Standard Kac-Moody Quaternion Lie
algebra; Reduced Kac-Moody Quaternion Lie algebra

1. Introduction
Algebra is a branch of mathematics that studies structures, relations, and mathematical operations

involving abstract objects such as numbers, variables, and arithmetic operations. One of the topics
in algebra that is widely researched is Lie algebra. The term Lie algebra is taken from the name of
the Norwegian mathematician Marius Sophus Lie (1842–1899). He developed Lie algebra to study
the concept of infinitesimal transformations in the 1870s. It has been established that the theory
developed by Sophus Lie plays a fundamental role in solving numerous problems related to geometry
and differential equations, which bridge mathematical theory with real-world applications. This is
evidenced by the development of modern physics, such as special and general relativity, quantum
mechanics, and particle physics, all of which involve symmetries and transformations that can be
described using Lie algebra [1]. Several researchers have published their writings in the form of books
and papers on Lie algebra, such as Gerard G.A. Bauerle and Eddy A. De Kerf [2], Brian C. Hall [3],
and James E. Humpherys [4]. They have discussed some material about Lie algebra, such as basic
concepts of Lie algebra, homomorphisms of Lie algebra, complexification of real Lie algebra, simple
Lie algebra, semisimple Lie algebra, and others. Furthermore, in 1984, Rolf Farnsteiner [5] introduced
the concept of Lie algebra in quaternion by investigating a Lie algebra that is isomorphic to the central
quotient of the division algebra of quaternion. This structure later became known as the Lie algebra
of quaternions. Subsequently, Dominic Joyce [6] provided a formal definition of the Lie algebra of
quaternion as an AH-module object that satisfies the Lie algebra bracket condition. The AH-module
is a more specialized concept than the H-module. Tasioki Kori [7] also published papers discussing
Quaternification on complex Lie algebra, which is an extension of complexification on real Lie algebra.
In the paper, Tasioki Kori introduced the definitions of Lie algebra quaternion, quaternification of Lie
algebra, quaternification on simple Lie algebra, and quaternification on complex Lie algebra. root
space decomposition of a quaternion Lie algebra. One of the important topics in the development
of Lie algebra is Kac-Moody Lie algebra. Kac-Moody Lie algebra is a Lie algebra that uses Cartan
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matrix generalization. Kac-Moody Lie algebra was proposed with two different properties by Victor
Gershevich Kac [8] and Robert Vaughan Moody [9]. Since there are two definitions with different
properties, Steven Berman [10] gave names for each property, namely standard Kac-Moody Lie algebra
and reduced Kac-Moody Lie algebra. However, to get the two definitions, first define the universal
Kac-Moody Lie algebra, which is then applied with two properties so as to obtain standard Kac-Moody
Lie algebra and reduced Kac-Moody Lie algebra. Based on the description above, the interesting thing
to study is the combination of quaternification on complex Lie algebra with Lie Kac-Moody algebra.
Therefore, this paper discusess the construction of Universal, Standard, and Reduced Kac-Moody
quaternion Lie algebras using quaternification.

This paper is organized as follows: In Section 2, we construct the universal Kac-Moody quaternion
Lie algebra using Serre’s construction. As a result, we obtain the definition of the universal Kac-Moody
quaternion Lie algebra along with its related properties (see Definition 10 and Theorem 2). We also
provide an example of a universal Kac-Moody quaternion Lie algebra. In Section 3, we construct
the standard Kac-Moody quaternion Lie algebra using the universal Kac-Moody quaternion Lie
algebra (see Definition 11 and Theorem 3), and we also provide an example of a standard Kac-Moody
quaternion Lie algebra. In Section 4, we construct the reduced Kac-Moody quaternion Lie algebra
using the universal Kac-Moody quaternion Lie algebra (see Definition 12 and Theorem 3), and we also
provide an example of a reduced Kac-Moody quaternion Lie algebra. Finally, in Section 5, we present
the conclusion of this paper, summarizing the main results obtained in the previous sections.

2. Construction of Universal Kac-Moody Quaternion Lie Algebra
2.1. General Structure Over Quatenion

This section will discuss the quaternion tensor algebra T(V) constructed from the quaternion
module (V , J), the universal quaternion enveloping algebra U(L) of a quaternion Lie algebra, and
finally the quaternion algebra L(X, JX) generated by the basis {X, JX}. The discussion will begin with
the definition of the quaternion tensor algebra T(V).

Let (V , J) be a module over H. Let σ be a linear involution over C on V that is anti-commutative
with J : Jσ = −σJ, and let τ be a complex conjugation linear involution on V that commutes with
στ = τσ. Let V0 be the eigenspace of σ corresponding to the eigenvalue +1. Then, V = V0 + JV0. Both
V0 and JV0 are invariant under τ.

Definition 1. Let T(V) be a R-submodule of the H-module (V , J). Then T(V) is called quaternion tensor
algebra if T(V) that satisfies the following properties:

1. T(V) is a real tensor algebra
2. σ and τ are homomorphism of tensor algebra T(V)

(a) T(V) is invariant under the involutions σ and τ.
(b)

σ(t1 + t2) = σ(t1) + σ(t2) τ(t1 + t2) = τ(t1) + τ(t2)

σ(t1 · t2) = σ(t1) · σ(t2) τ(t1 · t2) = τ(t1) · τ(t2)

σ(a · t1) = a · σ(t1) τ(a · t1) = a · τ(t1)

σ(1) = 1 τ(1) = 1

for all a ∈ R and t1, t2 ∈ T(V)

It can be seen that multiplication in T(V) is associative. Furthermore, 1 ∈ H is the identity element
of T(V). This indicates that T(V) is an associative quaternion algebra with an identity element. A
tensor quaternion algebra can also be referred to as a tensor algebra generated by the quaternion
module (V , J).
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For the quaternion tensor algebra T(V), the subspaces (T(V))+ and (T(V))− are denoted as
the eigenspaces of the involution σ with eigenvalues +1 and −1, respectively. (T(V))+ is a vector
subspace of T(V) that is invariant under complex conjugation τ, and

T(V) = (T(V))+ + (T(V))−, (T(V))+ = T(V) ∩ V0, (T(V))− = T(V) ∩ JV0 (1)

where (T(V))+ is a subalgebra of T(V).
Next, the quaternification of the tensor algebra will be defined as follows:

Definition 2. Let T0(V) be a real or complex tensor algebra. Let T(V) be a quaternion tensor algebra. Then
T(V) is said to be the quaternification of T0(V) if T0(V) is a real tensor subalgebra of (T(V))+, and if there
exists a real vector subspace b(V) of (T(V))− such that T0(V) + b(V) generates T(V) as a real tensor algebra.

Example 1.

1. gl(n,H) is a quaternion tensor algebra that is quaternifinification of gl(n,C)
2. sl(n,H) is a quaternion tensor algebra that is quaternifinification of sl(n,C)

Next, we will define the associative quaternion algebra. Let (V ′, J) be a module over H. Let
σ be a linear involution over C on V ′ that is anti-commutative with J : Jσ = −σJ, and let τ be a
complex conjugation linear involution on V ′ that commutes with στ = τσ. Let V ′

0 be the eigenspace of
σ corresponding to the eigenvalue +1. Then, V ′ = V ′

0 + JV ′
0. Both V ′

0 and JV ′
0 are invariant under τ.

Definition 3. Let A be a R-submodule of the H-module (V ′, J). Then A is called quaternion algebra if it
satisfies the following properties:

1. A is a real algebra
2. σ and τ are homomorphism of algebra A

(a) A is invariant under the involutions σ and τ.
(b)

σ(u + v) = σ(u) + σ(v) τ(u + v) = τ(u) + τ(v)

σ(uv) = σ(u) · σ(v) τ(uv) = τ(u)τ(v)

σ(au) = aσ(u) τ(au) = aτ(u)

σ(1) = 1 τ(1) = 1

for all a ∈ R and u, v ∈ A

An algebra A is called an associative quaternion algebra if for every u, v, w ∈ A the following
holds:

(uv)ww = u(vw) (2)

An associative quaternion algebra has an identity element e if eu = ue = u for every u ∈ A.
An associative quaternion algebra can also be refreed to as an associative algebra generated by

the quaternion module (V ′, J).
For an associative quaternion algebra A, let A± denote the eigenspaces of the involution σ

with eigenvalues ±1, respectively. A± are vector subspaces of A that are invariant under complex
conjugation τ, and

A = A+ + A−, A+ = A ∩ V ′
0, A− = A ∩ JV ′

0. (3)

where A+ is a subalgebra of A.
Next, the quaternification of an associative algebra will be defined as follows:
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Definition 4. Let A0 be a real or complex associative algebra. Let A be a quaternion associative algebra. Then
A is said to be the quaternification of A0 if A0 is a real associative subalgebra of A+, and if there exists a real
vector subspace b of A− such that A0 + b generates A as a real associative algebra.

Example 2.

1. gl(n,H) is a quaternion associative algebra that is quaternifinification of gl(n,C)
2. sl(n,H) is a quaternion associative algebra that is quaternifinification of sl(n,C)

Definition 5. Let A1 and A2 be a quaternion associative algebra. Then a homomorphism φ : A1 → A2 of real
associative algebra is called a homomorphism of quaternion associative algebra if

φ(σu) = σφ(u) and φ(τu) = τφ(u), for all u ∈ A1 (4)

Example 3. Let A1, A2 ∈ gl(2,H) and consider the map φ : A1 → A2 defined by φ(x) = x for all x ∈ A1. It
can be shown that φ is a homomorphism of quaternion associative algebra.

Definition 6. Let A be a quaternion associative algebra and let I be an ideal of A viewed as a real associative
algebra. I is called ideal of quaternion associative algebra if I invariant over involution σ.

The quotient space of the associative quaternion algebra A by an ideal I is equipped with the
structure of an associative quaternion algebra, where the involution σ̂ on A/I is defined by

σ̂(x + I) = σx + I (5)

For a homomorphism of associative quaternion algebras ϕ : A1 → A2, the kernel ker ϕ is an ideal of
A1.

From the associative quaternion algebra, we naturally obtain a quaternion Lie algebra AL [7] by
defining the Lie bracket as follows:

[c1 ⊗ u, c2 ⊗ v] = (c1c2)⊗ (u · v)− (c2c1)⊗ (v · u) (6)

for every c1, c2 ∈ H and u, v ∈ A0, where A0 is quaternification of A. The associativity of A leads to
the Jacobi identity of this bracket.

Next, it will be shown that the quaternion tensor algebra T(V) is general. Suppose ϕ : V → U is a
linear map from the quaternion module (V , J) to associative quaternion algebra U. Then there exist a
unique homomorphism (of associative quaternion algebras) ψ : T(V) → U such that ϕ = ψ ◦ φ, where
φ is the canonical embedding of V into T(V). This embedding is given by φ(t1) : t1 (where t1 ∈ T(V)),
we have

t = t0 + t1 + · · ·+ tk + . . . , (tk ∈ TkV) (7)

the definition of ψ is simply given by

ψ

(
∞

∑
k=0

∑
i1 ...ik

ai1 ...ik vi1 ⊗ · · · ⊗ vik

)
=

∞

∑
k=0

∑
i1 ...ik

ai1 ...ik ϕ(vi1)⊗ · · · ⊗ ϕ(vik ) (8)

where the product on the right-hand side is the product in the associative quaternion algebra U.
The next topic is the definition and construction of the general enveloping algebra (U(L), i) of

the quaternion Lie algebra L. Subsequently, we will see how the ideas from the previously discussed
associative quaternion tensor algebra are used in the construction of U(L).

Definition 7. Let L be a quaternion Lie algebra. Then a universal enveloping algebra of L is a pair
(U(L), i) with U(L) a quaternion associative algebra with unit element and homomorphism i : L → U(L) be a
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homomorphism quaternion Lie algebra where U(L) is considered as a quaternion Lie algebra (because for any
quaternion associative algebra has a quaternion Lie algebra in a natural way), i.e. i is a linear map satisfying

i([x, y]) = i(x)i(y)− i(y)i(x) (x, y ∈ L) (9)

i(σx) = σi(x) and i(τx) = τi(x) (x ∈ L) (10)

Futhermore, the pair (U(L), i) is such that for any other pair (W, j) with W an quaternion associative al-
gebra with unit element and j a homomorphism of quaternion Lie algebra j : L → W there exist a unique
homomorphism ψ1 : U(L) → W, mapping the identity of U(L) to identity of W, and such that j = ψ1 ◦ i.

The discussion begins with the quaternion Lie algebra L. Given a quaternion Lie algebra L, L is a
submodule of R within the quaternion module (V , J). Consequently, one can construct the quaternion
tensor algebra T(L) with an identity element,

T(L) = H⊕ L ⊕ T2L ⊕ T3L ⊕ · · · ⊕ TkL ⊕ . . . (11)

The next step is to construct the ideal I in T(L), using the Lie bracket in L. Consider elements in
L ⊕ T2L ⊂ T(L) of the form

Ix,y = x ⊗ y − y ⊗ x − [x, y] (x, y ∈ L) (12)

An ideal I in T(L) will be constructed form elements of this form, by enforcing the condition that
elements of I are annihilated from both the left and right by element of T(L). Specifically, I is given by

I :=
{

∑
x,y∈L

t ⊗ Ix,y ⊗ t′|x, y ∈ L; t, t′ ∈ T(L)
}

(13)

with the two sided ideal I, we can define the quaternion Lie algebra quotient

U(L) := T(L)/I (14)

and the canonical projection
Ψ : t ∈ T(L) → Ψ(t) ∈ U(L) (15)

by definition, we have
Ψ(I) = 0 ∈ U(L) (16)

In particular, since Ψ is a canonical homomorphism, it satisfies

Ψ(x ⊗ y − y ⊗ x − [x, y]) = Ψ(x)Ψ(y)− Ψ(y)Ψ(x)− Ψ([x, y]) = 0 (17)

The restriction of Ψ to the subspace L of T(L) is given by the homomorphism

i ≡ Ψ|L : L → U(L) (18)

Thus, for x and y in L, we obtain

i([x, y]) = Ψ([x, y]) = Ψ(x)Ψ(y)− Ψ(y)Ψ(x) = i(x)i(y)− i(y)i(x) (19)

The additional condition for the homomorphism of quaternion Lie algebras will be shown next. Let
u1 + Jv1 ∈ L. We have the following calculations:

i(σ1(u1 + Jv1)) = i(u1 − Jv1) = u2 − Jv2 = σ2 − Jv2 = σ2(i(u1 + Jv1), (20)
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and
i(τ1(u1 + Jv1)) = i(ū1 − Jv̄1) = ū2 − Jv̄2 = τ2 − Jv2 = τ2(i(u1 + Jv1), (21)

Thus, i is a homomorphism of quaternion Lie algebras.
Let (W, j) be another enveloping algebra. Define a map ψ : T(L) → W by

ψ

(
∞

∑
k=0

∑
i1 ...ik

ai1 ...ik vi1 ⊗ · · · ⊗ vik

)
=

∞

∑
k=0

∑
i1 ...ik

ai1 ...ik j(vi1)⊗ · · · ⊗ j(vik ) (22)

The map ψ is an associative quaternion algebra homomorphism with an identity element. Since
j : L → U is a homomorphism of quaternion Lie algebras, it follows that

ψ([x, y]− xy − yx) = j([x, y])− j(x)j(y)− j(y)j(x) = 0 (23)

Thus, I ⊂ ker ψ, so ψ1 : U(L) → W is a well defined homomorphism of associative quaternion algebras
with an identity element. Therefore,

(ψ1 ◦ i)(x) = ψ(x) = j(x) (24)

by linearity, we have
j = ψ1 ◦ i (25)

Assume that ψ′
1 : U(L) → W is another homomorphism of associative quaternion algebras with an

identity element such that
j = ψ′

1 ◦ i (26)

Then,
ψ1(x) = j(x) = (ψ′

1 ◦ i)(x) = ψ′
1(x) (27)

Therefore, ψ1 = ψ′
1. This shows that ψ1 is unique as required.

The final structure requires the concept of a quaternion Lie algebra generated by the basis {X, JX}.
Let X be a finite set over C identified with a subset 1 ⊗ X ⊂ H⊗ X. Denote JX = j ⊗ X ⊂ H⊗ X.
The set (X, JX) is a subset of the module H. Note that the elements of {X, JX} serve as a basis for the
quaternion module denoted as V ≡ V(X, JX). Next, consider the set V(X, JX) of formal sums given
by

V(X, JX) ≡
{ n

∑
i=1

[c(xi)xi + d(xi)Jxi]|c(xi), d(xi) ∈ H; xi, Jxi ∈ {X, JX}
}

(28)

Define the addition of two elements in V(X, JX) and multiplication by a real number λ as follows:

n

∑
i=1

[c(xi)xi + d(xi)Jxi] +
n

∑
i=1

[p(xi)xi + q(xi)Jxi] =
n

∑
i=1

[(c(xi) + p(xi)xi + (d(xi) + q(xi))Jxi]

and

λ
n

∑
i=1

[c(xi)xi + d(xi)Jxi] =
n

∑
i=1

[λc(xi)xi + λd(xi)Jxi]

where c(xi), d(xi), p(xi), q(xi) ∈ H, xi, Jxi ∈ {X, JX}, λ ∈ R Thus, V(X, JX) is a real vector space
generated by the set {X, JX}. Next, define the operation • : H× V(X, JX) → V(X, JX) by the rule:
(x, v) → xv which satisfies x(yv) = (xy)v for all x, y ∈ H and v ∈ V(X, JX). Consequently, V(X, JX)

is a quaternion module generated by the basis {X, JX}.
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The next step involves the construction of the quaternion tensor algebra T(V) = T(V(X, JX))

from the quaternion module (V , J). From the quaternion tensor algebra T(V), we obtain the quaternion
Lie algebra T(V)L with the Lie bracket defined by:

[c1 ⊗ u, c2 ⊗ v] ≡ (c1c2)⊗ (u ⊗ v)− (c2c1)⊗ (v ⊗ u) (29)

for c1, c2 ∈ H and u, v ∈ T0(V), where T0(V) denotes the quaternification of T(V), Thus, we obtain
the Lie algebra T(V)L. Furthermore, we can obtain the smallest quaternion Lie algebra generated by
the set {X, JX}. Observe that in T(V)L, the quaternion Lie subalgebra contains the set {X, JX}. The
smallest subalgebra containing {X, JX} is the intersection of all subalgebras of T(V)L that contain
{X, JX}. This intersection is the quaternion Lie algebra denoted by L(X, JX). Thus, L(X, JX) is called
the quaternion Lie algebra generated by the basis {X, JX}

Based on the discussion about the general enveloping algebra, we can demonstrate that L(X, JX)

is non-trivial by constructing a representation ψ of L(X, JX).
Let ϕ be a mapping from the set (X, JX) to a quaternion Lie algebra U:

ϕ : (X, JX) → U (30)

Then, ϕ has a unique extension
ψ : L(X, JX) → U (31)

where ψ is a homomorphism of quaternion Lie algebras.
As an application, consider the set (X, JX) and the mapping ϕ from (X, JX) to the general linear

algebra gl(W) of the quaternion module (V , J):

ϕ : (X, JX) → gl(W) (32)

This mapping ϕ can be uniquely extended to a homomorphism of quaternion Lie algebras:

ψ : L(X, JX) → gl(W) (33)

Thus, ψ is a representation of L(X, JX). Consequently, it follows that L(X, JX) is non-trivial.

2.2. Realization of Generalized Cartan Matrix Over Quaternion

This subsection discusses the concepts of Cartan matrix generalization and realizations. These
concepts are utilized in subsection 2.1, where the construction of quaternion Lie algebras involves the
use of generalized Cartan matrices.

Based on the concept of Cartan matrix generalization, one can construct semisimple Lie algebras
of finite dimension, as demonstrated by Serre. However, for Serre’s construction, it is required that the
generalized Cartan matrices used are non-singular. Therefore, the concept of realization is needed to
ensure that the generalization of Cartan matrices is non-singular. Thus, in constructing semisimple
quaternion Lie algebras, the same approach as Serre’s construction will be applied, utilizing the concept
of realization for generalized Cartan matrices specifically in the context of quaternions.

Let A0 be an n × n matrix over C with rank A0 = r. The realization of matrix A0 is {H, Π, ΠV}
where:

1. H is a complex vector space with dimension 2n − r.
2. ΠV = {αv

1, αv
2, . . . , αv

n} is a set of n independent elements in H.
3. Π = {α1, α2, . . . , αn} is a set of n independent elements in the dual space H∗ of H.
4. The dual contraction between H∗ and H satisfies (A0)ij = ⟨αj, αv

i ⟩.
Next, the realization of matrix A0 is extended to the realization of A, where A is the quaternionifi-

cation of A0. Here is the definition of the realization of matrix A:
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Definition 8. Let A be an n × n quaternion matrix over R with rank A = r. The matrix A = A0 + JB0,
where A is the quaternification of A0. A0 and B0 are n × n matrix over C with rank A0 = rank B0 = r. Then,
the realization of matrix A is {H, Π, ΠV , JH, JΠ, JΠV} where:

1. H + JH is a real vector space with dimension (2n − r).
2. ΠV = {αv

1, αv
2, . . . , αv

n} is a set of n independent elements in H.
3. Π = {α1, α2, . . . , αn} is a set of n independent elements in the dual space H∗ of H.
4. JΠV = {Jαv

1, Jαv
2, . . . , Jαv

n} is a set of n independent elements in JH.
5. JΠ = {Jα1, Jα2, . . . , Jαn} is a set of n independent elements in the dual space JH∗ of JH.
6. The dual contraction between H∗ and JH is such that (JB0)ij = ⟨aj, Jav

i ⟩ = J⟨aj, av
i ⟩.

7. The dual contraction between JH∗ and H is such that (JB0)ij = ⟨Jaj, av
i ⟩ = J⟨aj, av

i ⟩.
8. The dual contraction between JH∗ and JH is such that −(A0)ij = ⟨Jaj, Jav

i ⟩.

Note that
√
−1xi,

√
−1Jxi for xi = αi, αv

i . Also, note that dim H = dim JH = 2n − r ≥ n. It
follows that ΠV is a basis in H and JΠV is a basis in JH if and only if rank A = n, in other words, A is
a nonsingular matrix.

Any square matrix can be constructed with the following realization. A matrix A of order n × n
with rank A = r has an r × r submatrix denoted by A(r) where A(r) is nonsingular. By permuting
rows and columns, A can be rearranged so that A(r) is in the upper-left corner. Assume this has been
done. Thus, the form of the matrix A is given by:

A =

(
A(r) B

C D

)
(34)

Next, this matrix is extended to a matrix E of order (2n − r)× (2n − r) given by:

E =

A(r) B 0
C D In−r

0 In−r 0

 (35)

where In−r is the identity matrix of order (n − r) × (n − r). It can be shown that the matrix E is
nonsingular:

det E = ±det A(r) ̸= 0 (36)

This shows that the rows of E are linearly independent vectors of dimension (2n − r) in a vector
space of dimension (2n − r). Using the matrix E, the realization {H, Π, ΠV ,
JH, JΠ, JΠV} can be defined. For H, take C2n−r. The elements of H are rows of complex numbers of
dimension (2n − r). The rows of matrix E provide a basis for H. These rows are linearly independent
and their number equals the dimension of H. The system ΠV = {αv

1, . . . , αv
n} ⊂ H is defined as the set

of the first n rows of E. Then, for JH, take JC2n−r. The elements of JH are rows of complex numbers of
dimension (2n − r). The rows of matrix E provide a basis for JH. These rows are linearly independent
and their number equals the dimension of JH. The system JΠV = {Jαv

1, . . . , Jαv
n} ⊂ JH is defined as

the set of the first n rows of E:

αv
1 = {(A0)11, (A0)12, . . . , (A0)1n, 0, 0, . . . , 0} (37)

αv
2 = {(A0)21, (A0)22, . . . , (A0)2n, 0, 0, . . . , 0} (38)

... (39)

αv
r = {(A0)r1, (A0)r2, . . . , (A0)rn, 0, 0, . . . , 0} (40)

αv
r+1 = {(A0)r+1,1, (A0)r+1,2, . . . , (A0)r+1,n, 1, 0, . . . , 0} (41)
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... (42)

αv
n = {(A0)n1, (A0)n2, . . . , (A0)nn, 0, 0, . . . , 1} (43)

Jαv
1 = {(JB0)11, (JB0)12, . . . , (JB0)1n, 0, 0, . . . , 0} (44)

Jαv
2 = {(JB0)21, (JB0)22, . . . , (JB0)2n, 0, 0, . . . , 0} (45)

... (46)

Jαv
r = {(JB0)r1, (JB0)r2, . . . , (JB0)rn, 0, 0, . . . , 0} (47)

Jαv
r+1 = {(JB0)r+1,1, (JB0)r+1,2, . . . , (JB0)r+1,n, J, 0, . . . , 0} (48)

... (49)

Jαv
n = {(JB0)n1, (JB0)n2, . . . , (JB0)nn, 0, 0, . . . , J} (50)

The space H∗, the dual of H, is a space of dimension (2n − r) of linear functionals on H. The
system Π = {α1, α2, . . . , αn} of linear functionals on H must be defined such that:

⟨αi, αv
j ⟩ = (A0)ji (i, j = 1, . . . , n) (51)

⟨Jαi, αv
j ⟩ = (JB0)ji (i, j = 1, . . . , n) (52)

⟨αi, Jαv
j ⟩ = (JB0)ji (i, j = 1, . . . , n) (53)

⟨Jαi, Jαv
j ⟩ = −(A0)ji (i, j = 1, . . . , n) (54)

For αi, the linear functional is taken to assign each vector v = (v1, v2, . . . , v2n−r) in H the i-th
component of this vector:

⟨αi, v⟩ = vi (i = 1, . . . , n) (55)

⟨Jαi, v⟩ = Jvi (i = 1, . . . , n) (56)

Applying αi to the vector αv
j yields the i-th component of αv

j . This exactly corresponds to the
(j, i)-th element of matrix Aji of matrix A. This completes the construction of the realization of the
matrix A of order n × n with rank r.

Example 4. Suppose A is the Cartan matrix of the quaternion Lie algebra sl(n,H). By quaternifica-
tion, we obtain A = A0 + JB0, where A0, B0 ∈ sl(n,C). Thus, the realization of A is given by

A0 =



2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

. . .
...

...
...

...
0 0 0 · · · 2 −1
0 0 0 · · · −1 2


and JB0 =



2J −J 0 · · · 0 0
−J 2J −J · · · 0 0
0 −J 2J · · · 0 0
...

. . .
...

...
...

...
0 0 0 · · · 2J −J
0 0 0 · · · −J 2J


Since A0 dan B0 satisfy rank A0 = rank B0 = n, we obtain H = Cn and H = Cn with

av
1 = {2,−1, 0, . . . , 0, 0} Jav

1 = {2J,−J, 0, . . . , 0, 0}
av

2 = {−1, 2,−1, . . . , 0, 0} Jav
2 = {−J, 2J,−J, . . . , 0, 0}

...
...

av
n = {0, 0, 0, . . . ,−1, 2} Jav

n = {0, 0, 0, . . . ,−J, 2J}
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2.3. Serre’s Construction Over Quaternion

From subsections 2.1 and 2.2, the properties needed for the construction of the universal Kac-
Moody quaternion Lie algebra are obtained. Then, a realization of the generalized Cartan matrix A
will be used. This realization will be denoted as {H, Π, ΠV , JH, JΠ, JΠV}.

The starting point of the construction is with the set (X̂, JX̂) given by

(X̂, JX̂) = X̂ + JX̂ = {êi, Jêi, f̂i, J f̂i}n
i=1 ∪ Ĥ ∪ JĤ (57)

where Ĥ = C2n−r, JĤ = JC2n−r, and {êi, Jêi, f̂i, J f̂i}n
i=1 is an arbitrary set with 4n elements over C.

Based on subsection 2.1, the free quaternion Lie algebra L(X̂, JX̂) generated by the basis {X̂, JX̂} has
been constructed. Furthermore, L(X̂, JX̂) can be written as

L(X̂, JX̂) = L0(X̂, JX̂) + JL0(X̂, JX̂), (58)

where L(X̂, JX̂) is the quaternionification of the complex Lie algebra L0(X̂, JX̂). More specifically,

L(X̂, JX̂) = Lr(X̂, JX̂) +
√
−1Lr(X̂, JX̂) + JLr(X̂, JX̂) + J(

√
−1Lr(X̂, JX̂)), (59)

where Lr(X̂, JX̂) is the real form of L0(X̂, JX̂). Next, let us denote this quaternion Lie algebra by

ĝ(A) ≡ L(X̂, JX̂). (60)

The quaternion Lie algebra ĝ(A) generated by the basis {X̂, JX̂} has no relations among its elements.
Therefore, we have the equivalence

ĝ(A) = ĝ0(A) + Jĝ0(A), (61)

where ĝ(A) is the quaternionification of the complex Lie algebra ĝ0(A). More specifically,

ĝ(A) = ĝr(A) +
√
−1ĝr(A) + Jĝr(A) + J(

√
−1ĝr(A)), (62)

where ĝr(A) is the real form of ĝ0(A). Elements of ĝ(A) include all generators and their linear
combinations. Additionally, it includes all types of commutator multiples between generators, for
example:

[Jĥ, êi] = Jĥ ⊗ êi − êi ⊗ Jĥ, (63)

[êi, f̂i] = êi ⊗ f̂i − f̂i ⊗ êi, (64)

[êi, J f̂i] = êi ⊗ J f̂i − J f̂i ⊗ êi, (65)

[êi, [ĥ, êj]] = êi ⊗ [ĥ, êj]− [ĥ, êj]⊗ êi = êi ⊗ ĥ ⊗ êj − êi ⊗ êj ⊗ ĥ − ĥ ⊗ êj ⊗ êi + êj ⊗ ĥ ⊗ êi, (66)

and linear combinations of such elements. Subsequently, the relationship of ĝ(A) will be examined
through the definition of the ideal Î in ĝ(A). Note that in ĝ(A), the subset Ŷ0 consists of elements:

[ĥ, ĥ′], [ĥ, êi]− ⟨α̂i, ĥ⟩êi, [ĥ, f̂i] + ⟨α̂i, ĥ⟩ f̂i, [êi, f̂i]− δijα̂i v̂. (67)

Let Î0 be the ideal of the complex Lie algebra in ĝ0(A) generated by the subset Ŷ0. This shows that Î0 is
the intersection of all ideals in ĝ0(A) that contain Ŷ0. Next, consider in ĝ(A), the subset Ŷ∗ consisting
of elements:

[ĥ, Jĥ′], [Jĥ, Jĥ′] (where ĥ, ĥ′ ∈ Ĥ, Jĥ, Jĥ′ ∈ JĤ), (68)

[Jĥ, êi]− ⟨α̂i, Jĥ⟩êi, [ĥ, Jêi]− ⟨α̂i, ĥ⟩Jêi, [Jĥ, Jêi] + ⟨α̂i, ĥ⟩êi, (69)

[Jĥ, f̂i] + ⟨α̂i, Jĥ⟩ f̂i, [ĥ, J f̂i] + ⟨α̂i, ĥ⟩J f̂i, [Jĥ, J f̂i]− ⟨α̂i, ĥ⟩ f̂i, (70)
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[Jêi, f̂i]− δij Jα̂v
i , [êi, J f̂i]− δij Jα̂v

i , [Jêi, J f̂i] + δijα̂
v
i (i, j = 1, . . . , n). (71)

Let Î∗ be an ideal of the real Lie algebra ĝ(A) generated by the subset Ŷ∗. This shows that Î∗ is the
intersection of all ideals in ĝ(A) that contain Ŷ∗.

Let Î = Î0 + Î∗, where Î is generated by the subsets Ŷ0 and Ŷ∗. Then,

Î ⊂ L0 + JLr, Î ∩ ĝ0(A) = Î0. (72)

Note that elements such as [
√
−1xi, Jyi] and [

√
−1Jxi, Jyi] for xi, yi = hi, ei, fi do not necessarily have

to be contained in Î. From ĝ(A) and the ideal Î, the quaternion Lie algebra quotient g̃(A) is defined by

g̃(A) = ĝ(A)/ Î. (73)

Thus, g̃(A) is the quaternionification of g̃(A)0. The canonical projection from ĝ(A) to g̃(A) given by Ψ
is:

Ψ : x̂ ∈ ĝ(A) → x ≡ Ψ(x̂) ∈ g̃(A). (74)

Since Ψ is a homomorphism of quaternion Lie algebra, we obtain the commutation relations for g̃(A):

[ĥ, ĥ′] = 0, [ĥ, êi] = ⟨α̂i, ĥ⟩êi, [êi, f̂ j] = δijα̂iv, [ĥ, f̂i] = −⟨α̂i, ĥ⟩ f̂i, (75)

and
[ĥ, Jĥ′] = 0, [Jĥ, Jĥ′] = 0 (ĥ, ĥ′ ∈ Ĥ, Jĥ, Jĥ′ ∈ JĤ), (76)

[Jĥ, êi] = ⟨α̂i, Jĥ⟩êi, [ĥ, Jêi] = ⟨α̂i, ĥ⟩Jêi, [Jĥ, Jêi] = −⟨α̂i, ĥ⟩êi, (77)

[Jĥ, f̂i] = −⟨α̂i, Jĥ⟩ f̂i, [ĥ, J f̂i] = −⟨α̂i, ĥ⟩J f̂i, [Jĥ, J f̂i] = ⟨α̂i, ĥ⟩ f̂i, (78)

[Jêi, f̂ j] = δij Jα̂v
i , [êi, J f̂ j] = δij Jα̂v

i , [Jêi, J f̂ j] = −δijα̂
v
i (i, j = 1, . . . , n) (79)

Note that there are no carets ( ˆ ) on αi and αv
i in (75)-(79).

Next, it will be demonstrated that the quaternion Lie algebra g̃(A) is non-trivial. This can be
shown by constructing a representation ψ̂ of g̃(A). To investigate the structure of the quaternion Lie
algebra g̃(A), the set of generators {X, JX} will be used. Each element of the generator set {X, JX},
namely ĥ, Jĥ, êi, Jêi, f̂i, and J f̂i, will be defined as the corresponding linear operators ĥ·, Jĥ·, êi·, Jêi·, f̂i·,
and J f̂i·, which act on the quaternion tensor algebra T(V), where (V, J) is an n-dimensional quaternion
module with {v1, v2, . . . , vn}. This defines a mapping

ϕ : (X̂, JX̂) → gl(T(V)) (80)

Based on (32), this mapping has a unique extension to the representation ψ̂ (over R) of the algebra
g̃(A) on the space T(V). For simplicity in notation, elements of the quaternion tensor algebra T(V)

will be denoted by

vi1 vi2 · · · vik ≡ vi1 ⊗ vi2 ⊗ · · · ⊗ vik (81)

for k = 1, 2, . . .. For k = 0, the base element 1 ∈ H is taken.
Let T0(V) be the complex tensor algebra associated with the quaternion module (V , J) of dimen-

sion n, and let X̂ = {êi, f̂i}n
i=1 ∪ Ĥ be the set of generators. Then the action of X̂ on T0(V), for any

λ̂ ∈ Ĥ∗, is defined by:

ĥ • 1 := ⟨λ, ĥ⟩1 (82)

ĥ • vj1 · · · vjk := −⟨α̂ji + · · ·+ α̂jk , ĥ⟩vj1 · · · vjk + ⟨λ̂, ĥ⟩vj1 · · · vjk (83)

f̂i • 1 := vi (84)
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f̂i • vj1 · · · vjk := vivj1 · · · vjk (85)

êi • 1 := 0 (86)

êi • vj1 · · · vjk := vi êi · (vj1 · · · vjk ) + δij1 α̂iv · (vj1 · · · vjk ) (87)

The action of X̂ on T0(V) can be extended to a Lie algebra homomorphism ψ̂0 (over C) from ĝ0(A)

to the linear quaternion Lie algebra gl(T0(V)). Furthermore, the action of X̂ on T0(V) extends to the
action (X̂, JX̂) on T(V), where T(V) is the quaternionification of T0(V). The definition of the action
(X̂, JX̂) on T(V) follows.

Definition 9. Let (X̂, JX̂) be the set of generators (57), and let T(V) be the real tensor algebra associated
with the quaternion module (V, J) of dimension n. Then the action of (X̂, JX̂) on T(V), for any λ̂ ∈ Ĥ∗ and
Jλ̂ ∈ JĤ∗, is defined by:

ĥ • J := ⟨Jλ, ĥ⟩1 (88)

f̂i • J := Jvi (89)

êi • J := 0 (90)

Jĥ • 1 := ⟨λ, Jĥ⟩1, Jĥ • J := −⟨λ, ĥ⟩1 (91)

Ĵh • vj1 . . . vjk := −⟨α̂j1 + · · ·+ α̂jk , Jĥ⟩vj1 . . . vjk + ⟨λ, Jĥ⟩vj1 . . . vjk (92)

J f̂i • 1 := Jvi, J f̂i • J := −vi (93)

J f̂i • vj1 . . . vjk := Jvivj1 . . . vjk (94)

Jêi • 1 := 0, Jêi • J := 0 (95)

Jêi • vj1 . . . vjk := vj1 Jêi • (vj2 . . . vjk) + δij1 Jα̂v
i • (vj2 . . . vjk) (96)

ĥ • Jvj1 . . . vjk := −⟨α̂j1 + · · ·+ α̂jk , ĥ⟩Jvj1 . . . vjk + ⟨λ, ĥ⟩Jvj1 . . . vjk (97)

f̂i • Jvj1 . . . vjk := vi Jvj1 . . . vjk (98)

êi • Jvj1 . . . vjk := vj1 êi • (Jvj2 . . . vjk) + δij1α̂v
i • (Jvj2 . . . vjk) (99)

Jĥ • Jvj1 . . . vjk := ⟨α̂j1 + · · ·+ α̂jk , ĥ⟩vj1 . . . vjk − ⟨λ, ĥ⟩vj1 . . . vjk (100)

J f̂i • Jvj1 . . . vjk := −vivj1 . . . vjk (101)

Jêi • Jvj1 . . . vjk := −vj1 êi • (vj2 . . . vjk)− δij1α̂v
i • (vj2 . . . vjk) (102)

The action of (X̂, JX̂) on T(V) can be extended to a homomorphism of quaternion Lie algebra ψ̂

(over R) from ĝ(A) to the quaternion linear Lie algebra gl(T(V)):

ψ̂ : x̂ ∈ ĝ(A) → ψ̂(x̂) ∈ gl(T(V)). (103)

This is given by
ψ̂([x̂, ŷ]) = x̂ · ŷ − ŷ · x̂. (104)

Next, it will be shown that a representation g̃(A) can be obtained that satisfies the commutation
relations (75)-(79). To achieve these commutation relations, the following theorem is needed.

Theorem 1. Let ψ be a homomorphism of quaternion Lie algebra from a quaternion Lie algebra K to a quaternion
Lie algebra L and Let I be an ideal in K contained in the kernel ψ i.e. I ⊂ ker ψ. Then there exist a unique
homomorphism of quaternion Lie algebra ϕ from K/I to L such that

ψ = ϕ ◦ Ψ (105)
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where Ψ : K → K/I is canonical projection.

Proof. Define ϕ : K/I → L by ϕ(k + I) = ψ(k), ∀k ∈ K. Since ψ is a homomorphism of quaternion
Lie algebra, ϕ is well defined. Suppose for some k1, k2 ∈ K that k1 + I = k2 + I. Since I is an ideal, it
contains the zero 0K of K. Then for some i ∈ I, we have that k1 + 0K = k1 = k2 + i. Then

ϕ(k1 + I) = ψ(k1)

= ψ(k2 + i)

= ψ(r2) + ψ(i)

= ψ(k2) + 0K

= ψ(k2)

= ϕ(k2 + I)

(106)

so ϕ is seen to be well defined. Next, for all k1, k2 ∈ K.

ϕ([k1 + I, k2 + I]) = ϕ((k1 + I)(k2 + I)− (k2 + I)(k1 + I))

= ϕ(k1 + I)ϕ(k2 + I)− ϕ(k2 + I)ϕ(k1 + I)

= ψ(k1)ψ(k2)− ψ(k2)ψ(k1)

= [ψ(k1), ψ(k2)]

= [ϕ(k1 + I), ϕ(k2 + I)]

(107)

Therefore ϕ is homomorphism Lie algebra. Furthermore, we have ϕ(σ(k + I)) = σϕ(k + I) and
ϕ(τ(k + I)) = τϕ(k + I), for all . It remains to demonstrate uniqueness. Suppose there were another
homomorphism ϕ′ : K/I → L with ψ = ϕ′ ◦ Ψ. Then we would require that, for all k ∈ K. ϕ′(k + I) =
ψ(k) = ϕ(k + I). That is ϕ′ = ϕ and so ϕ is unique.

To apply Theorem 1 to the representation ψ̂ of ĝ(A) on T(V), it is first shown that the ideal Î is
contained in the kernel ker ψ̂.

First, consider the commutator [ĥ, ĥ′]. From the definition of ĥ, particularly noting that ĥ· and ĥ′·
act diagonally on the basis, we have

ψ̂([ĥ, ĥ′]) = ĥ · ĥ′ · −ĥ′ · ĥ· = 0. (108)

Thus,
[ĥ, ĥ′] ∈ ker ψ̂. (109)

Similarly, it can be shown that
[ĥ, Jĥ′] ∈ ker ψ̂ (110)

[Jĥ, Jĥ′] ∈ ker ψ̂ (111)

Next, consider the example [ĥ, f̂ j]. We have

ψ̂([ĥ, f̂ j]) = ĥ · f̂ j − f̂ j · ĥ (112)
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Next, it will be shown that the left-hand side is equal to ψ̂(−⟨α̂j, ĥ⟩ f̂ j) by applying the operator (112)
to vi1 · · · vik ∈ T(V). Using (83) and (85), we obtain:

(ĥ · f̂ j− f̂ j · ĥ)vi1 · · · vik

= ĥ · vjvi1 · · · vik + f̂ j ·
{
⟨α̂i1 + · · ·+ α̂ik , ĥ⟩vi1 · · · vik − ⟨λ̂, ĥ⟩vjvi1 · · · vik

}
= −⟨α̂j + α̂i1 + · · ·+ α̂ik , ĥ⟩vjvi1 · · · vik + ⟨λ̂, ĥ⟩vjvi1 · · · vik

+ ⟨α̂i1 + · · ·+ α̂ik , ĥ⟩vjvi1 · · · vik − ⟨λ̂, ĥ⟩vjvi1 · · · vik

= −⟨α̂j, ĥ⟩ f̂ j · vi1 · · · vik

= ψ̂(−⟨α̂j, ĥ⟩ f̂ j)vi1 · · · vik

(113)

From (112) and (113), we obtain:
ψ̂([ĥ, f̂ j] + ⟨α̂j, ĥ⟩ f̂ j) = 0 (114)

Therefore,
([ĥ, f̂ j] + ⟨α̂j, ĥ⟩ f̂ j) ∈ ker ψ̂ (115)

Similarly, we obtain:

([Jĥ, f̂ j] + ⟨α̂j, Jĥ⟩ f̂ j) ∈ ker ψ̂ ([Jĥ, Jêi]− ⟨α̂i, ĥ⟩êj) ∈ ker ψ̂

([ĥ, J f̂ j] + ⟨α̂j, ĥ⟩J f̂ j) ∈ ker ψ̂ ([êi, f̂ j]− δijα̂iv) ∈ ker ψ̂

([Jĥ, J f̂ j]− ⟨α̂j, ĥ⟩ f̂ j) ∈ ker ψ̂ ([Jêi, f̂ j]− δij Jα̂iv) ∈ ker ψ̂

([ĥ, êi] + ⟨α̂i, ĥ⟩êj) ∈ ker ψ̂ ([Jĥ, êi] + ⟨α̂i, Jĥ⟩êj) ∈ ker ψ̂

([Jêi, J f̂ j] + δijα̂iv) ∈ ker ψ̂ ([ĥ, Jêi] + ⟨α̂i, ĥ⟩Jêj) ∈ ker ψ̂

([êi, J f̂ j]− δij Jα̂iv) ∈ ker ψ̂

Thus, it is obtained that every generator element of the ideal Î is in ker ψ̂ and Î ⊆ ker ψ̂. Now,
we can apply Theorem 1 to the homomorphism ψ̂ in (103) with K = ĝ(A) and L = gl(T(V)). This
concludes the representation ϕ of g̃(A) in (73):

φ : g̃(A) = ĝ(A)/ Î → gl(T(V)) (116)

Using the notation x = Ψ(x̂) in (74), we obtain

φ(x) = ψ̂(x̂) (117)

Now, all the required properties have been obtained to define the universal Kac-Moody quaternion
Lie algebra.

Definition 10. Let ĝ(A) be the quaternion Lie algebra defined in (60) and Î the ideal defined in (67)-(71). Then
the quotient algebra

g̃(A) = ĝ(A)/ Î (118)

is by definition the universal Kac-Moody quaternion Lie algebra corresponding to the generalized Cartan
matrix A.

Theorem 2. Let g̃(A) be the universal Kac-Moody quaternion Lie algebra belonging to the generalized Cartan
matrix A = (Aij). Then g̃(A) has the following properties:

1. In the universal Kac-Moody quaternion Lie algebra g̃(A) is genereted by

{X, JX} = {ei, Jei, fi, J fi}n
i=1 ∪ H ∪ JH (119)
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2. In the universal Kac-Moody quaternion Lie algebra g̃(A) the following commutation realtions hold

[h, ei] = ⟨αi, h⟩ei, [Jh, ei] = ⟨αi, Jh⟩ei, [h, Jei] = ⟨αi, Jh⟩ei, (120)

[Jh, Jei] = −⟨αi, h⟩ei, [h, fi] = −⟨αi, fi⟩, [Jh, fi] = −⟨αi, Jh⟩ fi, (121)

[h, J fi] = −⟨αi, h⟩J fi, [Jh, J fi] = ⟨αi, h⟩ fi, (122)

[ei, f j] = δijα
v
i , [Jei, f j] = δij Jαv

i , [ei, J f j] = δij Jαv
i , (123)

[Jei, J f j] = δij Jαv
i , [h, h] = 0, [h, Jh] = 0, [Jh, Jh] = 0 (124)

Special case of (120)-(124) read

[αv
i , ei] = ⟨αi, αv

i ⟩ei = Aijej, [Jαv
i , ei] = ⟨αi, Jαv

i ⟩ei = Aijej, (125)

[αv
i , Jei] = ⟨αi, αv

i ⟩Jei = Aijej, [Jαv
i , Jei] = −⟨αi, αv

i ⟩ei = −Aijej (126)

and
[αv

i , fi] = −⟨αi, αv
i ⟩ fi = −Aij f j, [Jαv

i , fi] = −⟨αi, Jαv
i ⟩ fi = −Aij f j, (127)

[αv
i , J fi] = −⟨αi, αv

i ⟩J fi = −Aij f j, [Jαv
i , J fi] = ⟨αi, αv

i ⟩ fi = Aij f j (128)

3. Let Ñ− be the C-module generated by { f1, . . . , fn, J f1, . . . , J fn}, Ñ+ be the C-module generated by
{e1, . . . , en, Je1, . . . , Jen}, and Let K generated by H⊗C H = H ⊕ JH . Then, Ñ−, K, and Ñ+ viewed as
a real Lie subalgebra of g̃(A) give the decomposition of g̃(A) :

g̃(A) = Ñ− ⊕ K ⊕ Ñ+ (129)

4. Considering g̃(A) as an ad Hr module, where Hr is a maximal commutative subalgebra of g̃(A) we have
the root decomposition

g̃(A) =

 ⊕
α ̸=0,α∈Q+

g̃−α

⊕ g̃0 ⊕

 ⊕
α ̸=0,α∈Q+

g̃+α

 (130)

where g̃α := {x ∈ g̃(A)|∀h ∈ Hr : ad h(x) = ⟨α, h⟩x}, Hr ⊂ g̃0 = K. Furthermore, dim g̃α < ∞ and
g̃α ⊂ Ñ± for ±α ∈ Q+, α ̸= 0.

Proof. To prove Theorem 2, we first need to show that the set

Ĥ ∪ JĤ ∪ {êi, f̂i, Jêi, J f̂i}n
i=1 (131)

satisfies the canonical projection
Ψ : ĝ(A) → g̃(A) (132)

This means we need to ensure that Ĥ, JĤ, and {êi, f̂i, Jêi, J f̂i}n
i=1 are not contained in the ideal Î.

However, it can be further shown that both Ĥ, JĤ, and {êi, f̂i, Jêi, J f̂i}n
i=1 are not contained in

ker ψ̂. For Ĥ and JĤ, this is relatively straightforward to prove.
Take ĥ ∈ Ĥ and Jĥ ∈ JĤ. Suppose ĥ and Jĥ are elements of ker ψ̂. Then we have

ψ̂(ĥ) = 0 (133)

and
ψ̂(Jĥ) = 0, (134)

From (82) and (91), we have
ψ̂(ĥ) · 1 = ĥ · 1 = ⟨λ̂, ĥ⟩1 = 0, (135)
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ψ̂(Jĥ) · 1 = Jĥ · 1 = ⟨λ̂, Jĥ⟩1 = 0, (136)

where λ̂ is arbitrary in H∗. However, if ĥ and Jĥ are in ker ψ̂, then we get

⟨λ̂, ĥ⟩ = ⟨λ̂, Jĥ⟩ = 0 for all λ̂ ∈ H∗. (137)

Thus, ĥ = Jĥ = 0. Therefore,
Ĥ = JĤ = 0, (138)

which is a contradiction. This implies that Ĥ ∩ ker ψ̂ = {0} and JĤ ∩ ker ψ̂ = {0}.
It is now known that the subspace Ĥ of the quaternion Lie algebra ĝ(A) is mapped one-to-one

onto g̃(A). That is,
Ψ : Ĥ → H (139)

Ψ : JĤ → JH (140)

is a bijective mapping. Thus, dim H = dim Ĥ and dim JH = dim JĤ.
To prove that the generator elements ê1, . . . , ên, Jê1, . . . , Jên, f̂1, . . . , f̂n, J f̂1, . . . , J f̂n are not in ker ψ̂,

we will use the fact that the mapping ψ̂ : ĝ(A) → gl(T(V)) is a homomorphism of quaternion Lie
algebra. Elements (67)-(71) in ĝ(A) are mapped by ψ̂ to the zero elements of gl(T(V)) (see, for example,
(115)).

Let ĥ = α̂iv and Jĥ = Jα̂iv. We have:

[êi·, f̂i·] = α̂iv·, [Jêi·, f̂i·] = Jα̂iv·, [êi·, J f̂i·] = Jα̂iv·, [Jêi·, J f̂i·] = −α̂iv·,
[α̂iv·, êi·] = 2êi·, [α̂iv·, Jêi·] = 2Jêi·, [Jα̂iv·, êi·] = 2Jêi·, [Jα̂iv·, Jêi·] = −2êi·,
[α̂iv·, f̂i·] = −2 f̂i·, [α̂iv·, J f̂i·] = −2J f̂i·, [Jα̂iv·, f̂i·] = −2J f̂i·, [Jα̂iv·, J f̂i·] = 2 f̂i·

This shows that we obtain gl(T(V)) from the representation sl(2;H). Since sl(2;H) is a simple
quaternion Lie algebra whose representation is faithful, from the discussion (135) and (136), we
have that ψ̂(α̂iv) = α̂iv· ̸= 0 and ψ̂(Jα̂iv) = Jα̂iv· ̸= 0 Thus, we obtain a faithful representation and
consequently, ψ̂(êi) = êi· ̸= 0, ψ̂(Jêi) = Jêi· ̸= 0, ψ̂( f̂i) = f̂i· ̸= 0, ψ̂(J f̂i) = J f̂i· ̸= 0. It follows that
êi, Jêi, f̂i, and J f̂i are not in ker ψ̂. Next, using the notation introduced in (74) and (132), we obtain

Ψ(êi) = ei, Ψ(Jêi) = Jei, Ψ( f̂i) = fi,

Ψ(J f̂i) = J fi, Ψ(ĥ) = h, Ψ(Jĥ) = Jh,
(141)

where h ∈ H and Jh ∈ JH; i = 1, . . . , n.
According to Ψ : Ĥ → H and Ψ : JĤ → JH, the projection Ψ∗ between their dual spaces is given

by:
Ψ∗ : γ̂ ∈ Ĥ∗ → γ ∈ H∗, (142)

Ψ∗ : Jγ̂ ∈ JĤ∗ → Jγ ∈ JH∗. (143)

This is defined in such a way that the dual contraction is invariant. It follows that for every γ̂ ∈ Ĥ∗

and Jγ̂ ∈ JĤ∗, we have:

⟨γ̂, ĥ⟩ = ⟨γ, h⟩, ⟨Jγ̂, ĥ⟩ = ⟨Jγ, h⟩, ⟨γ̂, Jĥ⟩ = ⟨γ, Jh⟩, ⟨Jγ̂, Jĥ⟩ = ⟨Jγ, Jh⟩ (144)

where
Ψ(ĥ) = h, Ψ(Jĥ) = Jh (145)

and
Ψ∗(γ̂) = γ, Ψ∗(Jγ̂) = Jγ (146)
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Thus, we obtain the set {H, Π, ΠV , JH, JΠ, JΠV}, where

⟨αi, αv
j ⟩ = Aji, ⟨Jαi, αv

j ⟩ = JAji, ⟨αi, Jαv
j ⟩ = JAji, ⟨Jαi, Jαv

j ⟩ = −Aji (147)

This represents the realization of the Cartan matrix generalization Aij.
Next, the proofs of (a)-(d) in Theorem 2 will be shown. Part (a) has been proven since it has been

demonstrated that the generating set

Ĥ ∪ JĤ ∪ {êi, f̂i, Jêi, J f̂i}n
i=1 (148)

satisfies the canonical projection Ψ in the previous section.
Part (b) simply demonstrates the result of constructing the quaternion Lie algebra quotient

ĝ(A)/ Î. To prove part (c), we refer to Theorem 3.7 in [7]. From this theorem, it follows that g̃(A) =

Ñ− + K + Ñ+. Assume u = Ñ− + k + Ñ+ = 0, where Ñ± ∈ Ñ± and k ∈ K. Since Ñ− is a C-module
generated by { f̂1, . . . , f̂n, J f̂1, . . . , J f̂n}, Ñ+ is a C-module generated by {ê1, . . . , ên, Jê1, . . . , Jên}, and
K is generated by H⊗C H = H ⊕ JH. Thus, u can be written as u = ei + Jei + h + Jh + fi + J fi = 0
where i = 1, . . . , n. According to Definition 2.9, we obtain

u · 1 = ei · 1 + Jei · 1 + h · 1 + Jh · 1 + fi · 1 + J fi · 1

= ⟨λ · h⟩+ ⟨λ · Jh⟩+ vi + Jvi

= 0

(149)

Thus, it follows that
⟨λ · h⟩+ ⟨λ · Jh⟩ = 0 (150)

for every λ ∈ H∗. Hence, h = Jh = 0. Furthermore, we also obtain vi + Jvi = 0. Since vi and Jvi are
linearly independent, it follows that vi = Jvi = 0. Therefore, part (c) is proven. It is also noted that Ñ+

is merely generated by {ê1, . . . , ên, Jê1, . . . , Jên} together with all possible double commutators of these
elements and their linear combinations. The subalgebra Ñ− has the same structure as êi replaced by f̂i

and Jêi replaced with J f̂i. Part (d) is a direct consequence of (b) and (c). Next, we will show this by
considering homogeneous elements in N̂+, namely the multiple commutators of ϵi (denoting ei or Jei)
where ϵ1 appears k1 times, ϵ2 appears k2 times, and so on. Furthermore, these elements are expressed
as

[ϵ1, ϵ1, . . . , ϵ1, ϵ2, ϵ2, . . . , ϵn, ϵn] (151)

Now, using the basic commutation relation

ad h(ϵj) = [h, ϵj] = ⟨αj, h⟩ϵj (152)

it can be easily proven, using the Jacobi identity and mathematical induction, that

ad h([ϵ1, ϵ1, . . . , ϵ1, ϵ2, ϵ2, . . . , ϵn, ϵn]) = ⟨k1α1 + k2α2 + · · ·+ knαn, h⟩[ϵ1, ϵ1, . . . , ϵ1, ϵ2, ϵ2, . . . , ϵn, ϵn]

(153)
For example, for any h ∈ Hr, we have

ad h([ϵ1, ϵ2]) = [h, [ϵ1, ϵ2]] = −[ϵ1, [ϵ1, h]]− [ϵ2, [h, ϵ1]] = ⟨α1 + α2, h⟩[ϵ1, ϵ2] (154)

This shows that homogeneous elements in N̂+ are simultaneous eigenvectors of ad h (h ∈ Hr). The
eigenvalue is ⟨α, h⟩ where α is

α =
n

∑
i=1

kiαi (ki = 0, 1, . . . ;
n

∑
i=1

ki ̸= 0) (155)

This is exactly what is meant in (d).
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The subspace g̃α with α ̸= 0 and α ∈ Q+ is a simultaneous eigenspace of ad h (h ∈ Hr) with
eigenvalue ⟨α, h⟩. For any α, it is certainly possible that g̃α = 0.

Note that α can never be in the form kαi with k ∈ Z and k ̸= ±1 because the corresponding Lie
algebra elements are

[ϵi, [ϵi, [. . . , ϵi]]] = 0. (156)

The only multiples of αi that appear as roots are αi and −αi.
The dimension of g̃α is finite. This follows from dim g̃α ≤ n|ht α|. Therefore, it can be concluded

that Theorem 2 is proven.

Example 5. sl(n,H) is the universal Kac-Moody quaternion Lie algebra.

In the following subsection, the construction of standard Kac-Moody quaternion Lie algebras will
be discussed.

3. Construction of Standard Kac-Moody Quaternion Lie Algebra
In this section, we will discuss the construction of the Standard Kac-Moody quaternion Lie

algebra. Based on the discussion in section 2, the universal Kac-Moody quaternion Lie algebra has
been constructed. This construction will be used to build the standard Kac-Moody quaternion Lie
algebra by imposing restrictions on g̃(A), where g̃(A) is the universal Kac-Moody quaternion Lie
algebra. To obtain these restrictions, we use facts from simple quaternion Lie algebras, specifically
that the length of the root chain is finite. In this way, we obtain the form of the standard Kac-Moody
quaternion Lie algebra. The main topic of this subsection is to introduce the definition of the standard
Kac-Moody quaternion Lie algebra.

It is known from simple quaternion Lie algebras that the length of the root chain is finite. The
restrictions are written as

(ad ϵj)
1−Aji (ϵi) = 0, (ad ϕj)

1−Aji (ϕi) = 0 (i ̸= j) (157)

Next, restrictions will be applied to g̃(A) so that similar relations hold in the Kac-Moody Lie
algebra. To obtain these restrictions, first, an ideal K is defined in g̃(A), generated by the elements on
the left-hand side of (157). Then, relation (157) holds in the quotient quaternion Lie algebra g̃(A)/K.
The important role in constructing the ideal K involves the subsets S+ and S−. The next section starts
with the definition and analysis of these sets.

Consider the two subsets in the algebra g̃(A) denoted S+ and S−. These subsets are defined by

S+ = {xij = (ad ϵj)
1−Aji (ϵi) | i ̸= j; 1, . . . , n, ϵi = ei or Jei} (158)

S− = {yij = (ad ϕj)
1−Aji (ϕi) | i ̸= j; 1, . . . , n, ϕi = fi or J fi} (159)

Note that in the subalgebra Ñ+, the ideal I+ generated by the subset S+ intersects trivially with
the abelian subalgebra H and JH, i.e.,

H ∩ I+ = 0 and JH ∩ I+ = 0 (160)

Similarly, in Ñ−, the ideal I− generated by S− also intersects trivially with the abelian subalgebra
H and JH, i.e.,

H ∩ I− = 0 and JH ∩ I− = 0 (161)

Furthermore, we have
I+ ∩ I− = 0 (162)
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The next step is to show that I+ and I− are ideals in the algebra g̃(A). Recall that it is necessary to
consider the quotient of g̃(A) by the appropriate ideal so that relations similar to (157) hold. To prove
that I+ and I− are ideals in g̃(A), we first need to prove Lemma 1.

Lemma 1. Let S+ and S− be subset in g̃(A) defined by (158) and (159). Then

ad ϵk(yij) = 0 (k = 1, 2 . . . , n) (163)

and
ad ϕk(yij) = 0 (k = 1, 2 . . . , n) (164)

Proof. We prove only the first statement of the lemma since the proof of the second one goes along
similar lines. We distinguish two cases namely k = i and k ̸= i. For k = i we prove that

ad ϵi(ad ϕi)
(1−Aij)(ϕj) = 0 (i ̸= j) (165)

In order to show this we can use the commutation relations that apply within the quaternion Lie
algebra representation sl(2,H). Since {ei, Jei, fi, J fi, αv

i , Jαv
i } spans a subalgebra of sl(2,H) within g̃(A),

and because g̃(A) is a module of sl(2,H), the linear operators ϵi and ϕi satisfy the commutation
relation:

[ϵi, (ϕi)
m] = −m(m − 1)(ϕi)

m−1 + m(ϕi)
m−1αv

i (166)

(This can be proven using mathematical induction and Jacobi’s identity.) Therefore, the adjoint
operators ad ϵi and ad ϕi satisfy the following commutation relation:

[ad ϵi, (ad ϕi)
m] = −m(m − 1)(ad ϕi)

m−1 + m(ad ϕi)
m−1ad αv

i (167)

Next, equation (167) will be used to show that equation (165) is satisfied. Since i ̸= j, it follows that
(ad ϵi)(ϕj) = 0, which is obtained after substituting m := (1 − Aij).

ad ϵi(ad ϕi)
m(ϕj) = {−m(m − 1)(ad ϕi)

m−1 + m(ad ϕi)
m−1ad αv

i }(ϕj) (168)

To proceed, use equations (127) and (128) in the form:

ad αv
i (ϕj) = −Aijϕj = (m − 1)ϕj (169)

Substitute equation (169) into equation (168) to obtain:

ad ϵi(ad ϕi)
m(ϕj) = {−m(m − 1) + m(m − 1)}(ad ϕi)

m−1(ϕj) = 0 (170)

This completes the case k = i. For k ̸= i, k ̸= j, the elements ϵk, ϕi, and ϕj are commutative. Therefore:

ad ϵk(yij) = (ad ϕi)
1−Aij ad ϵk(ϕj)

= (ad ϕi)
1−Aij [ϵk, ϕj]

= 0

(171)
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Finally, consider the case k ̸= i, k = j. Using the commutation relations between the elements ϵj, ϕi,
and αv

j , we obtain:

ad ϵj(yij) = (ad ϕi)
1−Aij ad ϵj(ϕj)

= (ad ϕi)
1−Aij(αv

j )

= (ad ϕi)
1−Aij [ϕj, αv

j ]

= Aji(ad ϕi)
−Aij(ϕi)

(172)

For Aij ̸= 0 (i.e., i ̸= j), it follows, according to the definition of the generalized Cartan matrix, that
Aij ≤ 0. Therefore, the right-hand side of (172) is a multiple of the commutator of ϕi, which results in
zero. If Aij = 0, then the transposed element Aji = 0, and the left-hand side of (172) again results in
zero. This completes the proof of Lemma 1.

Now it will be proven that I+ is an ideal in g̃(A). For this, consider any element u ∈ g̃(A).
According to part (c) of Theorem 2, this element has the unique decomposition:

u = x + h + Jh + y (173)

where
x ∈ Ñ+, h ∈ H, Jh ∈ JH, y ∈ Ñ− (174)

We need to show that for every u ∈ g̃α,

[u, I+] = [x, I+] + [h, I+] + [Jh, I+] + [y, I+] ⊂ I+ (175)

The first term [x, I+] is straightforward. This term lies in I+ because I+ is an ideal in Ñ+. For the
second term, Jacobi’s identity is required. Elements of I+ are of the form [z, xij] with z ∈ Ñ+, and
linear combinations of such objects are within I+, since I+ is an ideal generated by S+. Applying
Jacobi’s identity, we get:

[h, [z, xij]] = [z, [h, xij]] + [[h, z], xij] (176)

[Jh, [z, xij]] = [z, [Jh, xij]] + [[Jh, z], xij] (177)

As h and Jh act diagonally on g̃(A), we obtain:

[h, xij] = λxij, [h, z] = µz (z ∈ g̃µ) (178)

[Jh, xij] = Jλxij, [Jh, z] = Jµz (z ∈ g̃Jµ) (179)

It follows that both terms are in I+.
The term [y, I+] has the following form (using Jacobi’s identity):

[y, [z, xij]] = [z, [y, xij]] + [xij, [z, y]] (180)

A simple example of elements satisfying this is obtained by taking z and y as generator elements, say
y = ϕk and z = ϵm. This leads to:

[ϕk, [ϵm, xij]] = [ϵm, [ϕk, xij]] + [xij, [ϵm, ϕk]] (181)

The first term on the right-hand side is zero according to Lemma 1. Since [ϵm, ϕk] ∈ H or [ϵm, ϕk] ∈ JH,
the second term on the right-hand side is of the form [xij, h] = kxij or [xij, Jh] = Jkxij. Therefore, I+

and similarly I− are ideals in g̃(A). The final step is to consider the ideal

K := I+ + I− (182)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2025 doi:10.20944/preprints202502.1272.v1

https://doi.org/10.20944/preprints202502.1272.v1


21 of 25

It has the property that the intersections with H and JH are trivial:

K ∩ H = 0 and K ∩ JH = 0 (183)

Now the necessary properties have been obtained to define the standard Kac-Moody quaternion Lie
algebra.

Definition 11. Let g̃(A) be the universal Kac-Moody quaternion Lie algebra of Definition 10 and K the ideal
defined in (182). Then the quotient algebra

g(A) = g̃(A)/K (184)

is by definition the standard Kac-Moody quaternion Lie algebra corresponding to the generalized Cartan
matrix A.

Theorem 3. Let g(A) be the standard Kac-Moody quaternion Lie algebra belonging to the generalized Cartan
matrix A = (Aij). Then g(A) has the following properties:

1. Let N− be the C-module generated by { f1, . . . , fn, J f1, . . . , J fn} and N+ be the C-module generated by
{e1, . . . , en, Je1, . . . , Jen}, and Let K generated by H⊗C H = H ⊕ JH. Then N−, K, and N+ viewed as
a real Lie subalgebra of g(A) give the decomposition of g(A) :

g(A) = N− ⊕ K ⊕ N+ (185)

2. Considering g(A) as an ad Hr module, where Hr is a maximal commutative subalgebra of g(A) we have
the root decomposition

g(A) :=

 ⊕
α ̸=0,α∈Q+

g−α

⊕ g0 ⊕

 ⊕
α ̸=0,α∈Q+

g+α

 (186)

where gα = {x ∈ g(A)|∀h ∈ H : ad h(x) = ⟨α, h⟩x}, Hr ⊂ g0 = K. Furthermore, dim gα < ∞ and
gα ⊂ N± for ±α ∈ Q+, α ̸= 0

3. In the standard Kac-Moody quaternion Lie algebra g(A) the following commutation relations hold

[h, ei] = ⟨αi, h⟩ei, [Jh, ei] = ⟨αi, Jh⟩ei, [h, Jei] = ⟨αi, Jh⟩ei, (187)

[Jh, Jei] = −⟨αi, h⟩ei, [h, fi] = −⟨αi, fi⟩, [Jh, fi] = −⟨αi, Jh⟩ fi, (188)

[h, J fi] = −⟨αi, h⟩J fi, [Jh, J fi] = ⟨αi, h⟩ fi, (189)

[ei, f j] = δijα
v
i , [Jei, f j] = δij Jαv

i , [ei, J f j] = δij Jαv
i , (190)

[Jei, J f j] = δij Jαv
i , [h, h] = 0, [h, Jh] = 0, [Jh, Jh] = 0 (191)

4. Furthermore, g(A) one has

(adϵj)
1−Aij(ϵi) = 0 {i ̸= j; i, j = 1, . . . , n} (192)

(adϵj)
1−Aij(ϕi) = 0 {i ̸= j; i, j = 1, . . . , n} (193)

where ϕi = ei or Jei and ϕi = fi or J fi.

Proof. To prove this theorem, it is sufficient to show that H, JH, and {ei, Jei, fi, J fi}n
i=1 satisfy the

canonical projection Ψ from g̃(A) to g(A) = g̃(A)/K. The subsequent theorem will be clear from
Theorem 2.
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For H and JH, this is straightforward because K ∩ H = 0 and K ∩ JH = 0. Therefore, H and JH
are mapped injektif by Ψ. The same reasoning applies to {ei, Jei, fi, J fi}n

i=1 as in the proof of Theorem
2.

Example 6. sl(n,H) is the standard Kac-Moody quaternion Lie algebra.

In the following subsection, the construction of reduced Kac-Moody quaternion Lie algebras will
be discussed.

4. Construction of Reduced Kac-Moody Quaternion Lie Algebra
In this section, we will discuss the construction of reduced Kac-Moody quaternion Lie algebras.

Based on the discussion in section 2, a universal Kac-Moody quaternion Lie algebra has been con-
structed. This construction will then be used to construct the reduced Kac-Moody quaternion Lie
algebra by creating a quaternion Lie algebra quotient. Specifically, let g(A) be the universal Kac-Moody
quaternion Lie algebra and let ϑ be an ideal in g(A). The quotient Lie algebra g(A)/ϑ represents the
reduced Kac-Moody quaternion Lie algebra. The main topic of this subsection is to introduce the
definition of the reduced Kac-Moody quaternion Lie algebra.

Before defining the reduced Kac-Moody quaternion Lie algebra, we will first explain the concept
of gradation and one lemma that will be used to prove the theorem resulting from the definition of the
reduced Kac-Moody quaternion Lie algebra.

Let M be an abelian group. The decomposition V =
⊕

a∈M Va of the quaternion module (V , J)
into a direct sum of its submodules is called the M-gradation of (V , J). A submodule U ⊂ V is called
graded if U =

⊕
a∈M(U ∩ Va). Elements of Va are called homogeneous of degree α. The next step is to

prove Lemma 2, which will be used later in the proof of Proposition 1.

Lemma 2. Let Hr be a commutative quaternion Lie algebra and V be a diagonalisable Hr-module, i.e.

V =
⊕

λ∈H∗
r

Vλ dimana Vλ = {v ∈ V|h(v) = ⟨λ, h⟩v, ∀h ∈ Hr} (194)

Let U be a submodule of V. Then
U =

⊕
λ∈H∗

r

(U ∩ Vλ) (195)

Proof. Let v ∈ U be decomposed as v = ∑m
i=1 vλi where vλi ∈ Vλi . We will then prove that vλi ∈ U

for each i ∈ {1, . . . , m}. Suppose h ∈ Hr such that each ⟨λi, h⟩ is distinct. Thus, we have hk(v) =

∑m
i=1⟨λi, h⟩kvλi ∈ U for k ∈ {0, . . . , m − 1} because U is an Hr-module. This is a system of linear

equations with a non-degenerate matrix. Hence, vλi ∈ U for each i ∈ {1, . . . , m}.

In addition, one more proposition is needed, which will be used to define the reduced Kac-Moody
quaternion Lie algebra.

Proposition 1. Let g̃(A) be the universal Kac-Moody quaternion Lie algebra. Then, among the ideals of g̃(A)

intersecting H and JH trivially, there exist a unique maximal ideal ϑ. Futhermore,

ϑ = (ϑ ∩ Ñ−)⊕ (ϑ ∩ Ñ+) (196)

Proof. Recall from Lemma 2 that every ideal i of g̃(A) is graded (for the Q-gradation, i.e.

i =
⊕
α∈Q

(i ∩ g̃α) (197)
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in particular, a sum of ideals of g̃(A) intersecting H and JH trivially also intersect H and JH trivially,
and we let ϑ be the unique maximal such ideal. Note that

[ei, Ñ+] ⊂ Ñ+ then [ei, ϑ ∩ Ñ+] ⊂ ϑ ∩ Ñ+ (198)

[Jei, Ñ+] ⊂ Ñ+ then [Jei, ϑ ∩ Ñ+] ⊂ ϑ ∩ Ñ+ (199)

[hi, Ñ+] ⊂ Ñ+ then [hi, ϑ ∩ Ñ+] ⊂ ϑ ∩ Ñ+ (200)

[Jhi, Ñ+] ⊂ Ñ+ then [Jhi, ϑ ∩ Ñ+] ⊂ ϑ ∩ Ñ+ (201)

[ fi, Ñ+] ⊂ Ñ+ ⊕ h ⊕ Jh then [ fi, ϑ ∩ Ñ+] ⊂ ϑ ∩ (Ñ+ ⊕ h ⊕ Jh) ⊂ ϑ ∩ Ñ+ (202)

[J fi, Ñ+] ⊂ Ñ+ ⊕ h ⊕ Jh then [J fi, ϑ ∩ Ñ+] ⊂ ϑ ∩ (Ñ+ ⊕ h ⊕ Jh) ⊂ ϑ ∩ Ñ+ (203)

and hence [g̃(A), ϑ ∩ Ñ+] ⊂ ϑ ∩ Ñ+, that is, ϑ ∩ Ñ+ is an ideal in g̃(A) (and similarly for ϑ ∩ Ñ−. This
shows that ϑ = (ϑ ∩ Ñ+)⊕ (ϑ ∩ Ñ−).

Now, the necessary properties have been obtained to define the reduced Kac-Moody quaternion
Lie algebra.

Definition 12. Let g̃(A) be the universal Kac-Moody quaternion Lie algebra of Definition 10 and ϑ the ideal
defined in (196). Then the quotient algebra

ğ(A) = g̃(A)/ϑ (204)

is by definition the reduced Kac-Moody quaternion Lie algebra corresponding to the generalized Cartan
matrix A.

Theorem 4. Let ğ(A) be the reduced Kac-Moody quaternion Lie algebra belonging to the generalized Cartan
matrix A = (Aij). Then ğ(A) has the following properties:

1. Let N̆− be the C-module generated by { f1, . . . , fn, J f1, . . . , J fn} and N̆+ be the C-module generated by
{e1, . . . , en, Je1, . . . , Jen}, and Let K generated by H⊗C H = H ⊕ JH. Then N̆−, K, and N̆+ viewed as
a real Lie subalgebra of ğ(A) give the decomposition of ğ(A) :

ğ(A) = N̆− ⊕ K ⊕ N̆+ (205)

2. Considering ğ(A) as an ad Hr module, where Hr is a maximal commutative subalgebra of ğ(A) we have
the root decomposition

ğ(A) :=

 ⊕
α ̸=0,α∈Q+

ğ−α

⊕ ğ0 ⊕

 ⊕
α ̸=0,α∈Q+

ğ+α

 (206)

where ğα = {x ∈ ğ(A)|∀h ∈ H : ad h(x) = ⟨α, h⟩x}, Hr ⊂ ğ0 = K. Furthermore, dim ğα < ∞ and
ğα ⊂ N± for ±α ∈ Q+, α ̸= 0

3. In the Rudeced Kac-Moody quaternion Lie algebra ğ(A) the following commutation relations hold

[h, ei] = ⟨αi, h⟩ei, [Jh, ei] = ⟨αi, Jh⟩ei, [h, Jei] = ⟨αi, Jh⟩ei, (207)

[Jh, Jei] = −⟨αi, h⟩ei, [h, fi] = −⟨αi, fi⟩, [Jh, fi] = −⟨αi, Jh⟩ fi, (208)

[h, J fi] = −⟨αi, h⟩J fi, [Jh, J fi] = ⟨αi, h⟩ fi, (209)

[ei, f j] = δijα
v
i , [Jei, f j] = δij Jαv

i , [ei, J f j] = δij Jαv
i , (210)

[Jei, J f j] = δij Jαv
i , [h, h] = 0, [h, Jh] = 0, [Jh, Jh] = 0 (211)
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4. ğ(A) has no nozero ideal ϑ such that ϑ ∩ H = 0 and ϑ ∩ JH = 0

Proof. To prove this theorem, it is sufficient to show that H, JH, and {ei, Jei, fi, J fi}n
i=1 satisfy the

canonical projection Ψ from g̃(A) to ğ(A) = g̃(A)/ϑ. The subsequent theorem will be clear from
Theorem 2.

For H and JH, this is straightforward because ϑ ∩ H = 0 and ϑ ∩ JH = 0. Therefore, H and JH
are mapped injektif by Ψ. The same reasoning applies to {ei, Jei, fi, J fi}n

i=1 as in the proof of Theorem
2.

Example 7. sl(n,H) is the reduced Kac-Moody quaternion Lie algebra.

5. Conclusions
Based on Section 2-4, Then the definitions of General, Standard, and Reduced Lie Kac-Moody

Quaternion Algebras can be summarized as follows:

• The Lie quaternion quotient algebra g̃(A) = g̃(A)/ Ĩ is referred to as the general Lie Kac-Moody
quaternion algebra, corresponding to the generalization of the Cartan matrix A, where g̃(A) is a
Lie quaternion algebra and Ĩ is an ideal of g̃(A).

• The Lie quaternion quotient algebra g(A) = g̃(A)/K is defined as the standard Lie Kac-Moody
quaternion algebra, corresponding to the generalization of the Cartan matrix A, where g̃(A) is
the general Lie Kac-Moody quaternion algebra and K is an ideal of g̃(A).

• The Lie quaternion quotient algebra g(A) = g̃(A)/ϑ is referred to as the reduced Lie Kac-Moody
quaternion algebra, corresponding to the generalization of the Cartan matrix A, where g̃(A) is
the general Lie Kac-Moody quaternion algebra and ϑ is a maximal ideal of g̃(A).
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