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Abstract

Binary oxide ceramics have emerged as key materials in solar energy research due to their versatility,
chemical stability, and tunable electronic properties. This study presents a comparative analysis of
seven prominent oxides (TiOz, ZnO, AL2Os, SiOz2, CeO2, Fe203, and WOs), focusing on their functional
roles in silicon, perovskite, dye-sensitized, and thin-film solar cells. A bibliometric analysis covering
over 50,000 publications highlights TiO2 and ZnO as the most widely studied materials, serving as
electron transport layers, antireflective coatings, and buffer layers. Al:Os and SiO2 demonstrate
highly specialized applications in surface passivation and interface engineering, while CeO2 offers
UV-blocking capability and Fe:20s shows potential as an absorber material in photoelectrochemical
systems. WOs is noted for its multifunctionality and suitability for scalable, high-rate processing.
Together, these findings suggest that binary oxide ceramics are poised to transition from supporting
roles to essential components of stable, efficient, and environmentally safer next-generation solar
cells.

Keywords: oxide ceramics; solar cells; photoconversion; TiOz; ZnO; SiOz2; Al2Os; CeO2; Fe20s3; WOs;
bibliometric analysis

1. Introduction

Traditionally, solar energy has been closely associated with materials such as silicon [1-3],
cadmium telluride [4-6], and copper indium gallium selenide (CIGS) [7-9]. Silicon, in particular, has
dominated the photovoltaic device market due to its abundance, relatively low cost, and well-
established manufacturing processes [10-13]. Silicon-based solar cells have been the cornerstone of
solar energy production, offering high efficiency and long-term stability [14-16]. These materials are
widely recognized for their ability to effectively convert sunlight into electricity, making them the
standard choice for most commercial and residential solar energy systems [17-20].

Cadmium telluride (CdTe) is another key material in the field of solar energy, particularly in
thin-film solar cells [21-23]. CdTe has gained popularity due to its high absorption coefficient and
relatively low production cost, making it a competitive alternative to silicon for specific applications
[24-26]. However, concerns about cadmium toxicity and the limited availability of tellurium have
prompted the search for safer and more sustainable alternatives [27,28].

Copper indium gallium selenide (CIGS) represents another category of thin-film solar cells that
has attracted attention due to its high efficiency and flexibility [29-31]. CIGS cells offer higher
efficiencies than other thin-film technologies and can be applied to a variety of substrates, including
flexible materials, opening up new opportunities for solar energy applications [32-34]. Despite these
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advantages, the complexity of the material composition and associated manufacturing challenges
have limited their widespread adoption compared to silicon-based technologies [35,36].

As the solar energy sector continues to grow and evolve, there has been a significant push to
diversify the range of materials used in solar cells [37—-42]. Researchers are exploring novel materials
that may offer higher efficiency, lower production costs, or better performance under specific
environmental conditions. This expansion has led to the investigation of organic photovoltaic
materials [43,44], perovskites [45,46], and quantum dots [47,48], among others.

In particular, perovskite solar cells are attracting significant interest due to their high efficiency
and ease of fabrication [47,48]. These materials have rapidly progressed from laboratory experiments
to near-commercialization, offering efficiencies that rival traditional silicon solar cells. However,
challenges related to long-term stability and the presence of lead in many perovskite compositions
remain serious issues that must be resolved before widespread adoption is possible [49,50].

Quantum dot solar cells represent another frontier in solar energy research, offering the potential
for high efficiency through multiple exciton generation [51,52]. These nanoscale semiconductor
particles can be engineered to possess specific optical properties, making them easily tunable for
various applications [53,54]. However, quantum dot technologies face challenges such as stability
and scalability that must be overcome.

Organic photovoltaics (OPV) [55,56] have emerged as a promising field due to their potential for
low-cost production and mechanical flexibility, although they currently lag behind traditional
materials in terms of efficiency and stability.

This expansion of material options reflects ongoing efforts in solar energy to enhance the
efficiency, affordability, and versatility of solar cells. By moving beyond traditional materials, the
industry seeks to develop next-generation solar technologies capable of meeting the rising global
demand for renewable energy and addressing the limitations of current systems [57].

In recent years, the solar energy field has begun to explore the potential of oxide ceramics as
alternative materials for photovoltaic and related applications [58]. Known for their durability,
thermal stability, and diverse electrical properties, oxide ceramics offer a promising avenue for
improving the performance and longevity of solar cells [59-62]. Unlike traditional semiconductors,
oxide ceramics provide a unique combination of features, including high chemical resistance and the
ability to operate under extreme environmental conditions, making them ideal candidates for use in
advanced solar technologies [63-66].

The growing interest in oxide ceramics for solar applications stems from their ability to play
multiple roles within solar cells, such as serving as transparent conducting oxides, photoanodes, or
passivation layers [67-70]. These materials can enhance light absorption, increase charge carrier
mobility, and reduce recombination losses, thereby potentially improving the overall efficiency of
solar cells [71-74]. Furthermore, the versatility of oxide ceramics allows them to be integrated into
various types of solar cells, including dye-sensitized solar cells [75,76], perovskite solar cells [77,78],
and even novel technologies such as photoelectrochemical cells for hydrogen production [79,80].

Key binary oxide ceramics (Table 1), such as titanium dioxide (TiO:2) [81-84] and zinc oxide
(ZnO) [85,86], have already proven to be critical components in several solar technologies [87-89].
TiO, for instance, is widely used as a photoanode in dye-sensitized solar cells due to its excellent
photocatalytic properties and high stability [90,91]. ZnO, with its favorable electron transport
characteristics, is frequently used as a transparent electrode or photoanode in various solar cell
designs [92]. These materials, along with others such as aluminum oxide (Al203) [93-95], silicon
dioxide (SiO2) [96,97], and cerium dioxide (CeO2) [98-100], are being extensively investigated for their
potential to create more efficient and durable solar cells.

Fe:0s (hematite) is considered a promising material due to its abundance, environmental
friendliness, and ability to absorb visible light [101-103]. The bandgap of Fe20s makes it particularly
attractive for photoelectrochemical solar cells, where it is often used as a photoanode [104,105]. Its
high chemical stability and durability enable its use in harsh environments, such as acidic or alkaline
media. WOs (tungsten trioxide) is another promising material for solar technologies due to its
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electrochromic and photocatalytic properties [106-108]. The bandgap of WOs allows it to absorb light
in the near-UV spectrum, making it useful in hybrid solar cells [109,110]. WO:s is often employed as a
photoanode in photoelectrochemical cells for hydrogen production [111], as well as an active material
in multilayer anti-reflective coatings for solar panels [112].

Table 1. Physico-electrical parameters of oxide ceramic materials used in photovoltaic structures®.

Electron Dielectric Electron
Mobility  Constant Affinity (x, Ref
(cm2-V-1.g1) (ev) eV)

Band Gap Conductivity

Oxide Material (Eg, eV) Type

29-34 n_type (O— ~0.1-1 (up to

TiO:2 (anatase/ (direct/ vacancy, 15in 25-1000t 3.9-43 [113-116]

til
rutile) indirect) donor-doped) crystals)
7-12
n-type ~25 (;1: N

ZnO (wurtzite) 31-34 (intrinsic / 10 -300 42-45 [117-119]

doped) Co/Mn-

P doped)

. — (£10°S
AlL20s (sapphire) 85-95 Insulator cm-) 6-12 1.0-2.6  [120-122]
SiO: (quartz, glass) 8.0-9.2 Insulator — 3.7-43 0.8-1.1 [123-125]
104-1

n-type (Ce®,  (small-
O-vacancies)  polaron
hopping)

CeO:2 (ceria) 28-3.5 16 -35 33-37 [126-129]

Fe:0s (hematite)  1.9-2.3 “'typz)(poor 104-01 5-120  43-50 [130-133]
-t -

WOs (monoclinia)  24-32  VOPEO 00 50 q0s105t  32-36  [134-136)
deficient)

*t For heavily reduced or H-implanted rutile TiO2, er > 1000 has been reported; the listed range of 25-1000 covers
both typical and “giant” values (the typical range is 25-120). £ WOs near the phase transition (~16 °C) shows
peak er = 105 the operational range includes the most commonly used values of 10-105. *Note: All parameters
are reported as generalized ranges because their values depend on synthesis route, crystallinity, defect

concentration, doping level, measurement frequency, and other experimental conditions.

The integration of oxide ceramics into solar energy systems represents a significant shift toward
the development of materials that not only improve efficiency but also offer enhanced durability
[106,107]. As the demand for more reliable and cost-effective solar energy solutions continues to
grow, the role of oxide ceramics is expected to increase, driving further innovation in the field.

While numerous studies have been conducted on specific oxide materials or their applications
in solar technologies, no comprehensive bibliometric and comparative investigation has been
conducted that evaluates various oxide ceramics across a wide range of solar applications. This gap
in the literature highlights the need for a holistic analysis that not only identifies current trends but
also provides insight into potential future directions for research and development.

The primary objective of this study is to conduct an in-depth bibliometric and comparative
analysis of oxide ceramics used in solar energy, with a focus on understanding research trends, key
materials, and their impact on the field. This study aims to identify which oxide ceramics are most
prominent in solar energy research, how interest in these materials has evolved, and which materials
hold the most significant potential for future development in this field.

The results of this study will be valuable for researchers, industry professionals, and
policymakers, as they offer a clearer understanding of the current state of the field and its future
direction. By mapping the research landscape, this study will help identify the most influential work,
emerging areas of interest, and potential opportunities for innovation. Furthermore, it will serve as a
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resource for scholars seeking to build on existing knowledge, supporting more targeted and
impactful research on the use of oxide ceramics in solar energy.

2. Methodology

This study employed a combined methodology that integrates bibliometric analysis, descriptive
statistics, and thematic interpretation of results. This approach enables the identification of general
research trends as well as an in-depth examination of each material’s specific role in solar energy
applications.

2.1. Bibliometric Analysis

Bibliometric analysis is a quantitative method used to assess the structure, dynamics, and trends
of scientific research through the systematic examination of publications, citations, and metadata
[137-139]. Traditionally employed in scientometrics and library sciences, this approach is gaining
relevance in materials science, where it allows researchers to uncover patterns of technological
development, identify leading contributors and emerging topics, and assess the maturity and
interdisciplinarity of specific material systems [140-143].

In the context of solar energy research, bibliometric tools provide valuable insights into how
specific materials, such as binary metal oxides, are integrated into device architectures, studied across
disciplines, and adopted by different scientific communities [144-147]. By quantitatively assessing
publication trends, citation impact, and keyword co-occurrence, bibliometric analysis complements
experimental and theoretical approaches, offering a macroscopic view of knowledge production and
research activity [148-151].

This study applies bibliometric analysis to map the research landscape surrounding seven key
oxide ceramics (TiOz, ZnO, SiOz, Al20s, CeOz, Fe20s, and WO:s) in solar energy applications. The goal
is to identify thematic concentrations, leading authors and institutions, geographical distribution,
and collaboration networks, as well as to compare material-specific trends in attention and
utilization.

2.1.1. Database Selection and Search Strategy

The analysis was conducted using data retrieved from the Web of Science Core Collection, which
was selected due to its broad coverage of peer-reviewed literature in science and technology [152—
154]. To ensure a systematic and comprehensive approach, a detailed search strategy was developed
to identify publications related to the studied oxide materials (Figure 1).
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Research questions:

Which oxide materials
demonstrate emerging
or declining research

Which countries What thematic areas
are most active in and keywords dominate
research on each in publications for

What are the publication
trends for each oxide in
the context of solar cells
and solar technology?

material? each oxide? interest?

Source quality: Web of Science Core Collection (WoS CC).

Search period: All records up to and including 2023.
Search strategy: Queries combined chemical names of each oxide with solar energy terms:

TS = ("TiO2" OR "titanium dioxide") AND ("solar energy" OR "solar cell*" OR "photovoltaics" OR
"solar technology" OR "photoanode" OR "solar panel")

TS = ("Zn0O" OR "zinc oxide") AND ("solar energy" OR "solar cell*" OR "photovoltaics" OR
"solar technology" OR "photoanode" OR "solar panel")

TS = ("Si02" OR "silicon dioxide") AND ("solar energy" OR "solar cell*" OR "photovoltaics" OR
"solar technology" OR "photoanode" OR "solar panel")

TS = ("Al203" OR "aluminum oxide") AND ("solar energy" OR "solar cell*" OR "photovoltaics" OR
"solar technology" OR "photoanode" OR "solar panel")

TS = ("Ce02" OR "cerium dioxide") AND ("solar energy" OR "solar cell*" OR "photovoltaics" OR
"solar technology" OR "photoanode" OR "solar panel")

TS = ("Fe203" OR "hematite" OR "iron oxide") AND ("solar energy" OR "solar cell*" OR
"photovoltaics" OR "solar technology" OR "photoanode" OR "solar panel")

TS = ("WO03" OR "tungsten trioxide") AND ("solar energy" OR "solar cell*" OR "photovoltaics" OR
"solar technology" OR "photoanode" OR "solar panel")

Filters
applied: ®— language: & Document types: 5 Timerange:

English only all, excluding corrections, publications up to 2023
retractions, EoCs, and reprints

Analysis tool: VOSviewer

Bibliometric
parameters: Publication Document Ggographical Citation Keyword
trends over types and distribution counts and co-occurrence
a time research areas and citation maps to extract
collaboration impact dominant
networks themes
8 J

Figure 1. Design of the Bibliometric Analysis.

Search queries targeted each oxide individually by combining their chemical names with
keywords associated with solar energy applications. For titanium dioxide (TiO2), the query used was
TS=("TiO2” OR “titanium dioxide”) AND TS=(“solar energy” OR “solar cell*” OR “photovoltaic
devices” OR “solar technology” OR “photoanode” OR “solar panel”). Similar queries were
constructed for zinc oxide (ZnO), silicon dioxide (5i02), aluminum oxide (Al20s), cerium dioxide
(CeO2), hematite or iron oxide (Fe:20s), and tungsten trioxide (WQOs). These queries combined the
oxide names with terms such as “solar energy,” “solar cells,” “photovoltaic devices,” “solar

a

technologies,” “photoanode,” and “solar panel” to capture the full scope of solar-related research for
each material.

Filters were applied to refine the search results and ensure consistency across datasets. The
temporal scope of the study was limited to publications available up to and including the year 2023
and included only articles written in English. All document types were considered, except

corrections, editorials, retractions, and reprints, in order to maintain data integrity and relevance.

). Distributed under a Creative Commons CC BY license.
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To quantitatively assess the impact of research related to oxide materials, citation counts were
analyzed for each material. This analysis enabled the evaluation of not only the intensity of
publication activity but also the scientific weight of research within each segment.

2.1.2. Data Analysis

The retrieved datasets were processed and analyzed using VOSviewer, a bibliometric analysis
software tool designed for visualizing and exploring patterns in scientific literature [155-157]. For
each oxide material, a range of bibliometric parameters was examined to provide a detailed overview
of research activity. These included temporal publication trend analysis to identify chronological
patterns, distribution of document types to evaluate the nature of contributions, and distribution
across research areas to understand each material’s interdisciplinary orientation.

Further analysis identified leading journals, authors, and institutions to highlight the key
contributors in the field. Geographic contributions were also assessed to explore global research
activity, and collaboration networks were visualized to understand international and institutional
partnerships. Finally, keyword co-occurrence analysis was conducted to identify thematic trends and
research priorities for each oxide material.

2.2. Statistical Analysis

To analyze publication trends related to binary oxide ceramics, descriptive statistical methods
were applied to summarize and compare research activity for each material. The computed statistical
indicators include the median, mean, standard deviation, coefficient of variation (CV), maximum
value, first quartile (Q1), third quartile (Q3), and interquartile range (IQR) (Table 2). These indicators
were selected to reflect both the central tendency and variability of the data, enabling a
comprehensive assessment of publication dynamics for each material.

Table 2. This is a table. Tables should be placed in the main text near to the first time they are cited.

Statistical Indicator Description
. The central value of an ordered dataset, less affected by
Median '
outliers.
The arithmetic average, indicating the overall level of
Mean

research activity.
Standard Deviation A measure of data variability relative to the mean.
The standard deviation, expressed as a percentage of the
mean, reflecting relative variability.
Maximum Value The highest recorded number of publications.
The value below which 25% of the data fall, representing the
lower range of activity.
The value below which 75% of the data fall, representing the

Coefficient of Variation (CV)

First Quartile (Q1)

Third Quartile (Q) upper range of activity.

The range containing the central 50% of the data, enabling

I ile R IQR
nterquartile Range (IQR) assessment of variability without outliers.

All statistical calculations were based on the number of publications per material for the period
1974-2023. Data for each material were sorted in ascending order, and quartiles were calculated using
interpolation for noninteger positions. The resulting metrics provide detailed insights into research
trends, highlighting both the intensity of scientific activity and its temporal stability.

2.3. Functional Literature Analysis

In addition to bibliometric and statistical approaches, a structured literature review was
conducted to compare the functional roles of selected binary oxide ceramics across different solar cell
architectures. This stage of the study aimed to link material properties to their technological relevance
in device engineering.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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The analysis was based on a systematic review and synthesis of peer-reviewed publications
addressing:

e  The physical, chemical, and optoelectronic properties of TiOz, ZnO, SiO2, Al203, CeO, Fe20s, and
WOs3;

e  Their specific functions in crystalline silicon (c-5i), perovskite (PSC), dye-sensitized (DSSC), thin-
film chalcogenide (CIGS, CdTe, CZTS), organic (OSC), and quantum dot (QD) solar cells;

e Comparative advantages, limitations, and integration challenges of each oxide in these
technologies.

The analysis was based on a systematic review and synthesis of peer-reviewed To structure the
results, the following analytical tools were used:

e A functional role matrix mapping the oxide materials to device architectures and layer
functionalities (ETL, HTL, TCO, passivation, buffer, optical interlayer);

e A synthesis of key advantages and limitations drawn from experimental studies and review
articles;

e  Cross-verification of usage trends with bibliometric co-occurrence data (e.g., TiO2 + passivation;
ZnO + buffer layer).

This triangulated approach enabled a comprehensive assessment of each oxide’s contribution to
modern photovoltaic engineering, highlighting both mainstream uses and cutting-edge
developments.

3. Results

3.1. Evolution of Scientific Interest in Oxide Ceramics for Solar Energy: Results of the Bibliometric Analysis

The bibliometric analysis of publications on oxide ceramics for solar energy applications
provides a comprehensive overview of the research landscape. Table 3 summarizes the volume of
literature identified for each of the selected binary oxide materials in the Web of Science Core
Collection.

Table 3. Number of publications identified for each oxide material in the context of solar energy applications
(Web of Science Core Collection).

Materials Results from WoS CC
TiO: (titanium dioxide) 22898
ZnO (zinc oxide) 19092
5102 (silicon dioxide) 4140
AlOs  (aluminum oxide) 3268
Fe2Os  (iron oxide) 2633
WOs (tungsten trioxide) 2062

CeO2 (cerium dioxide) 491

Overall, the dominance of TiO2 (22,898 publications) and ZnO (19,092) in the solar research arena
is clearly evident. These are followed in popularity by SiO: (4,140), Al2Os (3,268), Fez0s (2,633), and
WO:s (2,062). CeO2 received the least attention, with 491 publications.

Research on oxide ceramics in the context of solar energy has undergone significant evolution
over recent decades, with notable fluctuations in interest across different materials (Figure 2). The
earliest publications related to oxide ceramics appeared in the 1970s, focusing on materials such as
TiO:2 (1974) and WO:s (1976). However, until the late 1980s, the overall publication volume remained
minimal, with only a few isolated studies. This indicates that the field had a very slow start.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 2. Dynamics of publication numbers for selected binary oxides in the context of solar energy applications
(Web of Science Core Collection data, 1970-2024).

The situation began to change in the early 1990s, as interest in oxide materials gradually
intensified. This period saw a growth in the number of publications for TiOz, ZnO, and Fe20s. For
instance, TiO2 showed steady growth, reaching 49 publications by the end of the decade, signaling
increasing recognition of this material. ZnO also garnered more attention, though at a slightly slower
pace, while interest in other materials such as Al20s and WOs remained low.

A true breakthrough for oxide ceramics occurred in the 2000s, when publication counts for TiO:
and ZnO rose sharply, reaching hundreds per year. TiO2 became the leading subject of research,
exceeding 600 publications per year by 2010. ZnO ranked second, following a similar upward trend,
though with slightly lower absolute numbers. Al2Os, Fe20s, and WOs also began to gain traction,
albeit at more moderate rates, reaching dozens of publications annually. This reflects a broadening
interest in various materials within this category.

The peak of oxide ceramics research occurred in the 2010s. TiO2 and ZnO reached their highest
publication volumes, peaking in the middle of the decade (over 1,600 for TiO2 and 1,400 for ZnO).
Other materials also hit their peaks during this period: SiO2 reached 299 publications in 2017, Al2Os
peaked at 262 in the same year, Fe2Os at 249 in 2019, and WO:s at 182 in 2020. CeO, despite its overall
lower activity, also showed gradual growth, reaching its peak in 2024 with 63 publications. This surge
of interest in different materials reflects a broad range of scientific challenges and experimental
approaches associated with oxide ceramic research.

In the 2020s, the overall publication rate for most materials began to stabilize or slightly decline,
likely due to saturation in certain research areas and a shift in focus toward new materials or concepts.
An exception is CeOz, which continues to show growing interest, possibly due to its niche
applications.

Key observations indicate that TiO2 and ZnO remain the primary subjects of research, while
other materials such as Al20s, Fe20s, WOs, and CeO2 occupy more specialized niches. The research
peak in the 2010s coincides with a global emphasis on renewable energy, whereas the stabilization in
the 2020s may point to shifting priorities or the emergence of new research directions.

3.2. Publication Trends and Statistical Analysis of Binary Oxide Ceramics

The statistical analysis of publications related to binary oxide ceramics revealed significant
differences in research activity among the various materials, as well as substantial fluctuations in
publication trends (Table 4). The results provide insight into the relative importance and
developmental dynamics of each material in the research field.

Table 4. Statistical analysis of publications on binary oxide ceramics.
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fficien
Standard o ofC o Ist 3rd Interquartile
Material Median . L. . .. Mean MaximumQuartileQuartile
Deviation Variation Range (IQR)
o Q1) (Q3)
(%)
TiO2 119.0 652.44 125.37  520.41 1665 13.75 1180.0  1166.25
ZnO 126.5 529.57 116.50 454.57 1422 15.75  977.25 961.5
SiO2 25.0 110.43 117.33 94.11 299 5.5 231.5 226.0
ALOs 20.0 100.99 108.16 93.37 262 6.5 213.5 207.0
Fe:0s 9.0 98.82 131.36 75.23 271 2.5 147.0 144.5
WO:s 16.0 71.78 118.36 60.65 192 425 1195 115.25
CeO: 5.0 19.42 114.72 16.93 63 2.0 33.0 31.0

TiO:2 exhibits the highest research intensity, with an average of 520.41 publications and a
maximum of 1,665 articles in a single year.

Si0Oz is characterized by lower average research indicators: a mean of 94.11 and a maximum of
299 publications. Its median (25.0) and interquartile range (IQR = 226.0) suggest that most years were
marked by moderate research activity, without the surges observed for TiO: and ZnO. The standard
deviation (110.43) and coefficient of variation (117.33%) indicate relatively stable interest in the
material, though without major peaks in research output.

AlOs showed similar trends to SiO2, with a mean of 93.37 and a maximum of 262 publications.
The median (20.0) and IQR (207.0) suggest that most years had low research activity, interspersed
with periodic spikes. The standard deviation (100.99) and coefficient of variation (108.16%) point to
significant year-to-year variability, likely driven by developments in specific solar applications.

Fe20s has the lowest publication median (9.0) among the studied materials but demonstrates
moderate overall activity. Its mean is 75.23, and the maximum number of publications is 271,
indicating periods of increased attention. The IQR (144.5) and high coefficient of variation (131.36%)
reflect uneven but occasionally intense research activity, possibly linked to specific technological
innovations.

WOs demonstrates moderate research intensity, with an average of 60.65 publications and a
maximum of 192 articles. The median (16.0) and IQR (115.25) suggest a concentration of activity in
the lower range, with only a few years yielding higher output. The coefficient of variation (118.36%)
confirms considerable variability, highlighting that research on WOs tends to be more focused but
less consistent over time.

CeO2 has the lowest overall research activity among the materials: an average of 16.93
publications and a maximum of 63. The median (5.0) and IQR (31.0) indicate limited but gradually
growing research interest in recent years. The standard deviation (19.42) and coefficient of variation
(114.72%) point to a slow yet steady interest in CeO, likely due to its niche applications.

The analysis shows that TiO2 and ZnO dominate the research landscape of binary oxide
ceramics, with significantly higher publication metrics and variability compared to other materials.
In contrast, SiO2, Al203, WOs, Fe20s, and CeO:2 exhibit more moderate research activity, often tied to
specific technological breakthroughs. The high coefficients of variation across all materials emphasize
the dynamic nature of research priorities in this field.

3.3. Interdisciplinary Distribution of Research on Oxide Ceramics

The Sankey diagram (Figure 3) illustrates the distribution of scientific interest in the studied
materials (TiOz, ZnO, SiO2, Al20s, CeOz, Fe20s, and WOs) across four key research domains: Energy,
Materials Science, Environmental Science, and Physics. The width of each connection corresponds to
the number of publications associating a given material with the respective field. This visualization
provides insight into the degree of interdisciplinarity of each material and outlines the profiles of
their research involvement.
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Figure 3. Sankey diagram illustrating the distribution of research focus among binary oxide ceramics across four
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disciplines: Energy, Materials Science, Environmental Science, and Physics.

TiO2 and ZnO exhibit the broadest scientific activity, with strong representation in all four
disciplines. Their leading role in energy and materials science stems from their wide range of
functionalities—from charge transport to photocatalysis and structural stabilization in
optoelectronics. In parallel, their presence in environmental and physics-related studies
demonstrates their functional flexibility and adaptability to diverse technological challenges [161-
164].

Fe20s, on the other hand, displays a strong focus on energy research. Its research profile is
primarily centered on photoelectrochemical water splitting and hydrogen generation [165-168],
reflecting its specialization as a material for renewable energy production under harsh environmental
conditions [169,170]. Its limited overlap with physics or environmental science highlights a narrow
yet strategically important niche.

WO:s shows a more balanced distribution across energy, materials science, and environmental
science. This structure reflects its multifunctionality: WOs is investigated not only in the context of
PEC devices [171,172], but also for applications such as electrochromic elements, sensors, and optical
control coatings [173,174].

AlLOs and SiO: are primarily concentrated in materials science and physics. Their roles are
mainly associated with passivation, dielectric separation, interface protection, and the formation of
stable layers in complex solar cell architectures [174-180]. These applications align with their
physicochemical characteristics — wide bandgap, high stability, and insulating nature [181-183].

CeO2, while having a smaller overall research volume, shows a relatively even contribution
across all four domains. This indicates a growing interest in CeO2 as a promising material for niche
photovoltaic, catalytic, and protective applications [184-186], particularly due to its UV absorption
capabilities, redox activity, and high stability [187-190].

Thus, the diagram enables not only an assessment of the research scale for each oxide but also a
contextual understanding of how scientific interest is shaped. The varying degrees of cross-sector
coverage reflect differences in maturity, specialization, and transdisciplinary potential among the
oxides. This has practical implications for developing research strategies and identifying priority
directions for future innovations.

3.4. Comparative Analysis of the Most Cited Publications on Binary Oxide Ceramics

An analysis of citation metrics for the most influential publications on binary oxide ceramics
highlights significant differences in the impact and research focus of different materials (Table 5).

Table 5. Top 5 Most Cited Publications on Binary Oxide Ceramics®.

TiO2 (titanium dioxide) Citations
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O'Regan, B., & Gratzel, M. (1991). A low-cost, high-efficiency solar cell based on dye- 25,829
sensitized colloidal TiO2 films. Nature, 353(6346), 737-740.
https://doi.org/10.1038/353737a0 [191]

18,169
Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal Halide

Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American
Chemical Society, 131(17), 6050-6051. https://doi.org/10.1021/ja809598r [192]

Gratzel, M. (2001). Photoelectrochemical cells. Nature, 414(6861), 338-344. 11,772
https://doi.org/10.1038/35104607 [193]

Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., et al. (2012). Lead 7,149
Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar

Cell with Efficiency Exceeding 9%. Scientific Reports, 2(1), 591.
https://doi.org/10.1038/srep00591 [194]

Nazeeruddin, M. K., Kay, A., Rodicio, I., Humphry-Baker, R., Mueller, E., Liska, P., et 5,854
al. (1993). Conversion of light to electricity by cis-X2bis(2,2’-bipyridyl-4,4’-
dicarboxylate)ruthenium(Il) charge-transfer sensitizers (X = Cl-, Br-, I, CN-, and

SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American
Chemical Society, 115(14), 6382-6390. https://doi.org/10.1021/ja00067a063 [195]

ZnO (zinc oxide) Citations

Grétzel, M. (2001). Photoelectrochemical cells. Nature, 414(6861), 338-344. 11,772
https://doi.org/10.1038/35104607 [193]

Law, M., Greene, L. E., Johnson, J. C., Saykally, R., & Yang, P. (2005). Nanowire dye- 5,135
sensitized solar cells. Nature Materials, 4(6), 455-459.
https://doi.org/10.1038/nmat1387 [196]

Gradtzel, M. (2003). Dye-sensitized solar cells. Journal of Photochemistry and 4,640
Photobiology C: Photochemistry Reviews, 4(2), 145-153.
https://doi.org/10.1016/S1389-5567(03)00026-1 [197]

Liu, D., & Kelly, T. L. (2014). Perovskite solar cells with a planar heterojunction 2,383
structure prepared using room-temperature solution processing techniques. Nature
Photonics, 8(2), 133-138. https://doi.org/10.1038/nphoton.2013.342 [198]

Liu, B., & Aydil, E. S. (2009). Growth of Oriented Single-Crystalline Rutile TiO 2 2,215
Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells.
Journal of the  American Chemical Society, 131(11),  3985-3990.
https://doi.org/10.1021/ja8078972 [199]

Si02 (silicon dioxide) Citations
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Kay, A., Cesar, L., & Grétzel, M. (2006). New Benchmark for Water Photooxidation by
Nanostructured a-Fe 2 O 3 Films. Journal of the American Chemical Society, 128(49),
15714-15721. https://doi.org/10.1021/ja0643801 [200]

Cushing, S. K., Li, J., Meng, F., Senty, T. R., Suri, S., Zhi, M., et al. (2012). Photocatalytic
Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to
Semiconductor. Journal of the American Chemical Society, 134(36), 15033-15041.
https://doi.org/10.1021/ja305603t [201]

Palomares, E., Clifford, J. N., Haque, S. A., Lutz, T., & Durrant, J. R. (2003). Control of
Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of
Conformally Deposited Metal Oxide Blocking Layers. Journal of the American
Chemical Society, 125(2), 475-482. https://doi.org/10.1021/ja027945w [202]

Zou, S, Liu, Y., Li, ], Liu, C,, Feng, R,, Jiang, F., et al. (2017). Stabilizing Cesium Lead
Halide Perovskite Lattice through Mn(II) Substitution for Air-Stable Light-Emitting
Diodes. Journal of the American Chemical Society, 139(33), 11443-11450.

https://doi.org/10.1021/jacs.7b04000 [203]

Aberle, A. G. (2000). Surface passivation of crystalline silicon solar cells: a review.
8(5), 473-487.
https://doi.org/10.1002/1099-159X(200009/10)8:5%3C473::AID-PIP337%3E3.0.CO;2-D
[204]
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1,437

1,032

1,029

728

625

Al203 (aluminum oxide)

Citations

Palomares, E., Clifford, J. N., Haque, S. A., Lutz, T., & Durrant, J. R. (2003). Control of
Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of
Conformally Deposited Metal Oxide Blocking Layers. Journal of the American
Chemical Society, 125(2), 475-482. https://doi.org/10.1021/ja027945w [202]

Mor, G. K., Varghese, O. K., Paulose, M., Shankar, K., & Grimes, C. A. (2006). A review
on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material
properties, and solar energy applications. Solar Energy Materials and Solar Cells,
90(14), 2011-2075. https://doi.org/10.1016/j.solmat.2006.04.007 [205]

Huang, Z., Geyer, N., Werner, P., de Boor, J., & Gosele, U. (2011). Metal-Assisted
Chemical Etching of Silicon: A Review. Advanced Materials, 23(2), 285-308.
https://doi.org/10.1002/adma.201001784 [206]

Malinkiewicz, O., Yella, A., Lee, Y. H., Espallargas, G. M., Graetzel, M., Nazeeruddin,
M. K., & Bolink, H.]J. (2014). Perovskite solar cells employing organic charge-transport
layers. Nature Photonics, 8(2), 128-132. https://doi.org/10.1038/nphoton.2013.341
[207]

Niu, G, Li, W.,, Meng, F., Wang, L., Dong, H., & Qiu, Y. (2014). Study on the stability
of CH 3 NH 3 PbI 3 films and the effect of post-modification by aluminum oxide in

1,886

1,605

1,285

1,029

955
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all-solid-state hybrid solar cells. J. Mater. Chem. A, 2(3), 705-710.
https://doi.org/10.1039/C3TA13606] [208]
Fe203 (iron oxide) Citations

Sivula, K., Le Formal, F., & Gratzel, M. (2011). Solar Water Splitting: Progress Using 2,332
Hematite (a-Fe 2 O 3 ) Photoelectrodes. ChemSusChem, 4(4), 432-449.
https://doi.org/10.1002/cssc.201000416 [209]

Osterloh, F. E. (2013). Inorganic nanostructures for photoelectrochemical and 1,776
photocatalytic =~ water  splitting. Chem. Soc. Rev. 42(6), 2294-2320.
https://doi.org/10.1039/C2CS35266D [210]

Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y., & Kumar, R. (2013). Surface 1,685
modification of inorganic nanoparticles for development of organic—inorganic
nanocomposites—A review. Progress in Polymer Science, 38(8), 1232-1261.
https://doi.org/10.1016/j.progpolymsci.2013.02.003 [211]

Park, J. H., Kim, S., & Bard, A.]. (2006). Novel Carbon-Doped TiO 2 Nanotube Arrays 1,647
with High Aspect Ratios for Efficient Solar Water Splitting. Nano Letters, 6(1), 24-28.
https://doi.org/10.1021/n1051807y [212]

Wang, C.-C,, Lj, J.-R,, Lv, X.-L., Zhang, Y.-Q., & Guo, G. (2014). Photocatalytic organic 1,444
pollutants degradation in metal-organic frameworks. Energy Environ. Sci., 7(9),
2831-2867. https://doi.org/10.1039/C4EE01299B [213]

WO3 (tungsten trioxide) Citations

Park, ]. H., Kim, S., & Bard, A.]. (2006). Novel Carbon-Doped TiO 2 Nanotube Arrays 1,647
with High Aspect Ratios for Efficient Solar Water Splitting. Nano Letters, 6(1), 24-28.
https://doi.org/10.1021/n1051807y [212]

Bak, T., Nowotny, J., Rekas, M., & Sorrell, C. . (2002). Photo-electrochemical hydrogen 1,346
generation from water using solar energy. Materials-related aspects. International
Journal of Hydrogen Energy, 27(10), 991-1022. https://doi.org/10.1016/S0360-

3199(02)00022-8 [214]

Grangqyvist, C. . (2000). Electrochromic tungsten oxide films: Review of progress 1993— 1,324
1998. Solar  Energy  Materials and Solar  Cells, 60(3), 201-262.
https://doi.org/10.1016/50927-0248(99)00088-4 [215]

Meyer, J.,, Hamwi, S., Kroger, M., Kowalsky, W., Ried], T., & Kahn, A. (2012). 1,049
Transition Metal Oxides for Organic Electronics: Energetics, Device Physics and
Applications. Advanced Materials, 24(40), 5408-5427.
https://doi.org/10.1002/adma.201201630 [216]

Baetens, R., Jelle, B. P.,, & Gustavsen, A. (2010). Properties, requirements and 1,047

possibilities of smart windows for dynamic daylight and solar energy control in
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buildings: A state-of-the-art review. Solar Energy Materials and Solar Cells, 94(2), 87—
105. https://doi.org/10.1016/j.solmat.2009.08.021 [217]
CeO2 (cerium dioxide) Citations

Liu, X., Iocozzia, J., Wang, Y., Cui, X., Chen, Y., Zhao, S., et al. (2017). Noble metal- 832
metal oxide nanohybrids with tailored nanostructures for efficient solar energy
conversion, photocatalysis and environmental remediation. Energy & Environmental
Science, 10(2), 402-434. https://doi.org/10.1039/C6EE02265K [218]

Corma, A., Atienzar, P., Garcla, H, & Chane-Ching, J.-Y. (2004). Hierarchically 728
mesostructured doped CeO2 with potential for solar-cell use. Nature Materials, 3(6),
394-397. https://doi.org/10.1038/nmat1129 [219]

Ou, G, Xu, Y., Wen, B, Lin, R,, Ge, B,, Tang, Y., et al. (2018). Tuning defects in oxides 502
at room temperature by lithium reduction. Nature Communications, 9(1), 1302.
https://doi.org/10.1038/s41467-018-03765-0 [220]

Abanades, S., & Flamant, G. (2006). Thermochemical hydrogen production from a 491
two-step solar-driven water-splitting cycle based on cerium oxides. Solar Energy,
80(12), 1611-1623. https://doi.org/10.1016/j.solener.2005.12.005 [221]

Boyjoo, Y., Sun, H., Liu, J., Pareek, V. K., & Wang, S. (2017). A review on 435
photocatalysis for air treatment: From catalyst development to reactor design.
Chemical Engineering Journal, 310(2, SI), 537-559.
https://doi.org/10.1016/j.cej.2016.06.090 [222]

*Some publications appear in multiple oxide lists because they reference or use several materials simultaneously.
The selection was based on keywords and abstracts, so even if the main focus of the publication is not exclusively

on the respective oxide, its role in the research context is confirmed.

TiO2 shows overwhelming dominance in citation counts, followed by ZnO and Fe:0s, while
materials such as SiOz, Al20s, WOs, and CeO: contribute in a more specialized but still significant
way. These patterns reflect both the scientific maturity of each material’s applications and their role
within the broader solar energy research landscape.

TiOz2 stands out as the most researched and cited material. The seminal work by O’Regan and
Gratzel from 1991 [191], which introduced dye-sensitized solar cells, has garnered over 25,000
citations — far surpassing any other publication in this field. This paper laid the foundation for much
of the subsequent TiO2 research and solidified its reputation as a cornerstone material in solar energy
technologies. Other highly cited works on TiO2 examine its role in photoelectrochemical cells and
perovskite solar cells, with citation counts ranging from 5,000 to 18,000. These publications span
several decades, indicating TiO2's sustained influence across multiple generations of solar technology
development.

ZnO also holds a strong position, with its most cited works receiving between 2,000 and 11,000
citations. Key publications focus on its use in dye-sensitized solar cells and nanostructured
applications, emphasizing its value as a versatile and cost-effective material. The overlap between
ZnO and TiO2 in several studies underscores their complementary roles in similar technological
areas. However, ZnO'’s citation counts remain significantly lower than those of TiOx, reflecting its
secondary, but still critical, role in the evolution of solar energy applications.
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Si02 shows more modest citation figures, with its most influential publications ranging from 728
to 1,437 citations. These studies primarily explore SiO:’s supporting roles in solar cells, such as surface
passivation and photocatalytic enhancement. While its contribution is less transformative than that
of TiOz or ZnO, SiO: remains a fundamental component in optimizing the performance and stability
of solar energy systems.

AlOs shows a similar trend, with top citation counts between 955 and 1,886. Its impact centers
on areas like charge recombination dynamics and hybrid cell stability. Though its niche applications
limit its broader influence, Al2Os has attracted significant attention in these specialized contexts.

Fe2Os has a higher citation range (between 1,400 and 2,300) reflecting its role in
photoelectrochemical water splitting and hydrogen generation. Publications on Fe:0s emphasize its
potential for renewable energy storage and production. WOs shows a comparable citation profile,
with its most cited works receiving between 1,000 and 1,600 citations. Research on WOs highlights its
stability and optical properties, particularly for applications like electrochromic films and PEC
devices. Although more specialized, WOs continues to be a valuable material in niche solar energy
technologies.

CeO2 displays the lowest citation counts among the analyzed materials, with top publications
ranging from 400 to 800 citations. Research on CeO: is relatively recent and focuses on advanced
topics such as defect engineering, photocatalysis, and thermochemical hydrogen production. Its
growing relevance indicates emerging potential in specialized solar systems, even though its overall
impact remains limited compared to other materials.

Table 6 offers insight not only into the general scientific impact of the materials but also into the
evolution of research priorities over time. In the 1990s, TiO2's dominance was undisputed: it was the
material that triggered a breakthrough in solar technologies, as demonstrated by the pivotal
publications of 1991 and 1993. In the 2000s, ZnO, SiO2, and Al:0s joined the landscape, primarily as
supporting or alternative components. Beginning in 2006, scientific interest expanded significantly,
with key publications emerging on WOs and Fe20s, reflecting a growing focus on PEC technologies
and photoelectrochemistry.

Table 6. Distribution of Top-5 Publications by Year for Each Oxide.

Year TiO2 Zn0O SiO: AlL20s Fe203 WOs CeO:
O’Regan, B,
1991 & Gratzel, M. ~ ~ ~ ~ ~ ~
[191]
(25,829)
Nazeeruddin
1993 et al. ~ ~ ~ ~ ~ ~
[195]
(5,854)
Aberle Grangqvist
2000 - - [204] - - [215] -
(2000) (1,324)
Gratzel Gratzel
2001 [193] [193] - - - - -
(11,772) (11,772)
Bak et al.
2002 - - - - - [214] -
(1,346)
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Palomares Palomares et
Gratzel
et al. al.
2003 [197] - - -
[202] [202]
(4,640)
(1,029) (1,886)
Corma et
al.
2004 - - - - - -
[219]
(728)
Law et
al.
2005 - - - - - -
[196]
(5,135)
Park et Parketal. Abanades
Kayetal. Moretal
al. [212] etal.
2006 - - [200] [205]
[212] (1,647) [221]
(1,437) (1,605)
(1,647) (491)
Liu, &
Kojima et al. .
Aydil,
2009 [192] - - - - -
[199]
(18,169)
(2,215)
Baetens et
al.
2010 - - - - -
[217]
(1,047)
Sivula et
Huang et al. i
al.
2011 - - - [206] -
[209]
(1,285)
(2,332)
) Cushing et Meyer et
Kim et al.
al. al.
2012  [194] - - - -
[201] [216]
(7,149)
(1,032) (1,049)
Osterloh
[210]
1,776),
2013 - - - - ( ) - -
Kango
[211]
(1,685)
Malinkiewicz
Liu & [207] Wang et
Kell 1,029), L.
2014 - Y - ( ) a - -
[198] Niu et al. [213]
(2,383) [208] (1,444)
(955)
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Liu et al.
[218]

(832),
Zou et al.

2017 - - [203] - - -

Boyjoo et
(728) Y)

al.
[222]
(435)
Ouetal
2018 - - - - - - [220]
(502)
Simultaneously, the table illustrates the increasing research activity on CeO: in the 2010s,

marking its transition from a peripheral topic to one of active interest. Although its citation counts
do not yet rival those of TiO2 or ZnO, the thematic focus of recent publications suggests strong
potential in areas like hydrogen production and defect engineering. Publications from 2017 to 2018
are particularly significant indicators of which materials may form the next wave in oxide ceramic
research for solar energy.

3.5. Global Trends and International Collaboration in Research on Binary Oxides for Solar Energy
Applications

3.5.1. Titanium Dioxide

Bibliometric analysis (Figure 4) shows that research on TiO: has steadily increased over the past
two decades, driven by its applications in photovoltaic systems, photocatalysis, and environmental
remediation. China leads the research landscape with the highest number of publications, followed
by the United States, India, and South Korea. Collaboration networks reveal strong global
connections with Germany, Japan, and Italy, which form influential regional hubs in Europe. This
reflects the worldwide interest of TiO: as a key material in energy and environmental technologies.
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Figure 4. Bibliometric analysis in VOSviewer for TiO2: (a) visualization of international collaboration; (b)

visualization of keyword clustering.

”ou

Keyword analysis reveals major research themes such as “nanostructures,” “photoanodes,”

“efficiency,” and “thin films.” The role of TiO2 in dye-sensitized solar cells (DSSC) is well established,
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with studies highlighting improvements in light harvesting efficiency, stability, and charge
separation. Research frequently focuses on nanostructuring approaches, including nanotubes,
nanorods, and mesoporous films, to increase surface area and optimize electron transport.

Additionally, TiO2 doping with elements such as nitrogen or metals has been extensively studied
to extend its light absorption into the visible spectrum, making it suitable for broader solar energy
applications.

Hydrogen production and water splitting represent another major research direction for TiOx,
where the use of co-catalysts and heterojunction architectures enhances its integration into
photoelectrochemical systems. Environmental applications, including pollutant degradation and air
purification, further emphasize the versatility of TiO2, making it a sustained subject of interest across
multiple disciplines.

3.5.2. Zinc Oxide

Bibliometric analysis (Figure 5) indicates a steady increase in research output on ZnO, with
China, the United States, and India leading global efforts. Germany, France, and South Korea also
play important roles, and the collaboration networks show strong partnerships between Asian and
European countries. The growing importance of ZnO reflects its versatility in energy conversion,
environmental remediation, and advanced electronics.
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Figure 5. Bibliometric analysis in VOSviewer for ZnO: (a) visualization of international collaboration; (b)

visualization of keyword clustering.

a7

The keyword network is dominated by terms such as “thin films,” “nanostructures,” “dye-
sensitized solar cells,” and “recombination,” highlighting ZnO’s utility in photovoltaic and catalytic
systems. Studies emphasize its high electron mobility, tunable bandgap, and cost-effective synthesis.
In DSSCs and hybrid perovskite solar cells, ZnO serves as a transparent conducting oxide (TCO) or
electron transport layer, and advances in nanostructuring methods, such as electrospinning and
hydrothermal synthesis, have improved its performance. ZnO nanowires, nanoparticles, and
quantum dots are actively investigated for their enhanced surface area and light-harvesting
capabilities.

ZnO’s role in photocatalysis has also drawn considerable attention. Applications include
pollutant degradation, hydrogen production, and water purification. Recent studies combine ZnO
with TiO2 and other materials to form heterojunctions that improve charge separation and catalytic
efficiency. These innovations underscore ZnQO'’s critical role in sustainable technologies.

3.5.3. Silicon Dioxide
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Silicon dioxide (5iO2), widely recognized for its dielectric and insulating properties, plays a
crucial role in enhancing the performance and stability of solar cells. Bibliometric data (Figure 6)
identify China and the United States as dominant contributors to SiO: research, with strong
collaboration networks in Germany, the Netherlands, and South Korea. Patterns of cooperation
highlight the cohesion of European research efforts, anchored in partnerships between Germany and
neighboring countries such as France and the Netherlands.
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Figure 6. Bibliometric analysis in VOSviewer for SiO2: (a) visualization of international collaboration; (b)

visualization of keyword clustering.

Keyword analysis reveals core themes such as “surface passivation,” “coating,” and
“antireflective layers,” reflecting the importance of 5iO: in minimizing recombination losses and
protecting solar cell components. Its applications in thermal management and optical coatings further
underscore its versatility. Recent advances include nanoporous SiO: structures for light trapping and
improved heat dissipation. Sol-gel processing and plasma-enhanced chemical vapor deposition
(PECVD) have emerged as prominent methods for producing uniform and durable SiO2 films.

As an integral part of tandem and thin-film solar cells, SiO2 continues to serve as a foundational
material in photovoltaic research.

3.5.4. Aluminum Oxide

Aluminum oxide (Al203) has attracted significant attention due to its application in surface
passivation, particularly in silicon-based solar cells. Bibliometric data (Figure 7) show a steady
increase in research output, with China, the United States, and Germany contributing the largest
share globally. The collaboration network highlights strong connections among these countries and
other regions, including South Korea, India, and Australia.

i

Key terms such as “atomic layer deposition,” “surface passivation,” and “crystalline silicon”
dominate the keyword network, illustrating Al20s’s role in enhancing the stability and efficiency of
photovoltaic systems. ALD methods are frequently used to deposit Al20s layers with excellent
dielectric properties and conformal coverage. Recent developments include the integration of Al2Os
into perovskite solar cells and investigations of its potential as a barrier layer under harsh

environmental conditions.
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Figure 7. Bibliometric analysis in VOSviewer for Al2Os: (a) visualization of international collaboration; (b)

visualization of keyword clustering.

3.5.5. Cerium Dioxide

Cerium dioxide (CeO2) is an emerging material for solar and environmental applications due to
its high oxygen storage capacity and redox properties. Bibliometric analysis (Figure 8) reveals that
China, India, and the United States are the leading contributors, while collaboration across Europe
and the Middle East is expanding. The cooperation network reflects a growing partnership between
academic institutions and industrial stakeholders.
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Figure 8. Bibliometric analysis in VOSviewer for CeO2: (a) visualization of international collaboration; (b)

visualization of keyword clustering.

The analysis is dominated by keywords such as “nanoparticles,” “photocatalysis,” and
“hydrogen production.” CeOx’s catalytic activity makes it ideal for solar-to-hydrogen conversion and
pollutant degradation. Research focuses on the synthesis of CeO2-based nanocomposites to improve
charge transport and catalytic efficiency. Hybrid systems combining CeO: with TiOz or ZnO have
demonstrated enhanced performance in photocatalytic and thermochemical processes. CeO:'s
thermal stability and optical properties further expand its potential for solar devices and energy
storage systems.

3.5.6. Iron Oxide
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Iron oxide (Fe20s), particularly in its hematite form, has been widely studied for applications in
photoelectrochemical water splitting and energy storage. Bibliometric data (Figure 9) identify China,
the United States, and Germany as leading contributors, with broad international collaboration
networks across Europe and Asia. Hematite’s abundance and stability make it an attractive material
for renewable energy technologies, despite challenges such as its narrow bandgap and low
conductivity.
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Figure 9. Bibliometric analysis in VOSviewer for Fe:0s: (a) visualization of international collaboration; (b)

visualization of keyword clustering.

ZaTi

Keywords such as “photoanodes,” “water splitting,” and “hydrogen production” emphasize
Fe:03's central role in photoelectrochemical systems. Research focuses on overcoming material
limitations through doping, nanostructuring, and the use of co-catalysts. Innovations include
heterojunctions and hematite-based tandem systems that improve charge separation and
photocurrent efficiency. Additionally, surface passivation strategies and hybrid designs integrating
Fe203 with TiO2 or WOz have demonstrated enhanced performance, solidifying its place at the center

of renewable energy research.

3.5.7. Tungsten Trioxide

Research on tungsten trioxide (WQ:s) is driven by its applications in photoelectrochemical
systems, smart windows, and environmental technologies. Bibliometric analysis (Figure 10)
highlights China, the United States, and South Korea as key contributors, with strong collaboration
networks in both Europe and Asia. Germany, Japan, and the United Kingdom are also notable players
in advancing WOs-based technologies.

i

The analysis is dominated by keywords such as “photoanodes,” “thin films,” and “solar cells,”
reflecting WOs's versatility in energy and catalytic applications. Studies focus on optimizing WOs
properties through nanostructuring, doping, and integration with other materials. Recent advances
include WOs-based heterojunctions for improved charge separation and the use of WO:s thin films in
electrochromic devices. Its adaptability and multifunctionality position WOs as an important material

in addressing global energy and environmental challenges.
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Figure 10. Bibliometric analysis in VOSviewer for WOs: (a) visualization of international collaboration; (b)

visualization of keyword clustering.

4. Comparative Analysis of Oxide Ceramics in Different Types of Solar Cells

The results of the bibliometric analysis demonstrate that binary oxide ceramic materials have
diverse applications in solar energy, materials science, and photoelectrochemical technologies. The
relevance of each material is defined by its physicochemical properties, its ability to enhance the
efficiency of solar devices, and its potential for integration into current and future energy systems.

These oxides serve different roles, such as electron transport layers, hole-blocking layers, surface
passivation coatings, or antireflective coatings, across various solar cell technologies, as outlined
below. Key properties such as bandgap (electronic structure), optical transparency, chemical stability,
and charge transport characteristics make them well suited for specific applications [223-226].

In the following sections, we examine how each oxide is utilized in the main types of solar cells
(crystalline silicon solar cells, perovskite solar cells, dye-sensitized solar cells, thin-film chalcogenide
cells, quantum dot cells, and emerging organic solar cells) (Figure 11), and explain why their intrinsic
properties are advantageous in these systems.
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Silicon-based solar
cells (Si)

Quantum dot solar
cells (QDSC)
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Figure 11. Major types of solar cells.

4.1. Silicon-Based Solar Cells

Silicon-based solar cells, both monocrystalline [226—228] and polycrystalline [229,230], remain
the predominant type of solar energy conversion devices due to their high efficiency, long-term
stability, and well-established industrial manufacturing processes [231,232]. However, further
performance enhancement of silicon photovoltaic devices requires minimizing losses associated with
surface recombination of charge carriers and optical losses caused by light reflection [233]. Oxide
materials play an important role in addressing these challenges.

One of the most effective and widely used oxide materials for silicon surface passivation is Al2Os
[234]. Its application in silicon solar cells is attributed to its excellent passivation properties and high
thermal and chemical stability [235]. The deposition of thin Al20s layers enables the formation of a
high-quality interface with silicon [236]. The primary advantage of this material lies in its ability to
effectively neutralize surface defects, particularly dangling bonds on silicon atoms [237]. In addition
to chemical passivation, Al20s exhibits a high density of fixed negative charges [238]. These charges
promote field-effect passivation by repelling electrons from the interface, significantly reducing
surface recombination on p-type silicon surfaces. As a result, Al20s layers substantially enhance the
open-circuit voltage (V_OC) of silicon solar cells by reducing the defect density at the interface
[236,239]. Another important characteristic of Al2Os is its high thermal and chemical stability, which
allows it to withstand high-temperature fabrication processes such as contact annealing [240].

Silicon dioxide is one of the most well-established and widely studied materials in silicon
photovoltaics [241]. It is mainly used as a surface passivation layer and as a component of
antireflective coatings [242]. The main advantage of SiO: is its exceptional ability to form a very low
density of surface defect states due to the formation of strong and stable bonds with silicon [243].
This is particularly important for ensuring low surface recombination velocities and, consequently,
for increasing open-circuit voltage and overall solar cell efficiency. However, unlike Al20Os, SiO2 has
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aneutral or slightly positive fixed charge, making it less effective for field-effect passivation of p-type
silicon surfaces [244-246]. Therefore, SiO: is often combined with other oxide or nitride layers in
passivated contact structures, such as TOPCon [247,248]. In this architecture, an ultrathin tunneling
SiOz layer is paired with a highly doped polysilicon layer, enabling efficient charge collection while
maintaining excellent surface passivation [249].

In addition to its passivation function, SiO2 is widely used in optical coatings due to its excellent
antireflective properties [250]. Its low refractive index allows it to effectively reduce light losses due
to reflection at the surface of silicon cells [251,252]. For example, dual-layer antireflective coatings
based on SiO2 combined with high-index oxides (such as TiOz) can reduce broadband reflection and
significantly enhance solar cell efficiency [253].

Titanium dioxide is well known for its unique properties that make it an attractive material for
photovoltaic applications, particularly in silicon solar cells as an antireflective coating or interfacial
layer. The choice of TiOz for this role is due to its wide bandgap, which ensures high transparency in
the visible spectrum [254]. This makes TiO: ideal for reducing optical losses at the surface of silicon
solar cells [255]. Thanks to its high refractive index, TiO: is often used in dual-layer antireflective
coatings along with 51Oz [256]. Such combined layers significantly reduce reflection losses, positively
impacting the overall efficiency of silicon photovoltaic devices.

In addition to its optical advantages, TiO2 can also passivate silicon surfaces, although less
effectively than Al2Os or SiO:z [257]. Thin TiO:2 layers are used to reduce surface recombination of
charge carriers, particularly on n-type silicon surfaces or on the rear side of solar cells, contributing
to higher open-circuit voltage [258,259]. Due to its chemical stability and low cost, TiO: is a favorable
material in manufacturing settings [260]. However, its semiconducting nature (n-type) and moderate
conductivity must be taken into account, as they may lead to unintended shunting, especially if film
thickness or quality is not properly controlled [261]. It is also important to note that achieving optimal
performance of TiO2 layers typically requires thermal treatment, which imposes certain limitations
on their use with flexible substrates [262,263].

ZnO is one of the primary candidates for the role of a transparent conducting oxide (TCO) in
silicon heterojunctions and thin-film solar cells [264]. Due to its high optical transparency, resulting
from its wide bandgap, and its ability to be doped n-type (e.g., with aluminum), ZnO offers excellent
properties as a transparent front electrode [265]. Aluminum-doped ZnO (AZO) layers have been
successfully used as a lower-cost and more accessible alternative to the more expensive and less
abundant indium tin oxide (ITO), demonstrating comparable electrical conductivity and
transparency at reduced cost [266].

In addition to its role as a transparent electrode, undoped or lightly doped ZnO can also serve
as a buffer layer, minimizing damage during deposition of more conductive oxide layers or
facilitating energy level alignment at interfaces [267,268]. However, it is important to note that in
conventional silicon solar cells with diffused junctions, the use of ZnO and TiO:z is less common, as
standard technologies typically employ silicon nitride (SiNy) [269] and screen-printed contact
methods [270]. Meanwhile, in advanced heterostructure-based silicon devices, especially thin-film or
specialized technologies, these materials demonstrate significant potential for further development.

Despite its many advantages, ZnO has certain limitations. Its surface can react with certain
materials or be sensitive to acidic environments, which affects its stability and, consequently, the
durability of solar cells [271,272]. Therefore, appropriate processing conditions and additional surface
passivation become critically important for the effective use of ZnO in photovoltaic devices.

CeOx is a relatively new and experimental material in silicon photovoltaics, but it has already
shown potential for improving solar cell performance. Interest in CeO:2 stems from its unique
combination of physical and chemical properties, particularly its wide bandgap, which provides high
optical transparency across most of the solar spectrum [273]. Owing to these characteristics, CeO: can
effectively serve as a window layer in silicon heterojunctions [274], similar to materials such as
amorphous silicon carbide (a-SiC) [275] or indium tin oxide (ITO) [276] in heterojunction with
intrinsic Thin-layer (HIT) cell structures.
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Theoretical studies and simulations confirm the promise of CeO:/n-Si heterojunctions. In such
heterostructures, CeO: acts not only as a transparent window layer but may also provide additional
surface passivation by forming a high-quality interface with silicon [277]. Furthermore, a notable
advantage of CeO:z is its ability to absorb ultraviolet radiation, allowing it to function as a protective
layer for silicon structures, mitigating the detrimental effects of UV exposure on the stability of solar
cells [278,279]. Despite these promising features, experimental data on the practical use of CeO: in
commercial devices remain limited. Further research is necessary to optimize deposition methods
and improve the film quality of this oxide.

Fe20s and WO:s oxides are rarely discussed in the context of silicon solar cell applications, as
there is currently no compelling evidence of their effectiveness for passivation or as transparent
electrodes in Si-PV.

Thus, each of the oxide materials discussed has unique advantages that make it attractive for
specific functions in silicon solar cells (Table 7). Al2Os and SiO: are traditionally the most effective
materials for silicon passivation, due to their low interface defect densities and chemical inertness
when in contact with silicon. Al2Os offers the additional benefit of efficient field-effect passivation
due to its negative fixed charge. For optical optimization tasks, coatings based on SiO2 and TiO:
remain leading choices due to their ability to reduce light reflection losses. ZnO, meanwhile, is a
promising transparent conductive oxide because of its affordability, high electrical conductivity
when doped, and suitability for use in thin-film silicon cells. At the same time, both TiO2 and ZnO
may require special technological measures to overcome potential drawbacks related to
photocatalytic activity or chemical instability. CeO2 shows promise as an innovative material for
surface passivation and UV protection, though it still requires further investigation.

Table 7. Comparison of key oxide materials used in crystalline silicon (c-Si) solar cells.

Oxide Main Functions in ¢-Si Disadvantages and
) Advantages e
Material Cells Limitations

Excellent chemical passivation,

. e Does not conduct electrons
negative charge (effective field-

Surface passivation, (only a passivation layer), often

Al0s effect passivation), high requires an additional
i i i iti
insulation thermal stability, chemical 1 . .
inertness protective layer (e.g., SiNy)
Exceptional chemical
. . P . Lack of effective field-effect
Surface passivation, passivation, very stable assivation (neutral/weakl
. . . . . . . 1V, Wi
Si0O: antireflection coatings, interface with Si, excellent P itive ch ), pri 1 y
. . . ositive charge), primari
tunneling layer antireflection properties (low P 8¢, p y

d ive |
refractive index, ~1.45) tsed as a passive fayet

Unintended shunting due to n-

Antireflection coatings, High transparency, high type conductivity,
TiO:2  surface passivation of n- refractive index (2.0-2.5), good photocatalytic activity under
Si chemical stability, low cost UV, requires precise film
quality control
High transparency, high Lower chemical stability,

Transparent conductive
ZnO oxide (TCO), buffer layer
in heterojunctions

conductivity when doped (e.g.,  sensitive to humidity and
AZQ), low cost, application  acidic environments, requires
flexibility additional passivation
Good chemical stability, UV
absorption capability (Si
protection), promising CeO2/n-
Si heterojunction

Low electron mobility, further
research needed for deposition
optimization

Experimental window
CeO: layer, UV filter, potential
passivation layer

4.2. Perovskite Solar Cells (PSC)
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Hybrid organic-inorganic perovskite solar cells (PSCs) have attracted significant scientific
attention in recent years due to their high theoretical solar energy conversion efficiency and the
potential cost-effectiveness of their production [280]. One of the crucial aspects of improving the
efficiency and stability of such devices is the selection of optimal charge-selective layers, among
which oxide materials play an essential role [281]. Typically, metal oxide thin films are employed in
PSC architectures to facilitate selective charge transport, reduce carrier recombination, and ensure
long-term device stability [282].

TiO:2 is one of the most widely used and extensively studied materials for electron transport
layers (ETLs) in PSCs [283], particularly in the conventional n—i—p configuration [284]. A key reason
for the widespread use of TiO2 is its favorable band alignment: its conduction band matches well with
that of the perovskite [285,286]. This enables efficient electron extraction from the active layer while
blocking hole transport in the reverse direction, thereby reducing recombination. With its wide
bandgap, TiO: remains transparent to most of the solar spectrum, minimizing photon absorption
losses [287].

PSC devices using TiOz-based mesoporous ETLs currently demonstrate power conversion
efficiencies exceeding 20%, highlighting the exceptional suitability of this material [288]. TiO: is also
favored for its high chemical stability under prolonged illumination and its relatively low
manufacturing cost. Despite these advantages, TiO2 also has several drawbacks. Notably, it is well
known for its photocatalytic activity under UV light, which can degrade both the perovskite and
adjacent organic layers in the device [289]. This creates a need for additional UV-blocking or
protective layers, such as ultrathin Al:Os or CeO: coatings. Another significant technological
limitation is the high-temperature treatment required to crystallize TiO: films and achieve high
device performance [290]. This requirement complicates its use on flexible polymer substrates,
prompting efforts to develop low-temperature deposition methods, such as solution processing,
chemical bath deposition, or atomic layer deposition (ALD). Despite these challenges, TiO2 remains
the benchmark ETL material in PSC design due to its well-established processing protocols, stable
and high performance, and ongoing improvements through fine-tuned layer engineering.

Among alternative ETL materials for PSCs, ZnO has drawn considerable attention [291]. Unlike
traditional TiOz, ZnO can be processed at low temperatures, including via solution-based methods
[292]. This makes ZnO particularly attractive for use on flexible and polymer substrates, where high-
temperature processing (as required for TiOz) is not feasible [293]. For instance, sol-gel ZnO films can
be formed at temperatures below 150 °C, greatly simplifying fabrication and reducing production
costs [294].

Additionally, ZnO exhibits superior charge transport speed due to its higher electron mobility
compared to TiO.. This enhances the extraction of electrons from the perovskite active layer,
potentially increasing short-circuit current density (J_SC) and fill factor (FF) [295]. The energy level
alignment between ZnO and perovskite materials is also favorable — ZnO has a bandgap of
approximately 3.3 eV, offering high transparency in the visible spectrum [296]. Combined with its
strong electron affinity, ZnO is considered a promising candidate for ETL applications [297].

Despite its many advantages, the application of ZnO in PSCs faces significant challenges,
particularly due to its chemical reactivity toward perovskite materials. It has been reported that
perovskite layers deposited directly onto ZnO surfaces undergo rapid degradation [293]. This is
caused by chemical interactions between the ZnO surface and the organic cations in the perovskite,
resulting in the deprotonation of methylammonium cations and accelerated degradation of the
perovskite layer. These processes substantially reduce the stability and longevity of devices with ZnO
ETLs, despite their initially high performance.

To overcome this issue, researchers are actively developing various surface modification
strategies for ZnO, including the introduction of interfacial protective layers. For example, the use of
bilayer structures in which ZnO is coated with a compact TiO: layer has proven effective [298], as
have coatings based on self-assembled monolayers of organic molecules or fullerene derivatives
[299]. These solutions significantly enhance device stability while maintaining high initial efficiency
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in PSCs employing ZnO-based ETLs. Nanostructured forms of ZnO (such as nanorods or
nanoparticles) further improve electron collection by increasing the effective interfacial area and
providing direct pathways for charge transport [300].

Among other oxide materials that are gaining increasing prominence in perovskite
photovoltaics, tin oxide (SnO2) has emerged as especially important. Although SnO: was not part of
the original list of analyzed materials, its role as an efficient ETL in PSCs warrants special attention
due to its excellent performance and widespread use in modern device architectures [301]. Thanks to
its combination of high stability, wide bandgap (~3.6 eV), and suitability for low-temperature
processing, SnO:z has emerged as a leading ETL candidate alongside TiO2 and ZnO. Studies have
shown that SnO: provides more stable performance than TiO2 and demonstrates lower hysteresis
behavior, which is crucial for the long-term operation of PSCs [302-304].

Aluminum oxide (Al20s), in turn, occupies a unique niche among materials used in PSCs due to
its insulating and passivating properties. In the early stages of solid-state PSC development, it was
discovered that replacing the conductive mesoporous TiO: scaffold with insulating Al20Os did not lead
to a complete drop in performance; in fact, devices with efficiencies of about 10-11% were still
achieved [305]. This was possible because perovskite was able to infiltrate the mesoporous Al20s
structure and directly transport electrons to the contact, eliminating the need for a conductive
scaffold. Later research showed that mesoporous frameworks made of Al:Os or other inert oxides
could even increase the open-circuit voltage (V_OC) compared to TiO2-based devices, due to reduced
surface electron recombination [306].

AlOs is characterized by high chemical inertness toward perovskites, preventing degradation
of the active layer and significantly improving device stability. This property is effectively utilized in
PSC structures with carbon electrodes, where a triple mesoporous structure is employed: a bottom
TiO: layer for efficient electron contact, a middle Al:Os layer as an inert insulating spacer, and a top
carbon layer serving as the electrode [307]. This configuration allows Al:Os to efficiently isolate the
perovskite layer from the carbon contact, reducing recombination and improving device longevity.

Another promising ETL material in PSCs under recent investigation is cerium oxide (CeQO2). Its
high conduction band level aligns well with the energy levels of typical perovskite materials,
enabling efficient electron extraction from the active layer. In addition, CeO: offers several unique
advantages, particularly its ability to absorb ultraviolet (UV) radiation [308]. This property allows
cerium oxide to serve as a protective UV-blocking layer, preventing degradation of organic-inorganic
perovskites under UV exposure. As a result, the incorporation of CeO: layers significantly enhances
the long-term stability of PSCs under continuous illumination [309].

An additional advantage of CeO: is the presence of oxygen vacancies, which not only facilitate
electron transport but also enhance its chemical stability against oxygen and moisture. However, this
material is still under active laboratory investigation. One of the main barriers to its widespread
adoption is the difficulty of producing high-quality CeO: thin films without high-temperature
annealing. Recent studies report that optimizing deposition processes, particularly solution-based
CeO: film formation without post-deposition thermal treatment, can lead to improved device
efficiency, demonstrating this material’s significant potential [310]. Nevertheless, CeO: remains less
technologically mature than conventional oxides such as TiO2 and SnO2 and requires further research
before broad commercial deployment.

Another unconventional material gaining attention in perovskite photovoltaics is iron(III) oxide,
commonly known as hematite (a-Fe2Os). Its appeal lies in its abundance, non-toxicity, and
exceptional stability under ultraviolet and visible light exposure [311]. Hematite’s availability and
low cost make it a promising alternative for use as a compact ETL layer in PSCs [312]. Researchers
have achieved power conversion efficiencies of around 13% in devices with compact Fe2Os layers
through precise control over the fabrication process, notably by forming dense, defect-free films using
solution crystallization techniques [313].

At the same time, hematite suffers from several significant drawbacks that limit its widespread
use. Its main limitation is low electron mobility and a high density of trap states, which lead to severe
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carrier recombination [314]. Additionally, due to its relatively narrow bandgap, hematite absorbs part
of the visible spectrum, reducing the overall efficiency of devices where the ETL should be
transparent [315]. Currently, the use of hematite remains confined mainly to laboratory settings,
where ongoing efforts are focused on improving its electronic properties through doping and
nanostructuring to make it more competitive with traditional oxides such as TiO2 or SnOx.

WO:s is most commonly used as a hole transport layer (HTL), although some studies also
demonstrate its applicability as an ETL in specific configurations [316]. This oxide has a wide
bandgap, making it transparent across most of the solar spectrum [317]. However, the most valuable
property of WQO:s is its tunable work function, which varies depending on stoichiometry. In its sub-
stoichiometric form (WQy), it has a high work function, making it ideal for use as an inorganic HTL,
especially in inverted (p—i—n) perovskite architectures [318]. Besides serving as an HTL, WOs is also
actively investigated as an ETL material, for example, mesoporous WOs is used in PSCs as an
additional layer to enhance electron transport [319].

AlOs and SiO2 have limited applications in PSCs, mainly serving auxiliary functions, insulating
and passivating (Al2Os) or anti-reflective (SiO2), and rarely acting as primary charge-selective layers.
Their inclusion in device architecture is often aimed at improving stability and optical performance.
An inert mesoporous scaffold or ultrathin Al2Os spacer helps passivate interfacial defect states at the
perovskite/ETL junction, reducing recombination rates and thereby increasing V_OC. However, as
Al0Os is non-conductive, its thickness must be strictly controlled to avoid adding series resistance.
SiOz, on the other hand, is primarily used as an optical or insulating interlayer: it reduces light
reflection, stabilizes the active layer morphology, and acts as a barrier to interfacial ion diffusion.
Both oxides function indirectly by improving the durability and electrical performance of the cell but
are not involved in selective charge transport, and therefore are excluded from the comparative table
of transport oxides.

In summary, hole transport in PSCs is generally facilitated by p-type oxides with high work
functions. WOs, NiO, and MoOs (the latter two not included in this analysis) are typical
representatives of such materials. The advantage of using oxide materials over organic HTLs lies in
their significantly higher resistance to ultraviolet light, heat, and moisture, thereby greatly extending
device lifetime. Notably, CeO2 and WO:s can also absorb UV light, protecting the perovskite layer
from degradation.

However, some oxides such as TiO:2 and ZnO exhibit photocatalytic activity, which under UV
exposure can lead to degradation of the perovskite and adjacent organic layers. To address this,
specific approaches are employed — either by adding protective interlayers (such as CeO:) or
incorporating luminescent additives that convert UV radiation into visible light.

Therefore, the correct selection and combination of oxide materials, considering their specific
properties, enables synergistic effects that enhance both efficiency and stability of perovskite solar
cells. The key characteristics and application roles of these oxides in the context of PSCs are
summarized in the comparative table below (Table 8).

Table 8. Comparison of key characteristics of oxide materials used in perovskite solar cells.

Oxide Layer Type Main Advantages and Drawbacks and Technological
Material Functions Features
TiO:2 ETL High transparency; favorable = Photocatalytic activity (UV-
band alignment with induced perovskite
perovskite; thermal stability; ~ degradation); requires high-
efficiency >20% temperature processing (>450
°Q)

ZnO ETL High electron mobility; low- Chemical instability in contact

temperature deposition; with MA*-based perovskites;

compatible with solution-based requires interfacial protection

methods or surface modification
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CeO2 ETL UV absorption; chemical Lower electron mobility;
inertness; interface passivation;  difficulty in forming high-
potential for enhanced stability quality films without thermal

treatment

Fe20s ETL, also studied as Low cost; environmental Low electron mobility; high
experimental absorber friendliness; high resistance to charge recombination; partial
UV and moisture visible light absorption; lower

efficiency (~13%)

WO:s HTL / ETL High work function (HTL); Suboptimal band alignment

resistance to moisture and when used as ETL; property
temperature; solution- variation depending on
processable; UV protection stoichiometry level

4.3. Dye-Sensitized Solar Cells (DSSC)

In dye-sensitized solar cells, the mesoporous oxide layer acts as a photoanode: it supports light-
sensitive dyes and transports electrons to the transparent electrode [320,321]. The most common
material in this role is TiOz [322]. Its popularity is due to its wide bandgap, chemical inertness, non-
toxicity, low cost, and ability to form highly porous nanostructures that enable efficient light
harvesting [323]. The main drawback of TiO: is the slow electron transport and the risk of
recombination with oxidized electrolyte species; however, this can be mitigated through surface
modification, core—shell structures, and other engineering strategies [324-326].

An alternative is ZnO, which has a similar bandgap and favorable energy alignment, but
features higher electron mobility [327]. Due to the ease of forming nanostructures such as nanorods,
ZnO provides direct pathways for electrons and can reduce recombination [328,329]. Moreover, ZnO
can be deposited at low temperatures, making it suitable for flexible photovoltaic devices [330,331].
However, common dyes, especially those based on ruthenium, may interact with its surface, leading
to dissolution or defect formation, thus limiting efficiency [332,333]. This issue can be addressed via
interface engineering and the use of alternative dyes [334,335].

Other semiconductor oxides, such as WOs, SnOz, and Fex0s, are also under investigation as
photoanodes [336-338]. WOs, when combined with TiO2, can enhance UV sensitivity [339]. SnO: is
notable for its high electron mobility and its ability to increase open-circuit voltage due to a deeper
conduction band. However, it requires blocking layers to counteract recombination with the
electrolyte caused by its high mobility and deep conduction band [340]. Hematite absorbs visible
light, but suffers from an extremely short hole diffusion length and high recombination, which limits
its industrial applicability in DSSCs [341].

Inert oxides such as Al20s and SiO:, although not conductive, play important auxiliary roles.
Ultrathin ALQOs layers deposited on TiO: surfaces can passivate defect states and reduce
recombination, thereby increasing the open-circuit voltage [342]. SiO2, meanwhile, is used as a
scattering additive in the anode or as a barrier layer that prolongs the photon path and improves light
absorption [343].

Table 9 summarizes oxide materials that play key roles in the functional layers of DSSCs. CeO:
currently has limited or auxiliary applications and requires further experimental verification for
widespread use.

Table 9. Characteristics of Oxide Materials for DSSC.

Oxide Role in DSSC Advantages Limitations
Material
TiO2 Photoanode Ideal energy alignment with Slow electron transport;
dyes; high chemical stability; recombination with oxidized
large surface area for dye electrolyte species
adsorption
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ZnO Photoanode High electron mobility; easy Chemical instability in the
nanostructuring (nanorods, presence of some dyes
nanoparticles); low- (especially acidic); risk of defect
temperature deposition formation
WOs  Photoanode / Additive UV absorption; chemical Less favorable energy

stability; electron conductivity alignment; high recombination;
low efficiency

Fe20s Experimental Visible light absorption; non- Very short hole diffusion
(Hematite) Photoanode toxicity; UV stability length (~2-4 nm); intense
recombination; low
photovoltage
ALO:s Passivating Barrier Defect passivation; reduced  Insulator — does not conduct
recombination; increased electrons; requires precise
V_0OC thickness control

5i0. Optical Additive / Barrier ~Enhanced light scattering; Non-conductive; indirect effect
structural stabilization; via morphology and optics
chemical inertness

4.4. Thin-Film Chalcogenide and Inorganic Solar Cells

In thin-film solar cells based on CIGS, CdTe, CZTS, and amorphous silicon (a-5i:H), oxide
ceramics play a key role as transparent conductive oxides (TCOs), buffer layers, or passivating
dielectrics [344-346]. The most common configuration is a bilayer TCO composed of an inner ZnO
layer and an outer conductive layer providing lateral conductivity [347]. Thanks to its wide band gap,
good transparency, and doping ability, AZO is widely used not only in CIGS and CZTS, but also in
CdTe and silicon-based cells [348-350].

TiO: is being investigated as an alternative to CdS in CIGS and CdTe for cadmium-free
structures [351,352]. TiO2 is also used to passivate grain boundaries in CIGS [353]. SnO: serves as a
standard transparent electrode in CdTe and some CIGS cells. Insulating oxides such as Al20s and
SiOz are applied for surface passivation, grain boundary recombination suppression, and the creation
of dielectric interlayers [354]. High work function oxides like WOs are placed between the absorber
(e.g., CdTe or CIGS) and the metal contact to improve hole extraction [355]. These materials provide
better energy level alignment, reduce contact losses, and can act as recombination barriers.

Table 10 summarizes the roles and technological characteristics of oxide materials in thin-film
chalcogenide and inorganic solar cells. It includes only those oxides that have demonstrated practical
effectiveness as transparent contacts, buffer, or passivating layers for CIGS, CdTe, CZTS, and a-5i:H.
Experimentally promising but still less commonly used oxides, such as CeO2 (due to insufficient
conductivity and less mature passivation control) and Fe20s (high optical absorption and low electron
mobility limiting its use as TCO or buffer), remain primarily at the lab stage and require further
validation for widespread implementation in thin-film PV technologies.

Table 10. Role of Oxides in Thin-Film Chalcogenide and Inorganic Solar Cells.

Oxide Role in the Device Advantages Limitations or Application
Material Conditions
ZnO Transparent contact, High transparency, good =~ May require protection during

conductivity when doped,  deposition, vulnerable to acids

buffer, textured layer . .
texturing capability

TiO2 Buffer layer, grain Cd-free replacement for CdS, Requires interface control due
- visible-range transparency, to risk of recombination
boundary passivation o
thermal stability
AlLOs Passivating layer, Reduces recombination, Insulator — does not conduct
dielectric barrier improves V_OC, used in charge, precise thickness
nanopatterned structures critical
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SiO:2  Dielectric layer, diffusion Optical transparency, thermal Does not contribute to charge
barrier stability, interlayer diffusion  transport, auxiliary function
barrier
WO:s Back contact buffer High work function, Requires thin deposition (a few
(CdTe, CIGS) transparency, improved hole nm), critical energy level
extraction alignment
CeO: Experimental Wide band gap, high Low electron mobility increases

series resistance; electrical
properties sensitive to oxygen
vacancies; requires optimized

deposition methods (ALD,
solution processes) and post-

buffer/window layer
between absorber;
surface passivation; UV
barrier

transparency; chemical

inertness; Cd-free; UV

absorption and surface
recombination reduction

treatment; efficiency
demonstrated only on lab-scale
samples

4.5. Organic and Emerging Types of Solar Cells

In emerging photovoltaic technologies, including organic solar cells (OSCs) and quantum dot
(QD) solar cells, metal oxides are used as charge-selective transport layers due to their stability,
suitable energy alignment, and transparency [356,357].

ZnO and TiO: are widely used as electron transport layers (ETLs) in inverted OSC architectures
[358,359]. High work function oxides, such as WOs, are also commonly used in OSCs [360,361]. These
materials efficiently extract holes and provide favorable alignment with the valence band of donor
polymers. When oxides like Fe203 or WO:s are used as absorbers, tandem or multilayer structures can
be developed to broaden the spectral response. The main advantages of such systems include
stability, low cost, and the absence of volatile or toxic components, making them promising for use
in harsh environments such as space or in solar fuel production.

Table 11 summarizes the properties of oxide layers that have already found practical application
in organic, quantum dot, and “all-oxide” solar cells. Notably, Al20s, SiOz, and CeO:2 mostly serve
auxiliary functions, dielectric encapsulation, passivation, or UV-barrier, and have only a limited
effect on charge-selective transport in these architectures.

Table 11. Oxide Materials in Organic, Quantum Dot, and “All-Oxide” Solar Cells: Functions, Advantages, and

Technological Limitations.

Oxide  Role in the Device Advantages Limitations or Application
Material Conditions
ZnO ETL (OSC, QD) High transparency; solution- Generates reactive radicals
processable; high electron under UV; requires surface
mobility; chemical stability modification or encapsulation
TiO2 ETL (OSC, QD); Wide band gap; stability; Low electron mobility; interface
contact in Cu0O solution-processable quality is critical
cells
WOs HTL (OSC); rear High work function; Lower work function than
contact (QD) transparency; thermal stability; MoOs; sensitive ‘to stoichiometry
UV protection and thickness
Fe2Os Absorber Low cost; non-toxic; stable Requires cascade/tandem
(experimental) architecture; limited spectral

absorption; low carrier mobility;
low efficiency
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UV absorption prevents

interlayer / UV filter in degradation of the active layer;

CeOn ETL or protective
all-oxide cells
AlLOs  Inert encapsulation,
passivating/optical
spacer
Si0,  Anti-reflective front

(AR) coating or
dielectric stabilizing
barrier

chemically inert; compatible
with low-temperature
deposition
Reduces surface recombination;
stabilizes morphology;
chemically/thermally inert; may
enhance V_OC
Low refractive index (~1.45)
reduces reflection; barrier to
oxygen/moisture diffusion; low-
T compatible
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Low electron mobility;
properties sensitive to oxygen
vacancies; large-scale solution
processing not yet optimized

Does not conduct charge;
thickness must be <3 nm to
avoid adding series resistance

Not charge-selective; effect is
purely optical/encapsulation-
related, requiring careful
integration with ETL/HTL

4.6. Application Matrix of Oxide Ceramics in Solar Cells: Analytical Summary

The universality or specialization of oxide materials in solar cells is determined not only by their
electronic structure and stability, but also by how they function in the devices — as active charge
transport layers or as auxiliary passivating or optical components. Table 12 and Figure 12 summarize
the key roles of each oxide in various photovoltaic architectures. This application matrix allows for
simultaneous evaluation of the maturity, functional flexibility, and technological relevance of the
materials, visually reflecting which ones are already implemented, have limited use, or are currently
under active investigation.

Table 12. Applications of Key Binary Oxides in Different Types of Solar Cells.

Oxide c-Si PSC DSSC Thin-Film (CIGS, OSC, QD, All-
Material CdTe, CZTS, a- Oxide
Si:H)
TiO2  Ppassivation, ETL, barrier, Photoanode (ETL)  Buffer, grain = ETL, contact with
anti-reflection  Mesoporous boundary Cu20
scaffold passivation
ZnO  TCO, buffer ETL Photoanode (ETL)  TCO, buffer, ETL, all-oxide
textured layer component
ALOs  Pagsivation, Passivation, inert Barrier, Passivation, Optical spacer,
dielectric insulator passivation of ~ dielectric barrier inert interlayer
TiO2
SiO: Anti-reflective, Anti-reflective, Optical additive, Diffusion barrier, Dielectric, optical
tunnel layer optical layer light scatterer optical substrate
stabilization
CeO2 UV protection, ETL, UV filter, - Potential ETL, absorber,
passivation stabilization passivation, buffer protective layer
(experimental)
Fe20s - Absorber Photoanode (low - Absorber in all-
(experimental) efficiency) oxide architectures
WOs - HTL, ETL Photoanode/ Rear buffer contact HTL, absorber,
(investigated) additive (HTL) rear contact

ETL - electron transport layer. HTL — hole transport layer. TCO — transparent conductive oxide. Barrier / buffer
— for energetic or chemical alignment. Passivation — reduction of recombination. Absorber — light-absorbing

layer.
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Matrix of Oxide Applications in Solar Cells

. Mature application
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Figure 12. Matrix of Oxide Ceramic Applications in Solar Cells.

TiO2 and ZnO have proven to be versatile solutions for most architectures (PSC, DSSC, OSC,
QD), as evidenced by their leading citation counts in the literature and frequent appearance among
keywords such as electron transport layer, mesoporous, dye-sensitized, and UV stability. Their
flexibility is enabled by a combination of wide bandgap, high transparency, various nanostructuring
options, and stable energetic alignment with active layers.

In contrast, SiO2 and AlOs serve clearly defined specialized roles — passivation, dielectric
separation, and optical stabilization. This is reflected in a narrower range of keywords (e.g., surface
passivation, antireflective coating) and in their lower, though stable, citation levels. While they are
not charge carriers, they are essential for the stability and longevity of devices.

Oxides with potential (CeO2, Fe203, WOs) appear in the literature as emerging materials but have
not yet achieved widespread implementation. Our bibliometric analysis shows that publications on
CeO: are often accompanied by tags such as UV filter, stability enhancement, and interface
engineering, whereas Fe20s is typically associated with PEC, low mobility, and visible light absorber.
Nevertheless, major barriers remain: unfavorable band alignment, low charge mobility, and complex
interfacial chemistry.

Therefore, in the next generation of architectures (such as all-oxide, tandem, and inverted
designs), combined structures look promising — where the drawbacks of one material are
compensated by the advantages of another (e.g., TiO2@CeO2 or ZnO/WO:s). This aligns with our
bibliometric findings on keyword co-occurrence, where pairings such as ZnO + buffer layer, TiO2 +
passivation, and WOs + HTL are appearing with increasing frequency.

In conclusion, a comparative analysis of physical properties, device functions, and the
publication landscape indicates that oxide ceramics are no longer auxiliary components, but are
emerging as a full-fledged platform for next-generation photovoltaic technologies. Their flexibility,
chemical stability, and multifunctionality allow for material adaptation to specific architectures,
opening pathways for interface engineering, integration into hybrid structures, and the development
of stable, environmentally friendly solar cells.

4.7. Future Directions

The further development of oxide ceramics for solar energy primarily hinges on refined
engineering of well-established materials, particularly TiO2 and ZnO. Despite their high efficiency in
perovskite, organic, and quantum dot solar cells, the stability of these oxides remains limited by
surface chemical reactivity: ZnO rapidly degrades in humid or acidic environments, while
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mesoporous TiO:2 requires careful control of porosity and crystal phase. One of the most promising
strategies is the deposition of ultrathin buffer layers of Al20s, SiOz, or CeO: to screen the reactive
surface while maintaining favorable energy alignment.

For the next-generation group of oxides (CeO: Fe20s, and WOs), the main challenge is
transitioning from laboratory prototypes to stable devices. CeO: requires optimization of its crystal
phase and integration with conventional ETL layers; hematite can serve as an absorber or
photoelectrode only if charge transport is enhanced through doping or heterostructure design; WO3
demonstrates excellent reliability, but its properties are highly sensitive to stoichiometry, requiring
precise control during deposition.

A promising direction is the concept of fully oxide-based architectures, where the same class of
materials serves as both the absorbing layer and selective contacts. Combinations such as ZnO/Cu:0,
TiO2/NiO, or WOs/Fe20s3 have demonstrated the feasibility of environmentally friendly and thermally
stable ‘all-oxide” solar cells, which hold promise for competing with conventional technologies in
certain applications. An additional boost is expected from the rapid advancement of SnO2, which,
alongside TiO:z and ZnO, is becoming a versatile electron transport layer in perovskite solar cells.

This trajectory can be accelerated by integrating bibliometric mapping with materials science
analytics: systematic analysis of keywords and co-authorship networks can help identify overlooked
oxides and optimally allocate research efforts across hybrid architectures, interfacial chemistry, and
long-term stability. Taken together, these approaches constitute a roadmap for the development of
efficient, durable, and environmentally sustainable next-generation photovoltaic technologies.

5. Conclusions

This study presents a comprehensive bibliometric and comparative analysis of binary oxide
materials used in modern solar cells. By combining quantitative analytics (based on Web of Science
data), in-depth exploration of physicochemical properties, and role-based analysis of oxides across
various device architectures, we not only synthesized current knowledge but also identified
emerging directions for future research.

The bibliometric findings indicate the dominance of TiO2 and ZnO in the scientific discourse,
which correlates with their versatility as charge transport layers in multiple solar cell types. At the
same time, oxides with more specialized functions (such as Al20s and SiO:z) show consistent citation
patterns in niche areas, reaffirming their key role in enhancing device stability and surface
passivation. Trends in keyword usage and co-authorship networks reveal the formation of
knowledge clusters around specific oxide functions, including charge transport, stabilization,
nanostructuring, and interface engineering.

Functional analysis revealed that the effectiveness of an oxide is determined not only by its
bandgap or electron affinity but also by its adaptability to the specific operating requirements of the
device. In particular, CeO2, FexOs, and WOs hold considerable potential but still face challenges
related to interfacial compatibility, charge transport, and phase stability.

The proposed classification of materials across different solar cell architectures provides a
holistic understanding of the role of oxide ceramics in modern photovoltaics. The identified future
directions point toward the development of stable, efficient, and environmentally safe next-
generation photovoltaic technologies, especially within the scope of all-oxide concepts and hybrid
device architectures.
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