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Abstract 

Binary oxide ceramics have emerged as key materials in solar energy research due to their versatility, 

chemical stability, and tunable electronic properties. This study presents a comparative analysis of 

seven prominent oxides (TiO2, ZnO, Al2O3, SiO2, CeO2, Fe2O3, and WO3), focusing on their functional 

roles in silicon, perovskite, dye-sensitized, and thin-film solar cells. A bibliometric analysis covering 

over 50,000 publications highlights TiO2 and ZnO as the most widely studied materials, serving as 

electron transport layers, antireflective coatings, and buffer layers. Al2O3 and SiO2 demonstrate 

highly specialized applications in surface passivation and interface engineering, while CeO2 offers 

UV-blocking capability and Fe2O3 shows potential as an absorber material in photoelectrochemical 

systems. WO3 is noted for its multifunctionality and suitability for scalable, high-rate processing. 

Together, these findings suggest that binary oxide ceramics are poised to transition from supporting 

roles to essential components of stable, efficient, and environmentally safer next-generation solar 

cells. 

Keywords: oxide ceramics; solar cells; photoconversion; TiO2; ZnO; SiO2; Al2O3; CeO2; Fe2O3; WO3; 

bibliometric analysis 

 

1. Introduction 

Traditionally, solar energy has been closely associated with materials such as silicon [1–3], 

cadmium telluride [4–6], and copper indium gallium selenide (CIGS) [7–9]. Silicon, in particular, has 

dominated the photovoltaic device market due to its abundance, relatively low cost, and well-

established manufacturing processes [10–13]. Silicon-based solar cells have been the cornerstone of 

solar energy production, offering high efficiency and long-term stability [14–16]. These materials are 

widely recognized for their ability to effectively convert sunlight into electricity, making them the 

standard choice for most commercial and residential solar energy systems [17–20]. 

Cadmium telluride (CdTe) is another key material in the field of solar energy, particularly in 

thin-film solar cells [21–23]. CdTe has gained popularity due to its high absorption coefficient and 

relatively low production cost, making it a competitive alternative to silicon for specific applications 

[24–26]. However, concerns about cadmium toxicity and the limited availability of tellurium have 

prompted the search for safer and more sustainable alternatives [27,28]. 

Copper indium gallium selenide (CIGS) represents another category of thin-film solar cells that 

has attracted attention due to its high efficiency and flexibility [29–31]. CIGS cells offer higher 

efficiencies than other thin-film technologies and can be applied to a variety of substrates, including 

flexible materials, opening up new opportunities for solar energy applications [32–34]. Despite these 
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advantages, the complexity of the material composition and associated manufacturing challenges 

have limited their widespread adoption compared to silicon-based technologies [35,36]. 

As the solar energy sector continues to grow and evolve, there has been a significant push to 

diversify the range of materials used in solar cells [37–42]. Researchers are exploring novel materials 

that may offer higher efficiency, lower production costs, or better performance under specific 

environmental conditions. This expansion has led to the investigation of organic photovoltaic 

materials [43,44], perovskites [45,46], and quantum dots [47,48], among others. 

In particular, perovskite solar cells are attracting significant interest due to their high efficiency 

and ease of fabrication [47,48]. These materials have rapidly progressed from laboratory experiments 

to near-commercialization, offering efficiencies that rival traditional silicon solar cells. However, 

challenges related to long-term stability and the presence of lead in many perovskite compositions 

remain serious issues that must be resolved before widespread adoption is possible [49,50]. 

Quantum dot solar cells represent another frontier in solar energy research, offering the potential 

for high efficiency through multiple exciton generation [51,52]. These nanoscale semiconductor 

particles can be engineered to possess specific optical properties, making them easily tunable for 

various applications [53,54]. However, quantum dot technologies face challenges such as stability 

and scalability that must be overcome. 

Organic photovoltaics (OPV) [55,56] have emerged as a promising field due to their potential for 

low-cost production and mechanical flexibility, although they currently lag behind traditional 

materials in terms of efficiency and stability. 

This expansion of material options reflects ongoing efforts in solar energy to enhance the 

efficiency, affordability, and versatility of solar cells. By moving beyond traditional materials, the 

industry seeks to develop next-generation solar technologies capable of meeting the rising global 

demand for renewable energy and addressing the limitations of current systems [57]. 

In recent years, the solar energy field has begun to explore the potential of oxide ceramics as 

alternative materials for photovoltaic and related applications [58]. Known for their durability, 

thermal stability, and diverse electrical properties, oxide ceramics offer a promising avenue for 

improving the performance and longevity of solar cells [59–62]. Unlike traditional semiconductors, 

oxide ceramics provide a unique combination of features, including high chemical resistance and the 

ability to operate under extreme environmental conditions, making them ideal candidates for use in 

advanced solar technologies [63–66]. 

The growing interest in oxide ceramics for solar applications stems from their ability to play 

multiple roles within solar cells, such as serving as transparent conducting oxides, photoanodes, or 

passivation layers [67–70]. These materials can enhance light absorption, increase charge carrier 

mobility, and reduce recombination losses, thereby potentially improving the overall efficiency of 

solar cells [71–74]. Furthermore, the versatility of oxide ceramics allows them to be integrated into 

various types of solar cells, including dye-sensitized solar cells [75,76], perovskite solar cells [77,78], 

and even novel technologies such as photoelectrochemical cells for hydrogen production [79,80]. 

Key binary oxide ceramics (Table 1), such as titanium dioxide (TiO2) [81–84] and zinc oxide 

(ZnO) [85,86], have already proven to be critical components in several solar technologies [87–89]. 

TiO2, for instance, is widely used as a photoanode in dye-sensitized solar cells due to its excellent 

photocatalytic properties and high stability [90,91]. ZnO, with its favorable electron transport 

characteristics, is frequently used as a transparent electrode or photoanode in various solar cell 

designs [92]. These materials, along with others such as aluminum oxide (Al2O3) [93–95], silicon 

dioxide (SiO2) [96,97], and cerium dioxide (CeO2) [98–100], are being extensively investigated for their 

potential to create more efficient and durable solar cells. 

Fe2O3 (hematite) is considered a promising material due to its abundance, environmental 

friendliness, and ability to absorb visible light [101–103]. The bandgap of Fe2O3 makes it particularly 

attractive for photoelectrochemical solar cells, where it is often used as a photoanode [104,105]. Its 

high chemical stability and durability enable its use in harsh environments, such as acidic or alkaline 

media. WO3 (tungsten trioxide) is another promising material for solar technologies due to its 
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electrochromic and photocatalytic properties [106–108]. The bandgap of WO3 allows it to absorb light 

in the near-UV spectrum, making it useful in hybrid solar cells [109,110]. WO3 is often employed as a 

photoanode in photoelectrochemical cells for hydrogen production [111], as well as an active material 

in multilayer anti-reflective coatings for solar panels [112]. 

Table 1. Physico-electrical parameters of oxide ceramic materials used in photovoltaic structures*. 

Oxide Material 
Band Gap 

(Eg, eV) 

Conductivity 

Type 

Electron 

Mobility 

(cm2·V−1·s−1) 

Dielectric 

Constant 

(εr) 

Electron 

Affinity (χ, 

eV) 

Ref 

TiO2 (anatase/ 

rutile) 

2.9–3.4 

(direct/ 

indirect) 

n-type (O-

vacancy, 

donor-doped) 

~0.1–1 (up to 

15 in 

crystals) 

25 – 1000† 3.9 – 4.3 [113–116] 

ZnO (wurtzite) 3.1 – 3.4 

n-type 

(intrinsic / 

doped) 

10 – 300 

7 – 12 (up to 

~25 for 

Co/Mn-

doped) 

4.2 – 4.5 [117–119] 

Al2O3 (sapphire) 8.5 – 9.5 Insulator 
— (≤10−9 S 

cm−1) 
6 – 12 1.0 – 2.6 [120–122] 

SiO2 (quartz, glass) 8.0 – 9.2 Insulator — 3.7 – 4.3 0.8 – 1.1 [123–125] 

CeO2 (ceria) 2.8 – 3.5 
n-type (Ce3+, 

O-vacancies) 

10−4 – 1 

(small-

polaron 

hopping) 

16 – 35 3.3 – 3.7 [126–129] 

Fe2O3 (hematite) 1.9 – 2.3 
n-type (poor 

σ) 
10−4 – 0.1 5 – 120 4.3 – 5.0 [130–133] 

WO3 (monoclinic) 2.4 – 3.2 
n-type (O-

deficient) 
0.1 – 30 10 – 105‡ 3.2 – 3.6 [134–136] 

* † For heavily reduced or H-implanted rutile TiO2, εr > 1000 has been reported; the listed range of 25–1000 covers 

both typical and “giant” values (the typical range is 25–120). ‡ WO3 near the phase transition (~16 °C) shows 

peak εr ≈ 105; the operational range includes the most commonly used values of 10–105. *Note: All parameters 

are reported as generalized ranges because their values depend on synthesis route, crystallinity, defect 

concentration, doping level, measurement frequency, and other experimental conditions. 

The integration of oxide ceramics into solar energy systems represents a significant shift toward 

the development of materials that not only improve efficiency but also offer enhanced durability 

[106,107]. As the demand for more reliable and cost-effective solar energy solutions continues to 

grow, the role of oxide ceramics is expected to increase, driving further innovation in the field. 

While numerous studies have been conducted on specific oxide materials or their applications 

in solar technologies, no comprehensive bibliometric and comparative investigation has been 

conducted that evaluates various oxide ceramics across a wide range of solar applications. This gap 

in the literature highlights the need for a holistic analysis that not only identifies current trends but 

also provides insight into potential future directions for research and development. 

The primary objective of this study is to conduct an in-depth bibliometric and comparative 

analysis of oxide ceramics used in solar energy, with a focus on understanding research trends, key 

materials, and their impact on the field. This study aims to identify which oxide ceramics are most 

prominent in solar energy research, how interest in these materials has evolved, and which materials 

hold the most significant potential for future development in this field. 

The results of this study will be valuable for researchers, industry professionals, and 

policymakers, as they offer a clearer understanding of the current state of the field and its future 

direction. By mapping the research landscape, this study will help identify the most influential work, 

emerging areas of interest, and potential opportunities for innovation. Furthermore, it will serve as a 
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resource for scholars seeking to build on existing knowledge, supporting more targeted and 

impactful research on the use of oxide ceramics in solar energy. 

2. Methodology 

This study employed a combined methodology that integrates bibliometric analysis, descriptive 

statistics, and thematic interpretation of results. This approach enables the identification of general 

research trends as well as an in-depth examination of each material’s specific role in solar energy 

applications. 

2.1. Bibliometric Analysis 

Bibliometric analysis is a quantitative method used to assess the structure, dynamics, and trends 

of scientific research through the systematic examination of publications, citations, and metadata 

[137–139]. Traditionally employed in scientometrics and library sciences, this approach is gaining 

relevance in materials science, where it allows researchers to uncover patterns of technological 

development, identify leading contributors and emerging topics, and assess the maturity and 

interdisciplinarity of specific material systems [140–143]. 

In the context of solar energy research, bibliometric tools provide valuable insights into how 

specific materials, such as binary metal oxides, are integrated into device architectures, studied across 

disciplines, and adopted by different scientific communities [144–147]. By quantitatively assessing 

publication trends, citation impact, and keyword co-occurrence, bibliometric analysis complements 

experimental and theoretical approaches, offering a macroscopic view of knowledge production and 

research activity [148–151]. 

This study applies bibliometric analysis to map the research landscape surrounding seven key 

oxide ceramics (TiO2, ZnO, SiO2, Al2O3, CeO2, Fe2O3, and WO3) in solar energy applications. The goal 

is to identify thematic concentrations, leading authors and institutions, geographical distribution, 

and collaboration networks, as well as to compare material-specific trends in attention and 

utilization. 

2.1.1. Database Selection and Search Strategy 

The analysis was conducted using data retrieved from the Web of Science Core Collection, which 

was selected due to its broad coverage of peer-reviewed literature in science and technology [152–

154]. To ensure a systematic and comprehensive approach, a detailed search strategy was developed 

to identify publications related to the studied oxide materials (Figure 1). 
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Figure 1. Design of the Bibliometric Analysis. 

Search queries targeted each oxide individually by combining their chemical names with 

keywords associated with solar energy applications. For titanium dioxide (TiO2), the query used was 

TS=(“TiO2” OR “titanium dioxide”) AND TS=(“solar energy” OR “solar cell*” OR “photovoltaic 

devices” OR “solar technology” OR “photoanode” OR “solar panel”). Similar queries were 

constructed for zinc oxide (ZnO), silicon dioxide (SiO2), aluminum oxide (Al2O3), cerium dioxide 

(CeO2), hematite or iron oxide (Fe2O3), and tungsten trioxide (WO3). These queries combined the 

oxide names with terms such as “solar energy,” “solar cells,” “photovoltaic devices,” “solar 

technologies,” “photoanode,” and “solar panel” to capture the full scope of solar-related research for 

each material. 

Filters were applied to refine the search results and ensure consistency across datasets. The 

temporal scope of the study was limited to publications available up to and including the year 2023 

and included only articles written in English. All document types were considered, except 

corrections, editorials, retractions, and reprints, in order to maintain data integrity and relevance. 
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To quantitatively assess the impact of research related to oxide materials, citation counts were 

analyzed for each material. This analysis enabled the evaluation of not only the intensity of 

publication activity but also the scientific weight of research within each segment. 

2.1.2. Data Analysis 

The retrieved datasets were processed and analyzed using VOSviewer, a bibliometric analysis 

software tool designed for visualizing and exploring patterns in scientific literature [155–157]. For 

each oxide material, a range of bibliometric parameters was examined to provide a detailed overview 

of research activity. These included temporal publication trend analysis to identify chronological 

patterns, distribution of document types to evaluate the nature of contributions, and distribution 

across research areas to understand each material’s interdisciplinary orientation. 

Further analysis identified leading journals, authors, and institutions to highlight the key 

contributors in the field. Geographic contributions were also assessed to explore global research 

activity, and collaboration networks were visualized to understand international and institutional 

partnerships. Finally, keyword co-occurrence analysis was conducted to identify thematic trends and 

research priorities for each oxide material. 

2.2. Statistical Analysis 

To analyze publication trends related to binary oxide ceramics, descriptive statistical methods 

were applied to summarize and compare research activity for each material. The computed statistical 

indicators include the median, mean, standard deviation, coefficient of variation (CV), maximum 

value, first quartile (Q1), third quartile (Q3), and interquartile range (IQR) (Table 2). These indicators 

were selected to reflect both the central tendency and variability of the data, enabling a 

comprehensive assessment of publication dynamics for each material. 

Table 2. This is a table. Tables should be placed in the main text near to the first time they are cited. 

Statistical Indicator Description 

Median 
The central value of an ordered dataset, less affected by 

outliers. 

Mean 
The arithmetic average, indicating the overall level of 

research activity. 

Standard Deviation A measure of data variability relative to the mean. 

Coefficient of Variation (CV) 
The standard deviation, expressed as a percentage of the 

mean, reflecting relative variability. 

Maximum Value The highest recorded number of publications. 

First Quartile (Q1) 
The value below which 25% of the data fall, representing the 

lower range of activity. 

Third Quartile (Q3) 
The value below which 75% of the data fall, representing the 

upper range of activity. 

Interquartile Range (IQR) 
The range containing the central 50% of the data, enabling 

assessment of variability without outliers. 

All statistical calculations were based on the number of publications per material for the period 

1974–2023. Data for each material were sorted in ascending order, and quartiles were calculated using 

interpolation for noninteger positions. The resulting metrics provide detailed insights into research 

trends, highlighting both the intensity of scientific activity and its temporal stability. 

2.3. Functional Literature Analysis 

In addition to bibliometric and statistical approaches, a structured literature review was 

conducted to compare the functional roles of selected binary oxide ceramics across different solar cell 

architectures. This stage of the study aimed to link material properties to their technological relevance 

in device engineering. 
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The analysis was based on a systematic review and synthesis of peer-reviewed publications 

addressing: 

• The physical, chemical, and optoelectronic properties of TiO2, ZnO, SiO2, Al2O3, CeO2, Fe2O3, and 

WO3; 

• Their specific functions in crystalline silicon (c-Si), perovskite (PSC), dye-sensitized (DSSC), thin-

film chalcogenide (CIGS, CdTe, CZTS), organic (OSC), and quantum dot (QD) solar cells; 

• Comparative advantages, limitations, and integration challenges of each oxide in these 

technologies. 

The analysis was based on a systematic review and synthesis of peer-reviewed To structure the 

results, the following analytical tools were used: 

• A functional role matrix mapping the oxide materials to device architectures and layer 

functionalities (ETL, HTL, TCO, passivation, buffer, optical interlayer); 

• A synthesis of key advantages and limitations drawn from experimental studies and review 

articles; 

• Cross-verification of usage trends with bibliometric co-occurrence data (e.g., TiO2 + passivation; 

ZnO + buffer layer). 

This triangulated approach enabled a comprehensive assessment of each oxide’s contribution to 

modern photovoltaic engineering, highlighting both mainstream uses and cutting-edge 

developments. 

3. Results 

3.1. Evolution of Scientific Interest in Oxide Ceramics for Solar Energy: Results of the Bibliometric Analysis 

The bibliometric analysis of publications on oxide ceramics for solar energy applications 

provides a comprehensive overview of the research landscape. Table 3 summarizes the volume of 

literature identified for each of the selected binary oxide materials in the Web of Science Core 

Collection. 

Table 3. Number of publications identified for each oxide material in the context of solar energy applications 

(Web of Science Core Collection). 

Materials Results from WoS CC 

TiO2 (titanium dioxide) 22898 

ZnO (zinc oxide) 19092 

SiO2 (silicon dioxide) 4140 

Al2O3  (aluminum oxide) 3268 

Fe2O3  (iron oxide) 2633 

WO3 (tungsten trioxide) 2062 

CeO2 (cerium dioxide) 491 

Overall, the dominance of TiO2 (22,898 publications) and ZnO (19,092) in the solar research arena 

is clearly evident. These are followed in popularity by SiO2 (4,140), Al2O3 (3,268), Fe2O3 (2,633), and 

WO3 (2,062). CeO2 received the least attention, with 491 publications. 

Research on oxide ceramics in the context of solar energy has undergone significant evolution 

over recent decades, with notable fluctuations in interest across different materials (Figure 2). The 

earliest publications related to oxide ceramics appeared in the 1970s, focusing on materials such as 

TiO2 (1974) and WO3 (1976). However, until the late 1980s, the overall publication volume remained 

minimal, with only a few isolated studies. This indicates that the field had a very slow start. 
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Figure 2. Dynamics of publication numbers for selected binary oxides in the context of solar energy applications 

(Web of Science Core Collection data, 1970–2024). 

The situation began to change in the early 1990s, as interest in oxide materials gradually 

intensified. This period saw a growth in the number of publications for TiO2, ZnO, and Fe2O3. For 

instance, TiO2 showed steady growth, reaching 49 publications by the end of the decade, signaling 

increasing recognition of this material. ZnO also garnered more attention, though at a slightly slower 

pace, while interest in other materials such as Al2O3 and WO3 remained low. 

A true breakthrough for oxide ceramics occurred in the 2000s, when publication counts for TiO2 

and ZnO rose sharply, reaching hundreds per year. TiO2 became the leading subject of research, 

exceeding 600 publications per year by 2010. ZnO ranked second, following a similar upward trend, 

though with slightly lower absolute numbers. Al2O3, Fe2O3, and WO3 also began to gain traction, 

albeit at more moderate rates, reaching dozens of publications annually. This reflects a broadening 

interest in various materials within this category. 

The peak of oxide ceramics research occurred in the 2010s. TiO2 and ZnO reached their highest 

publication volumes, peaking in the middle of the decade (over 1,600 for TiO2 and 1,400 for ZnO). 

Other materials also hit their peaks during this period: SiO2 reached 299 publications in 2017, Al2O3 

peaked at 262 in the same year, Fe2O3 at 249 in 2019, and WO3 at 182 in 2020. CeO2, despite its overall 

lower activity, also showed gradual growth, reaching its peak in 2024 with 63 publications. This surge 

of interest in different materials reflects a broad range of scientific challenges and experimental 

approaches associated with oxide ceramic research. 

In the 2020s, the overall publication rate for most materials began to stabilize or slightly decline, 

likely due to saturation in certain research areas and a shift in focus toward new materials or concepts. 

An exception is CeO2, which continues to show growing interest, possibly due to its niche 

applications. 

Key observations indicate that TiO2 and ZnO remain the primary subjects of research, while 

other materials such as Al2O3, Fe2O3, WO3, and CeO2 occupy more specialized niches. The research 

peak in the 2010s coincides with a global emphasis on renewable energy, whereas the stabilization in 

the 2020s may point to shifting priorities or the emergence of new research directions. 

3.2. Publication Trends and Statistical Analysis of Binary Oxide Ceramics 

The statistical analysis of publications related to binary oxide ceramics revealed significant 

differences in research activity among the various materials, as well as substantial fluctuations in 

publication trends (Table 4). The results provide insight into the relative importance and 

developmental dynamics of each material in the research field. 

Table 4. Statistical analysis of publications on binary oxide ceramics. 
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Material Median 
Standard 

Deviation 

Coefficient 

of 

Variation 

(%) 

Mean Maximum 

1st 

Quartile 

(Q1) 

3rd 

Quartile 

(Q3) 

Interquartile 

Range (IQR) 

TiO2 119.0 652.44 125.37 520.41 1665 13.75 1180.0 1166.25 

ZnO 126.5 529.57 116.50 454.57 1422 15.75 977.25 961.5 

SiO2 25.0 110.43 117.33 94.11 299 5.5 231.5 226.0 

Al2O3 20.0 100.99 108.16 93.37 262 6.5 213.5 207.0 

Fe2O3 9.0 98.82 131.36 75.23 271 2.5 147.0 144.5 

WO3 16.0 71.78 118.36 60.65 192 4.25 119.5 115.25 

CeO2 5.0 19.42 114.72 16.93 63 2.0 33.0 31.0 

TiO2 exhibits the highest research intensity, with an average of 520.41 publications and a 

maximum of 1,665 articles in a single year. 

SiO2 is characterized by lower average research indicators: a mean of 94.11 and a maximum of 

299 publications. Its median (25.0) and interquartile range (IQR = 226.0) suggest that most years were 

marked by moderate research activity, without the surges observed for TiO2 and ZnO. The standard 

deviation (110.43) and coefficient of variation (117.33%) indicate relatively stable interest in the 

material, though without major peaks in research output. 

Al2O3 showed similar trends to SiO2, with a mean of 93.37 and a maximum of 262 publications. 

The median (20.0) and IQR (207.0) suggest that most years had low research activity, interspersed 

with periodic spikes. The standard deviation (100.99) and coefficient of variation (108.16%) point to 

significant year-to-year variability, likely driven by developments in specific solar applications. 

Fe2O3 has the lowest publication median (9.0) among the studied materials but demonstrates 

moderate overall activity. Its mean is 75.23, and the maximum number of publications is 271, 

indicating periods of increased attention. The IQR (144.5) and high coefficient of variation (131.36%) 

reflect uneven but occasionally intense research activity, possibly linked to specific technological 

innovations. 

WO3 demonstrates moderate research intensity, with an average of 60.65 publications and a 

maximum of 192 articles. The median (16.0) and IQR (115.25) suggest a concentration of activity in 

the lower range, with only a few years yielding higher output. The coefficient of variation (118.36%) 

confirms considerable variability, highlighting that research on WO3 tends to be more focused but 

less consistent over time. 

CeO2 has the lowest overall research activity among the materials: an average of 16.93 

publications and a maximum of 63. The median (5.0) and IQR (31.0) indicate limited but gradually 

growing research interest in recent years. The standard deviation (19.42) and coefficient of variation 

(114.72%) point to a slow yet steady interest in CeO2, likely due to its niche applications. 

The analysis shows that TiO2 and ZnO dominate the research landscape of binary oxide 

ceramics, with significantly higher publication metrics and variability compared to other materials. 

In contrast, SiO2, Al2O3, WO3, Fe2O3, and CeO2 exhibit more moderate research activity, often tied to 

specific technological breakthroughs. The high coefficients of variation across all materials emphasize 

the dynamic nature of research priorities in this field. 

3.3. Interdisciplinary Distribution of Research on Oxide Ceramics 

The Sankey diagram (Figure 3) illustrates the distribution of scientific interest in the studied 

materials (TiO2, ZnO, SiO2, Al2O3, CeO2, Fe2O3, and WO3) across four key research domains: Energy, 

Materials Science, Environmental Science, and Physics. The width of each connection corresponds to 

the number of publications associating a given material with the respective field. This visualization 

provides insight into the degree of interdisciplinarity of each material and outlines the profiles of 

their research involvement. 
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Figure 3. Sankey diagram illustrating the distribution of research focus among binary oxide ceramics across four 

disciplines: Energy, Materials Science, Environmental Science, and Physics. 

TiO2 and ZnO exhibit the broadest scientific activity, with strong representation in all four 

disciplines. Their leading role in energy and materials science stems from their wide range of 

functionalities—from charge transport to photocatalysis and structural stabilization in 

optoelectronics. In parallel, their presence in environmental and physics-related studies 

demonstrates their functional flexibility and adaptability to diverse technological challenges [161–

164]. 

Fe2O3, on the other hand, displays a strong focus on energy research. Its research profile is 

primarily centered on photoelectrochemical water splitting and hydrogen generation [165–168], 

reflecting its specialization as a material for renewable energy production under harsh environmental 

conditions [169,170]. Its limited overlap with physics or environmental science highlights a narrow 

yet strategically important niche. 

WO3 shows a more balanced distribution across energy, materials science, and environmental 

science. This structure reflects its multifunctionality: WO3 is investigated not only in the context of 

PEC devices [171,172], but also for applications such as electrochromic elements, sensors, and optical 

control coatings [173,174]. 

Al2O3 and SiO2 are primarily concentrated in materials science and physics. Their roles are 

mainly associated with passivation, dielectric separation, interface protection, and the formation of 

stable layers in complex solar cell architectures [174–180]. These applications align with their 

physicochemical characteristics – wide bandgap, high stability, and insulating nature [181–183]. 

CeO2, while having a smaller overall research volume, shows a relatively even contribution 

across all four domains. This indicates a growing interest in CeO2 as a promising material for niche 

photovoltaic, catalytic, and protective applications [184–186], particularly due to its UV absorption 

capabilities, redox activity, and high stability [187–190]. 

Thus, the diagram enables not only an assessment of the research scale for each oxide but also a 

contextual understanding of how scientific interest is shaped. The varying degrees of cross-sector 

coverage reflect differences in maturity, specialization, and transdisciplinary potential among the 

oxides. This has practical implications for developing research strategies and identifying priority 

directions for future innovations. 

3.4. Comparative Analysis of the Most Cited Publications on Binary Oxide Ceramics 

An analysis of citation metrics for the most influential publications on binary oxide ceramics 

highlights significant differences in the impact and research focus of different materials (Table 5). 

Table 5. Top 5 Most Cited Publications on Binary Oxide Ceramics*. 

TiO2 (titanium dioxide)  Citations 
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O’Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-

sensitized colloidal TiO2 films. Nature, 353(6346), 737–740. 

https://doi.org/10.1038/353737a0 [191] 

25,829  

Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal Halide 

Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American 

Chemical Society, 131(17), 6050–6051. https://doi.org/10.1021/ja809598r  [192] 

18,169 

Grätzel, M. (2001). Photoelectrochemical cells. Nature, 414(6861), 338–344. 

https://doi.org/10.1038/35104607 [193] 

11,772 

Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., et al. (2012). Lead 

Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar 

Cell with Efficiency Exceeding 9%. Scientific Reports, 2(1), 591. 

https://doi.org/10.1038/srep00591 [194] 

7,149 

Nazeeruddin, M. K., Kay, A., Rodicio, I., Humphry-Baker, R., Mueller, E., Liska, P., et 

al. (1993). Conversion of light to electricity by cis-X2bis(2,2’-bipyridyl-4,4’-

dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and 

SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American 

Chemical Society, 115(14), 6382–6390. https://doi.org/10.1021/ja00067a063 [195] 

5,854 

ZnO (zinc oxide)  Citations 

Grätzel, M. (2001). Photoelectrochemical cells. Nature, 414(6861), 338–344. 

https://doi.org/10.1038/35104607 [193] 

11,772 

Law, M., Greene, L. E., Johnson, J. C., Saykally, R., & Yang, P. (2005). Nanowire dye-

sensitized solar cells. Nature Materials, 4(6), 455–459. 

https://doi.org/10.1038/nmat1387 [196] 

5,135 

Grätzel, M. (2003). Dye-sensitized solar cells. Journal of Photochemistry and 

Photobiology C: Photochemistry Reviews, 4(2), 145–153. 

https://doi.org/10.1016/S1389-5567(03)00026-1 [197] 

4,640 

Liu, D., & Kelly, T. L. (2014). Perovskite solar cells with a planar heterojunction 

structure prepared using room-temperature solution processing techniques. Nature 

Photonics, 8(2), 133–138. https://doi.org/10.1038/nphoton.2013.342 [198] 

2,383 

Liu, B., & Aydil, E. S. (2009). Growth of Oriented Single-Crystalline Rutile TiO 2 

Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells. 

Journal of the American Chemical Society, 131(11), 3985–3990. 

https://doi.org/10.1021/ja8078972 [199] 

2,215 

SiO2 (silicon dioxide) Citations 
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Kay, A., Cesar, I., & Grätzel, M. (2006). New Benchmark for Water Photooxidation by 

Nanostructured α-Fe 2 O 3 Films. Journal of the American Chemical Society, 128(49), 

15714–15721. https://doi.org/10.1021/ja064380l [200] 

1,437 

Cushing, S. K., Li, J., Meng, F., Senty, T. R., Suri, S., Zhi, M., et al. (2012). Photocatalytic 

Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to 

Semiconductor. Journal of the American Chemical Society, 134(36), 15033–15041. 

https://doi.org/10.1021/ja305603t [201] 

1,032 

Palomares, E., Clifford, J. N., Haque, S. A., Lutz, T., & Durrant, J. R. (2003). Control of 

Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of 

Conformally Deposited Metal Oxide Blocking Layers. Journal of the American 

Chemical Society, 125(2), 475–482. https://doi.org/10.1021/ja027945w [202] 

1,029 

Zou, S., Liu, Y., Li, J., Liu, C., Feng, R., Jiang, F., et al. (2017). Stabilizing Cesium Lead 

Halide Perovskite Lattice through Mn(II) Substitution for Air-Stable Light-Emitting 

Diodes. Journal of the American Chemical Society, 139(33), 11443–11450. 

https://doi.org/10.1021/jacs.7b04000 [203] 

728 

Aberle, A. G. (2000). Surface passivation of crystalline silicon solar cells: a review. 

Progress in Photovoltaics: Research and Applications, 8(5), 473–487. 

https://doi.org/10.1002/1099-159X(200009/10)8:5%3C473::AID-PIP337%3E3.0.CO;2-D 

[204] 

625 

Al2O3 (aluminum oxide) Citations 

Palomares, E., Clifford, J. N., Haque, S. A., Lutz, T., & Durrant, J. R. (2003). Control of 

Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of 

Conformally Deposited Metal Oxide Blocking Layers. Journal of the American 

Chemical Society, 125(2), 475–482. https://doi.org/10.1021/ja027945w [202] 

1,886 

Mor, G. K., Varghese, O. K., Paulose, M., Shankar, K., & Grimes, C. A. (2006). A review 

on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material 

properties, and solar energy applications. Solar Energy Materials and Solar Cells, 

90(14), 2011–2075. https://doi.org/10.1016/j.solmat.2006.04.007 [205] 

1,605 

Huang, Z., Geyer, N., Werner, P., de Boor, J., & Gösele, U. (2011). Metal-Assisted 

Chemical Etching of Silicon: A Review. Advanced Materials, 23(2), 285–308. 

https://doi.org/10.1002/adma.201001784 [206] 

1,285 

Malinkiewicz, O., Yella, A., Lee, Y. H., Espallargas, G. M., Graetzel, M., Nazeeruddin, 

M. K., & Bolink, H. J. (2014). Perovskite solar cells employing organic charge-transport 

layers. Nature Photonics, 8(2), 128–132. https://doi.org/10.1038/nphoton.2013.341 

[207] 

1,029 

Niu, G., Li, W., Meng, F., Wang, L., Dong, H., & Qiu, Y. (2014). Study on the stability 

of CH 3 NH 3 PbI 3 films and the effect of post-modification by aluminum oxide in 

955 
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all-solid-state hybrid solar cells. J. Mater. Chem. A, 2(3), 705–710. 

https://doi.org/10.1039/C3TA13606J [208] 

Fe2O3 (iron oxide) Citations 

Sivula, K., Le Formal, F., & Grätzel, M. (2011). Solar Water Splitting: Progress Using 

Hematite (α-Fe 2 O 3 ) Photoelectrodes. ChemSusChem, 4(4), 432–449. 

https://doi.org/10.1002/cssc.201000416 [209] 

2,332 

Osterloh, F. E. (2013). Inorganic nanostructures for photoelectrochemical and 

photocatalytic water splitting. Chem. Soc. Rev., 42(6), 2294–2320. 

https://doi.org/10.1039/C2CS35266D [210] 

1,776 

Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y., & Kumar, R. (2013). Surface 

modification of inorganic nanoparticles for development of organic–inorganic 

nanocomposites—A review. Progress in Polymer Science, 38(8), 1232–1261. 

https://doi.org/10.1016/j.progpolymsci.2013.02.003 [211] 

1,685 

Park, J. H., Kim, S., & Bard, A. J. (2006). Novel Carbon-Doped TiO 2 Nanotube Arrays 

with High Aspect Ratios for Efficient Solar Water Splitting. Nano Letters, 6(1), 24–28. 

https://doi.org/10.1021/nl051807y [212] 

1,647 

Wang, C.-C., Li, J.-R., Lv, X.-L., Zhang, Y.-Q., & Guo, G. (2014). Photocatalytic organic 

pollutants degradation in metal–organic frameworks. Energy Environ. Sci., 7(9), 

2831–2867. https://doi.org/10.1039/C4EE01299B [213] 

1,444 

WO3 (tungsten trioxide) Citations 

Park, J. H., Kim, S., & Bard, A. J. (2006). Novel Carbon-Doped TiO 2 Nanotube Arrays 

with High Aspect Ratios for Efficient Solar Water Splitting. Nano Letters, 6(1), 24–28. 

https://doi.org/10.1021/nl051807y [212] 

1,647 

Bak, T., Nowotny, J., Rekas, M., & Sorrell, C. . (2002). Photo-electrochemical hydrogen 

generation from water using solar energy. Materials-related aspects. International 

Journal of Hydrogen Energy, 27(10), 991–1022. https://doi.org/10.1016/S0360-

3199(02)00022-8 [214] 

1,346 

Granqvist, C. . (2000). Electrochromic tungsten oxide films: Review of progress 1993–

1998. Solar Energy Materials and Solar Cells, 60(3), 201–262. 

https://doi.org/10.1016/S0927-0248(99)00088-4 [215] 

1,324 

Meyer, J., Hamwi, S., Kröger, M., Kowalsky, W., Riedl, T., & Kahn, A. (2012). 

Transition Metal Oxides for Organic Electronics: Energetics, Device Physics and 

Applications. Advanced Materials, 24(40), 5408–5427. 

https://doi.org/10.1002/adma.201201630 [216] 

1,049 

Baetens, R., Jelle, B. P., & Gustavsen, A. (2010). Properties, requirements and 

possibilities of smart windows for dynamic daylight and solar energy control in 

1,047 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 August 2025 doi:10.20944/preprints202508.0276.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1039/C3TA13606J
https://doi.org/10.1002/cssc.201000416
https://doi.org/10.1039/C2CS35266D
https://doi.org/10.1016/j.progpolymsci.2013.02.003
https://doi.org/10.1021/nl051807y
https://doi.org/10.1039/C4EE01299B
https://doi.org/10.1021/nl051807y
https://doi.org/10.1016/S0360-3199(02)00022-8
https://doi.org/10.1016/S0360-3199(02)00022-8
https://doi.org/10.1016/S0927-0248(99)00088-4
https://doi.org/10.1002/adma.201201630
https://doi.org/10.20944/preprints202508.0276.v1
http://creativecommons.org/licenses/by/4.0/


 14 of 56 

 

buildings: A state-of-the-art review. Solar Energy Materials and Solar Cells, 94(2), 87–

105. https://doi.org/10.1016/j.solmat.2009.08.021 [217] 

CeO2 (cerium dioxide) Citations 

Liu, X., Iocozzia, J., Wang, Y., Cui, X., Chen, Y., Zhao, S., et al. (2017). Noble metal–

metal oxide nanohybrids with tailored nanostructures for efficient solar energy 

conversion, photocatalysis and environmental remediation. Energy & Environmental 

Science, 10(2), 402–434. https://doi.org/10.1039/C6EE02265K [218] 

832 

Corma, A., Atienzar, P., García, H., & Chane-Ching, J.-Y. (2004). Hierarchically 

mesostructured doped CeO2 with potential for solar-cell use. Nature Materials, 3(6), 

394–397. https://doi.org/10.1038/nmat1129  [219] 

728 

Ou, G., Xu, Y., Wen, B., Lin, R., Ge, B., Tang, Y., et al. (2018). Tuning defects in oxides 

at room temperature by lithium reduction. Nature Communications, 9(1), 1302. 

https://doi.org/10.1038/s41467-018-03765-0 [220] 

502 

Abanades, S., & Flamant, G. (2006). Thermochemical hydrogen production from a 

two-step solar-driven water-splitting cycle based on cerium oxides. Solar Energy, 

80(12), 1611–1623. https://doi.org/10.1016/j.solener.2005.12.005 [221] 

491 

Boyjoo, Y., Sun, H., Liu, J., Pareek, V. K., & Wang, S. (2017). A review on 

photocatalysis for air treatment: From catalyst development to reactor design. 

Chemical Engineering Journal, 310(2, SI), 537–559. 

https://doi.org/10.1016/j.cej.2016.06.090 [222] 

435 

*Some publications appear in multiple oxide lists because they reference or use several materials simultaneously. 

The selection was based on keywords and abstracts, so even if the main focus of the publication is not exclusively 

on the respective oxide, its role in the research context is confirmed. 

TiO2 shows overwhelming dominance in citation counts, followed by ZnO and Fe2O3, while 

materials such as SiO2, Al2O3, WO3, and CeO2 contribute in a more specialized but still significant 

way. These patterns reflect both the scientific maturity of each material’s applications and their role 

within the broader solar energy research landscape. 

TiO2 stands out as the most researched and cited material. The seminal work by O’Regan and 

Grätzel from 1991 [191], which introduced dye-sensitized solar cells, has garnered over 25,000 

citations – far surpassing any other publication in this field. This paper laid the foundation for much 

of the subsequent TiO2 research and solidified its reputation as a cornerstone material in solar energy 

technologies. Other highly cited works on TiO2 examine its role in photoelectrochemical cells and 

perovskite solar cells, with citation counts ranging from 5,000 to 18,000. These publications span 

several decades, indicating TiO2’s sustained influence across multiple generations of solar technology 

development. 

ZnO also holds a strong position, with its most cited works receiving between 2,000 and 11,000 

citations. Key publications focus on its use in dye-sensitized solar cells and nanostructured 

applications, emphasizing its value as a versatile and cost-effective material. The overlap between 

ZnO and TiO2 in several studies underscores their complementary roles in similar technological 

areas. However, ZnO’s citation counts remain significantly lower than those of TiO2, reflecting its 

secondary, but still critical, role in the evolution of solar energy applications. 
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SiO2 shows more modest citation figures, with its most influential publications ranging from 728 

to 1,437 citations. These studies primarily explore SiO2’s supporting roles in solar cells, such as surface 

passivation and photocatalytic enhancement. While its contribution is less transformative than that 

of TiO2 or ZnO, SiO2 remains a fundamental component in optimizing the performance and stability 

of solar energy systems. 

Al2O3 shows a similar trend, with top citation counts between 955 and 1,886. Its impact centers 

on areas like charge recombination dynamics and hybrid cell stability. Though its niche applications 

limit its broader influence, Al2O3 has attracted significant attention in these specialized contexts. 

Fe2O3 has a higher citation range (between 1,400 and 2,300) reflecting its role in 

photoelectrochemical water splitting and hydrogen generation. Publications on Fe2O3 emphasize its 

potential for renewable energy storage and production. WO3 shows a comparable citation profile, 

with its most cited works receiving between 1,000 and 1,600 citations. Research on WO3 highlights its 

stability and optical properties, particularly for applications like electrochromic films and PEC 

devices. Although more specialized, WO3 continues to be a valuable material in niche solar energy 

technologies. 

CeO2 displays the lowest citation counts among the analyzed materials, with top publications 

ranging from 400 to 800 citations. Research on CeO2 is relatively recent and focuses on advanced 

topics such as defect engineering, photocatalysis, and thermochemical hydrogen production. Its 

growing relevance indicates emerging potential in specialized solar systems, even though its overall 

impact remains limited compared to other materials. 

Table 6 offers insight not only into the general scientific impact of the materials but also into the 

evolution of research priorities over time. In the 1990s, TiO2’s dominance was undisputed: it was the 

material that triggered a breakthrough in solar technologies, as demonstrated by the pivotal 

publications of 1991 and 1993. In the 2000s, ZnO, SiO2, and Al2O3 joined the landscape, primarily as 

supporting or alternative components. Beginning in 2006, scientific interest expanded significantly, 

with key publications emerging on WO3 and Fe2O3, reflecting a growing focus on PEC technologies 

and photoelectrochemistry. 

Table 6. Distribution of Top-5 Publications by Year for Each Oxide. 

Year TiO2 ZnO SiO2 Al2O3 Fe2O3 WO3 CeO2 

1991 

O’Regan, B., 

& Grätzel, M. 

[191] 

(25,829) 

– – – – – – 

1993 

Nazeeruddin 

et al.  

[195] 

(5,854) 

– – – – – – 

2000 - - 

Aberle 

[204] 

(2000)  

- - 

Granqvist 

[215] 

(1,324) 

- 

2001 

Grätzel  

[193] 

(11,772) 

Grätzel  

[193] 

(11,772) 

– – – – – 

2002 - - - - - 

Bak et al. 

[214] 

(1,346) 

- 
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2003  

Grätzel 

[197] 

(4,640) 

Palomares 

et al.  

[202] 

(1,029) 

Palomares et 

al. 

[202] 

(1,886) 

– – – 

2004 - - - - - - 

Corma et 

al. 

[219] 

(728) 

2005 – 

Law et 

al. 

[196] 

(5,135) 

– – – – – 

2006 – – 

Kay et al. 

[200] 

(1,437) 

Mor et al.  

[205] 

(1,605) 

Park et 

al. 

[212] 

(1,647) 

Park et al. 

[212] 

(1,647) 

 

Abanades 

et al.  

[221] 

(491) 

2009 

Kojima et al. 

[192] 

(18,169) 

Liu, & 

Aydil,  

[199] 

(2,215) 

– – – – – 

2010 - - - - - 

Baetens et 

al. 

[217] 

(1,047) 

 

2011 – – – 

Huang et al.  

[206] 

(1,285) 

Sivula et 

al.  

[209] 

(2,332) 

 – 

2012 

Kim et al.  

[194] 

(7,149) 

– 

Cushing et 

al.  

[201] 

(1,032) 

– – 

Meyer et 

al.  

[216] 

(1,049) 

– 

2013 – – – – 

Osterloh  

[210] 

(1,776), 

Kango  

[211] 

(1,685) 

– – 

2014 – 

Liu & 

Kelly  

[198] 

(2,383) 

– 

Malinkiewicz 

[207] 

(1,029),  

Niu et al.  

[208] 

(955) 

Wang et 

al.  

[213] 

(1,444) 

– – 
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2017 – – 

Zou et al.  

[203] 

(728) 

– – – 

Liu et al. 

[218] 

(832),  

 

Boyjoo et 

al. 

[222] 

(435) 

2018 – – – – – – 

Ou et al.  

[220] 

(502) 

Simultaneously, the table illustrates the increasing research activity on CeO2 in the 2010s, 

marking its transition from a peripheral topic to one of active interest. Although its citation counts 

do not yet rival those of TiO2 or ZnO, the thematic focus of recent publications suggests strong 

potential in areas like hydrogen production and defect engineering. Publications from 2017 to 2018 

are particularly significant indicators of which materials may form the next wave in oxide ceramic 

research for solar energy. 

3.5. Global Trends and International Collaboration in Research on Binary Oxides for Solar Energy 

Applications 

3.5.1. Titanium Dioxide 

Bibliometric analysis (Figure 4) shows that research on TiO2 has steadily increased over the past 

two decades, driven by its applications in photovoltaic systems, photocatalysis, and environmental 

remediation. China leads the research landscape with the highest number of publications, followed 

by the United States, India, and South Korea. Collaboration networks reveal strong global 

connections with Germany, Japan, and Italy, which form influential regional hubs in Europe. This 

reflects the worldwide interest of TiO2 as a key material in energy and environmental technologies. 

 

Figure 4. Bibliometric analysis in VOSviewer for TiO2: (a) visualization of international collaboration; (b) 

visualization of keyword clustering. 

Keyword analysis reveals major research themes such as “nanostructures,” “photoanodes,” 

“efficiency,” and “thin films.” The role of TiO2 in dye-sensitized solar cells (DSSC) is well established, 
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with studies highlighting improvements in light harvesting efficiency, stability, and charge 

separation. Research frequently focuses on nanostructuring approaches, including nanotubes, 

nanorods, and mesoporous films, to increase surface area and optimize electron transport. 

Additionally, TiO2 doping with elements such as nitrogen or metals has been extensively studied 

to extend its light absorption into the visible spectrum, making it suitable for broader solar energy 

applications. 

Hydrogen production and water splitting represent another major research direction for TiO2, 

where the use of co-catalysts and heterojunction architectures enhances its integration into 

photoelectrochemical systems. Environmental applications, including pollutant degradation and air 

purification, further emphasize the versatility of TiO2, making it a sustained subject of interest across 

multiple disciplines. 

3.5.2. Zinc Oxide 

Bibliometric analysis (Figure 5) indicates a steady increase in research output on ZnO, with 

China, the United States, and India leading global efforts. Germany, France, and South Korea also 

play important roles, and the collaboration networks show strong partnerships between Asian and 

European countries. The growing importance of ZnO reflects its versatility in energy conversion, 

environmental remediation, and advanced electronics. 

 

Figure 5. Bibliometric analysis in VOSviewer for ZnO: (a) visualization of international collaboration; (b) 

visualization of keyword clustering. 

The keyword network is dominated by terms such as “thin films,” “nanostructures,” “dye-

sensitized solar cells,” and “recombination,” highlighting ZnO’s utility in photovoltaic and catalytic 

systems. Studies emphasize its high electron mobility, tunable bandgap, and cost-effective synthesis. 

In DSSCs and hybrid perovskite solar cells, ZnO serves as a transparent conducting oxide (TCO) or 

electron transport layer, and advances in nanostructuring methods, such as electrospinning and 

hydrothermal synthesis, have improved its performance. ZnO nanowires, nanoparticles, and 

quantum dots are actively investigated for their enhanced surface area and light-harvesting 

capabilities. 

ZnO’s role in photocatalysis has also drawn considerable attention. Applications include 

pollutant degradation, hydrogen production, and water purification. Recent studies combine ZnO 

with TiO2 and other materials to form heterojunctions that improve charge separation and catalytic 

efficiency. These innovations underscore ZnO’s critical role in sustainable technologies. 

3.5.3. Silicon Dioxide 
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Silicon dioxide (SiO2), widely recognized for its dielectric and insulating properties, plays a 

crucial role in enhancing the performance and stability of solar cells. Bibliometric data (Figure 6) 

identify China and the United States as dominant contributors to SiO2 research, with strong 

collaboration networks in Germany, the Netherlands, and South Korea. Patterns of cooperation 

highlight the cohesion of European research efforts, anchored in partnerships between Germany and 

neighboring countries such as France and the Netherlands. 

 

Figure 6. Bibliometric analysis in VOSviewer for SiO2: (a) visualization of international collaboration; (b) 

visualization of keyword clustering. 

Keyword analysis reveals core themes such as “surface passivation,” “coating,” and 

“antireflective layers,” reflecting the importance of SiO2 in minimizing recombination losses and 

protecting solar cell components. Its applications in thermal management and optical coatings further 

underscore its versatility. Recent advances include nanoporous SiO2 structures for light trapping and 

improved heat dissipation. Sol–gel processing and plasma-enhanced chemical vapor deposition 

(PECVD) have emerged as prominent methods for producing uniform and durable SiO2 films. 

As an integral part of tandem and thin-film solar cells, SiO2 continues to serve as a foundational 

material in photovoltaic research. 

3.5.4. Aluminum Oxide 

Aluminum oxide (Al2O3) has attracted significant attention due to its application in surface 

passivation, particularly in silicon-based solar cells. Bibliometric data (Figure 7) show a steady 

increase in research output, with China, the United States, and Germany contributing the largest 

share globally. The collaboration network highlights strong connections among these countries and 

other regions, including South Korea, India, and Australia. 

Key terms such as “atomic layer deposition,” “surface passivation,” and “crystalline silicon” 

dominate the keyword network, illustrating Al2O3’s role in enhancing the stability and efficiency of 

photovoltaic systems. ALD methods are frequently used to deposit Al2O3 layers with excellent 

dielectric properties and conformal coverage. Recent developments include the integration of Al2O3 

into perovskite solar cells and investigations of its potential as a barrier layer under harsh 

environmental conditions. 
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Figure 7. Bibliometric analysis in VOSviewer for Al2O3: (a) visualization of international collaboration; (b) 

visualization of keyword clustering. 

3.5.5. Cerium Dioxide 

Cerium dioxide (CeO2) is an emerging material for solar and environmental applications due to 

its high oxygen storage capacity and redox properties. Bibliometric analysis (Figure 8) reveals that 

China, India, and the United States are the leading contributors, while collaboration across Europe 

and the Middle East is expanding. The cooperation network reflects a growing partnership between 

academic institutions and industrial stakeholders. 

 

Figure 8. Bibliometric analysis in VOSviewer for CeO2: (a) visualization of international collaboration; (b) 

visualization of keyword clustering. 

The analysis is dominated by keywords such as “nanoparticles,” “photocatalysis,” and 

“hydrogen production.” CeO2’s catalytic activity makes it ideal for solar-to-hydrogen conversion and 

pollutant degradation. Research focuses on the synthesis of CeO2-based nanocomposites to improve 

charge transport and catalytic efficiency. Hybrid systems combining CeO2 with TiO2 or ZnO have 

demonstrated enhanced performance in photocatalytic and thermochemical processes. CeO2’s 

thermal stability and optical properties further expand its potential for solar devices and energy 

storage systems. 

3.5.6. Iron Oxide 
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Iron oxide (Fe2O3), particularly in its hematite form, has been widely studied for applications in 

photoelectrochemical water splitting and energy storage. Bibliometric data (Figure 9) identify China, 

the United States, and Germany as leading contributors, with broad international collaboration 

networks across Europe and Asia. Hematite’s abundance and stability make it an attractive material 

for renewable energy technologies, despite challenges such as its narrow bandgap and low 

conductivity. 

 

Figure 9. Bibliometric analysis in VOSviewer for Fe2O3: (a) visualization of international collaboration; (b) 

visualization of keyword clustering. 

Keywords such as “photoanodes,” “water splitting,” and “hydrogen production” emphasize 

Fe2O3’s central role in photoelectrochemical systems. Research focuses on overcoming material 

limitations through doping, nanostructuring, and the use of co-catalysts. Innovations include 

heterojunctions and hematite-based tandem systems that improve charge separation and 

photocurrent efficiency. Additionally, surface passivation strategies and hybrid designs integrating 

Fe2O3 with TiO2 or WO3 have demonstrated enhanced performance, solidifying its place at the center 

of renewable energy research. 

3.5.7. Tungsten Trioxide 

Research on tungsten trioxide (WO3) is driven by its applications in photoelectrochemical 

systems, smart windows, and environmental technologies. Bibliometric analysis (Figure 10) 

highlights China, the United States, and South Korea as key contributors, with strong collaboration 

networks in both Europe and Asia. Germany, Japan, and the United Kingdom are also notable players 

in advancing WO3-based technologies. 

The analysis is dominated by keywords such as “photoanodes,” “thin films,” and “solar cells,” 

reflecting WO3’s versatility in energy and catalytic applications. Studies focus on optimizing WO3 

properties through nanostructuring, doping, and integration with other materials. Recent advances 

include WO3-based heterojunctions for improved charge separation and the use of WO3 thin films in 

electrochromic devices. Its adaptability and multifunctionality position WO3 as an important material 

in addressing global energy and environmental challenges. 
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Figure 10. Bibliometric analysis in VOSviewer for WO3: (a) visualization of international collaboration; (b) 

visualization of keyword clustering. 

4. Comparative Analysis of Oxide Ceramics in Different Types of Solar Cells 

The results of the bibliometric analysis demonstrate that binary oxide ceramic materials have 

diverse applications in solar energy, materials science, and photoelectrochemical technologies. The 

relevance of each material is defined by its physicochemical properties, its ability to enhance the 

efficiency of solar devices, and its potential for integration into current and future energy systems. 

These oxides serve different roles, such as electron transport layers, hole-blocking layers, surface 

passivation coatings, or antireflective coatings, across various solar cell technologies, as outlined 

below. Key properties such as bandgap (electronic structure), optical transparency, chemical stability, 

and charge transport characteristics make them well suited for specific applications [223–226]. 

In the following sections, we examine how each oxide is utilized in the main types of solar cells 

(crystalline silicon solar cells, perovskite solar cells, dye-sensitized solar cells, thin-film chalcogenide 

cells, quantum dot cells, and emerging organic solar cells) (Figure 11), and explain why their intrinsic 

properties are advantageous in these systems. 
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Figure 11. Major types of solar cells. 

4.1. Silicon-Based Solar Cells 

Silicon-based solar cells, both monocrystalline [226–228] and polycrystalline [229,230], remain 

the predominant type of solar energy conversion devices due to their high efficiency, long-term 

stability, and well-established industrial manufacturing processes [231,232]. However, further 

performance enhancement of silicon photovoltaic devices requires minimizing losses associated with 

surface recombination of charge carriers and optical losses caused by light reflection [233]. Oxide 

materials play an important role in addressing these challenges. 

One of the most effective and widely used oxide materials for silicon surface passivation is Al2O3 

[234]. Its application in silicon solar cells is attributed to its excellent passivation properties and high 

thermal and chemical stability [235]. The deposition of thin Al2O3 layers enables the formation of a 

high-quality interface with silicon [236]. The primary advantage of this material lies in its ability to 

effectively neutralize surface defects, particularly dangling bonds on silicon atoms [237]. In addition 

to chemical passivation, Al2O3 exhibits a high density of fixed negative charges [238]. These charges 

promote field-effect passivation by repelling electrons from the interface, significantly reducing 

surface recombination on p-type silicon surfaces. As a result, Al2O3 layers substantially enhance the 

open-circuit voltage (V_OC) of silicon solar cells by reducing the defect density at the interface 

[236,239]. Another important characteristic of Al2O3 is its high thermal and chemical stability, which 

allows it to withstand high-temperature fabrication processes such as contact annealing [240]. 

Silicon dioxide is one of the most well-established and widely studied materials in silicon 

photovoltaics [241]. It is mainly used as a surface passivation layer and as a component of 

antireflective coatings [242]. The main advantage of SiO2 is its exceptional ability to form a very low 

density of surface defect states due to the formation of strong and stable bonds with silicon [243]. 

This is particularly important for ensuring low surface recombination velocities and, consequently, 

for increasing open-circuit voltage and overall solar cell efficiency. However, unlike Al2O3, SiO2 has 
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a neutral or slightly positive fixed charge, making it less effective for field-effect passivation of p-type 

silicon surfaces [244–246]. Therefore, SiO2 is often combined with other oxide or nitride layers in 

passivated contact structures, such as TOPCon [247,248]. In this architecture, an ultrathin tunneling 

SiO2 layer is paired with a highly doped polysilicon layer, enabling efficient charge collection while 

maintaining excellent surface passivation [249]. 

In addition to its passivation function, SiO2 is widely used in optical coatings due to its excellent 

antireflective properties [250]. Its low refractive index allows it to effectively reduce light losses due 

to reflection at the surface of silicon cells [251,252]. For example, dual-layer antireflective coatings 

based on SiO2 combined with high-index oxides (such as TiO2) can reduce broadband reflection and 

significantly enhance solar cell efficiency [253]. 

Titanium dioxide is well known for its unique properties that make it an attractive material for 

photovoltaic applications, particularly in silicon solar cells as an antireflective coating or interfacial 

layer. The choice of TiO2 for this role is due to its wide bandgap, which ensures high transparency in 

the visible spectrum [254]. This makes TiO2 ideal for reducing optical losses at the surface of silicon 

solar cells [255]. Thanks to its high refractive index, TiO2 is often used in dual-layer antireflective 

coatings along with SiO2 [256]. Such combined layers significantly reduce reflection losses, positively 

impacting the overall efficiency of silicon photovoltaic devices. 

In addition to its optical advantages, TiO2 can also passivate silicon surfaces, although less 

effectively than Al2O3 or SiO2 [257]. Thin TiO2 layers are used to reduce surface recombination of 

charge carriers, particularly on n-type silicon surfaces or on the rear side of solar cells, contributing 

to higher open-circuit voltage [258,259]. Due to its chemical stability and low cost, TiO2 is a favorable 

material in manufacturing settings [260]. However, its semiconducting nature (n-type) and moderate 

conductivity must be taken into account, as they may lead to unintended shunting, especially if film 

thickness or quality is not properly controlled [261]. It is also important to note that achieving optimal 

performance of TiO2 layers typically requires thermal treatment, which imposes certain limitations 

on their use with flexible substrates [262,263]. 

ZnO is one of the primary candidates for the role of a transparent conducting oxide (TCO) in 

silicon heterojunctions and thin-film solar cells [264]. Due to its high optical transparency, resulting 

from its wide bandgap, and its ability to be doped n-type (e.g., with aluminum), ZnO offers excellent 

properties as a transparent front electrode [265]. Aluminum-doped ZnO (AZO) layers have been 

successfully used as a lower-cost and more accessible alternative to the more expensive and less 

abundant indium tin oxide (ITO), demonstrating comparable electrical conductivity and 

transparency at reduced cost [266]. 

In addition to its role as a transparent electrode, undoped or lightly doped ZnO can also serve 

as a buffer layer, minimizing damage during deposition of more conductive oxide layers or 

facilitating energy level alignment at interfaces [267,268]. However, it is important to note that in 

conventional silicon solar cells with diffused junctions, the use of ZnO and TiO2 is less common, as 

standard technologies typically employ silicon nitride (SiNₓ) [269] and screen-printed contact 

methods [270]. Meanwhile, in advanced heterostructure-based silicon devices, especially thin-film or 

specialized technologies, these materials demonstrate significant potential for further development. 

Despite its many advantages, ZnO has certain limitations. Its surface can react with certain 

materials or be sensitive to acidic environments, which affects its stability and, consequently, the 

durability of solar cells [271,272]. Therefore, appropriate processing conditions and additional surface 

passivation become critically important for the effective use of ZnO in photovoltaic devices. 

CeO2 is a relatively new and experimental material in silicon photovoltaics, but it has already 

shown potential for improving solar cell performance. Interest in CeO2 stems from its unique 

combination of physical and chemical properties, particularly its wide bandgap, which provides high 

optical transparency across most of the solar spectrum [273]. Owing to these characteristics, CeO2 can 

effectively serve as a window layer in silicon heterojunctions [274], similar to materials such as 

amorphous silicon carbide (a-SiC) [275] or indium tin oxide (ITO) [276] in heterojunction with 

intrinsic Thin-layer (HIT) cell structures. 
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Theoretical studies and simulations confirm the promise of CeO2/n-Si heterojunctions. In such 

heterostructures, CeO2 acts not only as a transparent window layer but may also provide additional 

surface passivation by forming a high-quality interface with silicon [277]. Furthermore, a notable 

advantage of CeO2 is its ability to absorb ultraviolet radiation, allowing it to function as a protective 

layer for silicon structures, mitigating the detrimental effects of UV exposure on the stability of solar 

cells [278,279]. Despite these promising features, experimental data on the practical use of CeO2 in 

commercial devices remain limited. Further research is necessary to optimize deposition methods 

and improve the film quality of this oxide. 

Fe2O3 and WO3 oxides are rarely discussed in the context of silicon solar cell applications, as 

there is currently no compelling evidence of their effectiveness for passivation or as transparent 

electrodes in Si-PV. 

Thus, each of the oxide materials discussed has unique advantages that make it attractive for 

specific functions in silicon solar cells (Table 7). Al2O3 and SiO2 are traditionally the most effective 

materials for silicon passivation, due to their low interface defect densities and chemical inertness 

when in contact with silicon. Al2O3 offers the additional benefit of efficient field-effect passivation 

due to its negative fixed charge. For optical optimization tasks, coatings based on SiO2 and TiO2 

remain leading choices due to their ability to reduce light reflection losses. ZnO, meanwhile, is a 

promising transparent conductive oxide because of its affordability, high electrical conductivity 

when doped, and suitability for use in thin-film silicon cells. At the same time, both TiO2 and ZnO 

may require special technological measures to overcome potential drawbacks related to 

photocatalytic activity or chemical instability. CeO2 shows promise as an innovative material for 

surface passivation and UV protection, though it still requires further investigation. 

Table 7. Comparison of key oxide materials used in crystalline silicon (c-Si) solar cells. 

Oxide 

Material 

Main Functions in c-Si 

Cells 
Advantages 

Disadvantages and 

Limitations 

Al2O3 
Surface passivation, 

insulation 

Excellent chemical passivation, 

negative charge (effective field-

effect passivation), high 

thermal stability, chemical 

inertness 

Does not conduct electrons 

(only a passivation layer), often 

requires an additional 

protective layer (e.g., SiNₓ) 

SiO2 

Surface passivation, 

antireflection coatings, 

tunneling layer 

Exceptional chemical 

passivation, very stable 

interface with Si, excellent 

antireflection properties (low 

refractive index, ~1.45) 

Lack of effective field-effect 

passivation (neutral/weakly 

positive charge), primarily 

used as a passive layer 

TiO2 

Antireflection coatings, 

surface passivation of n-

Si 

High transparency, high 

refractive index (2.0–2.5), good 

chemical stability, low cost 

Unintended shunting due to n-

type conductivity, 

photocatalytic activity under 

UV, requires precise film 

quality control 

ZnO 

Transparent conductive 

oxide (TCO), buffer layer 

in heterojunctions 

High transparency, high 

conductivity when doped (e.g., 

AZO), low cost, application 

flexibility 

Lower chemical stability, 

sensitive to humidity and 

acidic environments, requires 

additional passivation 

CeO2 

Experimental window 

layer, UV filter, potential 

passivation layer 

Good chemical stability, UV 

absorption capability (Si 

protection), promising CeO2/n-

Si heterojunction 

Low electron mobility, further 

research needed for deposition 

optimization 

4.2. Perovskite Solar Cells (PSC) 
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Hybrid organic–inorganic perovskite solar cells (PSCs) have attracted significant scientific 

attention in recent years due to their high theoretical solar energy conversion efficiency and the 

potential cost-effectiveness of their production [280]. One of the crucial aspects of improving the 

efficiency and stability of such devices is the selection of optimal charge-selective layers, among 

which oxide materials play an essential role [281]. Typically, metal oxide thin films are employed in 

PSC architectures to facilitate selective charge transport, reduce carrier recombination, and ensure 

long-term device stability [282]. 

TiO2 is one of the most widely used and extensively studied materials for electron transport 

layers (ETLs) in PSCs [283], particularly in the conventional n–i–p configuration [284]. A key reason 

for the widespread use of TiO2 is its favorable band alignment: its conduction band matches well with 

that of the perovskite [285,286]. This enables efficient electron extraction from the active layer while 

blocking hole transport in the reverse direction, thereby reducing recombination. With its wide 

bandgap, TiO2 remains transparent to most of the solar spectrum, minimizing photon absorption 

losses [287]. 

PSC devices using TiO2-based mesoporous ETLs currently demonstrate power conversion 

efficiencies exceeding 20%, highlighting the exceptional suitability of this material [288]. TiO2 is also 

favored for its high chemical stability under prolonged illumination and its relatively low 

manufacturing cost. Despite these advantages, TiO2 also has several drawbacks. Notably, it is well 

known for its photocatalytic activity under UV light, which can degrade both the perovskite and 

adjacent organic layers in the device [289]. This creates a need for additional UV-blocking or 

protective layers, such as ultrathin Al2O3 or CeO2 coatings. Another significant technological 

limitation is the high-temperature treatment required to crystallize TiO2 films and achieve high 

device performance [290]. This requirement complicates its use on flexible polymer substrates, 

prompting efforts to develop low-temperature deposition methods, such as solution processing, 

chemical bath deposition, or atomic layer deposition (ALD). Despite these challenges, TiO2 remains 

the benchmark ETL material in PSC design due to its well-established processing protocols, stable 

and high performance, and ongoing improvements through fine-tuned layer engineering. 

Among alternative ETL materials for PSCs, ZnO has drawn considerable attention [291]. Unlike 

traditional TiO2, ZnO can be processed at low temperatures, including via solution-based methods 

[292]. This makes ZnO particularly attractive for use on flexible and polymer substrates, where high-

temperature processing (as required for TiO2) is not feasible [293]. For instance, sol–gel ZnO films can 

be formed at temperatures below 150 °C, greatly simplifying fabrication and reducing production 

costs [294]. 

Additionally, ZnO exhibits superior charge transport speed due to its higher electron mobility 

compared to TiO2. This enhances the extraction of electrons from the perovskite active layer, 

potentially increasing short-circuit current density (J_SC) and fill factor (FF) [295]. The energy level 

alignment between ZnO and perovskite materials is also favorable – ZnO has a bandgap of 

approximately 3.3 eV, offering high transparency in the visible spectrum [296]. Combined with its 

strong electron affinity, ZnO is considered a promising candidate for ETL applications [297]. 

Despite its many advantages, the application of ZnO in PSCs faces significant challenges, 

particularly due to its chemical reactivity toward perovskite materials. It has been reported that 

perovskite layers deposited directly onto ZnO surfaces undergo rapid degradation [293]. This is 

caused by chemical interactions between the ZnO surface and the organic cations in the perovskite, 

resulting in the deprotonation of methylammonium cations and accelerated degradation of the 

perovskite layer. These processes substantially reduce the stability and longevity of devices with ZnO 

ETLs, despite their initially high performance. 

To overcome this issue, researchers are actively developing various surface modification 

strategies for ZnO, including the introduction of interfacial protective layers. For example, the use of 

bilayer structures in which ZnO is coated with a compact TiO2 layer has proven effective [298], as 

have coatings based on self-assembled monolayers of organic molecules or fullerene derivatives 

[299]. These solutions significantly enhance device stability while maintaining high initial efficiency 
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in PSCs employing ZnO-based ETLs. Nanostructured forms of ZnO (such as nanorods or 

nanoparticles) further improve electron collection by increasing the effective interfacial area and 

providing direct pathways for charge transport [300]. 

Among other oxide materials that are gaining increasing prominence in perovskite 

photovoltaics, tin oxide (SnO2) has emerged as especially important. Although SnO2 was not part of 

the original list of analyzed materials, its role as an efficient ETL in PSCs warrants special attention 

due to its excellent performance and widespread use in modern device architectures [301]. Thanks to 

its combination of high stability, wide bandgap (~3.6 eV), and suitability for low-temperature 

processing, SnO2 has emerged as a leading ETL candidate alongside TiO2 and ZnO. Studies have 

shown that SnO2 provides more stable performance than TiO2 and demonstrates lower hysteresis 

behavior, which is crucial for the long-term operation of PSCs [302–304]. 

Aluminum oxide (Al2O3), in turn, occupies a unique niche among materials used in PSCs due to 

its insulating and passivating properties. In the early stages of solid-state PSC development, it was 

discovered that replacing the conductive mesoporous TiO2 scaffold with insulating Al2O3 did not lead 

to a complete drop in performance; in fact, devices with efficiencies of about 10–11% were still 

achieved [305]. This was possible because perovskite was able to infiltrate the mesoporous Al2O3 

structure and directly transport electrons to the contact, eliminating the need for a conductive 

scaffold. Later research showed that mesoporous frameworks made of Al2O3 or other inert oxides 

could even increase the open-circuit voltage (V_OC) compared to TiO2-based devices, due to reduced 

surface electron recombination [306]. 

Al2O3 is characterized by high chemical inertness toward perovskites, preventing degradation 

of the active layer and significantly improving device stability. This property is effectively utilized in 

PSC structures with carbon electrodes, where a triple mesoporous structure is employed: a bottom 

TiO2 layer for efficient electron contact, a middle Al2O3 layer as an inert insulating spacer, and a top 

carbon layer serving as the electrode [307]. This configuration allows Al2O3 to efficiently isolate the 

perovskite layer from the carbon contact, reducing recombination and improving device longevity. 

Another promising ETL material in PSCs under recent investigation is cerium oxide (CeO2). Its 

high conduction band level aligns well with the energy levels of typical perovskite materials, 

enabling efficient electron extraction from the active layer. In addition, CeO2 offers several unique 

advantages, particularly its ability to absorb ultraviolet (UV) radiation [308]. This property allows 

cerium oxide to serve as a protective UV-blocking layer, preventing degradation of organic–inorganic 

perovskites under UV exposure. As a result, the incorporation of CeO2 layers significantly enhances 

the long-term stability of PSCs under continuous illumination [309]. 

An additional advantage of CeO2 is the presence of oxygen vacancies, which not only facilitate 

electron transport but also enhance its chemical stability against oxygen and moisture. However, this 

material is still under active laboratory investigation. One of the main barriers to its widespread 

adoption is the difficulty of producing high-quality CeO2 thin films without high-temperature 

annealing. Recent studies report that optimizing deposition processes, particularly solution-based 

CeO2 film formation without post-deposition thermal treatment, can lead to improved device 

efficiency, demonstrating this material’s significant potential [310]. Nevertheless, CeO2 remains less 

technologically mature than conventional oxides such as TiO2 and SnO2 and requires further research 

before broad commercial deployment. 

Another unconventional material gaining attention in perovskite photovoltaics is iron(III) oxide, 

commonly known as hematite (α-Fe2O3). Its appeal lies in its abundance, non-toxicity, and 

exceptional stability under ultraviolet and visible light exposure [311]. Hematite’s availability and 

low cost make it a promising alternative for use as a compact ETL layer in PSCs [312]. Researchers 

have achieved power conversion efficiencies of around 13% in devices with compact Fe2O3 layers 

through precise control over the fabrication process, notably by forming dense, defect-free films using 

solution crystallization techniques [313]. 

At the same time, hematite suffers from several significant drawbacks that limit its widespread 

use. Its main limitation is low electron mobility and a high density of trap states, which lead to severe 
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carrier recombination [314]. Additionally, due to its relatively narrow bandgap, hematite absorbs part 

of the visible spectrum, reducing the overall efficiency of devices where the ETL should be 

transparent [315]. Currently, the use of hematite remains confined mainly to laboratory settings, 

where ongoing efforts are focused on improving its electronic properties through doping and 

nanostructuring to make it more competitive with traditional oxides such as TiO2 or SnO2. 

WO3 is most commonly used as a hole transport layer (HTL), although some studies also 

demonstrate its applicability as an ETL in specific configurations [316]. This oxide has a wide 

bandgap, making it transparent across most of the solar spectrum [317]. However, the most valuable 

property of WO3 is its tunable work function, which varies depending on stoichiometry. In its sub-

stoichiometric form (WOₓ), it has a high work function, making it ideal for use as an inorganic HTL, 

especially in inverted (p–i–n) perovskite architectures [318]. Besides serving as an HTL, WO3 is also 

actively investigated as an ETL material, for example, mesoporous WO3 is used in PSCs as an 

additional layer to enhance electron transport [319]. 

Al2O3 and SiO2 have limited applications in PSCs, mainly serving auxiliary functions, insulating 

and passivating (Al2O3) or anti-reflective (SiO2), and rarely acting as primary charge-selective layers. 

Their inclusion in device architecture is often aimed at improving stability and optical performance. 

An inert mesoporous scaffold or ultrathin Al2O3 spacer helps passivate interfacial defect states at the 

perovskite/ETL junction, reducing recombination rates and thereby increasing V_OC. However, as 

Al2O3 is non-conductive, its thickness must be strictly controlled to avoid adding series resistance. 

SiO2, on the other hand, is primarily used as an optical or insulating interlayer: it reduces light 

reflection, stabilizes the active layer morphology, and acts as a barrier to interfacial ion diffusion. 

Both oxides function indirectly by improving the durability and electrical performance of the cell but 

are not involved in selective charge transport, and therefore are excluded from the comparative table 

of transport oxides. 

In summary, hole transport in PSCs is generally facilitated by p-type oxides with high work 

functions. WO3, NiO, and MoO3 (the latter two not included in this analysis) are typical 

representatives of such materials. The advantage of using oxide materials over organic HTLs lies in 

their significantly higher resistance to ultraviolet light, heat, and moisture, thereby greatly extending 

device lifetime. Notably, CeO2 and WO3 can also absorb UV light, protecting the perovskite layer 

from degradation. 

However, some oxides such as TiO2 and ZnO exhibit photocatalytic activity, which under UV 

exposure can lead to degradation of the perovskite and adjacent organic layers. To address this, 

specific approaches are employed – either by adding protective interlayers (such as CeO2) or 

incorporating luminescent additives that convert UV radiation into visible light. 

Therefore, the correct selection and combination of oxide materials, considering their specific 

properties, enables synergistic effects that enhance both efficiency and stability of perovskite solar 

cells. The key characteristics and application roles of these oxides in the context of PSCs are 

summarized in the comparative table below (Table 8). 

Table 8. Comparison of key characteristics of oxide materials used in perovskite solar cells. 

Oxide 

Material 

Layer Type Main Advantages and 

Functions 

Drawbacks and Technological 

Features 

TiO2 ETL High transparency; favorable 

band alignment with 

perovskite; thermal stability; 

efficiency >20% 

Photocatalytic activity (UV-

induced perovskite 

degradation); requires high-

temperature processing (>450 

°C) 

ZnO ETL High electron mobility; low-

temperature deposition; 

compatible with solution-based 

methods 

Chemical instability in contact 

with MA+-based perovskites; 

requires interfacial protection 

or surface modification 
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CeO2 ETL UV absorption; chemical 

inertness; interface passivation; 

potential for enhanced stability 

Lower electron mobility; 

difficulty in forming high-

quality films without thermal 

treatment 

Fe2O3 ETL, also studied as 

experimental absorber 

Low cost; environmental 

friendliness; high resistance to 

UV and moisture 

Low electron mobility; high 

charge recombination; partial 

visible light absorption; lower 

efficiency (~13%) 

WO3 HTL / ETL High work function (HTL); 

resistance to moisture and 

temperature; solution-

processable; UV protection 

Suboptimal band alignment 

when used as ETL; property 

variation depending on 

stoichiometry level 

4.3. Dye-Sensitized Solar Cells (DSSC) 

In dye-sensitized solar cells, the mesoporous oxide layer acts as a photoanode: it supports light-

sensitive dyes and transports electrons to the transparent electrode [320,321]. The most common 

material in this role is TiO2 [322]. Its popularity is due to its wide bandgap, chemical inertness, non-

toxicity, low cost, and ability to form highly porous nanostructures that enable efficient light 

harvesting [323]. The main drawback of TiO2 is the slow electron transport and the risk of 

recombination with oxidized electrolyte species; however, this can be mitigated through surface 

modification, core–shell structures, and other engineering strategies [324–326]. 

An alternative is ZnO, which has a similar bandgap and favorable energy alignment, but 

features higher electron mobility [327]. Due to the ease of forming nanostructures such as nanorods, 

ZnO provides direct pathways for electrons and can reduce recombination [328,329]. Moreover, ZnO 

can be deposited at low temperatures, making it suitable for flexible photovoltaic devices [330,331]. 

However, common dyes, especially those based on ruthenium, may interact with its surface, leading 

to dissolution or defect formation, thus limiting efficiency [332,333]. This issue can be addressed via 

interface engineering and the use of alternative dyes [334,335]. 

Other semiconductor oxides, such as WO3, SnO2, and Fe2O3, are also under investigation as 

photoanodes [336–338]. WO3, when combined with TiO2, can enhance UV sensitivity [339]. SnO2 is 

notable for its high electron mobility and its ability to increase open-circuit voltage due to a deeper 

conduction band. However, it requires blocking layers to counteract recombination with the 

electrolyte caused by its high mobility and deep conduction band [340]. Hematite absorbs visible 

light, but suffers from an extremely short hole diffusion length and high recombination, which limits 

its industrial applicability in DSSCs [341]. 

Inert oxides such as Al2O3 and SiO2, although not conductive, play important auxiliary roles. 

Ultrathin Al2O3 layers deposited on TiO2 surfaces can passivate defect states and reduce 

recombination, thereby increasing the open-circuit voltage [342]. SiO2, meanwhile, is used as a 

scattering additive in the anode or as a barrier layer that prolongs the photon path and improves light 

absorption [343]. 

Table 9 summarizes oxide materials that play key roles in the functional layers of DSSCs. CeO2 

currently has limited or auxiliary applications and requires further experimental verification for 

widespread use. 

Table 9. Characteristics of Oxide Materials for DSSC. 

Oxide 

Material 

Role in DSSC Advantages Limitations 

TiO2 Photoanode Ideal energy alignment with 

dyes; high chemical stability; 

large surface area for dye 

adsorption 

Slow electron transport; 

recombination with oxidized 

electrolyte species 
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ZnO Photoanode High electron mobility; easy 

nanostructuring (nanorods, 

nanoparticles); low-

temperature deposition 

Chemical instability in the 

presence of some dyes 

(especially acidic); risk of defect 

formation 

WO3 Photoanode / Additive UV absorption; chemical 

stability; electron conductivity 

Less favorable energy 

alignment; high recombination; 

low efficiency 

Fe2O3 

(Hematite) 

Experimental 

Photoanode 

Visible light absorption; non-

toxicity; UV stability 

Very short hole diffusion 

length (~2–4 nm); intense 

recombination; low 

photovoltage 

Al2O3 Passivating Barrier Defect passivation; reduced 

recombination; increased 

V_OC 

Insulator – does not conduct 

electrons; requires precise 

thickness control 

SiO2 Optical Additive / Barrier Enhanced light scattering; 

structural stabilization; 

chemical inertness 

Non-conductive; indirect effect 

via morphology and optics 

4.4. Thin-Film Chalcogenide and Inorganic Solar Cells 

In thin-film solar cells based on CIGS, CdTe, CZTS, and amorphous silicon (a-Si:H), oxide 

ceramics play a key role as transparent conductive oxides (TCOs), buffer layers, or passivating 

dielectrics [344–346]. The most common configuration is a bilayer TCO composed of an inner ZnO 

layer and an outer conductive layer providing lateral conductivity [347]. Thanks to its wide band gap, 

good transparency, and doping ability, AZO is widely used not only in CIGS and CZTS, but also in 

CdTe and silicon-based cells [348–350]. 

TiO2 is being investigated as an alternative to CdS in CIGS and CdTe for cadmium-free 

structures [351,352]. TiO2 is also used to passivate grain boundaries in CIGS [353]. SnO2 serves as a 

standard transparent electrode in CdTe and some CIGS cells. Insulating oxides such as Al2O3 and 

SiO2 are applied for surface passivation, grain boundary recombination suppression, and the creation 

of dielectric interlayers [354]. High work function oxides like WO3 are placed between the absorber 

(e.g., CdTe or CIGS) and the metal contact to improve hole extraction [355]. These materials provide 

better energy level alignment, reduce contact losses, and can act as recombination barriers. 

Table 10 summarizes the roles and technological characteristics of oxide materials in thin-film 

chalcogenide and inorganic solar cells. It includes only those oxides that have demonstrated practical 

effectiveness as transparent contacts, buffer, or passivating layers for CIGS, CdTe, CZTS, and a-Si:H. 

Experimentally promising but still less commonly used oxides, such as CeO2 (due to insufficient 

conductivity and less mature passivation control) and Fe2O3 (high optical absorption and low electron 

mobility limiting its use as TCO or buffer), remain primarily at the lab stage and require further 

validation for widespread implementation in thin-film PV technologies. 

Table 10. Role of Oxides in Thin-Film Chalcogenide and Inorganic Solar Cells. 

Oxide 

Material 

Role in the Device Advantages Limitations or Application 

Conditions 

ZnO Transparent contact, 

buffer, textured layer 

High transparency, good 

conductivity when doped, 

texturing capability 

May require protection during 

deposition, vulnerable to acids 

TiO2 Buffer layer, grain 

boundary passivation 

Cd-free replacement for CdS, 

visible-range transparency, 

thermal stability 

Requires interface control due 

to risk of recombination 

Al2O3 Passivating layer, 

dielectric barrier 

Reduces recombination, 

improves V_OC, used in 

nanopatterned structures 

Insulator – does not conduct 

charge, precise thickness 

critical 
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SiO2 Dielectric layer, diffusion 

barrier 

Optical transparency, thermal 

stability, interlayer diffusion 

barrier 

Does not contribute to charge 

transport, auxiliary function 

WO3 Back contact buffer 

(CdTe, CIGS) 

High work function, 

transparency, improved hole 

extraction 

Requires thin deposition (a few 

nm), critical energy level 

alignment 

CeO2 Experimental 

buffer/window layer 

between absorber; 

surface passivation; UV 

barrier 

Wide band gap, high 

transparency; chemical 

inertness; Cd-free; UV 

absorption and surface 

recombination reduction 

Low electron mobility increases 

series resistance; electrical 

properties sensitive to oxygen 

vacancies; requires optimized 

deposition methods (ALD, 

solution processes) and post-

treatment; efficiency 

demonstrated only on lab-scale 

samples 

4.5. Organic and Emerging Types of Solar Cells 

In emerging photovoltaic technologies, including organic solar cells (OSCs) and quantum dot 

(QD) solar cells, metal oxides are used as charge-selective transport layers due to their stability, 

suitable energy alignment, and transparency [356,357]. 

ZnO and TiO2 are widely used as electron transport layers (ETLs) in inverted OSC architectures 

[358,359]. High work function oxides, such as WO3, are also commonly used in OSCs [360,361]. These 

materials efficiently extract holes and provide favorable alignment with the valence band of donor 

polymers. When oxides like Fe2O3 or WO3 are used as absorbers, tandem or multilayer structures can 

be developed to broaden the spectral response. The main advantages of such systems include 

stability, low cost, and the absence of volatile or toxic components, making them promising for use 

in harsh environments such as space or in solar fuel production. 

Table 11 summarizes the properties of oxide layers that have already found practical application 

in organic, quantum dot, and “all-oxide” solar cells. Notably, Al2O3, SiO2, and CeO2 mostly serve 

auxiliary functions, dielectric encapsulation, passivation, or UV-barrier, and have only a limited 

effect on charge-selective transport in these architectures. 

Table 11. Oxide Materials in Organic, Quantum Dot, and “All-Oxide” Solar Cells: Functions, Advantages, and 

Technological Limitations. 

Oxide 

Material 

Role in the Device Advantages Limitations or Application 

Conditions 

ZnO ETL (OSC, QD) High transparency; solution-

processable; high electron 

mobility; chemical stability 

Generates reactive radicals 

under UV; requires surface 

modification or encapsulation 

TiO2 ETL (OSC, QD); 

contact in Cu2O 

cells 

Wide band gap; stability; 

solution-processable 

Low electron mobility; interface 

quality is critical 

WO3 HTL (OSC); rear 

contact (QD) 

High work function; 

transparency; thermal stability; 

UV protection 

Lower work function than 

MoO3; sensitive to stoichiometry 

and thickness 

Fe2O3 Absorber 

(experimental) 

Low cost; non-toxic; stable Requires cascade/tandem 

architecture; limited spectral 

absorption; low carrier mobility; 

low efficiency 
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CeO2 ETL or protective 

interlayer / UV filter in 

all-oxide cells 

UV absorption prevents 

degradation of the active layer; 

chemically inert; compatible 

with low-temperature 

deposition 

Low electron mobility; 

properties sensitive to oxygen 

vacancies; large-scale solution 

processing not yet optimized 

Al2O3 Inert encapsulation, 

passivating/optical 

spacer 

Reduces surface recombination; 

stabilizes morphology; 

chemically/thermally inert; may 

enhance V_OC 

Does not conduct charge; 

thickness must be <3 nm to 

avoid adding series resistance 

SiO2 Anti-reflective front 

(AR) coating or 

dielectric stabilizing 

barrier 

Low refractive index (~1.45) 

reduces reflection; barrier to 

oxygen/moisture diffusion; low-

T compatible 

Not charge-selective; effect is 

purely optical/encapsulation-

related, requiring careful 

integration with ETL/HTL 

4.6. Application Matrix of Oxide Ceramics in Solar Cells: Analytical Summary 

The universality or specialization of oxide materials in solar cells is determined not only by their 

electronic structure and stability, but also by how they function in the devices — as active charge 

transport layers or as auxiliary passivating or optical components. Table 12 and Figure 12 summarize 

the key roles of each oxide in various photovoltaic architectures. This application matrix allows for 

simultaneous evaluation of the maturity, functional flexibility, and technological relevance of the 

materials, visually reflecting which ones are already implemented, have limited use, or are currently 

under active investigation. 

Table 12. Applications of Key Binary Oxides in Different Types of Solar Cells. 

Oxide 

Material 

c-Si PSC DSSC Thin-Film (CIGS, 

CdTe, CZTS, a-

Si:H) 

OSC, QD, All-

Oxide 

TiO2 Passivation, 

anti-reflection 

ETL, barrier, 

mesoporous 

scaffold 

Photoanode (ETL) Buffer, grain 

boundary 

passivation 

ETL, contact with 

Cu2O 

ZnO TCO, buffer ETL Photoanode (ETL) TCO, buffer, 

textured layer 

ETL, all-oxide 

component 

Al2O3 Passivation, 

dielectric 

Passivation, inert 

insulator 

Barrier, 

passivation of 

TiO2 

Passivation, 

dielectric barrier 

Optical spacer, 

inert interlayer 

SiO2 Anti-reflective, 

tunnel layer 

Anti-reflective, 

optical layer 

Optical additive, 

light scatterer 

Diffusion barrier, 

optical 

stabilization 

Dielectric, optical 

substrate 

CeO2 UV protection, 

passivation 

ETL, UV filter, 

stabilization 

– Potential 

passivation, buffer 

(experimental) 

ETL, absorber, 

protective layer 

Fe2O3 – Absorber 

(experimental) 

Photoanode (low 

efficiency) 

– Absorber in all-

oxide architectures 

WO3 – HTL, ETL 

(investigated) 

Photoanode / 

additive 

Rear buffer contact 

(HTL) 

HTL, absorber, 

rear contact 

ETL – electron transport layer. HTL – hole transport layer. TCO – transparent conductive oxide. Barrier / buffer 

– for energetic or chemical alignment. Passivation – reduction of recombination. Absorber – light-absorbing 

layer. 
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Figure 12. Matrix of Oxide Ceramic Applications in Solar Cells. 

TiO2 and ZnO have proven to be versatile solutions for most architectures (PSC, DSSC, OSC, 

QD), as evidenced by their leading citation counts in the literature and frequent appearance among 

keywords such as electron transport layer, mesoporous, dye-sensitized, and UV stability. Their 

flexibility is enabled by a combination of wide bandgap, high transparency, various nanostructuring 

options, and stable energetic alignment with active layers. 

In contrast, SiO2 and Al2O3 serve clearly defined specialized roles – passivation, dielectric 

separation, and optical stabilization. This is reflected in a narrower range of keywords (e.g., surface 

passivation, antireflective coating) and in their lower, though stable, citation levels. While they are 

not charge carriers, they are essential for the stability and longevity of devices. 

Oxides with potential (CeO2, Fe2O3, WO3) appear in the literature as emerging materials but have 

not yet achieved widespread implementation. Our bibliometric analysis shows that publications on 

CeO2 are often accompanied by tags such as UV filter, stability enhancement, and interface 

engineering, whereas Fe2O3 is typically associated with PEC, low mobility, and visible light absorber. 

Nevertheless, major barriers remain: unfavorable band alignment, low charge mobility, and complex 

interfacial chemistry. 

Therefore, in the next generation of architectures (such as all-oxide, tandem, and inverted 

designs), combined structures look promising – where the drawbacks of one material are 

compensated by the advantages of another (e.g., TiO2@CeO2 or ZnO/WO3). This aligns with our 

bibliometric findings on keyword co-occurrence, where pairings such as ZnO + buffer layer, TiO2 + 

passivation, and WO3 + HTL are appearing with increasing frequency. 

In conclusion, a comparative analysis of physical properties, device functions, and the 

publication landscape indicates that oxide ceramics are no longer auxiliary components, but are 

emerging as a full-fledged platform for next-generation photovoltaic technologies. Their flexibility, 

chemical stability, and multifunctionality allow for material adaptation to specific architectures, 

opening pathways for interface engineering, integration into hybrid structures, and the development 

of stable, environmentally friendly solar cells. 

4.7. Future Directions 

The further development of oxide ceramics for solar energy primarily hinges on refined 

engineering of well-established materials, particularly TiO2 and ZnO. Despite their high efficiency in 

perovskite, organic, and quantum dot solar cells, the stability of these oxides remains limited by 

surface chemical reactivity: ZnO rapidly degrades in humid or acidic environments, while 
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mesoporous TiO2 requires careful control of porosity and crystal phase. One of the most promising 

strategies is the deposition of ultrathin buffer layers of Al2O3, SiO2, or CeO2 to screen the reactive 

surface while maintaining favorable energy alignment. 

For the next-generation group of oxides (CeO2, Fe2O3, and WO3), the main challenge is 

transitioning from laboratory prototypes to stable devices. CeO2 requires optimization of its crystal 

phase and integration with conventional ETL layers; hematite can serve as an absorber or 

photoelectrode only if charge transport is enhanced through doping or heterostructure design; WO3 

demonstrates excellent reliability, but its properties are highly sensitive to stoichiometry, requiring 

precise control during deposition. 

A promising direction is the concept of fully oxide-based architectures, where the same class of 

materials serves as both the absorbing layer and selective contacts. Combinations such as ZnO/Cu2O, 

TiO2/NiO, or WO3/Fe2O3 have demonstrated the feasibility of environmentally friendly and thermally 

stable ‘all-oxide’ solar cells, which hold promise for competing with conventional technologies in 

certain applications. An additional boost is expected from the rapid advancement of SnO2, which, 

alongside TiO2 and ZnO, is becoming a versatile electron transport layer in perovskite solar cells. 

This trajectory can be accelerated by integrating bibliometric mapping with materials science 

analytics: systematic analysis of keywords and co-authorship networks can help identify overlooked 

oxides and optimally allocate research efforts across hybrid architectures, interfacial chemistry, and 

long-term stability. Taken together, these approaches constitute a roadmap for the development of 

efficient, durable, and environmentally sustainable next-generation photovoltaic technologies. 

5. Conclusions 

This study presents a comprehensive bibliometric and comparative analysis of binary oxide 

materials used in modern solar cells. By combining quantitative analytics (based on Web of Science 

data), in-depth exploration of physicochemical properties, and role-based analysis of oxides across 

various device architectures, we not only synthesized current knowledge but also identified 

emerging directions for future research. 

The bibliometric findings indicate the dominance of TiO2 and ZnO in the scientific discourse, 

which correlates with their versatility as charge transport layers in multiple solar cell types. At the 

same time, oxides with more specialized functions (such as Al2O3 and SiO2) show consistent citation 

patterns in niche areas, reaffirming their key role in enhancing device stability and surface 

passivation. Trends in keyword usage and co-authorship networks reveal the formation of 

knowledge clusters around specific oxide functions, including charge transport, stabilization, 

nanostructuring, and interface engineering. 

Functional analysis revealed that the effectiveness of an oxide is determined not only by its 

bandgap or electron affinity but also by its adaptability to the specific operating requirements of the 

device. In particular, CeO2, Fe2O3, and WO3 hold considerable potential but still face challenges 

related to interfacial compatibility, charge transport, and phase stability. 

The proposed classification of materials across different solar cell architectures provides a 

holistic understanding of the role of oxide ceramics in modern photovoltaics. The identified future 

directions point toward the development of stable, efficient, and environmentally safe next-

generation photovoltaic technologies, especially within the scope of all-oxide concepts and hybrid 

device architectures. 
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